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A B S T R A C T

A variational principle for the Upper Convected Maxwell model is presented. The stationary value of the
appropriate functional is the drag on an immersed object. From the principle, a formula is derived for the
derivative of the drag with respect to the Deborah number for an arbitrarily shaped particle in a circular duct
under creeping flow conditions. The formalism is compared with the conventional reciprocal theorem. Whereas
the reciprocal theorem gives the drag as a volume integral involving the Stokesian stress tensor, the variational
principle involves the stress from the adjoint equation. For low Deborah numbers both approaches provide the
correction to the Stokes drag as a volume integral involving only the Stokesian rate-of-strain tensor, in line
with second-order fluid theory.
. Introduction

One of the classical variational principles in fluid mechanics is
principle due to Helmholtz [1]. It states that the motion of an

ncompressible Newtonian fluid at steady-state creeping flow condi-
ions is characterized by minimum dissipation. That is, the dissipation
s less than in any other motion that has the same velocity on the
ounding surface of the flow domain. Extensions of the principle to
on-Newtonian fluids and reformulations have been made by various
uthors [2–8] (see also [9], Chapter 8). Pawlowski [2] and, indepen-
ently, Bird [3,4] extended the principle to the generalized Newtonian
luid, where the viscosity may be a function of the invariants of the
ate-of-strain tensor. As Bird [3] observes, in general the flow does
ot minimize the dissipation, except for the relatively simple power
aw (Ostwald–de Waele) fluid. For this fluid Tomita [5] formulated
he appropriate principle and applied it to estimate the drag on a
phere in an unbounded domain as a function of the power law index
y inserting appropriate trial fields into the variational functional.
ohnson [6] further developed the principle by extending it to fluids
here the stress is obtained as the derivative of a function with respect

o the strain rate. Also, the variational scheme encompasses cases
here part of the bounding surface has force rather than velocity
oundary conditions. Furthermore, alternative formulations leading to
maximum principle rather than a minimum principle are provided.
sing these, Slattery [10] and Slattery and Wasserman [11] obtained
pper and lower bounds for the drag on a sphere in a power law fluid.
chechter [7] reformulated the principle to calculate the flow pattern
f power law fluids in ducts by minimizing the appropriate functional
nvolving an imposed pressure gradient. More examples of flow profile
stimates are given in ([8], Section 4.3). Tripathi and Chhabra [12]

E-mail address: b.i.m.tenbosch@tudelft.nl.

found bounds for the drag in a bank of cylinders using the Carreau
viscosity equation [8].

The various forms of the principle mentioned above have in com-
mon that the relation between stress and strain rate is essentially
algebraic, whereby differential constitutive models such as the Upper
Convected Maxwell model or Oldroyd-B model [8,13,14] are excluded.
It is the purpose of this paper to explore a variational principle for the
Upper Convected Maxwell (UCM) model with a meaningful physical
quantity as its stationary value, namely the drag on an immersed parti-
cle. Specifically, using the principle we study the drag on an arbitrarily
shaped particle in a circular duct (Fig. 1), where the rheology of the
fluid is described by the UCM model and the flow condition is creeping
flow. The particle is considered immobile, the flow steady and the flow
speed far upstream (at inlet 𝐼), far downstream (at outlet 𝑂) and at the
wall 𝑊 of the duct is assumed to have a specified constant value 𝑈 . On
the particle 𝑃 a stick boundary condition is imposed. By switching to a
reference frame where the flow speed at 𝐼 , 𝑂 and 𝑊 is zero, we see that
these conditions may for example describe the slow settling of a particle
under the influence of gravity in a vertical duct filled with stagnant
fluid, with stick boundary conditions on 𝑊 and with the proviso that
the motion is considered purely translational. For the special case of a
sphere on the axis of the duct, this is a standard geometry and a well-
known test case for numerical studies at high Deborah numbers (see
e.g. [15–18]).

Apart from presenting the variational scheme, we will also elaborate
on the so-called reciprocal theorem and discuss the similarities and
differences with the variational method. The comparison is justified by
the status of the reciprocal theorem as a classic expedient in a multitude
vailable online 11 November 2022
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Fig. 1. Sectional view of a particle 𝑃 in a circular duct. The wall, inlet and outlet are indicated with 𝑊 , 𝐼 and 𝑂, respectively. Also, 𝑉 indicates the flow domain.
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of studies of integral properties of flows and transport processes (for an
accessible and comprehensive review see [19]). In the context of non-
Newtonian fluids and creeping flow conditions, the theorem has found
use in a number of studies focusing on the force and torque on particles
at low Deborah number, where the theory of second-order fluids applies
and one is especially interested in the corrections to the results obtained
for Newtonian fluids. Well-known early studies include the work by
Leal on the motion of slender particles [20] and by Brunn investigating
the dynamics of particles of more general shape [21]. As emphasized
in [19], it is one of the attractive features of the theorem that the cor-
rections may be found directly in terms of parameters relating to Stokes
flow, whereby the need to actually solve the relevant equations for the
flow variables is circumvented. Chilcott and Rallison [22] employed the
theorem to find an expression for the drag convenient for numerical
computation in their work on creeping polymer flow around spheres
and cylinders at arbitrary Deborah numbers. Extended versions of the
reciprocal theorem incorporating both inertial and viscoelastic effects
were used by Becker et al. [23] in their study on the sedimentation of
a sphere near a plane wall, and by Dabade et al. [24] in their work on
settling of anisotropic particles. A related use of the reciprocal theorem
is in studies of self-propulsion in non-Newtonian fluids at small length
scales, see e.g. [25–31]. A recent application is the investigation of
flow rate-pressure drop relationships for complex fluids in narrow non-
uniform geometries [32,33]. We will discuss the reciprocal theorem in
the context of the variational study as described above.

The paper is organized as follows. After an introduction to the
governing equations in Section 2, in Section 3 we present a variational
principle for the UCM model. Among the conditions of stationarity of
the variational functional are the equation of continuity, the equation
of motion and the equation for the stress pertaining to the UCM model.
Moreover, the stationary value of the functional is the drag on the parti-
cle. A direct consequence of the principle is a formula for the derivative
of the drag with respect to Deborah number. In Section 4 we contrast
this with the drag formula from the reciprocal theorem. It is remarked
that both the variational principle and the reciprocal theorem do not
rely on the Deborah number being small. However, their most obvious
and simple use is at low Deborah numbers. In correspondence with
second-order fluid theory the first-order correction in Deborah number
is found as an integral involving the Stokesian rate-of-strain tensor.
This is discussed in Section 5, where some immediate consequences of
the correction are also outlined. Section 6 deals with the incorporation
of other rheological models than the UCM model into the variational
framework. We also establish a formal connection between the present
variational scheme and the Pawlowski–Bird functional for the general-
ized Newtonian fluid ([3], Eqs. (12)–(15)). Finally, concluding remarks
are presented in Section 7.

2. Governing equations

In this section we formulate the equations pertaining to the UCM
problem. We prefer to use non-dimensionalized quantities as follows.
2

𝐮

The position vector 𝐫 (directed from a suitably defined origin) and the
flow velocity 𝐯 are non-dimensionalized with a characteristic size 𝑙 of
the particle and the main stream speed 𝑈 , respectively. The viscosity
𝜂, which is a constant in the UCM model, is non-dimensionalized with
a suitably chosen reference viscosity 𝜂𝑟, and the pressure 𝑝 and stress
ensor 𝝉 with 𝜂𝑟𝑈∕𝑙. Finally, the UCM relaxation time 𝜆 (see e.g. [14])
s non-dimensionalized with 𝑙∕𝑈 . Explicitly,

𝐯̃ = 𝐯∕𝑈 , 𝐫̃ = 𝐫∕𝑙 , (1)

𝜂̃ = 𝜂∕𝜂𝑟 , 𝑝̃ =
𝑝 𝑙
𝜂𝑟 𝑈

, 𝝉̃ = 𝝉 𝑙
𝜂𝑟 𝑈

, (2)

̃ = 𝜆𝑈∕𝑙 , (3)

here the tilde indicates the non-dimensional quantities. It is noted that
̃ serves as the dimensionless Deborah number. From now on we work
xclusively with non-dimensionalized quantities and omit the tildes.

On the inlet 𝐼 and outlet 𝑂 (Fig. 1) the flow velocity 𝐯 equals the
nit vector 𝐔̂ directed along the axis of the duct. It is convenient to also
se

(𝐫) = 𝐯(𝐫) − 𝐔̂, (4)

here 𝐮 is the deviation of the flow velocity from the constant vector
̂ .

Under the assumption of incompressibility of the fluid, the equation
f continuity reads

⋅ 𝐮(𝐫) = 0. (5)

nder steady-state and creeping flow conditions, where inertia may be
eglected, the equation of motion is

= −𝛁𝑝(𝐫) + 𝛁 ⋅ 𝝉(𝐫), (6)

here the stress tensor 𝝉 is symmetric. Under steady-state conditions,
n the UCM model 𝝉 satisfies the equation (see e.g. [14])

(𝐯 ⋅ 𝛁𝝉 − 𝝉 ⋅ 𝐋† − 𝐋 ⋅ 𝝉) + 𝝉 = 2𝜂𝐝, (7)

here 𝐋 denotes the velocity gradient tensor (𝛁𝐯)† († denoting a
ransposition). Also, we have

= 1
2
(𝐋 + 𝐋†), (8)

the rate-of-strain tensor. For 𝜆 = 0 we have Stokes flow.
As for the boundary conditions, on the inlet 𝐼 and outlet 𝑂 (Fig. 1)

he fluid flows without UCM stress with velocity 𝐯 = 𝐔̂, so we have

(𝐫) = 𝟎 , 𝝉(𝐫) = 𝟎 on 𝐼 , 𝑂. (9)

On the wall 𝑊 of the duct the fluid flows with velocity 𝐔̂, so

𝐮(𝐫) = 𝟎 on 𝑊 . (10)

inally, we have

(𝐫) = −𝐔̂ on 𝑃 , (11)
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since we assume the flow velocity 𝐯 to be zero on the particle.
The force 𝖥 on the particle is given by

𝖥 = ∫𝑃
d𝑆 𝐧 ⋅ (𝑝 𝜹 − 𝝉) (12)

where d𝑆 denotes an element of surface, 𝜹 is the Kronecker delta and 𝐧
s the unit normal on the surface pointing outside 𝑉 . From 𝖥 we obtain

= 𝐔̂ ⋅ 𝖥 (13)

s the drag 𝐷 on the particle.

. A variational principle for the UCM model

We wish to formulate a functional where the conditions of station-
rity with respect to variations of the trial fields include the relevant
quations from Section 2. Also, at these conditions we require the func-
ional to be equal to the drag on the particle. The question arises how
ne can construct such a functional. First of all, it is clear by inspection
f the principles outlined in the Introduction that the pressure is a
agrange multiplier for the condition that the divergence of the velocity
ield be zero. Also, the variation of the velocity should produce the
quation of motion (6). It is logical to suppose that in the case of the
CM model the variation of the stress tensor should generate the stress
q. (7).

It is here that we encounter a difference with the principles men-
ioned before. In contrast with the generalized Newtonian fluid, in the
CM model the stress Eq. (7) is so complex that building a satisfactory

unctional from (𝑝, 𝐮, 𝝉) seems impossible. However, proceeding in
he spirit of ([9], Chapters 8–10) we may consider an extension of
he functional whereby the set of trial functions is enlarged to a set
𝑝1, 𝐮1, 𝝉1, 𝑝2, 𝐮2, 𝝉2) such that the variations of (𝑝1, 𝐮1, 𝝉1) lead to
qs. (5)–(7) for (𝑝2, 𝐮2, 𝝉2). The equations for (𝑝1, 𝐮1, 𝝉1) resulting from
ariations of (𝑝2, 𝐮2, 𝝉2) (the ‘adjoint’ equations) are similar to but not
ecessarily identical to Eqs. (5)–(7). Importantly, the stationary value
f the extended functional must be the drag relating to the fields (𝑝2,

𝐮2, 𝝉2).
Consider the functional

𝑋 = ∫𝑉
d𝑉 (𝑝1𝛁 ⋅ 𝐮2 − 𝐮1 ⋅ 𝛁𝑝2)

+ ∫𝑉
d𝑉 𝜆

2𝜂
𝝉1 ∶ (𝐯2 ⋅ 𝛁𝝉2 − 𝝉2 ⋅ 𝐋

†
2 − 𝐋2 ⋅ 𝝉2)

+ ∫𝑉
d𝑉 ( 1

2𝜂
𝝉1 ∶ 𝝉2 − 𝝉1 ∶ 𝐝2 + 𝐮1 ⋅ (𝛁 ⋅ 𝝉2))

+ ∫𝑃
d𝑆 𝐔̂ ⋅ (𝐧 ⋅ (𝑝2 𝜹 − 𝝉2)), (14)

where the fields 𝐯2, 𝐋2 and 𝐝2 relate to 𝐮2 in line with the formulae
from Section 2,

𝐯2(𝐫) = 𝐔̂ + 𝐮2(𝐫) , 𝐋2(𝐫) = (𝛁𝐯2)† , 𝐝2(𝐫) =
1
2
(𝐋2 + 𝐋†

2). (15)

We impose that 𝝉1 and 𝝉2 are symmetric (like 𝝉), and furthermore

𝐮1(𝐫) = 𝐮2(𝐫) = 𝟎 , 𝝉1(𝐫) = 𝝉2(𝐫) = 𝟎 on 𝐼 , 𝑂, (16)

𝐮1(𝐫) = 𝐮2(𝐫) = 𝟎 on 𝑊 , (17)

𝐮1(𝐫) = +𝐔̂ , 𝐮2(𝐫) = −𝐔̂ on 𝑃 . (18)

These conditions correspond to (9)–(11), except for a reversed flow
condition for 𝐮1. Indeed, 𝐮1 indicates a deviation of the flow velocity
𝐯1 from −𝐔̂,

𝐯1(𝐫) = −𝐔̂ + 𝐮1(𝐫), (19)

̂

3

𝐯1(𝐫) = −𝐔 on 𝐼 , 𝑂 , 𝑊 , (20)
1(𝐫) = 𝟎 on 𝑃 , (21)

orresponding to a reversed flow in the duct.
Next we find the conditions for stationarity of the functional with

espect to variations of the trial fields. With the help of the divergence
heorem the first variation of 𝑋 is found as

𝑋 = ∫𝑉
d𝑉 (𝛿𝑝1𝛁 ⋅ 𝐮2 + 𝛿𝐮1 ⋅ (−𝛁𝑝2 + 𝛁 ⋅ 𝝉2))

+ ∫𝑉
d𝑉 𝛿𝝉1 ∶

𝜆
2𝜂

(𝐯2 ⋅ 𝛁𝝉2 − 𝝉2 ⋅ 𝐋
†
2 − 𝐋2 ⋅ 𝝉2)

+ ∫𝑉
d𝑉 𝛿𝝉1 ∶

1
2𝜂

(𝝉2 − 2𝜂𝐝2)

+ ∫𝑉
d𝑉 (𝛿𝑝2𝛁 ⋅ 𝐮1 + 𝛿𝐮2 ⋅ (−𝛁𝑝1 + 𝜆𝐜 + 𝛁 ⋅ 𝝉1))

+ ∫𝑉
d𝑉 𝛿𝝉2 ∶

𝜆
2𝜂

(−𝛁 ⋅ (𝐯2 𝝉1) − 𝐋†
2 ⋅ 𝝉1 − 𝝉1 ⋅ 𝐋2)

+ ∫𝑉
d𝑉 𝛿𝝉2 ∶

1
2𝜂

(𝝉1 − 2𝜂𝐝1)

+ ∫𝑆
d𝑆 𝐧 ⋅ (−𝛿𝑝2 𝐮1 −

𝜆
𝜂
𝛿𝐮2 ⋅ 𝝉1 ⋅ 𝝉2 − 𝛿𝐮2 ⋅ 𝝉1)

+ ∫𝑆
d𝑆 𝐧 ⋅ ( 𝜆

2𝜂
𝐯2 𝛿𝝉2 ∶ 𝝉1 + 𝛿𝝉2 ⋅ 𝐮1)

+ ∫𝑃
d𝑆 𝐔̂ ⋅ (𝐧 ⋅ (𝛿𝑝2 𝜹 − 𝛿𝝉2)) (22)

with 𝐜 and 𝐝1 given by

𝐜 = 1
2𝜂

((𝛁𝝉2) ∶ 𝝉1 + 2𝛁 ⋅ (𝝉2 ⋅ 𝝉1)), (23)

1(𝐫) = (𝛁𝐯1)† , 𝐝1(𝐫) =
1
2
(𝐋1 + 𝐋†

1), (24)

nd 𝑆 is a shorthand for 𝐼 + 𝑂 +𝑊 + 𝑃 (see Fig. 1).
We take into account the conditions (16)–(18) on the boundaries,

here the corresponding variations of the fields are zero. On 𝑃 four
surface terms involving 𝛿𝑝2 and 𝛿𝝉2 are seen to cancel by (18). The
urface term with 𝛿𝝉2 ∶ 𝝉1 is zero on 𝐼 and 𝑂 because of (16), zero on
𝑊 because 𝐧 ⋅ 𝐔̂ is zero and because of (17), and zero on 𝑃 because
of (18). The remaining surface terms involve 𝐮1, 𝐮2 or their variations
and are zero as well. We are left with

𝛿𝑋 = ∫𝑉
d𝑉 (𝛿𝑝1𝛁 ⋅ 𝐮2 + 𝛿𝐮1 ⋅ (−𝛁𝑝2 + 𝛁 ⋅ 𝝉2))

+ ∫𝑉
d𝑉 𝛿𝝉1 ∶

𝜆
2𝜂

(𝐯2 ⋅ 𝛁𝝉2 − 𝝉2 ⋅ 𝐋
†
2 − 𝐋2 ⋅ 𝝉2)

+ ∫𝑉
d𝑉 𝛿𝝉1 ∶

1
2𝜂

(𝝉2 − 2𝜂𝐝2)

+ ∫𝑉
d𝑉 (𝛿𝑝2𝛁 ⋅ 𝐮1 + 𝛿𝐮2 ⋅ (−𝛁𝑝1 + 𝜆𝐜 + 𝛁 ⋅ 𝝉1))

+ ∫𝑉
d𝑉 𝛿𝝉2 ∶

𝜆
2𝜂

(−𝛁 ⋅ (𝐯2 𝝉1) − 𝐋†
2 ⋅ 𝝉1 − 𝝉1 ⋅ 𝐋2)

+ ∫𝑉
d𝑉 𝛿𝝉2 ∶

1
2𝜂

(𝝉1 − 2𝜂𝐝1) (25)

s the first variation.
As a consequence, from the requirement of stationarity of 𝑋 we

btain the following equations. As for the fields with label 2, 𝐮2 satisfies
he equation of continuity (5) and the equation of motion (6). The stress
ensor 𝝉2 satisfies (7). So we may identify

𝐮2 = 𝐮 , 𝑝2 = 𝑝 , 𝝉2 = 𝝉 . (26)

The fields with label 1 satisfy adjoint equations closely related to the
equations found for label 2. The velocity field 𝐮1 satisfies (5) and an
equation of motion

− 𝛁𝑝1 + 𝜆𝐜 + 𝛁 ⋅ 𝝉1 = 𝟎 (27)

which is (6) apart from the additional 𝜆𝐜. The equation for the stress
tensor 𝝉1 is found as

†
𝜆(−𝐯2 ⋅ 𝛁𝝉1 − 𝐋2 ⋅ 𝝉1 − 𝝉1 ⋅ 𝐋2) + 𝝉1 = 2𝜂𝐝1, (28)
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where we used the equation of continuity for 𝐮2. We see that (28) has
the structure of a Lower Convected Maxwell model for 𝝉1 [13], with
the proviso that the convection and velocity gradient in the convective
derivative correspond to −𝐯𝟐 rather than 𝐯1.

Evaluation of 𝑋 under the conditions of stationarity shows that the
olume integrals in 𝑋 are zero or cancel and we are left with

𝑠𝑡𝑎𝑡 = ∫𝑃
d𝑆 𝐔̂ ⋅ (𝐧 ⋅ (𝑝2 𝜹 − 𝝉2)) = 𝐷. (29)

Hence the drag may be obtained as the stationary value of the func-
tional 𝑋.

The variational principle allows us to give a concise formula for
the derivative of the drag with respect to the Deborah number. We
consider the functional 𝑋 for a certain value of 𝜆 and assume that the
trial fields correspond to the conditions of stationarity. A change of 𝜆
enerates two contributions to the change of the stationary value of
. The first contribution is due to the explicit dependence of 𝑋 on

. The second contribution comes from the change in the trial fields
orresponding to the new stationary value of 𝑋. Because 𝑋 is stationary

under variations of the trial fields, we only need to take into account
the first contribution and find
d𝑋𝑠𝑡𝑎𝑡

d𝜆 = d𝐷
d𝜆

= 1
2𝜂 ∫𝑉

d𝑉 𝝉1 ∶ (𝐯2 ⋅ 𝛁𝝉2 − 𝝉2 ⋅ 𝐋
†
2 − 𝐋2 ⋅ 𝝉2) (30)

y inspection of (14).

. The reciprocal theorem

For the case under investigation, the reciprocal theorem may be
erived as follows [19,22]. We write

= −𝑝𝜹 + 𝝉 (31)

nd derive an expression for the difference between the drag 𝐷 and the
tokes drag 𝐷𝑠 (a subscript 𝑠 denotes a Stokesian value). We have

−𝐷𝑠 = 𝐔̂ ⋅ (𝖥 − 𝖥𝑠)

= ∫𝑃
d𝑆 𝐧 ⋅ (−𝝈 + 𝝈𝑠) ⋅ 𝐔̂

= ∫𝑆
d𝑆 𝐧 ⋅ (𝝈 ⋅ 𝐮𝑠 − 𝝈𝑠 ⋅ 𝐮) (32)

where we used (9)–(11). Using the divergence theorem and the equa-
tion of motion (6) we obtain

𝐷 −𝐷𝑠 = ∫𝑉
d𝑉 (𝝈 ∶ 𝛁𝐮𝑠 − 𝝈𝑠 ∶ 𝛁𝐮)

= ∫𝑉
d𝑉 (𝝉 ∶ 𝛁𝐮𝑠 − 𝝉𝑠 ∶ 𝛁𝐮) (33)

where the last equality follows because the pressure contributions (see
(31)) are zero due to (5). Finally, using (7) and (8) we find

𝐷 −𝐷𝑠 = ∫𝑉
d𝑉 (𝝉 ∶ 𝐝𝑠 − 𝝉𝑠 ∶ 𝐝)

= 𝜆
2𝜂 ∫𝑉

d𝑉 𝝉𝑠 ∶ (−𝐯 ⋅ 𝛁𝝉 + 𝝉 ⋅ 𝐋† + 𝐋 ⋅ 𝝉) (34)

s the difference between the drag and the Stokes drag.
We may contrast the variational formula (30) and the reciprocal

heorem (34) as follows,

d𝐷
d𝜆 = 1

2𝜂 ∫𝑉
d𝑉 (−𝝉1) ∶ (−𝐯 ⋅ 𝛁𝝉 + 𝝉 ⋅ 𝐋† + 𝐋 ⋅ 𝝉), (var.) (35)

𝐷 −𝐷𝑠
𝜆

= 1
2𝜂 ∫𝑉

d𝑉 𝝉𝑠 ∶ (−𝐯 ⋅ 𝛁𝝉 + 𝝉 ⋅ 𝐋† + 𝐋 ⋅ 𝝉). (rec.) (36)

In (35) the volume integral involves the adjoint stress tensor whereas
4

(36) involves the Stokesian stress tensor. i
5. The low Deborah number correction to the drag

A simple form of (30) can be derived for small 𝜆. The flows reduce
to Stokes flows,

−𝐮1 = 𝐮2 = 𝐮𝑠 , −𝝉1 = 𝝉2 = 𝝉𝑠, (37)
𝐯2 = 𝐯𝑠 = 𝐔̂ + 𝐮𝑠 , 𝐋2 = 𝐋𝑠 , 𝐝2 = 𝐝𝑠, (38)

and we find
d𝐷
d𝜆

|

|

|

|𝜆=0
= 1

2𝜂 ∫𝑉
d𝑉 𝝉𝑠 ∶ (−𝐯𝑠 ⋅ 𝛁𝝉𝑠 + 𝝉𝑠 ⋅ 𝐋†

𝑠 + 𝐋𝑠 ⋅ 𝝉𝑠). (39)

sing the divergence theorem and the boundary conditions on 𝐯𝑠 and
𝑠 (cf. (16)–(18)) we may transform the first term (with 𝐯𝑠 ⋅ 𝛁) into its
egative. As a consequence this term is zero so that, using 𝝉𝑠 = 2𝜂𝐝𝑠

we obtain
d𝐷
d𝜆

|

|

|

|𝜆=0
= 2𝜂 ∫𝑉

d𝑉 𝑇 𝑟 𝐝3𝑠 , (40)

𝑟 denoting the trace. Putting

= 𝐷𝑠 + 𝜆𝐷𝑐 (41)

here 𝐷𝑐 indicates the correction to the drag to first order in the
eborah number, we find

𝑐 = 2𝜂 ∫𝑉
d𝑉 𝑇 𝑟 𝐝3𝑠 (42)

s the correction in terms of Stokesian quantities.
It is directly seen from (36) that the reciprocal theorem leads to the

ame correction (42). The fact that the reciprocal theorem for a second-
rder fluid leads to drag formulae involving a volume integral over
product of Stokesian rate-of-strain tensors was already observed by

runn [21,34]. For the present configuration, writing the stress tensor
or a second-order fluid as

= 2𝜂(𝐝 + 𝛼𝐝̊ + 𝛽𝐝 ⋅ 𝐝) (43)

here 𝐝̊ denotes the corotational derivate [8] of 𝐝, and proceeding as
n Section 4, we have from the reciprocal theorem

= 𝐷𝑠 + (𝛼 + 𝛽)𝐷𝑐 (second-order fluid, 𝛼, 𝛽 → 0) (44)

ith 𝐷𝑐 from (42). The UCM formulae (41) and (42) are the special
ase 𝛼 = −𝜆, 𝛽 = 2𝜆.

The correction (42) has as a consequence that for a number of
onfigurations 𝐷𝑐 will be zero. In Fig. 2 four configurations are given
here a combination of time reversal and inversion (with respect to a

uitable origin as indicated) produces the same or a physically similar
onfiguration. In those cases

𝑠(𝐫)
𝑡𝑖𝑚𝑒 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙

⟶ −𝐮𝑠(𝐫)
𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛
⟶ 𝐮𝑠(−𝐫), (45)

o that 𝐝𝑠(𝐫) = −𝐝𝑠(−𝐫) and 𝐷𝑐 = 0 follows. For the case of a sphere
n an unbounded domain this result is already mentioned in the classic
aper [35] concerning the second-order correction (see also [8]).

In Fig. 3 we have two cases where 𝐷𝑐 will not be zero. This is es-
entially due to the fact that the fore-aft symmetry of the configuration
s broken. The role of particle fore-aft symmetry in calculations of the
orce was already noted by Leal [20].

We have discussed the case of a particle in a duct. As is clear from
he analysis, we may carry over the results to a two-dimensional (2D)
etting. Here the duct is replaced by two parallel plates and the particle
y a prismatic beam positioned perpendicular to the flow. The drag is
onsidered per unit length of the beam. A direct consequence of (42)
s then the following statement:

𝑐 = 0, (2D) (46)

tating that the first-order correction to the Stokes drag is zero. This
s due to the fact that in 2D the incompressibility condition 𝑇 𝑟 𝐝𝑠 = 0

3
mplies 𝑇 𝑟 𝐝𝑠 = 0.
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Fig. 2. Geometries with 𝐷𝑐 = 0. (a) sphere on-axis, (b) sphere off-axis, (c) ellipsoid on-axis, non-aligned, (d) capsule off-axis, aligned with duct. The origins are indicated with ∙.
Fig. 3. Geometries with non-zero 𝐷𝑐 . (a) egg-shaped particle, on-axis, aligned with duct, (b) ellipsoid off-axis, non-aligned.
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We end this section with two observations. Firstly, it is remarked
hat if the Stokes flows (37) are inserted into the functional (14) by way
f approximation of the actual flows, the variational approximation
= 𝐷 of the drag gives (41)–(42) without restriction on the Deborah

number. Of course, the approximation will be very poor in general but
does provide the first-order result. Secondly, the correction (42) may
also be derived directly from the governing equations. We expand the
fields to first order in 𝜆 as in (41), e.g.

𝐮 = 𝐮𝑠 + 𝜆𝐮𝑐 (47)

and similarly for 𝑝, 𝝉, etc. We find from (5)–(7)

𝛁 ⋅ 𝐮𝑠 = 0 , 𝛁 ⋅ 𝐮𝑐 = 0, (48)
𝟎 = −𝛁𝑝𝑠 + 𝛁 ⋅ 𝝉𝑠 , 𝟎 = −𝛁𝑝𝑐 + 𝛁 ⋅ 𝝉𝑐 , (49)

𝝉𝑠 = 2𝜂𝐝𝑠, (50)
𝐯𝑠 ⋅ 𝛁𝝉𝑠 − 𝝉𝑠 ⋅ 𝐋†

𝑠 − 𝐋𝑠 ⋅ 𝝉𝑠 + 𝝉𝑐 = 2𝜂𝐝𝑐 . (51)

The boundary conditions are

𝐮𝑠 = 𝟎 on 𝐼 , 𝑂 , 𝑊 , 𝐮𝑠 = −𝐔̂ on 𝑃 , (52)
𝐮𝑐 = 𝟎 on 𝐼 , 𝑂 , 𝑊 , 𝑃 , (53)

as seen from (9)–(11).
In the derivation we will make repeated use of the divergence

theorem. From (51) we obtain

1
2𝜂 ∫𝑉

d𝑉 𝝉𝑠 ∶ (−𝐯𝑠⋅𝛁𝝉𝑠+𝝉𝑠⋅𝐋†
𝑠+𝐋𝑠⋅𝝉𝑠) =

1
2𝜂 ∫𝑉

d𝑉 𝝉𝑠 ∶ (𝝉𝑐−2𝜂𝐝𝑐 ). (54)

he term on the right with 𝝉𝑠 ∶ 𝐝𝑐 is found to vanish by (53), (48) and
49),

∫𝑉
d𝑉 𝝉𝑠 ∶ 𝐝𝑐 = ∫𝑉

d𝑉 𝝉𝑠 ∶ (𝛁𝐮𝑐 )

= ∫𝑆
d𝑆 𝐧 ⋅ (𝐮𝑐 ⋅ 𝝉𝑠) − ∫𝑉

d𝑉 𝐮𝑐 ⋅ (𝛁 ⋅ 𝝉𝑠)

= −∫𝑉
d𝑉 𝐮𝑐 ⋅ 𝛁𝑝𝑠

= −∫𝑆
d𝑆 𝐧 ⋅ 𝐮𝑐 𝑝𝑠 + ∫𝑉

d𝑉 (𝛁 ⋅ 𝐮𝑐 ) 𝑝𝑠

= 0. (55)
5

0

The remaining term on the right of (54) may be linked to the drag. We
have
1
2𝜂 ∫𝑉

d𝑉 𝝉𝑠 ∶ 𝝉𝑐 = ∫𝑉
d𝑉 𝐝𝑠 ∶ 𝝉𝑐

= ∫𝑉
d𝑉 (𝛁𝐮𝑠) ∶ 𝝉𝑐

= ∫𝑆
d𝑆 𝐧 ⋅ (𝐮𝑠 ⋅ 𝝉𝑐 ) − ∫𝑉

d𝑉 𝐮𝑠 ⋅ (𝛁 ⋅ 𝝉𝑐 )

= −∫𝑃
d𝑆 𝐧 ⋅ (𝐔̂ ⋅ 𝝉𝑐 ) − ∫𝑉

d𝑉 𝐮𝑠 ⋅ (𝛁 ⋅ 𝝉𝑐 ) (56)

sing (50) and (52). The first term on the right is the stress contribution
o 𝐷𝑐 , whereas the last term may be transformed into the pressure
ontribution,

− ∫𝑉
d𝑉 𝐮𝑠 ⋅ (𝛁 ⋅ 𝝉𝑐 ) = −∫𝑉

d𝑉 𝐮𝑠 ⋅ 𝛁𝑝𝑐

= −∫𝑆
d𝑆 𝐧 ⋅ 𝐮𝑠 𝑝𝑐 + ∫𝑉

d𝑉 (𝛁 ⋅ 𝐮𝑠) 𝑝𝑐

= ∫𝑃
d𝑆 𝐧 ⋅ 𝐔̂ 𝑝𝑐 , (57)

here we used (49) and (48).
With (55)–(57) Eq. (54) becomes

1
2𝜂 ∫𝑉

d𝑉 𝝉𝑠 ∶ (−𝐯𝑠 ⋅𝛁𝝉𝑠+𝝉𝑠 ⋅𝐋†
𝑠 +𝐋𝑠 ⋅𝝉𝑠) = ∫𝑃

d𝑆 𝐧 ⋅ (𝐔̂ 𝑝𝑐 − 𝐔̂ ⋅𝝉𝑐 ), (58)

n correspondence with (39). Eq. (42) follows as before.

. Other rheological models

In this section we discuss the possibility of incorporating other
odels than the UCM model into the variational framework. Also,
e wish to establish a formal connection with the Pawlowski–Bird
rinciple for the generalized Newtonian fluid [2,3].

The UCM constitutive equation is only one of the many rheological
odels beyond the generalized Newtonian fluid [8,13], and the ques-

ion arises how other models (for instance, the Oldroyd-B model or the
iesekus model) may be incorporated. Whatever the model is that we
hoose, we can formulate the relevant equations (continuity, motion,
tc.) in the schematic form

= 𝑅𝐻𝑆(𝐮,𝐝, 𝝉 ,…), (59)
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𝑅𝐻𝑆 meaning right hand side. With the logic of Section 3, all the fields
in (59) get label 2. Schematically, the functional 𝑋 is then formulated
as

𝑋 = ∫𝑉
d𝑉 𝑝1 𝑅𝐻𝑆(𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦)2 (60)

+ ∫𝑉
d𝑉 (𝐮1 ⋅ 𝑅𝐻𝑆(𝑚𝑜𝑡𝑖𝑜𝑛)2 + 𝝉1 ∶ 𝑅𝐻𝑆(𝑠𝑡𝑟𝑒𝑠𝑠)2) +⋯

+ ∫𝑃
d𝑆 𝐔̂ ⋅ (𝐧 ⋅ (𝑝2 𝜹 − 𝝉2)).

This leads to the correct equations for the fields with label 2 and the
stationary value of 𝑋 is the drag, under the condition that the surface
terms in 𝛿𝑋 disappear because of the boundary conditions (cf. (25)).
This is best investigated on a case-by-case basis. For instance, we may
consider a Giesekus-type extension of the UCM model,

𝟎 = 𝜆(𝐯 ⋅ 𝛁𝝉 − 𝝉 ⋅ 𝐋† − 𝐋 ⋅ 𝝉) + 𝝉 + 𝜆𝛼
𝜂
𝝉 ⋅ 𝝉 − 2𝜂𝐝, (61)

ith 𝛼 a constant. The extra term 𝑋𝑒𝑥𝑡𝑟𝑎 to be added to (14) is

𝑒𝑥𝑡𝑟𝑎 = ∫𝑉
d𝑉 1

2𝜂
𝝉1 ∶ (𝜆𝛼

𝜂
𝝉2 ⋅ 𝝉2), (62)

and no extra surface terms are generated in the variation. The correct
Eq. (61) is found for 𝝉2 at the expense of an extra term involving both
𝝉1 and 𝝉2 in the equation for 𝝉1. The stationary value of the extended
functional is the drag resulting from (61).

To make the connection with the generalized Newtonian fluid, it
is convenient to start from (14) and first reduce it to the Newtonian
(constant viscosity) case (N). After that, we incorporate the generalized
Newtonian (GN) model. We first put 𝜆 = 0 in (14), which gives

𝑋𝑁 = ∫𝑉
d𝑉 (𝑝1𝛁 ⋅ 𝐮2 − 𝐮1 ⋅ 𝛁𝑝2)

+ ∫𝑉
d𝑉 ( 1

2𝜂
𝝉1 ∶ 𝝉2 − 𝝉1 ∶ 𝐝2 + 𝐮1 ⋅ (𝛁 ⋅ 𝝉2))

+ ∫𝑃
d𝑆 𝐔̂ ⋅ (𝐧 ⋅ (𝑝2 𝜹 − 𝝉2)). (63)

Because the resulting equations for the fields with labels 1 and 2 are
the same we can dispense with the labels. Also, using 𝝉 = 2𝜂𝐝 we can
leave out the variation of 𝝉 and employ the smaller set (𝑝, 𝐮). Explicitly,
with reference to (37) we use

− 𝑝1 = 𝑝2 = 𝑝 , −𝐮1 = 𝐮2 = 𝐮 , −𝝉1 = 𝝉2 = 𝝉 = 2𝜂𝐝 (64)

in (63) and obtain

𝑋𝑁 = ∫𝑉
d𝑉 (−𝑝𝛁 ⋅ 𝐮 + 𝐮 ⋅ 𝛁𝑝 − 𝐮 ⋅ (𝛁 ⋅ (2𝜂𝐝)))

+ ∫𝑃
d𝑆 𝐔̂ ⋅ (𝐧 ⋅ (𝑝 𝜹 − 2𝜂𝐝)). (65)

As before, repeated use will be made of the divergence theorem. Also,
the boundary conditions (9)–(11) are invoked. The first variation of
(65) is

𝛿𝑋𝑁 = −2∫𝑉
d𝑉 (𝛿𝑝𝛁 ⋅ 𝐮 + 𝛿𝐮 ⋅ (−𝛁𝑝 + 𝛁 ⋅ (2𝜂𝐝))), (66)

so that, not unexpectedly, Eqs. (5) and (6) are recovered for the
Newtonian case 𝝉 = 2𝜂𝐝. It is immediate from (65) that the stationary
value of 𝑋𝑁 is the drag on the particle.

It will be useful to transform 𝑋𝑁 into an alternative form. From (65)
we obtain

𝑋𝑁 = ∫𝑉
d𝑉 (−2𝑝𝛁 ⋅ 𝐮 + 2𝜂𝛁𝐮 ∶ 𝐝). (67)

We switch to the shear rate tensor 𝜸̇ = 2𝐝 and the shear rate 𝛾̇ (𝛾̇ ≥ 0)
given by (see [8])

𝛾̇2 = 1
2
𝜸̇ ∶ 𝜸̇ (68)

and find

𝑋𝑁 = d𝑉 (−𝑝 𝑇 𝑟 𝜸̇ + 𝜂 𝛾̇2) (69)
6

∫𝑉
as an alternative to (65). We note that this is in fact Bird’s functional
([3], Eqs. (12)–(15)) for the special case of a Newtonian fluid and no
external force.

According to Pawlowski [2] and Bird [3], for the generalized New-
tonian fluid we have available the functional

𝑋𝐺𝑁 = ∫𝑉
d𝑉 (−𝑝 𝑇 𝑟 𝜸̇ + 2∫

𝛾̇

0
𝜂(𝛾̇ ′)𝛾̇ ′ d𝛾̇ ′), (70)

here the viscosity is shear rate dependent,

= 𝜂(𝛾̇)𝜸̇, (71)

nd a potential dependence on the ’third invariant’ is discarded [8].
ell-known examples include the power law fluid and the Carreau–

asuda model [8]. The original derivations showing that the func-
ional (70) produces the correct governing equations employ the Euler–
agrange equations. We prefer a direct approach. The first variation is

𝑋𝐺𝑁 = ∫𝑉
d𝑉 (−𝛿𝑝 𝑇 𝑟 𝜸̇ − 𝑝 𝑇 𝑟 𝛿𝜸̇ + 2𝜂(𝛾̇)𝛾̇ 𝛿𝛾̇), (72)

nd using

𝛾̇𝛿𝛾̇ = 𝜸̇ ∶ 𝛿𝜸̇, (73)

hich follows from (68), we obtain

𝑋𝐺𝑁 = ∫𝑉
d𝑉 (−𝛿𝑝 𝑇 𝑟 𝜸̇ − 𝑝 𝑇 𝑟 𝛿𝜸̇ + 𝜂(𝛾̇)𝜸̇ ∶ 𝛿𝜸̇). (74)

e finally have

𝑋𝐺𝑁 = 2∫𝑉
d𝑉 (− 𝛿𝑝 𝛁 ⋅ 𝐮 + 𝛿𝐮 ⋅ (𝛁𝑝 − 𝛁 ⋅ (𝜂(𝛾̇)𝜸̇))), (75)

o that (5) and (6) are indeed recovered for the generalized Newtonian
luid (71). However, there is no direct relation (in the sense of equality
r proportionality) between the stationary value of (70) and the drag.

Returning to the two-label approach, we can formulate a functional
ith the generalized Newtonian drag as its stationary value. In analogy

o (63) we put

𝐺𝑁,2 = ∫𝑉
d𝑉 (𝑝1𝛁 ⋅ 𝐮2 − 𝐮1 ⋅ 𝛁𝑝2)

+ ∫𝑉
d𝑉 ( 1

2𝜂2
𝝉1 ∶ 𝝉2 − 𝝉1 ∶ 𝐝2 + 𝐮1 ⋅ (𝛁 ⋅ 𝝉2))

+ ∫𝑃
d𝑆 𝐔̂ ⋅ (𝐧 ⋅ (𝑝2 𝜹 − 𝝉2)) (76)

ith 𝜂2 = 𝜂(𝛾̇2). Repeating the variational analysis we find for the fields
ith label 2 the generalized Newtonian Eqs. (5), (6) and (71), and the

tationary value is the drag. For the fields with label 1 one obtains apart
rom (5) an equation of motion with an extra term (cf. (27)) and the
tress tensor involves 𝜂2,

𝟎 = −𝛁𝑝1 + 𝛁 ⋅ 𝝉1 + 𝛁 ⋅ 𝜋 , (77)

𝜋 = 1
2𝜂22 𝛾̇2

𝜕𝜂2
𝜕𝛾̇2

𝜸2 𝝉1 ∶ 𝝉2, (78)

𝝉1 = 𝜂2𝜸̇1, (79)

with an expected mix of fields with labels 1 and 2.

7. Concluding remarks

We have presented a variational principle for the Upper Convected
Maxwell model. Using the principle we found a formula for the deriva-
tive of the drag with respect to the Deborah number for a particle in a
duct. We contrasted the principle with the reciprocal theorem. Whereas
the reciprocal theorem gives the drag as a volume integral involving
the Stokesian stress tensor, the variational principle involves the stress
from the adjoint equation. For low Deborah number both formulae
give the correction to the Stokes drag as a volume integral involving



Journal of Non-Newtonian Fluid Mechanics 311 (2023) 104948B.I.M. ten Bosch
only the Stokesian rate-of-strain tensor. This is in line with second-
order fluid theory. We also established a formal connection between
the principle and a previously obtained functional for the generalized
Newtonian fluid. Finally, we briefly discussed the incorporation of
other rheological models into the variational framework.

It may be remarked that the variational principle seems more elab-
orate than the reciprocal theorem. For instance, the derivation of the
low Deborah number formula for the drag (42) is shorter via the
reciprocal theorem. It may well be that the potential advantage of
the variational principle lies in finding approximations to the drag.
The stationarity property ensures that first order deviations from the
actual fields produce only second order deviations from the actual drag,
enhancing the accuracy of the approximation (cf. the first observation
at the end of Section 5). It remains to be seen whether the variational
principle outlined in this paper is useful in this respect.
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