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ABSTRACT

Dynamic Binary Translation (DBT) is a powerful approach to sup-

port cross-architecture emulation of unmodified binaries. However,

DBT systems face correctness and performance challenges, when

emulating concurrent binaries from strong to weak memory consis-

tency architectures. As a matter of fact, we report several transla-

tion errors in Qemu, when emulating x86 binaries on Arm hosts.

To address these challenges, we propose an end-to-end approach

that provides correct and efficient emulation for weak memory

model architectures. Our contributions are twofold: First, we for-

malize Qemu’s intermediate representation’s memory model, and

use it to propose formally verified mapping schemes to bridge the

strong-on-weak memory consistency mismatch. Second, we imple-

ment these verified mappings in Risotto, aQemu-based DBT system

that optimizes memory fence placement while ensuring correct-

ness. Risotto further improves performance via cross-architecture

dynamic linking of native shared libraries and faster yet correct

translation of compare-and-swap operations.

We evaluate Risotto using multi-threaded benchmark suites and

real-world applications, and show that Risotto improves the em-

ulation performance by 6.7% on average over łerroneousž Qemu,

while ensuring correctness.
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1 INTRODUCTION

With the emergence of new Instruction Set Architectures (ISAs) like

Arm or RISC-V, the landscape of computing hardware is steadily

shifting in the recent years [13, 38]. Major industry players are

moving away from the currently dominating x86 to favor new

features, performance, power efficiency, and license support [16, 32,

77]. However, this transition is not straightforward since existing

applications are not compatible across different ISAs. To address

this problem, DBT technology emulates the program’s guest ISA

on the host machine, by translating the code at run time [71, 80].

A major challenge for DBT systems is correct and performant

emulation of concurrent binaries [28, 53]. The root cause of this

issue is the mismatch in the memory model semantics between the

guest and the host architectures, which is particularly problematic

when translating from a strongmemorymodel, e.g., x86, to a weaker

model, e.g., Arm [6]. At a high-level, the DBTs must ensure that

the behavior of the guest ISA is correctly reproduced on the host

machine so that the application’s original semantics are preserved.
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In order to correctly support strong-on-weak memory consis-

tency [90], DBTs must insertmemory fences to preserve guest order-

ings, sacrificing performance [51]. For example, Qemu [71], a state-

of-the-art DBT, tries to enforce a stronger ordering than x86’s when

emulating it onArm, unnecessarily hurting performance. Despite its

attempt at enforcing strong ordering, it fails to ensure correctnessÐ

we discover and report several translation errors in Qemu due to

incorrect fence usage that may lead to errors at run time. Further,

while reasoning about mapping correctness, we discover and re-

port that the Arm memory model [6] does not facilitate optimal

mapping as it requires additional fences in x86 to Arm translation.

Moreover, the runtime performance is paramount for the adop-

tion of DBT systems. Many user-mode DBT systems translate the

entire application up to the system call interface, and fail to take

advantage of pre-compiled host instructions where available. For

instance, commonly used shared libraries are often present in the

host system, however Qemu, instead of using the native and highly

optimized version of the library, translates a guest version of the

shared library function to the host ISA.

In this paper, we propose an end-to-end DBT approach based

on Qemu that provides correct and efficient execution of concur-

rent x86 binaries on Arm architectures by combining: (a) formal

verification of translation correctness for strong-on-weak architec-

ture, and (b) a DBT system for run time binary translation based

on these verified translation rules.

More specifically, on the formal verification aspect, we propose

the first formal concurrency memory model of Qemu’s intermediate

representation (TCG IR). We use our formalization to offer verified

mapping schemes, proving the correctness of (1) x86 to TCG IR and

(2) TCG IR to Arm mapping schemes. We develop these correctness

proofs using the Agda theorem prover [4].

Another aspect of Qemu’s Tiny Code Generator (TCG) is the

intermediate optimizations on the concurrency primitives, which

may affect the translation correctness, as all transformation for

sequential programs may be not be correct for concurrent pro-

grams [25, 59, 86]. Hence, only ensuring the memory model mis-

matches in architectures [28, 53] does not guarantee correct trans-

lation in Qemu. Therefore, we prove the correctness of a number

of optimizations, including the ones performed by TCG. These ver-

ified optimizations, along with verified mappings, facilitate the de-

velopment of an end-to-end DBT system based on Qemu.

On the system side, we build Risotto, a Qemu-based DBT sys-

tem that implements these verified translation rules for mappings

and optimizes fence placement. Risotto further enhances the emula-

tion performance via a cross-architecture dynamic linker that uses

native shared libraries whenever available, instead of translating

their guest counterpart. In addition, Risotto leverages recent Arm

atomic instructions to efficiently and correctly translate Compare-

and-Swap (CAS) operations.

We evaluate Risotto on the PARSEC [19] and Phoenix [72] bench-

mark suites, as well as various real-world applications such as

OpenSSL and SQLite. Our evaluation shows that Risotto improves

performance whilst still being correct with regards to memory or-

dering by up to 19.7%, and 6.7% on average compared to łerroneousž

Qemu. We also show that our dynamic linker allows applications

using shared libraries to match the speed of native applications us-

ing these libraries.

Overall, our paper makes the following contributions:

• Concurrency analysis in QEMU and Arm memory model.

We discover and report several translation errors in Qemu due to

the incorrect usages of memory fences. We also report undesired

behavior in the Arm memory model (herein referred to as Arm-

Cats) for efficient x86-to-Arm translation [6], and propose revi-

sions to the model for verified mappings. These revisions were

accepted in the Arm-Cats model [39].

• TCG IR memory model: Formalization, verified mappings

and optimizations. We formalize Qemu’s TCG IR. Based on

this formal model, we propose mapping schemes from x86 to

TCG IR and TCG IR to Arm, which we verify to be semantically

correct. We also prove the correctness of various optimizations

on TCG IRmodel which are performed by QEMU. These mapping

schemes have been submitted to the Qemu mailing list and are

under review at the time of writing.

• Risotto DBT system. We build Risotto, an end-to-end DBT

system that is based on the formally verified translations on

QEMU. In addition, we implement a dynamic host library linker,

which allows to match the speed of native execution when using

native shared libraries instead of translated libraries. Lastly, we

implement a fast and correct translation of CAS operations.

2 BACKGROUND

2.1 Weak Memory Model Architectures

Concurrency is often interpreted as an interleaving of operations

performed by multiple threads, with the operations in each thread

executing in program order. This is known as Sequential Consis-

tency (SC) [44]. However, concurrent systems may also behave in

ways that cannot be explained by interleaving semantics. These

non-SC behaviors result in weak memory models.

Weak memory models arise in some architectures due to various

microarchitectural design decisions, e.g., the memory hierarchy,

or out-of-order execution. Therefore, memory models may vary

among different ISAs, e.g., x86 and Arm. The example below shows

how the allowed behaviors for a program may vary depending on

the memory model.

𝑋 = 𝑌 = 0;

𝑋 = 1;

𝑌 = 1;

𝑎 = 𝑌 ;

𝑏 = 𝑋 ;

(MP)

Shared variables 𝑋 and 𝑌 are initialized

to zero. The program has two concurrent

threads. Weak outcome 𝑎 = 1, 𝑏 = 0 is

allowed in Arm but disallowed in x86.

Implication on binary translation. If we translate theMP pro-

gram’s binary from x86 to Arm, without taking their memory mod-

els into account, the resulting Arm binary may exhibit undesirable

behaviors. This incorrectness is due to the different memory con-

sistency models between the source and destination ISAs. It can be

fixed by explicitly enforcing the memory model of the source ISA

when translating into the destination ISA via memory fences. How-

ever, the introduction of additional fences has a significant impact

on performance [51].

2.2 Dynamic Binary Translation

DBT systems typically operate as follows: (1) translate the instruc-

tion currently pointed at by the emulated Instruction Pointer (IP),

and (2) execute the translated instruction, updating the IP to either
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the following instruction or the target of a jump. Most DBTs imple-

ment translation granularities of at least a basic block, and employ

classic compiler optimizations to improve generated code quality

(and hence run time performance). Basic blocks are often cached to

avoid repeating translations.

Qemu is a state-of-the-art emulator capable of cross-ISA emula-

tion that supports two operation modes: full system or user mode.

Full system mode emulates the entire machine while user mode

only emulates applications. In the latter, system calls are natively

executed by the host machine and not emulated. In this paper, we

focus on user-mode Qemu.

Shared libraries support. Qemu treats the application binary and

any shared libraries as a unit, translating both guest application

code and guest library code on-the-fly. This requires a guest version

of the shared library to be available for the application to function

correctly. However, since many shared libraries are common across

platforms, some libraries used by guest applications will also be

available on the host system in native form. A classic example is

the GNU C Library (glibc), which is used by most applications. This

means that Qemu translates functions from the guest glibc, while a

native and optimized version is almost certainly available.

2.3 TCG: Qemu’s Dynamic Binary Translator

Qemu translates code through its TCG. Basic blocks are trans-

lated via an intermediate representation (IR) called the TCG IR.

Architecture-independent optimizations are also applied on the ba-

sic blocks at the IR level.

TCG IR. The TCG IR is an assembly-like instruction set. It con-

tains basic arithmetic, logic, and control flow instructions. How-

ever, floating-point arithmetic is emulated via integer-based com-

putations.

Memory fences. The TCG IR provides fences for all types of pairs

of accesses. For example, the Fww fence orders a store-store pair,

while Frw orders a load-store pair. When generating fences in the

IR, TCG takes the guest memory model into account to choose the

fence accordingly. Section 3 provides a more detailed discussion.

Atomic read-modify-write (RMW). RMW accesses are currently

translated into calls to helper functions in Qemu. Therefore, even if

the host ISA has an equivalent atomic instruction, execution is still

transferred from the emulated binary to Qemu. We discuss these

primitives in Section 5.

Optimizations. TCG performs various optimizations on the trans-

lated basic blocks at the IR level. Some of the well-known optimiza-

tions are dead code elimination, constant propagation and folding,

consecutive fence merging, etc.

2.4 Concurrency Primitives in Architectures

We categorize the concurrency primitives as follows: (1) load ac-

cesses that read from shared memory, (2) store accesses that write

to shared memory, (3) RMW accesses that atomically update shared

memory, and (4) fence operations that order memory accesses. Fig-

ure 1 lists the concurrency primitives from x86, Arm and TCG IR

used in the mapping schemes discussed in this paper.

Load and store accesses. Most instructions in x86 can perform

a memory access, so we denote the underlying x86 load and store

Access type x86 TCG IR Arm

Load RMOV ld LDR

Store WMOV st STR

Full-fence MFENCE Fsc DMBFF

WW-fence Fww DMBST

RM-fence Frm DMBLD

MW fence Fmw

Atomic-update RMW RMW RMW1, RMW2

Rel.Acq. atomic-update RMW1
AL
, RMW2

AL

RMW2 ≜ ℓ : LX; cmp; bc ℓ ′; SX; bc ℓ ; ℓ ′ :

RMW2
A
≜ ℓ : LXA; cmp; bc ℓ ′; SX; bc ℓ ; ℓ ′ :

RMW2
L
≜ ℓ : LX; cmp; bc ℓ ′; SXL; bc ℓ ; ℓ

′ :

RMW2
AL
≜ ℓ : LXA; cmp; bc ℓ ′; SXL; bc ℓ ; ℓ

′ :

Figure 1: Concurrency primitives in x86, TCG IR, and Arm

which are used in the mapping schemes.

operations as RMOV and WMOV. In Arm, LDR and STR perform the

load and store operations.

In x86, RMOV-RMOV, RMOV-WMOV, WMOV-WMOV access pairs are al-

ways executed in order. In Arm, independent LDR and STR accesses

on different locations may execute out-of-order.

Fence operations. The full fences in x86 and Arm are MFENCE and

DMBFF respectively, which order any memory access pair. Arm also

has lightweight fences, e.g., DMBLD orders a read operation with its

successors and DMBST orders a pair of writes.

RMW accesses. Both x86 and Arm provide various types of RMW

primitives. x86 has the LOCK CMPXCHG instruction. Arm provides

two types of RMW primitives that we denote by RMW2 and RMW1.

RMW2 is constructed from load-exclusive (LX) and store-exclusive

(SX). Arm also provides acquire-load-exclusive (LXA) and release-

store-exclusive (SXL) instructions. A release access is ordered with

its predecessors and an acquire is ordered with its successors. We

can construct RMW2, RMW2
A
, RMW2

L
, RMW2

AL
primitives with these in-

structions as shown in Figure 1. RMW1 denotes the single-instruction

RMW instructions [6, 12]. Similar to RMW2, RMW1 accesses can also

have release/acquire combinations as shown in Figure 1.

In x86, a successful RMW acts as a full fence whereas in Arm, only

a successful RMW1
AL

acts as a full fence.

3 MOTIVATION

In this section, we expose correctness and performance problems

that arise when Qemu emulates concurrency. We also expose an

error in an existing Arm mapping.

3.1 Emulation of Concurrent Programs in Qemu

Qemu does not officially support the emulation of strongly ordered

ISAs, e.g., x86, on weakly ordered ones, e.g., Arm. However, in user

mode emulation, the program runs without triggering any warning

or error message to users, who can therefore think that support is

available.

Qemumapping schemes. Figure 2 showsQemu’s mapping schemes

for translating memory-related x86 instructions to Arm. An Fmr
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x86 TCG IR Arm
RMOV → Fmr; ld → DMBLD; LDR
WMOV → Fmw; st → DMBFF; STR
RMW → call → BLR; RMW; RET
MFENCE → Fsc → DMBFF

Figure 2: Qemumappings: x86 to Arm via TCG IR.

fence is inserted before loads (RMOV), ordering the load with its pre-

ceding memory access. Since store-load reordering is allowed in

x86, TCG demotes this fence to Frr, only ordering the load with a

preceding load. This is an attempt to match the x86 memory model.

An Fmw fence is inserted before stores (WMOV), ordering the store

with its preceding memory access. These fences are then lowered

to Arm’s DMBLD and DMBFF fences.

RMW operations. Qemu translates RMW operations as calls to helper

functions. These helper functions rely on GCC built-ins for the

atomic accesses. As a result, depending on the GCC version, the

instructions differ. For example, the helper function emulating the

x86 CMPXCHG instruction uses an ldaxr-stlxr pair (RMW2
AL
) with

GCC 9, but a casal instruction (RMW1
AL
) with GCC 10. Both are

correct from GCC’s standpoint since they both comply with the

C/C++ memory model. However, this leads to inconsistencies for

the x86 model.

3.2 Correctness: Errors in Qemu

We found several errors in Qemu’s x86 to Arm translation, more

specifically in handling RMW access (both RMW1 and RMW2).We demon-

strate these errors by the translations of the MPQ and SBQ pro-

grams where RMW1 and RMW2 accesses are generated respectively.

We also show that the usage of Fmr fence in TCG IR may also

result in an erroneous RAW transformation as demonstrated by the

translation of the FMR program.

Error in mapping scheme with RMW1
AL

. Consider the x86 to Arm

mapping by Qemu for the following program.

𝑋 = 𝑌 = 0;

𝑋 = 1;

𝑌 = 1;

𝑎 = 𝑌 ;

if (𝑎 == 1)
RMW(𝑋, 1, 2);

{

𝑋 = 𝑌 = 0;

DMBFF;

𝑋 = 1;

DMBFF;

𝑌 = 1;

DMBLD;

𝑎 = 𝑌 ;

if (𝑎 == 1)
RMW1

AL
(𝑋, 1, 2);

(MPQ)

In x86, 𝑎 = 1 implies that all writes in the first thread are completed.

Since reads are not reordered, the RMW always reads the 𝑋 = 1 and

successfully updates𝑋 = 2. As a result 𝑎 = 1, 𝑋 = 1 is never possible.

In Arm, however, a read and a read-acquire pair can be reordered.

This means that even though the first thread’s writes are ordered

by fences, the read of RMW1
AL

can be speculatively executed before

the 𝑎 = 𝑌 instruction as they are unordered. In that case, the RMW1
AL

will not observe𝑋 = 1 and fail, but the result will still be committed

after 𝑎 = 𝑌 sets 𝑎 to 1. It results in the outcome 𝑎 = 1, 𝑋 = 1, which

is disallowed in x86, hence an incorrect translation.

x86 Arm
RMOV → LDRQ
WMOV → STRL
RMW → RMW1

AL
MFENCE → DMBFF

Figure 3: Intended Arm mappings of Arm-Cats [6].

Error in mapping scheme with RMW2
AL

. Consider the following

x86 to Arm translation.

𝑋 = 𝑌 = 𝑍 = 𝑈 = 0;

𝑋 = 1;

RMW(𝑍, 0, 1);
𝑎 = 𝑌 ;

𝑌 = 1;

RMW(𝑈 , 0, 1);
𝑏 = 𝑋 ;

{

𝑋 = 𝑌 = 𝑍 = 𝑈 = 0;

DMBFF;

𝑋 = 1;

RMW2
AL

(𝑍, 0, 1);

DMBLD;

𝑎 = 𝑌 ;

DMBFF;

𝑌 = 1;

RMW2
AL

(𝑈 , 0, 1);

DMBLD;

𝑏 = 𝑋 ;

(SBQ)

The behavior in question is 𝑍 = 𝑈 = 1, 𝑎 = 𝑏 = 0. In x86, successful

RMW accesses order store-load access pairs in the executions. On the

other hand, neither successful RMW2
AL

accesses nor DMBLD fences

can order the store-load access pairs. Thus, the mapping results in

a new outcome in the generated Arm program and, therefore, the

overall translation is incorrect.

Error in RAW transformation in TCG IR. Qemu performs various

constant propagation optimizations on TCG IR such as read-after

write (RAW), e.g., 𝑌 = 2;𝑎 = 𝑌 ;{ 𝑌 = 2;𝑎 = 2;. We note that

in the presence of Fmr, the RAW transformation is incorrect as it

introduces a new outcome. Consider the following example.

𝑋 = 𝑌 = 𝑍 = 0;

𝑋 = 3;

Fmr;

𝑌 = 2;

𝑎 = 𝑌 ;

Frw;

𝑍 = 2;

if (𝑍 == 2) {
Frw;

𝑋 = 4;

𝑐 = 𝑋 ;

}

{

𝑋 = 𝑌 = 𝑍 = 0;

𝑋 = 3;

Fmr;

𝑌 = 2;

𝑎 = 2;

Frw;

𝑍 = 2;

if (𝑍 == 2) {
Frw;

𝑋 = 4;

𝑐 = 𝑋 ;

}

(FMR)

Consider the outcome 𝑎 = 2, 𝑐 = 3. In the source TCG program, the

Fmr and Frw fences in the first thread establish dependency-based

ordering from 𝑋 = 3 to 𝑍 = 2 via 𝑎 = 𝑌 . In the second thread, Frw

orders the read of 𝑍 with the successor accesses on 𝑋 . As a result,

the outcome 𝑎 = 2, 𝑐 = 3 is disallowed. The RAW transformation in

the first thread remove the read of 𝑌 and hence𝑋 = 3 and 𝑍 = 2 are

not ordered anymore. As a result, the𝑎 = 2, 𝑐 = 3 outcome is allowed

in target program, making the RAW transformation incorrect.

3.3 Correctness: Error in łDesiredž Arm
Mapping

We consider the x86 to Arm-Cats mapping [6]. While the authors

do not explicitly give a mapping, we infer:

• LDAPR (LDRQ ) and STLR (STRL) enable efficient emulation of x86-

TSO on Arm-Cats [6, p.6]

• amo in Arm-Cats exclusively models RMW1
AL
, e.g., casal, which

should act as a full barrier [6, p.18].

• In x86, a successful RMW also behaves like a full barrier [6, 64].

We interpret their intended mapping as given in Figure 3.
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Risotto

Guest binary
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Guest shared libraries

TCG
system call

shared library
call

TCG IR Translated 
blocks cache

Formally verified
mappings

x86 memory model

TCG IR 
memory model

Arm memory model

x86→TCG IR

TCG IR→Arm

Translated host ISA

Guest ISA

Native host ISA

Formally verified

Figure 4: Overall architecture of Risotto.

While examining that mapping, we discover that it is incorrect

following the memory models [6]. Consider the following example:

𝑋 = 𝑌 = 0;

RMW(𝑋, 0, 1);
𝑎 = 𝑌 ;

RMW(𝑌, 0, 1);
𝑏 = 𝑋 ;

{

𝑋 = 𝑌 = 0;

RMW1
AL

(𝑋, 0, 1);

𝑎 = 𝑌Q ;

RMW1
AL

(𝑌, 0, 1);

𝑏 = 𝑋Q ;

(SBAL)

The source x86 program disallows 𝑋 = 𝑌 = 1, 𝑎 = 𝑏 = 0 as outcome,

while the Arm program allows it. Therefore the mapping is erro-

neous.

Fixing this error. There are two options to fix this error in the

model:

• Keep the current formal model and accept casal is insufficient

to model x86 RMW.

• Strengthen the formal model slightly, so casal behaves like x86

RMW.

We choose the second option that we detail in Section 5. We hy-

pothesize that hardware may already be consistent with our model.

We contacted the authors of Armed Cats, but they could not con-

firm hardware behavior with regards to our SBAL example in the

new model. However, they still decided to strengthen the memory

model like we proposed [39].

3.4 Performance: Fence and Shared Library
Issues

Fence placement. Qemu’s mapping schemes in Figure 2 prevent

any reordering of memory accesses, even though the guest ISA

(x86) allows some reorderings to happen. However, the CPU per-

forms these reorderings to maximize its utilization. Not taking ad-

vantage of the CPU’s instruction scheduling hurts performance.

Additionally, having fences before every access makes it impossible

to merge them.

Shared library. Qemu translates shared library functions from

guest to host ISA, even when these same functions already exist on

the host system in a native shared library. In general, translated code

is less performant than natively compiled code, because the trans-

lation engine is unable to achieve the same level of optimization as

the native compiler, when compiling from source code. Therefore,

using pre-compiled native code when available, i.e., the native ver-

sion of a shared library, will lead to significant performance gains

for guest programs that rely heavily on shared libraries.

4 OVERVIEW

We propose an end-to-end approach to improve the performance

of strong-on-weak architecture DBT while maintaining semantic

correctness.

4.1 Verified Mapping Schemes and
Optimizations

We reason about the end-to-end translation steps: (1) x86 to TCG

IR mapping (2) TCG IR to TCG IR optimization (3) TCG IR to Arm

mapping.

TCG IR formalization. To reason about these steps formally, we

use existing formal models of x86 and Arm [6], and propose a

formalization of TCG IR. Based on this formalization, we ensure

the correctness of the translations in all three steps.

Mappings in steps (1) & (3).Wemap the load, store, RMW, and fence

accesses from the source to the corresponding accesses in the target

models. The orderings between the accesses vary based on the

consistency models. To ensure orderings between weaker accesses,

we introduce additional leading or trailing fences along with the

memory accesses. As fences are costly, our goal is to introduce only

the minimal fences that are required to ensure correctness.

Moreover, we note that some TCG optimizations may perform

read-after-write (RAW) transformations, which can introduce errors

in the presence of Fmr or Fwr fences (see FMR example). Hence,

we avoid generating any Fmr or Fwr fence in the x86 to TCG IR

mapping scheme so that RAW transformations remain correct on

the generated TCG IR programs.
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Using all three formal models, we formally prove the correctness

of the mapping schemes. These new schemes use minimal fences

to preserve correctness.

IR transformations in step (2). Risotto performs several opti-

mizations on the TCG IR before generating the Arm code. To en-

sure their correctness, we analyze the common transformations

performed on the concurrency primitives. We show that the pro-

posed TCG IR formalization allows the transformations performed

by Risotto’s optimizations.

More specifically, we reason about elimination of redundant

shared memory accesses and reordering of shared memory accesses.

We also reason about fence merging optimizations which can be

performed when there are adjacent fences. Our x86 to TCG IR

mapping scheme creates such adjacent fences which can be merged

to improve performance as shown in Section 7.

4.2 Risotto: A Dynamic Binary Translator for
Strong-on-Weak Architectures

We build Risotto upon the widely used emulatorQemu. We improve

over the existing work through three contributions: (i) the imple-

mentation of formally verified memory mappings, (ii) a dynamic

linker that uses host shared libraries instead of guest libraries, and

(iii) a fast and correct translation of CAS instructions. Figure 4

shows the overall architecture of Risotto.

Memorymappings.Wefirst replace thememorymapping schemes

used by Qemu with our schemes presented in Section 5, which are

formally verified to enforce the x86 memory model [6, 64, 65]. We

implement this in the TCG shown in Figure 4, where the TCG IR

code is generated. We also implement fence merging optimizations

at the TCG IR level to minimize the cost of inserted fences.

Dynamic host linker. Qemu uses guest shared libraries that are

translated to the host ISA. Since translated code is less efficient

than native host code, maximizing the amount of native code used

is a good way to improve performance. In Risotto, we target shared

libraries to expand the amount of native code used because of their

unique properties.

First, similar to system calls, they provide a clearly defined API to

programs, which makes it possible to correctly marshal arguments

and return values between guest and host ISAs. Second, even if a

binary is only available for the guest ISA, the shared libraries that

it uses may be available on the host ISA.

In Risotto, we implement a dynamic linker that connects invo-

cations of shared library functions to native host shared libraries,

instead of translating guest shared libraries (§ 6.2).

Fast and correct CAS. As previously stated, RMW primitives are

emulated through a call to a helper function in Qemu and not

translated. In addition to the performance hit, this can also trigger

erroneous behaviors.

In Risotto, we aim at preserving correctness while maximizing

performance. For atomic operations, we propose to translate the

x86 atomic instructions, e.g., CMPXCHG, directly into Arm assembly,

e.g., using the new casal instructions. This allows us to fix the

errors in Qemu’s current scheme as well as improve performance.

We also implement this in the TCG (§ 6.3).

5 TCG IR CONCURRENCY MEMORY MODEL

In this section, we propose an axiomatic concurrency model for the

TCG IR. Based on this model, we propose formally verified mapping

schemes from x86 to Arm via the TCG IR.

5.1 Axiomatic Model for Concurrency

In axiomatic semantics, a program is represented by a set of finite

executions where an execution constitutes of a set of events and

relations. An event is generated from the execution of a shared

memory access or a fence and the events are related by various

relations.We can represent an execution as a graph where the nodes

represent events and edges represent relations [6, 10, 18, 43].

The set of read, write, and fence events are R,W, and F respec-

tively. The events are connected by various relations.

Notations. To define the formal models we use relation and set

notations (similar to ‘cat’ notations [8]). Given a binary relation 𝑆

on events, dom(𝑆) and codom(𝑆) are domain and range of 𝑆 . We

compose binary relations 𝑆1 and 𝑆2 by 𝑆1; 𝑆2. [𝐴] is an identity

relation on a set 𝐴. Finally, on an execution graph, relation 𝑆 is

acyclic if 𝑆+ (transitive closure of 𝑆) is irreflexive.

Relations. The events are primarily connected by program-order

(po), reads-from (rf), coherence-order (co) relations. Relation po is

a strict partial order that captures the syntactic order among the

events, rf relates a pair of write and read events on same-location

having same values, and co is a strict total order on same-location

write events. We compose these relations to derive new ones.

• Relation from-read (fr ≜ rf−1; co) relates a read and write events

𝑟 and𝑤 on same-location (rf−1 is inverse of rf). In this case,𝑤 is

co-after the write 𝑢 where rf (𝑢, 𝑟 ) holds.
• A relation is external when it is not between po-related events,

e.g., external rf, co, fr relations are:

rfe ≜ rf \ po coe ≜ co \ po fre ≜ fr \ po
• Relation rmw connects a pair of read and write events accessing

same memory location. These two events are same-location-po-

related (po|loc) as well as immediate-po-related (poim), i.e., there

is no intermediate event (poim 𝑥 𝑦 ≜ po𝑥 𝑦 ∧�𝑧.[po𝑥 𝑧 ∧ po 𝑧 𝑦]).

Execution. Given an execution X = ⟨E, po, rf, co⟩, X.E is the set of

events, and X.po, X.rf, X.co are the set of po, rf, and co relations

between the events in X.E. In an execution, all the memory locations

are initialized.

From programs to executions. A program consists of the ini-

tialization of all shared memory locations followed by a parallel

composition of threads. In a program, the concurrency primitives

generate the events and relations during an execution. In an execu-

tion, we do not capture thread-local operations and accesses explic-

itly. However, we can always augment a program with additional

shared variables to observe the values of thread-local variables.

Behavior. Given an execution, the final values of all memory loca-

tions define its behavior, i.e., the values written by the writes which

have no co-successors.

Behav(X) ≜ {⟨𝑒.loc, 𝑒 .val⟩ | 𝑒 ∈ X.W ∧ [{𝑒}];X.co = ∅}

Consistency axioms. Based on these relations and events, we

define the consistency axioms for a model. The consistency axioms

capture certain architectural properties which are satisfied in an
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(external) axiom

ob is irreflexive where

ob ≜ (rfe ∪ coe ∪ fre ∪ lob)+

lob ≜ (lws ∪ dob ∪ aob ∪ bob)+

bob ≜ po; [F]; po ∪ [R]; po; [Fld ]; po

∪ [W]; po; [Fst ]; po; [W]

∪ po; [dom( [A]; amo; [L]) ] ∪ [codom( [A]; amo; [L]) ]; po

∪ · · ·

Figure 5: Arm-Cats Arm model (corrected)

execution. If an execution satisfies all the axioms of the model,

then it is consistent in that model. The set of consistent executions

of program P in memory model 𝑀 is denoted by [[P]]𝑀 . The set

of behaviors exhibited by the consistent executions constitute the

program behavior.

5.2 x86 andArmConcurrencyModels: A Preview

We briefly discuss the axiomatic models of x86 and Arm [6, 8, 10].

• An x86 RMOV or Arm LDR generates a read (R) event and an x86

WMOV or Arm STR generates a write (W) event.

• In both x86 and Arm, a successful RMW generates a pair of rmw-

related events. In x86, these events are [R]; rmw; [W] related. In
Arm, we categorize the rmw relations as amo and lxsx relations

which result from RMW1 and RMW2 primitives. So, in Arm, rmw =

lxsx ∪ amo holds. If an RMW fails in x86 or Arm, it generates an R

event only.

• An x86 MFENCE or Arm DMBFF generates an F event.

Arm also generates events and relations for lightweight fences and

synchronizing memory accesses.

• DMBLD and DMBST fences generate Fld and Fst events.

• Release store (e.g., STRL), acquire load (e.g., LDRA), acquirePC-

load (e.g., LDRQ ) generate L, A,Q events respectively. L is ordered

with its predecessors, A and Q are ordered with its successors,

and a L is ordered with its successor A event. Finally, L ⊆ W,

A ⊆ R, and Q ⊆ R hold.

Common features. Both x86 and Arm ensure coherence and

atomicity which are captured by these axioms.

Coherence: The property enforces SC-per-location in an execution:

the memory accesses per memory locations are totally ordered. The

property is captured by (sc-per-loc) axiom: (po|loc ∪ rf ∪ co ∪ fr)+

is irreflexive.

Atomicity: The read and write pair generated from a successful

RMW access is atomic. Suppose 𝑟 and 𝑤 are rmw related read and

write events. If there exists a write event 𝑤 ′ between 𝑟 and 𝑤 ,

and X.fre(𝑟,𝑤 ′) and X.coe(𝑤 ′,𝑤) hold, then the execution violates

atomicity. Both x86 and Arm restrict atomicity violation by (atom-

icity) axiom: rmw ∩ (fre; coe) = ∅.

Distinguishing x86 and Arm concurrency. Now, we discuss

the relations and axioms that differentiate the x86 and Arm formal

models.

x86: The read-read, read-write, write-write event pairs are ordered

by preserved-program-order (ppo) relation. In addition, access pairs

(GOrd) axiom

ghb is irreflexive where

ghb ≜ (ord ∪ rfe ∪ coe ∪ fre)+

ord ≜ [R]; po; [Frr ]; po; [R] ∪ [R]; po; [Frw ]; po; [W]

∪ [R]; po; [Frm ]; po; [R ∪W] ∪ [W]; po; [Fwr ]; po; [R]

∪ [W]; po; [Fww ]; po; [W] ∪ [W]; po; [Fwm ]; po; [R ∪W]

∪ [R ∪W]; po; [Fmr ]; po; [R] ∪ [R ∪W]; po; [Fmw ]; po; [W]

∪ [R ∪W]; po; [Fmm ]; po; [R ∪W]

∪ po; [Wsc ∪ dom(rmw) ] ∪ [Rsc ∪ codom(rmw) ]; po

∪ po; [Fsc ] ∪ [Fsc ]; po

Figure 6: Proposed TCG IR model. TCG also satisfies the (sc-

per-loc) and (atomicity) axioms, similarly to x86 and Arm.

are ordered by intermediate rmw or F accesses which is captured

by implied relation. Using these relations, x86 defines (GHB) axiom

which enforces a global order.

(GHB) (implied ∪ ppo ∪ rfe ∪ fr ∪ co)+ is irreflexive where

ppo ≜ ((W ×W) ∪ (R ×W) ∪ (R × R)) ∩ po

implied ≜ po; [𝐴𝑡 ∪ F] ∪ [𝐴𝑡 ∪ F]; po
where 𝐴𝑡 ≜ dom(rmw) ∪ codom(rmw)

Arm: In Figure 5, we show the (external) axiom from the official Arm

model, with some revisions detailed later. Arm defines a transitive

relation locally-ordered-before (lob) to order events in a thread.

Relation lob has the following components:

• Relation local-write-successor (lws) orders a memory event to a

same-location po-successor write event.

• Relation atomic-ordered-by (aob) is based on rmw.

• Relation dependency-ordered-before (dob) is derived from data,

address, and control dependencies from a read to another write,

memory accesses, and all events respectively.

• Relation barrier-ordered-by (bob) is based on fences and synchro-

nizing memory accesses.

We discovered an undesirable scenario in the existing model, as

elaborated in subsection 3.3. To ensure the casal instruction acts

as a full barrier, we propose a fix to the model, where we replace

po; [A]; amo; [L]; po in bob, which we marked green in Figure 5.

5.3 Formalizing TCG IR Concurrency

We begin with the TCG primitives along with generated events and

relations in an execution.

Load and store accesses. TCG provides load (ld) and store (st) op-

erations that respectively read and write shared memory locations.

ld and st accesses generate R andW events.

Fence accesses. TCG provides different types of fences: Frr, Frw,

Fww, Fwr, Facq, Frel, and Fsc. These fences generate Frr, Frw, Fww,

Fwr, Facq, Frel, and Fsc events respectively. They can be combined

to define stronger fences, e.g.,we combine Frr and Frw to define Frm,

that generates an Frm event for the proposed mapping schemes. All

these fences order certain memory accesses which we capture in

order (ord) relations. For instance, a pair of po-related events (𝑎, 𝑏)
are in ord relation if 𝑎 and 𝑏 are W events with an intermediate

Fww event following the [W]; po; [Fww]; po; [W] rule.
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x86 TCG IR
RMOV ld; Frm
WMOV Fww; st
RMW RMW
MFENCE Fsc

(a) x86 to TCG IR.

TCG IR Arm
ld LDR
st STR

RMW DMBFF; RMW2; DMBFF or RMW1
AL

Frr/Frw/Frm DMBLD
Fww DMBST
Fwr/Fmm/Fsc DMBFF
Facq/Frel -

(b) TCG IR to Arm.

x86 TCG IR Arm
RMOV → ld; Frm → LDR; DMBLD
WMOV → Fww; st → DMBST; STR

RMW → RMW → DMBFF; RMW2; DMBFF or RMW1
AL

MFENCE → Fsc → DMBFF

(c) x86 to Arm via TCG IR.

Figure 7: Verified mapping schemes for x86 to Arm via TCG

IR.

RMW accesses. TCG also provides a number of atomic read-modify-

write (RMW) operations. These atomic RMW accesses follow SC se-

mantics and do not allow reordering with other accesses. A suc-

cessful RMW generates a rmw-related Rsc and Wsc event pair, i.e.,

[Rsc]; rmw; [Wsc]. A failed RMW generates a Rsc event. Finally,

Rsc ⊆ R andWsc ⊆ W hold in the model. Events generated from

RMW accesses also enforce ord relation as shown in the ord defini-

tion.

Finally, we define global-happen-before (ghb) relation to order

events across different threads. On an execution graph, ghb(𝑎, 𝑏)
implies that there is a path from 𝑎 to 𝑏 by ord and external relations

rfe, coe, fre.

Axioms. Based on these relations, we define the consistency con-

straints. Similar to x86 and Arm, the TCG IR model also includes

the (sc-per-loc) and (atomicity). axioms. The (GOrd) axiom in Fig-

ure 6 ensures a global order between events.

5.4 Verified Mappings and Transformations

Based on the proposed IR model, we verify the correctness of the

transformation (mappings and transformations) steps.

Theorem 1 (Transformation Correctness). Suppose a given

source program Ps in model Ms is transformed to the target program

Pt in model Mt. The transformation is correct if for each consistent

target execution Xt ∈ [[Pt]]Mt
there exists a consistent source execu-

tion Xs ∈ [[Ps]]Ms
such that Behav(Xt) = Behav(Xs).

For mapping schemes,Ms andMt differ. For transformations,Ms

andMt are the same.

𝑋 = 𝑌 = 0;

𝑎 = 𝑋 ;

𝑌 = 1;

𝑏 = 𝑌 ;

𝑋 = 1;

→

𝑋 = 𝑌 = 0;

𝑎 = 𝑋 ;

Frw;

:

𝑌 = 1;

𝑏 = 𝑌 ;

Frw;

:

𝑋 = 1;

(LB-IR)

Disallowed outcome 𝑎 = 𝑏 = 1.

𝑋 = 𝑌 = 0;

𝑋 = 1;

𝑌 = 1;

𝑎 = 𝑌 ;

𝑏 = 𝑋 ;

→

𝑋 = 𝑌 = 0;

:

𝑋 = 1;

Fww;

𝑌 = 1;

𝑎 = 𝑌 ;

Frr

𝑏 = 𝑋 ;

:

(MP-IR)

Disallowed outcome 𝑎 = 1, 𝑏 = 0.

Figure 8: LB-IR andMP-IR disallow 𝑎 = 𝑏 = 1 and 𝑎 = 1, 𝑏 = 0

by enforcing ld-st and ld-ld orders using at least Frw and Frr

fences. We combine these fences and insert a trailing Frm

with a load in the x86 to IR mapping. The leading Fww fence

orders st-st inMP-IR. Hence we introduce a leading Fwwwith

a store access in the x86 to IR mapping.

Correct mapping schemes. We translate concurrency primitives

from x86 to Arm in two steps: (1) x86 to TCG IR and (2) TCG IR to

Arm. We formally prove Theorem 1 to ensure correctness of these

mapping schemes. These mapping schemes are precise: each placed

fence is necessary in some program. Yet, it is sufficient to preserve

the required ordering in every program.

x86 to IR mapping scheme. The mapping scheme is in Figure 7a.

It introduces additional fences along with the load and store ac-

cesses to enforce the same restrictions as x86. In order to ensure

correctness, we prove Theorem 1.

The x86 to IR mapping scheme is minimal. In x86 load-load

and load-store accesses are ordered (formally by ppo) unlike that

of IR. To enforce these orderings (formally ord) in the generated

programs we require the trailing and leading fences with load and

store respectively as shown in Figure 8.

IR to Arm mapping scheme. The mapping scheme is in Figure 7b.

We prove the correctness theorem to ensure that the mapping

scheme preserves correctness.

The IR to Arm mapping scheme is minimal. We analyze the

fences in this mapping. If a TCG RMW generates RMW2 access then

it introduces leading and trailing DMBFF fences. These fences are

required to preserve the mapping correctness as shown in Figure 9.

The mapping scheme generates a DMBLD from a Frr/Frw/Frm fence

in the IR to preserve the order of a load with its successor memory

accesses. A Fwr/Fmm/Fsc fence in the IR generates a DMBFF fence

to preserve the order between store-load pair on different locations.

The Facq and Frel fences do not generate any instruction in Arm.

The examples in Figure 9 show that the DMBFF fences with RMW2

accesses are required to preserve the mappings.

x86 to IR to Arm mapping. In Figure 7c, we combine the transla-

tions from x86 TCG and from TCG to Arm to obtain x86 to Arm

translation.
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𝑋 = 𝑌 = 0;

𝑋 = 2;

RMW(𝑌,0,1);
𝑌 = 2;

RMW(𝑋,0,1);
→

𝑋 = 𝑌 = 0;

𝑋 = 2;

DMBFF;

RMW2 (𝑌,0,1);
DMBFF;

𝑌 = 2;

DMBFF;

RMW2 (𝑋,0,1);
DMBFF;

Disallowed outcome 𝑋 = 𝑌 = 1.

𝑋 = 𝑌 = 0;

RMW(𝑋,0,1);
𝑎 = 𝑌 ;

RMW(𝑌,0,1);
𝑏 = 𝑋 ;

→

𝑋 = 𝑌 = 0;

DMBFF;

RMW2 (𝑋,0,1);
DMBFF;

𝑎 = 𝑌 ;

DMBFF;

RMW2 (𝑌,0,1);
DMBFF;

𝑏 = 𝑋 ;

Disallowed outcome 𝑎 = 𝑏 = 0.

Figure 9: The DMBFF fences preserve correctness in IR to Arm

mapping. The outcomes are disallowed in the IR model. Arm

would allow these outcomes without the intermediate DMBFF

fences and the translations would be incorrect.

Optimizing transformations. We formally prove Theorem 1 for

various transformations on the concurrency primitives in the TCG

IR. The verified transformations ensure the correctness of the trans-

lations in Risotto.

Memory access eliminations: TCG performs constant propagation

and folding on the IR. These transformations may also be performed

on shared memory accesses. Hence, we prove the correctness of the

following transformations on executions, where 𝑎 · 𝑏 denotes poim-

related events with the labels 𝑎 and 𝑏. The memory access pairs are

on the same-location and may have any type of intermediate fences

denoted by F𝑜 where 𝑜 ∈ {rm,ww}, or F𝜏 where 𝜏 ∈ {sc,ww}.

Fence merging: It is correct to merge a fence to a same or stronger

fence. We can also strengthen a fence to a stronger fence. We can

combine these transformations as follows:

Frm · Fww
strengthen
−−−−−−−−−→ Fsc · Fsc

merge
−−−−−→ Fsc

Reordering: The plain memory accesses are unordered in TCG IR un-

like in x86, and hence can be reordered freely. The proposed TCG IR

model allows the reorderings of independent memory access pairs

on different locations. Moreover, dependencies do not enforce any

ordering in TCG IR unlike that of Arm, and hence TCG can remove

false dependencies. These transformations are formally correct as

the TCG IR model do not order accesses based on dependencies.

We prove that reordering 𝑎 · 𝑏 { 𝑏 · 𝑎 is correct where 𝑎 and 𝑏

are the labels of non-RMW memory events which are independent

and access different memory locations.

Mechanized Proofs:Weprove the correctness of our transformations

ś from some source program Psrc to a target program Ptgt ś in three

steps. First, given a Mt-consistent execution Xt of Ptgt, we define

a source execution Xs from Psrc. Secondly, we relate the relations

inMs andMt to show that Xs satisfies the axioms inMs, because

Xt satisfies those ofMt. Finally, we show that the Xt .co and Xs .co

relations match, which means Xt and Xs have identical behaviors.

We mechanize all proofs in 14, 000 lines of Agda [4].

R(𝑋, 𝑣) · R(𝑋, 𝑣 ′) { R(𝑋, 𝑣) (RAR)

W(𝑋, 𝑣) · R(𝑋, 𝑣) {W(𝑋, 𝑣) (RAW)

W(𝑋, 𝑣) ·W(𝑋, 𝑣 ′) {W(𝑋, 𝑣 ′) (WAW)

R(𝑋, 𝑣) · F𝑜 · R(𝑋, 𝑣 ′) { R(𝑋, 𝑣) · F𝑜 (F-RAR)

W(𝑋, 𝑣) · F𝜏 · R(𝑋, 𝑣) {W(𝑋, 𝑣) · F𝜏 (F-RAW)

W(𝑋, 𝑣) · F𝑜 ·W(𝑋, 𝑣 ′) { F𝑜 ·W(𝑋, 𝑣 ′) (F-WAW)

Figure 10: Elimination Transformations

6 RISOTTO SYSTEM ARCHITECTURE

Risotto is based on Qemu 6.1.0 [71]. In Risotto, we implement our

verified mapping schemes, a dynamic linker to use host shared li-

braries and a fast and correct translation of the x86 CAS instruc-

tions.

6.1 Formally Verified Memory Mappings

We implement the formally verified memory mappings described

in Section 5.3 in Risotto. More precisely, we implement the map-

ping schemes from Figure 7. We obtain the following performance

benefits compared to the existing Qemu implementation.

Lightweight fences. Compared to Qemu that generates Fmr and

Fmw fences before load and store operations, we generate Frm and

Fww fences in the TCG IR. While Qemu’s fences end up as a DMBLD

or DMBFF fence, our scheme produces either a DMBLD or a DMBST

fence. These fences are less costly in terms of performance than

full fences [51].

Newly allowed reorderings. Enforcing the proper x86 model

also allows for reorderings of memory operations that were not

possible with Qemu. Indeed, in our mapping scheme, there is no

fence between a store and a load access. This allows store-load

access pairs to be freely reordered by the processor if there is no

dependency between them.

Fence merging optimizations.We implement an optimization

pass over the TCG IR to merge fences that have no intermediate

memory access. We merge the fences as a stronger one that suffices,

and place it where the earliest fence was. As an example, we show

the translation of a program from x86 to Arm: (1) x86 to TCG IR

following Figure 7a, (2) fence merging, and (3) TCG IR to (4) Arm

following Figure 7b.

𝑎 = 𝑋 ;

𝑌 = 1;
{

𝑎 = 𝑋 ;

Frm;

Fww;

𝑌 = 1;

{

𝑎 = 𝑋 ;

Fsc;

𝑌 = 1;

{

𝑎 = 𝑋 ;

DMBFF;

𝑌 = 1;

False dependency elimination. We perform false dependency

elimination (e.g., 𝑋 = 𝑎 ∗ 0 { 𝑋 = 0) on the TCG IR. It is trivially

correct as the TCG IR model does not use dependency relations for

any ordering, unlike in Arm.

6.2 Dynamic Host Library Linker

In order to use host shared library functions, Risotto must detect

when the emulated program calls a shared library function, and

link to the host library instead of emulating the guest linker and

guest library function.
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3

Figure 11: Risotto’s dynamic linker workflow.

Supporting host shared libraries. To support native shared li-

brary execution, the shared library functions in use must be de-

scribed to the DBT runtime, so that translated guest code can cor-

rectly transition to and from native library execution. The transi-

tion process translates function arguments from the guest repre-

sentation to the host, and return values back from the host repre-

sentation to the guest.

Function signature descriptions are necessary because parame-

ters types, and their semantics are not specified in the raw applica-

tion binary, and this information is necessary to perform param-

eter values translation. The runtime effectively needs to map the

guest calling convention to the host’s, which requires the parame-

ter types must be known, so that appropriate value marshaling can

take place. This would be unnecessary if both the host and guest

Application Binary Interfaces (ABIs) were fully compatible. In our

setup, we have no control over the OS, which means we cannot

change the ABI to make it compatible across ISAs.

To describe function signatures to the runtime, we introduce an

Interface Definition Language (IDL) that provides this information

at run time to the translation system. Our IDL describes function

signatures in a form similar to C function prototypes.

Capturing shared library calls. The key idea is to detect calls

to shared library functions in the guest program, and, instead of

performing binary translation as usual, emit code that directly

calls the host shared library function. To do this, we exploit the

dynamic linking mechanism of the ELF binary format. ELF files use

a Procedure Linkage Table (PLT) that contains short code sequences

that transfer control to the dynamic linker when a shared library

function is invoked. Each imported shared library function has a

PLT entry.

All shared library calls are made via the corresponding PLT

entries ś application code makes a call to the PLT entry when it

wants to invoke such a function. When Risotto encounters a PLT

entry, instead of translating the routine, it generates a code sequence

that directly calls the host version of the shared library function.

Sequence of events. Figure 11 show the workflow of our linking

mechanism. First, we read the IDL file, which identifies the shared

library functions that are to be executed natively, and store the

function signature information 1 . Then, as Risotto loads the guest

ELF binary, it parses the .dynsym section to determine the shared

library functions that the program imports. For each detected func-

tion, the signature is looked up, and if present, i.e., it has been de-

scribed in the IDL, the corresponding PLT entry is located in the

binary. The address of the PLT entry, along with a pointer to the

function signature description, is stored in a lookup table 2 .

When Risotto is about to translate a basic block, the address

of the block is checked in the lookup table. If it was not specified

in the IDL, the PLT entry as well as the guest library function

are translated, as shown with the puts function 3 . If it was, we

generate code to marshal the function arguments from guest to host

representation 4 , and ultimately call the host function directly,

as shown with the sin function 5 . In practice, for Arm and x86,

guest register values are copied into host register values, and vice-

versa for the function return value.

Discussion on correctness. Using native libraries may cause

inconsistencies due to the mismatch in memory models. If it is

stronger than the guest model, then there is no problem. If it is

weaker, incorrect behaviors only happen if the shared library func-

tion and emulated code interact with the same data location con-

currently, which we have not observed in our applications.

6.3 Fast and Correct CAS Instructions

As previously detailed, Qemu translates CAS operations as calls

to helper functions that in turn rely on GCC built-ins. In order to

avoid the correctness problems this creates, as well as the perfor-

mance degradation due to unnecessary jumps, we design a direct

translation of CAS instructions. In particular, we target the transla-

tion of the x86 CMPXCHG instruction to Arm.

Risotto directly translates the x86 CMPXCHG instruction to the

Arm casal instruction, without using a helper function. We do

this by adding a new instruction to the TCG IR, CAS. Instructions

implementing a CAS semantic in the guest ISA are translated to this

new TCG IR instruction if the host supports native CAS. Otherwise,

the usual call to the helper function is generated. When translating

back from TCG IR to the host ISA, the CAS instruction is translated

to the corresponding host CAS instruction. More specifically, in

Arm, we translate it to a casal instruction.

Correctness.We follow the mapping schemes from Figure 7 for the

RMW translation. x86 RMW acts as a full fence, and only a successful

RMW1
AL

in Arm does the same (see Section 2.4). Since CMPXCHG is

an x86 RMW and Arm’s casal is an RMW1
AL
, both have the same

semantics in terms of ordering, making our translation correct.

7 EVALUATION

We evaluate Risotto’s overall performance (§ 7.2), dynamic library

linker (§ 7.3) and CAS translation (§ 7.4).

7.1 Experimental Setup

Testbed. We perform our evaluation on a server equipped with

two Marvell ThunderX2 CN9975 processors (ARMv8.1, 28 cores per

chip, 4-way SMT, 2.0 GHz), 256 GB of DDR4 memory (4×64 GB,
3200 MHz, ECC) and a 960 GB SSD (SATA 6Gb/s).

Benchmark suites and applications.We perform our evaluation

on a set of applications from two benchmark suites: PARSEC 3.0 [19]

and Phoenix [72]. For PARSEC, we omit the raytrace and x264
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Figure 12: Run time of PARSEC and Phoenix benchmarks, running with Qemu with no fence generation (no-fences), Qemu

with our verified mappings (tcg-ver) and Risotto, relative to Qemu. Native execution is also shown (native). Lower is better,

raw values in seconds.

benchmarks because they respectively fail to build and run natively

on Arm.

Setups.We run our experiments onQemu v6.1.0, as well as multiple

variants: one that does not enforce any ordering, i.e., no fences gen-

erated, noted no-fences; one that enforces our verified mappings,

noted tcg-ver, and finally Risotto, with all features described pre-

viously. Note that no-fences is incorrect, but still serves as an or-

acle of the maximal performance improvement possible when op-

timizing ordering fences. We also run binaries natively, i.e., Arm

binaries without emulation, to show the performance gap. In every

plot, the red line shows the average performance of Qemu, with

the raw values in red.

Methodology.We run every experiment five times and compute

the speedups compared to our baseline, Qemu. For better repro-

ducibility, we disable turbo boost and use the performance scal-

ing governor of Linux which uses a fixed frequency of 2.0 GHz on

our CPU. We also pin our experiments on a single socket to avoid

NUMA effects, therefore using 112 hardware threads. We compile

all variants of Qemu and Risotto with GCC 10.3.0.

7.2 Overall Performance

First, we evaluate the raw performance of Risotto on PARSEC and

Phoenix benchmarks. Figure 12 shows the performance results

relative to the baseline, Qemu (red horizontal line), lower is better.

Cost of memory ordering enforcement. In order to better un-

derstand Risotto’s performance, we first analyze the cost of Qemu’s

fence mapping. By observing the performance of no-fences, we

see that fences account for a large portion of the execution time of

our benchmarks, up to 75% (for freqmine), 48% on average. These

results highlight the importance of reducing overhead associated

with fences while still preserving its correctness.

Risotto’s verified mappings. tcg-ver achieves significant per-

formance gains without compromising the program’s correctness.

Compared to Qemu, we achieve improvements of up to 19.7% (6.7%

on average), thanks to fence merging and weaker fence usage (Sec-

tion 6.1).

7.3 Dynamic Host Library Linker

We evaluate Risotto’s dynamic linker on well-known libraries that

are extensively used in real-world applications. We evaluate the

OpenSSL cryptography library [63] (libssl, libcrypto), the sqlite3

database engine [81] (libsqlite) and a stress microbenchmark on the

standard math library (libm).

OpenSSL and sqlite. We run popular digests and ciphers with

OpenSSL 1.1.1, such as RSA, MD5, SHA-1, and SHA-256, with dif-

ferent input sizes, as well as the speedtest benchmark of sqlite. We

measure their throughput, i.e., sign/s, verify/s or ops/s. We also run

the sqlite speedtest1 benchmark and report its throughput.

Figure 13 shows the speedup of both Risotto and the native

version over Qemu. Speedups vary from 1.4× (md5-1024) to 23×
(sha256-8192), on a par with the native execution. Overall, we match

the speed of native execution of shared libraries when using our

dynamic host linker.

Math library. We evaluate the performance gains on functions

from the standard math library. We run these functions 100M times

and compute their throughput. Results are shown in Figure 14, with

Risotto and native compared to Qemu. We observe speedups rang-

ing from 1× (sqrt) to 10× (cos) with Risotto. Even though we signif-

icantly improve performance, we do not match the native version,

that achieves up to 25× speedups. This difference is explained by

the short duration of the library calls, preventing the overhead of

argument marshaling to be amortized.
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Floating point emulation. Using host libraries for functions with

floating point (FP) computation offers another benefit. Correctly em-

ulating FP instructions across the variety of implementations is hard,

and so Qemu implements a software floating-point implementation,

drastically impacting performance. By using host shared libraries,

we can take advantage of native FP instructions, adding to the per-

formance improvement, as exposed by the math library benchmark.

Overhead of host library calls. Calling a host library function in-

stead of a guest one requires to perform argument marshaling (§6.2).
The OpenSSL and sqlite results show that there is no overhead in

performing host shared library calls. However, the math library re-

sults show a clear difference between Risotto and native execution

(Figure 14). This stems from the duration of the linked functions.

Math functions are very short, meaning that argument marshaling

dominates the execution time. This is not the case with the other

benchmarks, where functions have a longer duration. Still, even in

the worst-case scenario, using host libraries is clearly beneficial.

Overhead of our dynamic linker.We evaluate the overhead of

our dynamic linker when unused. Indeed, programs that make no
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Figure 15: Throughput of the CAS instruction with various

levels of contention. Higher is better.

use of shared libraries should not be slowed down by this feature.

Conveniently, PARSEC and Phoenix do not make extensive use

of shared libraries, except libc for thread management. Figure 12

shows no difference between Risotto (with the linker) and tcg-ver

(without the linker). Thus, our linker has no impact on performance

if no host function is linked.

7.4 Fast Compare-and-Swap

To evaluate our CAS translation, we implement a micro-benchmark

that stresses this component in a multi-threaded setup. We vary the

number of threads and variables accessed by CAS instructions to

show various levels of contention. Figure 15 shows the throughput

of Qemu, Risotto, and a native Arm binary. Note thatQemu’s helper

functions also use the casal instruction.

We observe that Risotto outperformsQemu only when there is no

contention (#threads = #variables) by up to 48% (14.5% on average).

However, under contention, they perform similarly. Indeed, the

casal instruction then dominates the execution time, reducing the

relative impact of the additional jumps performed by Qemu.

8 RELATED WORK

Concurrency and memory models.Mappings of concurrency

primitives from programming languages to different architecture

have been studied widely in the literature [17, 18, 41, 43, 66, 67, 73]

where correctness is established based on formal semantics. The

correctness of program transformations under relaxed memory

models is also well explored [25ś27, 41, 42, 47, 75, 76, 86]. Similar

to these approaches, we use formal semantics of the architectures

to define correct and precise mapping schemes as well as correct

translations on TCG IR.

Prior works have formalized informal concurrency specifications

such as C/C++ [18, 21], LLVM IR [26], Power andARMv7 [10, 55, 74].

The earlier formalization of ARMv8 by Pulte et al. [70] is updated

by Alglave et al. [6] with the semantics of casal accesses. To our

knowledge, we are the first to formalize the TCG IR concurrency

model to obtain formally verified cross-architecture translations.

There are several results on identifying the differences between

weak memory models [2, 3, 5, 9, 35, 36, 54, 82, 89]. To address these

differences, a number of optimized fence placement approaches
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have been proposed [31, 45, 58, 78, 83, 87]. However, optimal fence

placement is an undecidable problem in the general case [14].

Recently, VSync [61] proposed using model checking to identify

efficient fence insertion in Arm and RISC-V programs. Others have

developed analyses to check if a program is SC-robust/stable against

weaker models, inserting fences where necessary [1, 7, 23, 46, 48ś

50, 78]. Tao et al. [85] implement a KVM-based hypervisor that

satisfies weak data race free conditions on an SC model which also

holds on the Arm model. However, using model checking to insert

fences is computationally expensive, and rarely scales beyond small

programs.

Binary translation.While manyQemu-based DBTs support multi-

threaded programs, most fail to address mismatches amongmemory

consistency models [29, 37, 88]. Similarly, modern static binary

translators target the LLVM IR, allowing for better whole program

optimization [15, 20, 24, 79, 91]. However, they do not support

concurrency either.

Apple’s Rosetta 2 [11] is an emulator developed for their x86 to

Arm transition. It uses both static and dynamic binary translation.

It handles the memory model mismatch by implementing both x86

and Armmodels in hardware [40]. Microsoft also enables emulation

of x86 binaries on Arm machines through the WOW64 layer [56].

They use a caching system that optimizes the generated code after

a first execution. Unfortunately, both Microsoft’s and Apple’s solu-

tions rely on their control over the hardware and software ecosys-

tems, and are closed source, with scarcely available technical details.

ArMOR. ArMOR [53] proposes a specification format that defines

the ordering of memory accesses in architectures, and other prop-

erties such as multicopy-atomicity (MCA), allowing it to identify

the required fences during a program execution. However, it has

several limitations:

• No DBT Ð ArMOR generates DFSMs to insert fences, which

they applied inside the Pin [52] instruction instrumentation tool.

Pin, however, is not a DBT system. Pico [28] leverages ArMOR

to obtain mapping rules for load and store accesses. As ArMOR

cannot handle RMWs, Pico defines their own mapping rules for

RMWs, without any formal guarantees of correctness. Addition-

ally, Pico translates PowerPC to x86, which differs from translat-

ing from x86 to Armv8 through TCG.

• No RMWs Ð ArMOR considers RMWs a straightforward exten-

sion, as long as ordering behavior is correctly specified. Through

our formal proofs, we discover that RMWs may display intricate

behavior, which differs subtly between architectures. Moreover,

Arm’s LX/SX RMWs suffer from spurious failures unlike x86

RMWs, which goes beyond ordering rules. Hence, we believe that

ArMOR cannot easily handle RMWs without major extensions.

• Dependency tracking Ð We carefully analyze dependencies

in Arm and discover their behavior to be quite intricate. We

thus elect to eliminate them with our mappings. If dependencies

were included in ArMOR, we foresee some challenges: (1) it is

computationally expensive to track dependencies for an arbitrary

number of memory location, and (2) dependency rules may be

exceedingly complex. For instance, Arm’s dob can order an event

𝑎 with another write event 𝑏, if there is another instruction in-

between that is address-dependent on 𝑎.

• QEMU Ð Qemu translates programs at basic block granularity,

across which no information propagates. In ArMOR, this corre-

sponds to a stream interruption, which may cause inserting un-

necessarily strong fences. Additionally, Qemu performs interme-

diate optimizations on concurrency primitives, for which it is

not clear how it interacts with ArMOR’s approach.

Host shared libraries. Tan et al. [84] use Qemu’s helper func-

tions to support calls to native shared library functions, adding

a level of indirection, and requiring hard-coding the helper func-

tions. Qemu has to be recompiled when adding support for a func-

tion. box86/64 [68, 69] implement native shared libraries in their

instruction set simulator with łwrapped librariesž. This approach

also requires hard-coding a glue layer that supports native shared

library invocation.

Microsoft’s Windows-on-Arm supports this feature by changing

the ABI of Windows, easing the translation from x86 to Arm [57].

Rosetta 2 also uses a common ABI for x86 and Arm and performs

lazy binding of shared library functions [60].

9 CONCLUSION

We present an end-to-end approach to provide correct and efficient

execution of legacy x86 software on the weak memory Arm ar-

chitecture. To achieve this, we formalize Qemu’s TCG IR memory

model, and use it to propose formally verified mapping schemes.

We leverage these schemes in Risotto, a Qemu-based DBT system

that optimizes fence placement while ensuring correctness. Risotto

further optimizes performance by cross-architecture dynamic link-

ing of native shared libraries and a fast and correct CAS transla-

tion. We evaluate Risotto using multi-threaded benchmark suites

and real-world applications, and show that Risotto improves the

emulation performance, while ensuring correctness.

Open source contributions. We contacted the Arm-Cats authors

to propose a strengthening of the Armmodel that was accepted [39].

We also submitted our new mapping schemes to the Qemu mailing

list. The patch is currently under review with a positive feedback.

DATA-AVAILABILITY STATEMENT

Risotto, the proofs and the instructions to reproduce the results are

available on Github [33] and Zenodo [34]. appendix A details how

to use the artifact.
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A ARTIFACT APPENDIX

The artifact is available in the following GitHub repository:

https://github.com/binary-translation/risotto-artifact-asplos23.

It contains full documentation on how to reproduce the results

of this paper. This appendix only contains the necessary subset

of information from the documentation. If you run into problems

or want a more fine-grained control over the reproduction of the

results, please refer to the documentation in the repository. We
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advise using the documentation in the repository if you want to

coy commands more easily.

A.1 Requirements

Hardware. To run these experiments, you need a machine with an

Arm processor implementing at least the ARMv8.2 revision.We also

recommend using an x86_64 machine to compile the benchmarks’

x86 binaries used in the evaluation. You can also cross-compile them

on the Arm machine, but we do not provide instructions for this.

Software. Our evaluation requires a Linux-based system, and uses

Nix [62] to manage the dependencies. We explain later on how Nix

is used. If you want to generate the plots on your local machine,

you will require the following Python packages: notebook, pandas,

seaborn and matplotlib.

To reproduce the proofs, we provide a Docker [30] image, which

means you need to install Docker on your system.

Benchmarks.We use the PARSEC 3.0 [19] and Phoenix [72] bench-

mark suites, as well as openssl [63], sqlite [81] and some micro-

benchmarks of our design. We provide scripts to either download

pre-built binaries or build all the benchmarks from source.

Time. Note that running all the benchmarks may take a couple

of days depending on your machine. With our experimental setup

described in the paper, it took around 1.5ś2 days.

A.2 Quick Setup

Installing Nix. You first need to install Nix on the Arm machine

you will use for evaluation. You can do this by following the instruc-

tions on their webpage, which, at the time of this writing, amount

to running the following command:

sh <(curl -L https://nixos.org/nix/install) śdaemon

This needs to be done only once.

Setting up the environment. Before doing anything, you need to

setup the environment by running the following command from

the root directory of the repository:

source sourceme

You will need to do this every time you want to run experiments

or build software from this repository from a different shell.

Building the binaries. You can now build all the binaries used

in this paper with the following command from the root of the

repository:

./scripts/build.sh

This will start the compilation of all four Qemu variants used in

this paper:

• master-6.1.0: vanilla Qemu 6.1.0

• no-fences: vanilla Qemu 6.1.0 that doesn’t enforce any

memory model

• tcg-tso: vanilla Qemu 6.1.0 with our memory mappings

• risotto: Risotto (Qemu 6.1.0 with our memory mappings,

dynamic host linker and CAS translation)

It will also download pre-built binaries of all benchmarks used in

the paper. All binaries will be available in the build/ directory.

All configurations available in the repository assume that you use

these binaries.

A.3 Reproducing the Experimental Results

With everything setup, you can now reproduce the evaluation of

the paper.

Running the benchmarks. You can run the benchmarks with the

following command:

./scripts/run_benchmarks.sh

This will execute all the benchmarks from the paper’s evaluation.

The raw results are available in the results/ directory as CSV files.

Plotting the results. After the benchmarks finish their execution,

you can plot the figures from the paper, namely Figures 12ś15, by

executing the following command:

./scripts/plot.sh

Thiswill produce the figures as PDF files available in the results/

directory.

A.4 Verifying the Proofs

We provide the proofs in the repository’s proofs directory (with

separate README.md). Additionally, we provide pre-built Docker

images. To check the proofs, run:

docker run -it --rm \

sourcedennis/risotto-proofs:latest \

agda src/Main.agda --safe

You can generate HTML-rendered Agda with the following com-

mand (in local directory html/):

docker run -it --rm \

-v "$PWD/html:/proofs/html" \

sourcedennis/risotto-proofs:latest \

agda --html --html-dir=html src/Main.agda

You can open html/Main.html in any web browser.

A.5 Detailed Instructions

You can find more information on how to reproduce individual

results in the README.md file from the repository. We now provide

some of this information for interested readers.

Building the benchmarks from source. You can build each

benchmark individually from source with the scripts available in

the scripts/ directory. Note that you need two versions of each

benchmark:

• x86, which will be executed through the binary translators,

i.e., the Qemu variants

• aarch64, which will be executed natively on the machine as

a comparison

We provide instructions to build these benchmarks on their respec-

tive architectures. You can also do this on a single architecture us-

ing cross-compilation, with some modifications to our scripts. We

do not cover this.

On both the x86 and Armmachines, run the following commands

to build the benchmarks:

source sourceme

nix-shell śrun scripts/build_benchmarks.sh \

default.nix
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You can check the scripts/build_benchmarks.sh scripts

and the scripts it calls for more details on how the benchmarks are

built.

For the PARSEC and Phoenix benchmarks, you also need to

download the input datasets available on their respective website

and repository.

Note that you may need to change some configuration files to

properly match the paths of your newly built benchmarks in the

config directory.

Running the benchmarks individually. You can check the com-

mands in the scripts/run_benchmarks.sh script to see how

each benchmark is executed individually.

Plotting the results. In addition to generating the plots as PDFs

as explained previously, you can also generate them through in-

teractive Jupyter notebooks [22] on your local machine. You just

need to run the following command in the root directory of the

repository after executing the benchmarks and downloading the re-

sulting CSV files on your local machine in the results directory:

jupyter notebook

This will open a browser window, where you can access the

Jupyter notebooks in the plots/ directory. After opening a note-

book, click the Run button to run every cell (or Run All in the Cell

menu).
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