
 
 

Delft University of Technology

Conflict Resolution at High Traffic Densities with Reinforcement Learning

Ribeiro, M.J.

DOI
10.4233/uuid:a2979919-cb01-41d1-bbba-fefa9079463b
Publication date
2023
Document Version
Final published version
Citation (APA)
Ribeiro, M. J. (2023). Conflict Resolution at High Traffic Densities with Reinforcement Learning.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:a2979919-cb01-41d1-
bbba-fefa9079463b

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:a2979919-cb01-41d1-bbba-fefa9079463b
https://doi.org/10.4233/uuid:a2979919-cb01-41d1-bbba-fefa9079463b
https://doi.org/10.4233/uuid:a2979919-cb01-41d1-bbba-fefa9079463b


CONFLICT RESOLUTION

AT HIGH TRAFFIC DENSITIES

WITH REINFORCEMENT LEARNING





CONFLICT RESOLUTION

AT HIGH TRAFFIC DENSITIES

WITH REINFORCEMENT LEARNING

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen
chair of the Board for Doctorates

to be defended publicly on
Friday , 17 February 2023 at 12:30 o’clock

by

Marta Joana RIBEIRO

Master of Science in Aerospace Engineering
Instituto Superior Técnico, Portugal

Wasbeer
born in Lisbon, Portugal



This dissertation has been approved by

Promotor: Prof. dr. ir. J.M. Hoekstra

Copromotor: Dr. ir. J. Ellerbroek

Composition of the doctoral committee:

Rector Magnificus, chairperson

Prof. dr. ir. J.M. Hoekstra Delft University of Technology, promotor

Dr. ir. J. Ellerbroek Delft University of Technology, copromotor

Independent members:

Prof. dr. ir. S. Hoogendoorn Delft University of Technology

Prof. dr. D.G. Simons Delft University of Technology

Prof. dr. D. Delahaye Ecole Nationale de l’Aviation Civile

Dr. P. Wei George Washington University

Dr. ir. E. Sunil Nederlands Lucht- en Ruimtevaartcentrum

Reserve member:

Prof. dr. ir. M. Mulder Delft University of Technology

This project has received funding from the European Union’s Horizon 2020 Research
and Innovation Programme under grant agreement No 824292 (AW-Drones)

Keywords: Air Traffic Control, Conflict Detection & Resolution, Reinforcement
Learning, Self Separation, U-Space

Printed by: Ipskamp

Front & Back: M. Ribeiro

Copyright © 2023 by M. Ribeiro

ISBN 978-94-6366-653-4

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


SUMMARY v

SUMMARY

Increasing delays and congestion reported in many aviation sectors indicate that the
current centralised operational model is rapidly approaching saturation levels. Air Traffic
Control (ATC) system is not expected to keep pace with the ever-increasing demand
for air transportation. Its capacity is still limited by the available controllers, and the
number of aircraft that each controller can manage. This system cannot be stretched any
further under its current conditions. However, it is expected that the number of aircraft
operating simultaneously will continue to increase. On top of this, new unmanned
aviation operations promise traffic densities never seen before.

The expected future increase in traffic demand has redirected focus into automated
tools and alternative approaches. This research has been primarily characterised by a
change in the degree of centralisation, more specifically by exploring distributed options,
where control is transferred from ground-based Air Traffic Controllers (ATCOs) to each
individual aircraft. As each aircraft only takes into account its neighbouring aircraft
when resolving conflicts, each distributed resolution system is expected to have only a
fraction of the computational strain that a centralised system would have. Nevertheless, a
distributed approach has its own challenges. A crucial disadvantage is the lack of global
coordination from surrounding traffic, which can affect safety. Without knowledge of
the movement of intruders, decentralised solutions cannot guarantee globally optimal
solutions when more than two aircraft are involved.

Conflict resolution (CR) methods based on geometric solutions have proven to be
very successful in achieving a high level of safety for one-to-one conflicts, where a set of
rules can be defined which leads to implicitly coordinated optimal behaviour. However,
at higher traffic densities, when individual conflict situations can no longer be considered
isolated events, successive CR manoeuvres can lead to traffic patterns with a negative
effect on the global safety. Knock-on effects of intruders avoiding each other may result
in unforeseen trajectory changes. The latter increases uncertainty regarding intruders’
future movements, decreasing the efficacy of conflict resolution manoeuvres.

The goal of this research is to improve upon aircraft self-separation efficacy at higher
traffic densities, with an emphasis on employing airspace designs and approaches appli-
cable to future unmanned operations. To do so, we look at a scenario with multi aircraft
interacting as a multi-agent problem. Analysis and understanding of emergent behaviour
in a multi-agent environment is often almost impossible to the human eye. However,
reinforcement learning (RL) techniques are often capable of identifying emerging patterns
through training in the environment. We translate successful applications of RL tech-
niques in other areas (e.g., car mobility, lane changing, freeways) to aircraft operational
scenarios to mitigate the negative effect on safety of emerging patterns resulting from
multiple successive resolution manoeuvres.

The first part of this study focusses on dynamic and static obstacle avoidance for
unmanned aviation in an urban environment. The available airspace is divided according
to the layered airspace concept, as researched by the Metropolis project. Aircraft are
limited to speed and altitude variation for conflict resolution, so as to avoid crossing the
barriers of the surrounding urban infrastructure. It is shown that employing RL tech-
niques can help decrease conflict rate and severity. First, an RL method implements
velocity speed limits, enabling a more homogeneous traffic situation during layer tran-
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sition phase. These limits increase the distance between the aircraft, reducing the total
number of violations of minimum separation. Second, to improve layer change decision,
two RL modules are employed: a decision-making module, which outputs lane change
commands, and a control-execution module which controls the aircraft longitudinally
and vertically to ensure a safe merging manoeuvre. Both modules, working independently
and combined, reduce the total number of conflicts and losses of minimum separation
when compared to manually defined baseline rules.

Additionally, airspace structure plays a positive role in reducing conflict rate and
severity by directly affecting the likelihood of aircraft meeting in conflict. Often, structures
are set assuming a uniform traffic distribution. However, in a real-world this is often
not the case. An RL method is used to set the headings allowed per layer, in a layered
airspace environment, in accordance with the expected traffic scenario. The output
structures optimise the usage of the airspace by segmenting aircraft efficiently throughout
the available airspace by taking into account their flight plan. The adapted structures lead
to fewer conflicts and losses of minimum separation, and faster flights when compared to
an uniform, fixed structure which assumes a uniform traffic scenario.

The second part of this thesis focused on how RL can be used to directly improve
conflict resolution. Experiment results show that RL cannot yet outperform current CR
geometric methods. These calculate geometric resolution manoeuvres which guarantee
implicit coordination with minimum path deviation. This is a level of precision impossible
to be re-enacted by a machine learning method. However, conflict resolution algorithms
work based on man made pre-defined rules (e.g., pre-defined look-ahead time, pre-
defined manoeuvres). RL can instead create a much larger set of rules, adapted to a
multitude of different conflict situations. Moreover, RL methods can be used to improve
the behaviour in situations for which researchers do not have a clear guideline or an
optimal set of rules (e.g., return to the nominal path after conflict resolution, prioritisation
of intruders or deconflicting manoeuvres).

Lastly, it is necessary to consider the practical applications of this research. The final
objective is for the methods herein explored to be employed in the design of new concepts
enabling future operations. Due to the empirical nature of the results, the conclusions
drawn in this thesis are, to some degree, sensitive to the parameter settings of the simu-
lated airspace. However, the same methods can be adapted to different environments.
First, the detection and resolution algorithms employed are independent of the environ-
ment; the only limitation is the number of degrees of freedom that aircraft are allowed
to use to avoid conflicts. Second, the reinforcement learning methods employed can be
trained in most environments and will adapt to its characteristics.

The main limitations before applying these methods relate to validation under fairer
representations of real-world operational environments. For example, higher uncertainty
regarding intruders’ position and non-ideal weather conditions must be tested. Bad
weather, and strong winds in particular, can severely reduce aircraft manoeuvrability, and
decrease the set of possible manoeuvres for conflict resolution, affecting the safety of the
airspace. Moreover, several issues associated with the RL methods must be addressed.
Namely, a higher degree of interpretation and explanation of their actions. Additionally,
safeguards must be implemented against unsafe actions that a method may output when
faced with a new situation for which it does not possess sufficient knowledge.
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SAMENVATTING

De toenemende vertragingen en congestie die in veel luchtvaartsectoren worden gemeld,
wijzen erop dat het huidige gecentraliseerde operationele model snel zijn limieten bereikt.
Naar verwachting zal het huidige gecentraliseerde ATC-systeem geen gelijke pas kun-
nen houden met de steeds toenemende vraag naar luchtvervoer. De capaciteit ervan
wordt nog steeds beperkt door het aantal beschikbare verkeersleiders en de hoeveelheid
vliegtuigen die elke verkeersleider kan beheren. Binnen de huidige omstandigheden kan
dit systeem niet verder worden opgerekt. Echter wordt verwacht dat het aantal vliegtu-
igen dat gelijktijdig in de lucht is, zal blijven toenemen. Bovendien benodigen nieuwe
onbemande luchtvaartoperaties nooit eerder vertoonde verkeersdichtheden.

Door de verwachte toekomstige toename van de verkeersvraag is de aandacht verlegd
naar geautomatiseerde instrumenten en alternatieve aanpakken. Dit onderzoek werd
vooral gekenmerkt door een verandering in de mate van centralisatie, specifieker nog
het verkennen van gedistribueerde opties, waarbij de controle wordt overgedragen van
luchtverkeersleiders op de grond (ATCO’s) naar ieder individueel vliegtuig. Aangezien elk
vliegtuig bij het vermijden van conflicten alleen rekening houdt met de naburige vliegtu-
igen, zal naar verwachting elk gedistribueerd ontwijkingssysteem slechts een fractie van
de computerdruk benodigen van een gecentraliseerd systeem. Desalniettemin heeft een
gedistribueerde aanpak zijn eigen uitdagingen. Een fundamenteel nadeel is het gebrek
aan globale coördinatie van het omringende verkeer, wat de veiligheid in het gedrang kan
brengen. Zonder kennis van de bewegingen van indringers, kunnen gedecentraliseerde
oplossingen geen globaal optimale oplossingen garanderen wanneer er meer dan twee
vliegtuigen bij betrokken zijn.

Conflictoplossingsmodellen op basis van geometrische oplossingen zijn zeer suc-
cesvol gebleken in het bereiken van een hoog veiligheidsniveau voor één-op-één con-
flicten. Hierbij wordt een reeks regels gedefinieerd die leiden tot impliciet gecoördineerd
optimaal gedrag. Bij hogere verkeersdichtheden, wanneer individuele conflictsituaties
niet langer als geïsoleerde gebeurtenissen kunnen worden beschouwd, kunnen opeen-
volgende CR-manoeuvres echter leiden tot verkeerspatronen met een negatief effect op
de algemene veiligheid. ‘Knock-on’ effecten van indringers die elkaar ontwijken kunnen
leiden tot onvoorziene trajectwijzigingen. Dit laatste verhoogt de onzekerheid over de
toekomstige bewegingen van indringers, waardoor de doeltreffendheid van conflicto-
plossende manoeuvres afneemt.

Het doel van dit onderzoek is het verhogen van de efficiëntie van zelfseparatie van
vliegtuigen bij hogere verkeersdichtheden, met de nadruk op het gebruik van luchtrui-
montwerpen en aanpakken die toepasbaar zijn op toekomstige onbemande operaties.
Daartoe bekijken we een scenario met meerdere vliegtuigen die met elkaar interageren
als een ‘multi-agent’ probleem. Vaak is analyse en begrip van vertoond gedrag in een
‘multi-agent’ omgeving voor het menselijk oog vrijwel onmogelijk. Technieken van rein-
forcement learning (RL) zijn echter vaak in staat om door training, opkomende patronen
te identificeren. Wij benutten succesvolle toepassingen van RL-technieken op andere
gebieden (bv. automobiliteit, verandering van rijbaan, snelwegen) naar operationele
scenario’s om de veiligheid te waarborgen van vliegtuigen bij patronen die ontstaan uit
meerdere opeenvolgende ontwijkingsmanoeuvres.

Het eerste deel van dit onderzoek richt zich op dynamische en statische obstakelver-



viii SAMENVATTING

mijding voor onbemande luchtvaartuigen in een stedelijke omgeving. Het beschikbare
luchtruim is onderverdeeld volgens het gelaagde luchtruimconcept, zoals onderzocht
in het Metropolis-project. Vliegtuigen worden beperkt in snelheid en hoogtevariatie bij
conflictoplossingen, om te voorkomen dat ze de barrières van de omringende stedelijke
infrastructuur overschrijden. Er werd aangetoond dat het gebruik van RL-technieken
kan helpen om het aantal conflicten en de ernst ervan te verminderen. Eerst werden in
een RL-model snelheidsbeperkingen ingevoerd, waardoor een homogenere verkeerssi-
tuatie tijdens overgangsfases tussen lagen mogelijk werd. Deze limieten vergroten de
afstand tussen de vliegtuigen, waardoor het totale aantal schendingen van de minimale
separatie afneemt. Ten tweede werden, om de beslissing over verandering van laag te
verbeteren, twee RL-modules gebruikt: een besluitvormingsmodule, die opdrachten voor
verandering van rijbaan geeft, en een uitvoeringsmodule die het vliegtuig in horizontale
en verticale richting controleert om een veilige samenvoegingsmanoeuvre te garanderen.
Beide modules, die onafhankelijk en gecombineerd werken, verminderden het totale
aantal conflicten en schendingen van minimale separatie in vergelijking met handmatig
gedefinieerde basisregels.

Bovendien speelt de luchtruimstructuur een positieve rol bij het verminderen van
de hoeveelheid en de ernst van conflicten, omdat dat rechtstreeks van invloed is op de
waarschijnlijkheid dat luchtvaartuigen elkaar kruisen. Bij de vaststelling van de structuren
wordt vaak uitgegaan van een uniforme verkeersverdeling. In de praktijk is dit echter
niet vaak het geval. Een RL-model werd gebruikt om in een gelaagde luchtruimomgeving
de toegestane richtingen per laag vast te stellen in overeenstemming met het verwachte
verkeersscenario. De outputstructuren optimaliseren het gebruik van het luchtruim door
vliegtuigen efficiënt te segmenteren in het beschikbare luchtruim, terwijl het rekening
houdt met hun vliegplan. De aangepaste structuren leiden tot minder conflicten en
schendingen van de minimale separatie, en snellere vluchten in vergelijking met een
uniforme, vaste structuur die uitgaat van een uniform verkeersscenario.

In het tweede deel van dit proefschrift werd nagegaan hoe RL kan worden gebruikt om
conflicten rechtstreeks op te lossen. Experimentresultaten tonen aan dat RL de huidige
geometrische CR-methoden nog niet kan overtreffen. Deze berekenen geometrische
oplossingsmanoeuvres die impliciete coördinatie met minimale padafwijking garanderen.
Dit is een precisieniveau dat onmogelijk kan worden nagebootst door een machine-
learning methode. Conflictoplossingsalgoritmen werken echter op basis van vooraf
door de mens gedefinieerde regels (bv. vooraf gedefinieerde ‘look-ahead’-tijd, vooraf
gedefinieerde manoeuvres). Daarentegen kan RL een veel grotere reeks regels creëren,
aangepast aan verschillende conflictsituaties. Bovendien kunnen RL-methoden worden
gebruikt om het gedrag te verbeteren in situaties waarvoor onderzoekers geen duidelijke
richtlijn of optimale reeks regels hebben (bijvoorbeeld terugkeer naar het nominale pad
na conflictoplossing, prioritering van indringers of deconflicterende manoeuvres).

Tenslotte moeten de praktische toepassingen van dit onderzoek worden bekeken. Het
uiteindelijke doel is dat de hier onderzochte methoden worden gebruikt bij het ontwerpen
van nieuwe concepten die toekomstige operaties mogelijk maken. Door de empirische
aard van de resultaten zijn de conclusies die in dit proefschrift worden getrokken, tot op
zekere hoogte gevoelig voor de parameterinstellingen van het gesimuleerde luchtruim.
Dezelfde methoden kunnen echter aan verschillende omgevingen worden aangepast. Ten
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eerste zijn de gebruikte detectie- en oplossingsalgoritmen onafhankelijk van de omgeving;
de enige beperking is het aantal vrijheidsgraden dat vliegtuigen mogen gebruiken om con-
flicten te vermijden. Ten tweede kunnen de gebruikte reinforcement learning-methoden
worden getraind in de meeste omgevingen en zullen zij zich aanpassen aan de kenmerken
ervan.

De belangrijkste beperkingen voor de toepassing van deze methoden hebben be-
trekking op validatie onder eerlijker representaties van reële operationele omgevingen.
Zo moet bijvoorbeeld de grotere onzekerheid over de positie van indringers en niet-ideale
weersomstandigheden worden getest. Slecht weer, met name sterke wind, kan de ma-
noeuvreerbaarheid van vliegtuigen ernstig beperken en de reeks mogelijke manoeuvres
voor conflictoplossing verkleinen, hetgeen de veiligheid van het luchtruim in gevaar
brengt. Bovendien moeten verschillende problemen in verband met de RL-modellen
worden aangepakt. Namelijk een hogere mate van interpretatie en uitleg van hun acties.
Voorts moeten beveiligingen worden ingebouwd om onveilige acties te voorkomen die
een model kan uitvoeren als het geconfronteerd wordt met een situatie waarover het
onvoldoende kennis beschikt.
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1
INTRODUCTION

Safety in manned aviation still relies on manual intervention by ground-based air traffic
controllers. The capacity of the air traffic control system is limited by the available con-
trollers, and the number of aircraft that each controller can manage. This system cannot
be stretched any further under its current conditions. However, it is expected that the
number of aircraft that operate simultaneously will continue to increase. In addition, new
unmanned aircraft operations promise traffic densities never seen before.

As a solution, new autonomous methods capable of balancing aircraft safety and
efficiency are being developed. Reinforcement learning, in particular, has received special
attention due to good results in multi-agent decision making problems where agents must
remain separated. However, its application in aviation is still tentative. This thesis explores
how this method can be used within self-separation assurance for future operations.

This chapter presents an overview of the previous literature in this domain. Several open
questions regarding the management of future traffic densities are used as the foundation
for the main research objectives of this thesis. The structure of this dissertation is presented
at the end.

1
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1.1. FUTURE OPERATIONS IN AVIATION
The increasing delays and congestion reported in many areas indicate that the current
centralised operational model is rapidly approaching saturation levels [1]. The centralised
Air Traffic Control (ATC) system is not expected to keep pace with the ever-increasing
demand for air transportation [2, 3]. This has inspired research into automated tools and
alternative approaches since the early 1990s. Several large research programs have been
formed along this theme (e.g., FREER [4], PHARE [5], the Mediterranean Free Flight project
in Europe [6], and DAG/TM in the US [7]; more recently, there is the American NextGen
programme [8] and SESAR in Europe [3]). This research has been primarily characterised
by a change in the degree of centralisation, more specifically, by exploring distributed
options, where control is transferred from ground-based Air Traffic Controllers (ATCOs) to
each individual aircraft. Figure 1.1 shows the main direction of information transmission
for both cases.

(a) Centralised system. (b) Distributed system.

Figure 1.1: Difference between a centralised and a distributed system.

Previous research has shown that decentralised traffic separation can be expected to
increase traffic capacity. In a centralised system, traffic flow is still limited to the maximum
workload air traffic controllers (ATCOs) can handle within their sector [9]. Additionally,
the number of sectors is limited by the number of ATCOs available. Delegating ATCOs to
a monitoring position also allows for a re-evaluation of the airspace structure. Without
the limitation of the number of ATCOs, sectors can now be replaced with a more complex
structure, without being limited by the number of available personnel.

Moreover, although decentralisation was originally proposed to improve commercial
manned aviation operations, the concept has become increasingly popular as a means
to integrate Unmanned Aircraft Systems (UAS) into low altitude urban airspace. Many
researchers and aviation authorities view the distribution of traffic separation tasks as a
necessary step towards accommodating the high traffic volumes predicted for these new
operations [3, 10]. Furthermore, both the Federal Aviation Administration (FAA) [11] and
the International Civil Aviation Organisation (ICAO) [12] have ruled that an Unmanned
Aerial System (UAS) must have Sense and Avoid capability to be allowed in civil airspace.
Understandably, much of the current research into UAS has used or adapted methods
previously found in manned aviation. These include the development of new distributed
operational concepts [13], and new self-separation technologies [14].

Nevertheless, traffic separation in a decentralised manner entails its own new chal-
lenges, as each aircraft is only aware of its immediate surroundings, and only in control of
its own movements. These limitations still require further research and understanding.
The next subsection dwells on this topic further.
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1.2. SELF-SEPARATION IN DECENTRALISED SYSTEMS
A distributed system reallocates the process of separation assurance from a centralised
point to the individual aircraft. As each aircraft only takes into account its neighbouring
aircraft when avoiding conflicts, each distributed resolution system is expected to have
only a fraction of the computational strain that a centralised system would have. Never-
theless, a distributed approach has its own challenges. A crucial disadvantage is the lack
of global coordination from surrounding traffic, which may affect safety. Without knowl-
edge of the movement of intruders, decentralised solutions cannot guarantee globally
optimal solutions when more than two aircraft are involved. Due to this, the efficacy of
decentralisation in resolving multi-actor conflicts is often studied.

In particular, Free-Flight research [6] has focused on developing automated tactical
algorithms for airborne conflict detection and resolution (CD&R). A conflict is a future
prediction of a loss of minimum separation. CD&R consists of: (1) conflict detection (CD),
the process of predicting future minimum separation violations by estimating how close
the neighbouring aircraft will be to each other in the future; (2) conflict resolution (CR),
which temporarily alters the current trajectory of the aircraft to avoid future detected
separation violations.

Figure 1.2 represents a conflict; continuation of the current state of both aircraft will
result in the aircraft getting closer than the pre-defined minimum separation distance.
Figure 1.3 shows a loss of minimum separation (or intrusion). The desired minimum
separation is defined as a circle around the aircraft. This area is designated as the aircraft’s
protected zone (PZ). It is considered that an aircraft is safely separated from other traffic
or obstacles when these do not cross the PZ’s barrier. The value of the PZ’s radius may
vary depending on the type of aircraft and operational environment.

t0

t0

t1

t1

Figure 1.2: Conflict detected. Unless one or both
aircraft alter their path, they will enter a minimum
separation violation in the future.

2
×S

ep
m

in

P Z1

P Z2

Figure 1.3: Loss of separation or intrusion. Sepmi n
is the minimum separation (i.e., the radius of the
protected zone (PZ)).

In addition to CD&R, a limited number of studies have investigated the use of Conflict
Prevention (CP) algorithms. These algorithms aim to improve safety by preventing aircraft
from moving into new conflicts. Hoekstra [15], for example, focuses on mitigating conflict
chain reactions, which greatly increase the number of conflicts. The effect of these chain
reactions will be discussed in further chapters.

Guaranteeing self-separation in a high traffic density environment is the main objec-
tive of this thesis. With a high number of intruders, each aircraft will have to successively
employ conflict resolution manoeuvres. These successive actions result in unpredictable
traffic patterns that may lead to chain conflict reactions with neighbouring aircraft. As
aircraft interact, an emergent behaviour surges, which cannot be easily predicted by the
behaviour of a single aircraft. This problem is further defined in the following subsection.
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1.3. REINFORCEMENT LEARNING APPROACH
Previous research has shown that, at high traffic densities, unwanted emergent behaviour
from interactions between multiple aircraft working individually severely hinders conflict
resolution. For one-to-one conflicts, a set of rules can be defined, which leads to implicitly
coordinated optimal behaviour. However, as the number of aircraft increases, successive
CR manoeuvres can lead to global patterns that cannot be predicted on the basis of
these single rules or analytical methods. A high traffic operating scenario is essentially
a multi-agent problem, with emergent behaviour and complexity arising as a result of
agents interacting and co-evolving. Analysis and understanding of emergent behaviour
in a multi-agent environment is often almost impossible to the human eye. However,
reinforcement learning (RL) techniques are often capable of identifying emerging patterns
through training in the environment. This thesis looks at the successful applications of
these techniques in other areas (e.g., mobility of cars, lane change, highways [16–18]) and
adapts them to aircraft operational scenarios. Since RL will be widely used in this thesis,
it is important to briefly introduce this topic before applying it.

RL is, in a simplified way, the study of how an agent can interact with its environment
to learn a policy which maximises the expected cumulative rewards for a task. The agent
interacts with the environment in discrete timesteps. At each timestep, the agent receives
the current state of the environment and performs an action based on which it receives a
reward. The goal is for the agent to ‘learn’ which actions lead to receiving higher rewards.
By using repetition, it can adapt to existing emergent behaviour and develop a large set
of rules and weights from the knowledge of the environment captured during training.
Unfortunately, RL also has its drawbacks. An RL model may not converge towards actions
with ‘optimal’ rewards, or may take too long to learn to do so when it cannot properly
connect the changes in the environment to the actions performed. This is particularly
difficult in complex and rapidly changing environments. Thus, how RL is applied to help
solve the problem of self-separation has to be carefully considered.

Recently, reinforcement learning has started to be used for conflict resolution pur-
poses. In [19–21], RL was used to apply tactical speed and heading changes to the nominal
trajectory to avoid aircraft getting too close to each other. However, these works show
that RL techniques, although promising, do not achieve the efficacy of known conflict
resolution methods. It is not certain that, at the current state of RL, it can successfully
handle the uncertainty and complexity of a higher number of intruders in a multitude of
different conflict situations. Translating the success of deep learning from single agent RL
to a multi-agent environment continues to be a key challenge.

When applying RL to mitigate undesirable emergent patterns, several questions fol-
low: which information should the RL model know?; which CR parameters should the
RL model control? Additionally, two problems arise when using RL in cooperative multi-
aircraft situations. First, with each action, the next state depends not only on the action
performed by the ownship, but on the combination of that action with the actions simul-
taneously performed by the intruders. Second, from the point of view of each agent, the
environment is non-stationary and, as training progresses, changes in a way that cannot
be explained by the agent’s behaviour alone. Current research shows that emergent be-
haviour and complexity arise mainly from agents interacting and co-evolving. This thesis
explores these questions.
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1.4. PROBLEMS WITH CD&R AT HIGH TRAFFIC DENSITIES
Operations with high traffic densities increase the likelihood of aircraft encountering
multi-actor conflict situations. Aircraft must coordinate their own actions with the actions
of the neighbouring aircraft to successfully avoid getting too close. In a pairwise conflict,
conflict resolution methods, or rules, can be implemented so that aircraft work together
to prevent a loss of minimum separation (i.e., implicit coordination). However, these rules
alone cannot predict the traffic patterns that emerge from successive conflict resolution
manoeuvres. These patterns lead to unpredictable trajectory changes, which not only
result in aircraft having to cross the path of neighbouring aircraft to resolve pressing
conflicts, but also make it harder to predict future losses of minimum separation and how
to avoid them.

Moreover, with unmanned aviation in an urban environment, there is the additional
challenge that any resolution manoeuvre must respect the boundaries of the surrounding
urban infrastructure. This severely limits the number and magnitude of movements that
an aircraft can adopt to resolve conflicts. To better approach this problem, we first divide
it into four approachable sub-problems defined in the following subsections.

TRANSITIONING FROM MANNED TO UNMANNED AVIATION

The airspace is currently dominated by manned aviation, from aircraft types to traffic
management approaches and regulations. With the introduction of new unmanned
aviation operations, these tend to ‘borrow’ results of the self-separation research done
for manned aviation. However, it is not yet clear if the same approach should be used
for both cases, given their differences (e.g., performance disparity between the different
types of aircraft, different self-separation margins).

Moreover CD&R methods can adopt different approaches. For example, many CD&R
algorithms differ in how to propagate future trajectories, how to calculate the resolution
manoeuvre, or even how far in advance the ownship defends from conflicts. More insight
is needed into which CD&R characteristics better perform in tactical, high density traffic
operations, especially in urban environments.

DYNAMIC AND STATIC OBSTACLE AVOIDANCE

To be used in unmanned operational environments, CD&R methods must either consider
static obstacles, or at least limit conflict resolution manoeuvres in order for aircraft not
to cross the barriers of the surrounding urban infrastructure. Not performing heading
deviations to resolve conflicts guarantees that aircraft follow a pre-defined path, built
around the urban infrastructure. However, such an approach strongly limits the number of
possible ways to resolve conflicts. For example, (near-)head-on conflicts are (practically)
impossible to resolve without heading deviations.

Furthermore, static obstacles often cause aircraft to have to make heading deviations
to avoid direct collisions. Turns may lead to aircraft crossing traffic flows with other
aircraft travelling in different directions, or even to speed heterogeneity caused by aircraft
having to slow down to perform a turn with a small radius. The resulting large conflict
angles or relative speeds are causal factors in the increase in complexity in air traffic
operations.
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AIRSPACE STRUCTURE
The structure of the airspace can play a positive role in reducing the severity of conflicts
by directly affecting the likelihood of aircraft meeting in conflict. Conflict prevention may
often be the best form of conflict resolution. The Metropolis project explored different
types of distributed structures for a high-density urban airspace [13]. However, only static,
relatively uniform traffic demand distributions were considered. In reality, traffic flows
are often dynamic and can take up any distribution. Existing research on airspace design,
towards optimising decentralised traffic flows, must be improved to adjust the airspace to
the expected operational traffic scenario.

Furthermore, optimal airspace structuring is highly dependent on the (topological)
characteristics of the traffic demand. Manned aviation employs fixed routes planned
in advance, and thus has fixed sectors as a function of these expected routes. However,
unmanned aviation is expected to include missions with unpredictable and variable
routes, such as food and package delivery [22]. The latter entails a more dynamic, complex
structuring based on the traffic needs at each instant.

MULTI-ACTOR CONFLICT RESOLUTION
Conflict resolution methods based on geometric solutions have proven to be very suc-
cessful in achieving a high level of safety for one-to-one conflicts, where a set of rules
can be defined, leading to implicitly coordinated optimal behaviour. However, at higher
traffic densities, when individual conflict situations can no longer be considered isolated
events, successive CR manoeuvres can lead to traffic patterns with a negative effect on
the global safety. The knock-on effects of intruders avoiding each other may eventu-
ally result in unforeseen trajectory changes, deeming a resolution impossible within the
available amount of time before a loss of separation. Thus, conflict resolution efficacy in
multi-actor conflicts must be improved.

1.5. RESEARCH OBJECTIVES
This research aims to address the four open problems previously discussed for self-
separation in high traffic density operational environments. More specifically, the primary
objective of this thesis is to:

Primary Research Objective

Investigate whether reinforcement learning applications can improve aircraft self-
separation efficacy at higher traffic densities, with an emphasis on employing airspace
designs and approaches applicable to future unmanned operations.

First, to be able to improve upon the current performance of self-separation methods,
these must be evaluated and understood. The next subsection provides more information
on Chapter 2, which is intended as an analysis of the current state-of-the-art. Next,
we define the research activities and associated research questions created to meet the
primary research objective.
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BACKGROUND CHAPTER
Chapter 2 of this thesis analyses the performance of current CD&R methods in manned
and unmanned aviation, with the objective of better understanding which characteris-
tics/approaches lead to a reduction of intrusions. As such, this chapter may be seen as an
overview of the current state-of-the-art in conflict avoidance/resolution methods.

The last comprehensive review of conflict detection and resolution methods was pub-
lished in 2000 by Kuchar and Yang [23]. Although it is more than 20 years old, this is still
often cited as the main reference. However, since 2000, many new CD&R concepts have
been proposed, including an entirely new branch of CD&R methods directed specifically
at unmanned aviation. A possible taxonomy for the latter was first explored by Jenie [24].
However, a single, current overview of CD&R methods for both manned and unmanned
applications is currently lacking.

In Chapter 2, a taxonomy is presented that characterises CD&R algorithms in terms
of their approach to avoidance planning, surveillance, control, trajectory propagation,
predictability assumption, resolution manoeuvre, multi-actor conflict resolution, con-
sidered obstacle types, optimisation, and method category. More than a hundred CR
methods are evaluated based on this taxonomy. Such provides a base for the review of the
current state of both manned and unmanned CD&R algorithms, and helps identify which
characteristics lead to better efficacy at high traffic densities. The performance of four
main CR algorithms is directly compared within the same simulation/traffic scenarios.
Fast-time simulations are performed on an open-source airspace simulation platform.

RESEARCH ACTIVITY 1: DYNAMIC AND STATIC OBSTACLE AVOIDANCE
CD&R methods need to be adapted to unmanned aviation in an urban environment. Any
resolution manoeuvre must respect the borders of the surrounding urban infrastructure.
This limits the magnitude of heading changes that can be performed to resolve conflicts.
Thus, the following research question is created:

Research Question on Dynamic and Static Obstacle Avoidance (Chapter 3)

RQ 1: How to reduce the conflict rate and severity in a constrained urban environment
(especially when considering that aircraft cannot perform heading variations to aid
in conflict resolution)?

Chapter 3 focuses on how conflict resolution can be performed in an urban environ-
ment. The available airspace is divided according to the layered airspace concept, as
researched by the Metropolis project [13], where traffic is divided into different vertical
layers according to their current heading. The emphasis is placed on speed variation
with a velocity obstacle-based conflict resolution method. Intent information is added
to trajectory propagation in order to mitigate crossing conflicts (i.e., conflicts resulting
from changes in direction). Finally, a reinforcement learning agent is used to implement
variable speed limits towards creating a more homogeneous traffic situation between
cruising and climbing/descending aircraft.

The results of Chapter 3 show the need for additional focus on merging conflicts. We
define merging conflicts as conflict situations resulting from an aircraft joining a traffic
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flow in a different traffic layer (similarly to a road vehicle in a highway joining a different
lane). Conflicts between cruising and climbing/descending aircraft are especially difficult
to resolve. First, having simultaneous vertical and horizontal conflicts severely increases
the level of complexity of conflict resolution. Second, when aircraft enter a traffic flow,
they can potentially force a conflict chain reaction in which the follower aircraft have to
adjust their speed to avoid a collision. Thus, the following research question arises:

Research Question on Dynamic and Static Obstacle Avoidance (Chapter 4)

RQ 2: How to reduce the conflict rate and severity during vertical merging manoeu-
vres?

Chapter 4 looks at reducing the impact of vertical transitions within an aviation
environment. Two reinforcement learning methods are tested: a decision-making module
and a control-execution module. The former issues a lane change command based on
the planned route. The latter performs operational control to coordinate the longitude
and vertical movement of the aircraft for a safe merging manoeuvre. The performance of
these modules is compared to the use of manually defined navigation rules.

RESEARCH ACTIVITY 2: AIRSPACE STRUCTURE
This research aims to find the optimal structure for the expected traffic scenario. Previous
airspace structures have assumed that traffic adopts a uniform heading range distribution.
However, this is rarely the case in the real-world. When the structure of the airspace does
not align with the current traffic scenario, aircraft will not be equally distributed across
the available airspace. Thus, it raises the following research question:

Research Question on Airspace Structure (Chapter 5)

RQ 3: How to optimise the airspace structure based on the operational traffic scenar-
ios?

First, it should be noted that the terms airspace structure and design are used inter-
changeably in this thesis. Both terms refer to procedural mechanisms for the separation
and organisation of traffic. To address RQ 3, in Chapter 5, a reinforcement learning agent
decides on the best airspace structure based on the traffic scenario. Multiple traffic de-
mand scenarios are simulated for this activity. Subsequently, the effect of the airspace
structure on the conflict rate and severity can be inferred.

RESEARCH ACTIVITY 3: CONFLICT RESOLUTION WITH REINF. LEARNING
This research activity will focus on the potential of using reinforcement learning directly
for conflict resolution. At the extreme densities envisioned for such drone applications,
performance is hindered by the unpredictable emergent behaviour of interacting traffic.
Reinforcement learning can potentially be used to mitigate the negative effect of these
emergent interactions. The following research question is then created:
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Research Question on Conflict Resolution with Reinforcement Learning (Chap-
ters 6 & 7)

RQ 4: Can reinforcement learning surpass or improve the efficacy of current analytical
conflict resolution methods, specifically in multi-actor conflict situations?

Before application into the real-world, the potential of reinforcement learning as a
tool needs to be further researched and its limitations understood. On the one hand,
reinforcement learning can potentially identify trends and patterns for multi-conflict res-
olutions where human observation cannot. On the other hand, RL also has its drawbacks,
such as non-convergence, high dependence on initial conditions, and long training times.
Chapters 6 and 7 explore how to better approach reinforcement learning as a conflict
resolution tool, and how its ‘learnt’ behaviour can be used to complement CD&R meth-
ods, thus improving conflict detection and resolution at high traffic densities. Multiple
experiments are performed with different degrees of control over the aircraft’s movements.
The results help identify in which use cases reinforcement learning is optimal.

Finally, Chapter 8 is intended as an overview of the limitations of reinforcement
learning, exploring non-successful applications which also contribute to a complete
comprehension of this tool.

1.6. RESEARCH TERMINOLOGY AND SCOPE
Throughout the following chapters, it is assumed that several common-used concepts are
understood by the reader and do not require further explanation. For reference, these
concepts and their scope are formulated in the following paragraphs:

• Aircraft: the term aircraft is used interchangeably to refer to both manned and
unmanned aviation. Unless one or the other is specifically mentioned, the reader
may assume that the current topic applies to both.

• Conflict Detection: a conflict occurs when the horizontal and vertical distances
between two aircraft are expected to be less than the minimum separation dis-
tance within a predetermined ‘look-ahead’ time (see Figure 1.2). Conflicts are thus
indications of expected future violations of minimum separation.

• Conflict Resolution: once a conflict is detected, a conflict resolution algorithm is
used to modify the aircraft’s route to avoid the future loss(es) of separation. In each
chapter, the conflict resolution algorithm used in the experiments is defined.

• Losses of (minimum) separation (LoSs) or intrusion: occurs when two aircraft
are closer to each other than the pre-defined minimum separation distance, as
displayed in Figure 1.3. This is the paramount safety factor and should be avoided.

• Protected zone (PZ): the protected zone is a flat, three-dimensional disc around
each aircraft, that should remain clear of other traffic. The value of the minimum
safe separation may depend on the density of air traffic and the region of the
airspace. However, for manned aviation, most CD&R studies use ICAO’s definition
of 5NM horizontal separation and 1000 ft vertical separation. For unmanned avia-
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tion, there are no established separation distance standards yet. The values used in
each experiment will be specified throughout this thesis.

• Reinforcement Learning (RL): a machine learning based training method where
the agent performs actions in an environment and, by trial and error, learns which
actions result in maximising a cumulative reward.

• Simulation Platform: this thesis employs the open-source, multi-agent ATC simu-
lation tool Bluesky [25]. All implementation code used and built throughout this
work is available online.

• Unmanned Aircraft System (UAS): the term Unmanned Aircraft System, abbrevi-
ated as UAS, refers to the definition of an aircraft and associated elements which
are operated without a pilot on board. Well-known UAS methods are simulated in
the experiments performed throughout this thesis.

1.7. THESIS OUTLINE
This thesis presents an answer to the previously introduced research questions (RQ). An
overview of the relationships between the chapters and the research questions is shown
in Figure 1.4. Chapter 2 is meant as a background chapter introducing the current state-
of-the-art of conflict detection and resolution methods. Then, the thesis is divided into
two main parts. The first includes Chapters 3 to 5, and is directed at conflict detection
and resolution for unmanned aviation in a constrained environment. The second part,
Chapters 6 to 8, focuses mainly on how reinforcement learning can be used to improve
conflict resolution, and its limitations as a tool.

The following paragraphs present an outline of all chapters of the thesis:

Chapter 1: Introduction: introduces the research questions and topics to be dis-
cussed throughout this thesis.

Chapter 2: Review of Conflict Resolution Methods for Manned and Unmanned Avi-
ation: an overview of current CD&R methods for both manned and un-
manned applications. A single taxonomy is presented, thus creating a
means of comparison between all methods.

Chapter 3: Velocity Obstacle Based Conflict Resolution in Urban Environment with
Variable Speed Limit: travelling rules benefitting tactical conflict reso-
lution are implemented in an urban airspace. These include vertical
segmentation of all traffic, and the usage of reinforcement learning tech-
niques to implement variable speed limits towards creating a more ho-
mogeneous traffic situation.

Chapter 4: Using Reinforcement Learning in a Layered Airspace to Improve Layer
Change Decision: two reinforcement learning modules are used to im-
prove lane change behaviour. The first is responsible for outputting lane
change commands. The second receives these commands and controls
the longitudinal and vertical movements of the aircraft towards a safe
merging manoeuvre.
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Chapter 5: Using Reinforcement Learning to Improve Airspace Structuring in an
Urban Environment: a reinforcement learning model is used to deter-
mine the optimal heading range distribution per layer, within a layered
airspace scenario, according to the operational traffic scenario.

Chapter 6: Distributed Conflict Resolution With Reinforcement Learning: a rein-
forcement learning model is directly responsible for distributed resolving
multi-actor conflict situations. The performance levels obtained are di-
rectly compared with current geometric CD&R methods.

Chapter 7: Improving Algorithm Conflict Resolution Manoeuvres With Reinforce-
ment Learning: a reinforcement learning model decides on the value
used for the calculation of conflict resolution manoeuvres by a geo-
metric conflict resolution algorithm. The performance levels obtained
are directly compared with calculating resolution manoeuvres with pre-
defined, commonly used values.

Chapter 8: On the limitations of Reinforcement Learning in Aviation: an overview
of the limitations found with the training and testing of reinforcement
learning modules in the resolution of conflicts with aircraft. Recom-
mendations are made on how reinforcement learning should be applied
towards more effective results.

Chapter 9: Discussion and Recommendations: summarises all chapters into an
overview of the results. This chapter also provides some recommenda-
tions for further research, especially towards enabling high traffic densi-
ties into the airspace.

Chapter 10: Conclusions: provides a concise summary of the main conclusions of
this thesis.

1.8. GUIDE TO THE READER
Chapters 2 to 7 of this dissertation are based on publications in journals that were written
independently and, therefore, can be read separately. Each chapter is preceded by an
introductory paragraph explaining how the chapter is related to the overall research.
These preamble paragraphs also provide the publication history of each chapter, and
mention sections contained within that are repeated from previous chapters. A list of
publications of the research in this dissertation, both conference and journal articles, can
be found after the last chapter.
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2
REVIEW OF CONFLICT RESOLUTION

METHODS FOR MANNED AND

UNMANNED AVIATION

The last overview of conflict detection and resolution methods was published in 2000.
Although more than 20 years old, this is still often cited as the main reference. However,
since 2000, many new concepts have been proposed, including an entirely new branch of
methods directed specifically at unmanned aviation. A single, current overview of conflict
detection and resolution methods is missing for both manned and unmanned applications.
The present chapter covers this gap.

Section 2.2 introduces a taxonomy for both manned and unmanned systems that
categorises algorithms in terms of their approach to avoidance planning, surveillance,
control, trajectory propagation, predictability assumption, resolution manoeuvre, multi-
actor conflict resolution, obstacle types, optimisation, and method category. This will serve
as a knowledge base for the rest of the thesis.

Finally, Section 2.3 provides a direct comparison of the performance of the main identi-
fied conflict resolution methods within the same traffic scenarios. The chapter ends with
conclusions and suggestions for future improvement of conflict detection and resolution
methods.

This chapter is based on the following publications:

1. M. Ribeiro, J. Ellerbroek, and J. Hoekstra, Review of Conflict Resolution Methods for Manned and
Unmanned Aviation, Aerospace 7 (2020)

2. M. Ribeiro, J. Ellerbroek, and J. Hoekstra, Analysis of Conflict Resolution Methods for Manned and
Unmanned Aviation Using Fast-time Simulations, SESAR Innovation Days (2019)
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ABSTRACT

Research into urban aerial mobility, as well as the continued growth of global air trans-
portation, has renewed interest in conflict detection and resolution methods. With the
new applications of drones, and the implications of a profoundly different urban airspace,
new demands are placed on such algorithms, further spurring new research. This chapter
presents a review of current CR methods for manned and unmanned aviation. It presents
a taxonomy that categorises algorithms in terms of their approach to avoidance plan-
ning, surveillance, control, trajectory propagation, predictability assumption, resolution
manoeuvre, multi-actor conflict resolution, obstacle types, optimisation, and method
category. More than a hundred CR methods are considered, showing how most work in
a distributed, tactical framework. To enable a reliable comparison between methods,
this chapter argues that an open and ideally common simulation platform, common test
scenarios, and common metrics are required. This chapter presents an overview of four
CR algorithms, each representing a commonly used CR algorithm category. Both manned
and unmanned scenarios are tested through fast-time simulations on an open-source
airspace simulation platform.

2.1. INTRODUCTION

The continued growth of aviation has been considered a threat to the current approach
to air traffic control for decades, inspiring research into automated tools and alternative
approaches since the early 1990s. As a result, several large research programs have been
formed along this theme, such as FREER [4], PHARE [5], and the Mediterranean Free
Flight [6] project in Europe, and DAG/TM [7] in the US. More recently, there are the
American NextGen programme [8] and SESAR [3] in Europe. This research has been
primarily characterised by the proposed degree of centralisation (delegation to the flight
deck or maintaining centralisation), and along the dimension from tactical separation to
strategic (re)planning. An extensive review of methods by Kuchar and Yang [23], published
in 2000, is still often cited as an overview of Conflict Detection and Resolution (CD&R)
methods.

In recent years, the prospect of a wide range of drone operations and the application
of different aerial vehicles in an urban setting has renewed interest in CD&R research.
However, there are several aspects that set these applications apart from the concepts
considered in previous research. The capabilities of new platforms such as drones are
different, and operating in an urban environment introduces new constraints (such as
obstacles and hyperlocal weather) that did not need to be considered before. In addition,
should the most ambitious concepts, such as drone-based package delivery and personal
aerial mobility, become a reality, these applications will face traffic densities that are
well beyond anything considered for manned aviation. Already, the Federal Aviation
Administration (FAA) has ruled that an Unmanned Aerial Vehicle (UAV) must have Sense
and Avoid capability in order to be allowed in the civil airspace [11]. Furthermore, the
International Civil Aviation Organisation (ICAO) requires UAV CD&R methods to be
capable of detection and resolution in both static and non-static environments. Only
after meeting this requirement, will civil-UAVs be allowed to fly beyond the operator’s
visual line-of-sight [26].
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Following these developments, many new CD&R concepts have been proposed since
Kuchar and Yang’s review study [23], including an entirely new branch of CD&R methods
directed specifically at unmanned aviation. A possible taxonomy for the latter was first
explored by Jenie [24]. To include these new methods, and to incorporate the demands
that are placed on CD&R algorithms by the new application areas, this chapter aims
to present a current overview of CD&R methods for both manned and unmanned ap-
plications. It will evaluate both manned and unmanned CD&R methods jointly in one
single taxonomy, where the methods are categorised in terms of their approach to avoid-
ance planning, surveillance, control, trajectory propagation, predictability assumption,
resolution smanoeuvre, multi-actor conflicts, obstacle types considered, optimisation,
and method category. The goal is for this framework to be used when developing new
methods, or when identifying the most suitable method for a specific situation. As a result,
this study can be considered an extension of the work performed by Kuchar and Yang [23]
and Jenie [24], by providing a more complete analysis of CR methods that combines both
manned and unmanned aviation.

In addition, this chapter provides a direct overview of the performance of the main
identified CR method categories. Many publications related to new CR methods include
an evaluation of the proposed method. However, comparison between such studies
based on their individual results is often impossible, due to the differences in approach
taken in the evaluations. Studies that present a comparison of multiple CR methods
under the same conditions do not yet exist. Such evaluations are essential for a fair
comparison between methods, as performance is highly dependent on factors such as the
simulation platform, scenarios, and metrics used. To foster repeatable evaluations and
fair comparisons, publicly available simulation tools, open data, and common scenarios
and metrics should be used. Therefore, this study uses the open-source, multi-agent Air
Traffic Control (ATC) simulation tool BlueSky [25]. The obtained experimental results
are used to identify the differences in performance between manned and unmanned
environments, as well as which CR methods are more efficient in the uprising unmanned
aviation world.

2.2. TAXONOMY FOR DETECTION & RESOLUTION METHODS
Conflict resolution methods can be evaluated by a combination of several factors that
define the airspace environment. In this review, we evaluate methods according to the
following ten characteristics: the timescale on which avoidance planning takes place,
the type of surveillance, whether control is centralised or distributed, trajectory propa-
gation, predictability assumption, the manoeuvre employed for resolution, approach to
multi-actor (>2) conflicts, obstacle types, optimisation objective, and method category.
These categories are divided between detection and resolution as per Tables 2.1 and 2.2,
respectively. For each category, the possible variations are presented below. More detail is
provided in the following subsections.
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Table 2.1: Taxonomy of conflict detection categories.

Conflict Detection Categories

Surveillance Trajectory Propagation Predictability Assumption

Centralised Dependent
State-Based

Nominal

Distributed Dependent
Intent-Based

Probabilistic

Independent Worst-Case

Table 2.2: Taxonomy of conflict resolution categories.

Conflict Resolution Categories

Control Method Categories Multi-Actor Conflict Resolution

Centralised
Exact Sequential

Heuristic Concurrent

Distributed

Prescribed Pairwise Sequential

Reactive Pairwise Summed

Explicitly Negotiated Joint Solution

Table 2.2: Cont.

Applicable For All Conflict Resolution Categories

Avoidance Planning Resolution Manoeuvre Obstacle Types Optimisation

Strategic Heading Static Flight Path

Tactical Speed Dynamic Flight Time

Escape Vertical All Fuel/Energy Consumption

Flight Plan

2.2.1. SURVEILLANCE

Aircraft surveillance can be defined in terms of whether the aircraft is dependent on
external systems, or on its own on-board systems (i.e., independent). Within the former,
an additional distinction can be made based on the origin of the data: a centralised
system receives data from a common station, whereas a distributed system processes
information from the surrounding traffic.

For centralised dependent surveillance (Figure 2.1(a)), aircraft are equipped with
transponders capable of responding to ground interrogation. Ground sensors determine
the 2D position of the aircraft, and altitude is provided by the aircraft. In manned aviation,
this is done by ATC, and aircraft are expected to cooperate by broadcasting their altitude
and identity. Distributed dependent surveillance (Figure 2.1(b)) uses the Automatic
Dependent Surveillance-Broadcast (ADS-B) system; aircraft broadcast their position,
altitude, identity, and other parameters by means of a data link, without any intervention
from the ground systems.

Independent surveillance (Figure 2.1(c)) is commonly referred to as Sense and Avoid
and uses on-board, non-cooperative systems/sensors. As unmanned aviation does not
have a standard broadcast system, it often resorts to this type of surveillance with on-
board sensors that detect both static and dynamic obstacles. This system is not employed
in manned aviation, as aircraft are expected to cooperate through the ADS-B system.
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(a) Centralised dependent
surveillance.

(b) Distributed dependent surveillance. (c) Independent surveillance.

Figure 2.1: Different types of surveillance.

2.2.2. TRAJECTORY PROPAGATION
Future trajectories of aircraft can be considered based on their current state (i.e., state-
based) or their future intent (i.e., intent-based). The former assumes a straight line as a
continuation from the current state. The latter assumes turns and changes in heading
and speed, based on the future waypoints of the aircraft.

State-based methods assume a straight-line projection of the aircraft’s current position
and velocity vector. This projection is simpler and faster computationally, since intent
requires data transmission and heavier computational processing. Yang [27] has shown
that reducing a non-linear trajectory to a series of straight lines trajectories allows for
accurate computation of conflict states at speeds feasible in real-time complex scenarios.
However, when future trajectory changes of all involved aircraft are not taken into account
false alarms may occur, and future losses of separation resulting from changes in trajectory
may be overlooked.

Intent informed can be simulated as a series of straight leg segments. Research con-
ducted in the past for singular cases identified the potential of using intent. Multiple
works [27–30] have used waypoint information to improve the prediction of a single
intruder’s trajectory. However, when conflict resolution is implemented, as aircraft di-
verge from their originally intended trajectory to avoid intrusions, new false alarms are
also introduced. In manned aviation, distributed sharing of future trajectory change
points (TCPs) can be done through ADS-B. For unmanned aviation, there is still no
research on how this could be performed.

The use of both state and intent information in high traffic densities was investigated
for civil aviation [31, 32], improving overall safety. The previous works also showed
that adopting rules disallowing pilots from turning into a conflict, prevents intrusions
resulting from sudden aircraft manoeuvres nearby. This can help mitigate the need for
intent information.

2.2.3. PREDICTABILITY ASSUMPTION
A conflict is found once it is identified that two aircraft will be closer than the minimum
required separation at a future point in time. This process requires an estimate of the
future positions of all aircraft, and differs on whether uncertainties are added to the tra-
jectory propagation. Uncertainties often arise in the form of uncoordinated behaviour of
other traffic, and unknown wind or state variation. A nominal assumption (Figure 2.2(a))
does not consider uncertainties. A worst-case assumption (Figure 2.2(b)) considers all
possible trajectory changes resulting from uncertainties. However, this is impractical in
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a real environment, as its complexity results in heavy computation. Instead, a middle
term, a probabilistic assumption (Figure 2.2(c)) is more often employed. In this case, the
likelihood of each possible trajectory change is taken into account based on the current
position, maximum turn, and climb rates. Whether to act, and how to act, is decided on
the basis of the most likely trajectories.

The nominal assumption is often used in favour of simplicity and good computational
performance. It is mostly used with shorter look ahead times (i.e., a few minutes), and
can be quite accurate in an environment where aircraft have a steady behaviour. However,
accuracy is expected to decrease as the model looks further into the future, as multiple
small unexpected changes could have accumulated into a significant change in the
trajectory. Therefore, alarms predicted far into the future are more likely to be unreliable.

Incorporating uncertainties may improve accuracy. The more potential trajectories
considered, the more likely it is that one will resemble the real observed position into
the future. However, this is at the cost of more false positive conflicts which are detected
in the other trajectories that the aircraft could have taken. Adding more future states
of neighbouring aircraft also reduces manoeuvring space. The further you look ahead,
the larger the uncertainty space is and the smaller the manoeuvring is expected to be,
which reduces traffic mobility. It may even reach a situation where no conflict resolution
manoeuvre is found, as there is no manoeuvre which avoids all conflicts. A probabilistic
assumption provides a solution; fewer trajectories are accounted for depending on their
likelihood. This likelihood threshold may be decided based on the number of alarms the
model can process within a limited amount of time.

(a) Nominal assumption. (b) Worst-case assumption. (c) Probabilistic assumption.

Figure 2.2: Different types of predictability assumption methods.

2.2.4. CONTROL
Separation management, or control, may be centralised when decisions regarding future
trajectory and conflict resolution are computed in a centralised location for multiple
aircraft, or distributed when each aircraft is responsible for its own conflict resolution.
Both approaches rely on a communication network to broadcast information such as
intent, trajectories, and priorities.

A centralised system is capable of providing a global solution to complex multiple-
actor problems. Uncertainty is reduced as each aircraft follows the solution defined by
the centralised agent. Centralised methods typically work towards optimising trajecto-
ries; finding non-intersecting trajectories will guarantee separation. These centralised
approaches are often computationally heavy, as a result of having to consider several pos-
sible manoeuvres for a number of aircraft, and therefore may not be suitable for real-time
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implementation when this number increases considerably [33]. Hypothetically, when all
information is known (e.g., the traffic situation, flight-specific optimisation preferences)
and there is sufficient processing power, a centralised approach will lead to the most
optimal solution. As all trajectories are known, these can be optimised for all involved
aircraft. However, in practise, demands on the availability of information and the speed of
information transfer must be taken into account. The availability of optimisation-related
information is often limited by the willingness of airlines to share it. The prediction
horizon tends to be large due to the time it takes to generate and communicate a global
solution. Computational intensity increases with the traffic density; thus, there is a limit to
the number of aircraft a centralised approach can operate simultaneously. Furthermore,
a single processing point is also a single point of failure, resulting in a central failure mode
with global consequences, which is absent in distributed systems.

In manned aviation, ATC is the centralised point responsible for guaranteeing the
safety of all traffic. Air traffic controllers maintain a minimum separation between all
aircraft in their airspace sector. Naturally, the traffic density allowed in the sector is thus
limited by the maximum number of aircraft that controllers are capable of operating
simultaneously. One objective of CD&R research is to reduce the constraint on ATC,
whether by creating another centralised point capable of computing optimal trajectories
for all involved aircraft without human aid, or distributed systems to be introduced into
the on-board systems of each aircraft. In particular, the rise of unmanned aviation appli-
cations, where the number of aircraft involved is expected to greatly exceed the number
currently operated by ATC [22], has led to the exploration of distributed approaches.

A distributed system reallocates the process of separation assurance from a centralised
point to the individual aircraft. As each aircraft only takes into account its neighbouring
aircraft when resolving conflicts, each distributed resolution system is expected to have
only a fraction of the computational strain a centralised system would have. Nonetheless,
the speed at which an aircraft can make a decision is still limited by the speed at which
information from surrounding traffic is received and processed. A crucial disadvantage of
a distributed system is the lack of global coordination from surrounding traffic which may
impair safety. Without knowledge of the movement of intruders, decentralised solutions
cannot guarantee globally optimal solutions when more than two aircraft are involved.
Because of this, the efficacy of decentralisation in resolving conflicts is often studied
and compared to that of centralised systems. Bilimoria [33] showed that a distributed
resolution strategy can successfully solve complex multiple aircraft problems in real time.
Durand [34] tested this with a no-speed variation scenario where only a centralised system
was able to find a solution. Finally, the Free Flight concept [2, 6, 15] also illustrates that,
when aircraft are fully responsible for their own separation from other traffic, they are free
to decide upon their optimal route (‘direct routing’), versus following the route received
from a centralised point for safety. Studies for this project concluded that, once ADS-B
technology is developed to a higher reliability and performance, a distributed conflict
resolution system can safely guarantee airborne separation.

2.2.5. METHOD CATEGORIES

This review defines five main categories that can be used as the main classification for
almost all currently existing methods. Two main categories are identified within research
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for centralised approaches: the exact, and heuristic categories. Regarding distributed ap-
proaches, we identify three main categories: prescribed, reactive, and explicitly negotiated.
These categories classify methods according to how resolution manoeuvres/trajectories
are identified in environments with multiple aircraft, where all involved aircraft are ex-
pected to perform conflict resolution and modify their path in accordance.

In a centralised approach, a single agent is responsible for deciding the resolution
path of all involved aircraft, thus it is known how aircraft will move in the future. During
optimisation of an aircraft’s trajectory towards separation, it is assumed that intruders will
follow the path set by this agent. The selection of trajectories/resolution manoeuvres can
be optimised towards a preference policy, a certain cost, or in other words to minimise
a penalty function. The trajectory with the lowest cost is chosen from a set of limited
possibilities. A preference can be made for either performance (e.g., lower fuel/energy
consumption, flight path, time optimisation) or safety. It may even be considered that
crossing the protected zone of another aircraft, over a short period of time, is better
than increasing the flight path or adopting a significant change in speed. Methods may
be classified on whether they are guaranteed to find the global optimum, i.e., exact
algorithms, or heuristic algorithms which attempt to yield a good, but not necessarily
global optimum solution. A Mixed Integer Linear Programming (MILP) approach is
commonly used to find the global optimum [35]. However, an exact algorithm requires a
long computing time, making it usually impractical for real-life applications [36]. Thus,
heuristic algorithms, although not ensuring optimality, are often employed to shorten
execution times. Commonly used heuristic approaches are Variable Neighbourhood
Search (VNS) [37], Ant Colony Optimisation [38], and Evolutionary Algorithms [39, 40].

In both prescribed and reactive categories, coordination between aircraft is implicit.
Traffic either reacts in accordance with a pre-defined set of rules (i.e., prescribed) or a
common manoeuvre strategy in response to the conflict geometry (i.e., reactive). Pre-
scribed is mainly achieved by application of the Right-of-Way (RoW) [41] rules. In short,
these define that traffic from the left must give way, overtaking aircraft manoeuvre to the
right, and head-on conflicts are resolved with both aircraft turning to the right. However,
Balasooriyan [42] demonstrated that applying these rules results in a higher number
of losses of separation and conflicts than employing other rule sets where both aircraft
are expected to initiate a trajectory change to avoid conflicts. When both aircraft adopt
a deconflicting route, the time in conflict decreases as both aircraft are moving away
from each other. Reactive methods ‘react’ to the position of the intruders; resolution
manoeuvres are a direct result of the conflict geometry. A common example is to use the
‘shortest-way-out’ principle, which ensures implicit coordination in one-to-one conflicts,
as single conflicts are always geometrically symmetrical [2, 43]. It should be noted that
the ‘shortest-way-out’ and the RoW coordination define rules for conflict pairs. As the
minimum separation distance represents the distance between two aircraft, multi-actor
conflicts are simultaneous occurrences of two-aircraft conflicts. When implementing a
coordination rule per pairwise conflict, it may be that, given the geometry of the conflict,
an aircraft receives contradictory solutions to solve its multiple pairwise conflicts. For
example, when resolving pairwise conflicts sequentially, the resolution manoeuvre to
the closest conflict can aggravate the next pairwise conflict or even create secondary
conflicts with other aircraft. Such prompts the study and verification of implicit rules
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among different multi-actor conflict geometries. Research aims to resolve this problem by
developing better ways of implicit coordination, combination of resolution manoeuvres,
and/or prioritisation [44].

Resolution methods in the explicitly negotiated category resolve conflicts based on
explicit communication between aircraft. There is no uncertainty about intruder move-
ments, as they are clearly defined in the shared information. This data sharing towards
deconflicting can be done by setting a negotiation mechanism, where aircraft communi-
cate towards an agreement [45], and/or prioritisation in which a lower priority aircraft
follows a resolution manoeuvre based on communication from aircraft with more priority.
There are advantages for both cases; negotiation allows aircraft to share/act according
to their preferred policy. The objective is for the final solution to be the best globally
possible for all. However, in any negotiation there is the risk of a deadlock, where aircraft
communicate indefinitely without reaching an agreement. Some sort of prioritisation,
respected by all involved aircraft, can limit the number of interactions. Priority can be
based on factors such as aircraft’s current speed, proximity to destination, rules of the
air (RoTA) [12], conflict geometry, or even type of operation. In any case, the rate of com-
munication is a crucial factor. The communication frequency of the network is limited
in bandwidth, and aircraft may be unable to exchange data at high frequency. Thus, the
number of interactions in any case must be limited compared to a real-life scenario. The
number of data transmissions necessary to reach an agreement, to establish a priority
(when not implicit), or of sequential messages to the next aircraft in a priority sequence,
must be optimised according to this limit. Additionally, a break condition must be added
to the communication cycle to prevent the aircraft from negotiating or waiting for data
from other aircraft indefinitely.

Approximately one third of the researched CR methods do not follow either of the
previously mentioned categories. For unmanned aviation, this is mainly in cases where
only static obstacles are expected. Therefore, there is no uncertainty regarding future
behaviour, or in cases where other aircraft do not have a conflict resolution mechanism
and their path is thus not expected to suffer alterations (e.g., Klaus [46], Teo [47]). For
manned aviation, different approaches include mostly research works focused on airspace
structure to guarantee minimum separation. Works such as Mao [48], Treleaven [49], and
Christodoulou [50], resort to traffic flows that limit aircraft movement. These flows are
separated by a safe margin, and the lateral displacement when aircraft switch to a different
flow is coordinated. Finally, other studies, such as Bilimoria [33], Christodoulou [50],
and Lupu [51], focus predominantly on the effects of different manoeuvres in similar
conflict situations.

2.2.6. MULTI-ACTOR CONFLICT RESOLUTION

Centralised and distributed systems have different approaches to multi-actor conflicts.
The former works towards a joint optimisation of all involved trajectories, until a safe
distance between all traffic is achieved. In such centralised systems, the number of con-
flicts and the degree of connection between trajectories will affect the speed with which
the system will converge to its solution. It may also occur in complex situations that no
solution is found. Centralised approaches may be divided into two main categories: (1)
sequential algorithms that optimise trajectories one by one according to the prioritisation
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of aircraft [52], and (2) concurrent resolution, where all trajectories are computed simul-
taneously [53]. The first of these two approaches is less computationally demanding;
for each interaction, the system iterates over possible trajectories for a specific aircraft.
Once a safe trajectory is found, it moves on to the next aircraft. When a safe trajectory
is identified for each aircraft, a solution is found. This approach requires an adequate
prioritisation order, to be able to guarantee the identification of safe trajectories for all
involved aircraft [54, 55]. Concurrent resolution methods do not require prioritisation.
However, application of such methods is often only possible under the assumption of
limited uncertainty, which is required to reduce the complexity of the calculations. Du-
rand [34] mentions, for example, an assumption of constant speeds and perfect trajectory
prediction, or having the manoeuvres start at the same known optimisation time step.

For distributed systems, resolution manoeuvres adopt the point of view of each air-
craft and local optimisation is the objective. At higher traffic densities, where conflicting
aircraft pairs can no longer be considered disconnected from other traffic, this local opti-
misation does not guarantee a globally optimal solution, and there is a risk of unwanted
emergent behaviour from interactions between multiple aircraft working individually.
The resolution capacity of distributed systems is limited to the intruders that the aircraft
is capable of detecting. The solution to a subset of aircraft can unknowingly lead to future
secondary conflicts with other aircraft, creating a chain reaction of conflicts, or in ulti-
mate, very high traffic density cases, infinitely perpetuating chain conflicts, or Brownian
motion [56, 57]. How distributed methods deal with multi-actor conflicts is therefore a key
characteristic of these methods. In this chapter, we distinguish between three distributed
approaches to multi-actor conflicts: joint solution, pairwise sequential, and pairwise
summed. In a joint solution, multiple intruders are considered simultaneously, and a
single solution is found that simultaneously resolves all conflicts in which the ownship is
involved. To limit the complexity of a solution, CR models normally detect and resolve in
a limited look-ahead time. Other distributed approaches generate pairwise resolutions,
focusing only on individual conflict pairs. In pairwise sequential resolution, each ma-
noeuvre resolves a conflict with an intruder, starting with the conflict of highest priority.
Other methods, such as Hoekstra [15], sum the resolution vectors resulting from each
pairwise resolution (i.e., pairwise summed). A single manoeuvre is then computed and
performed resulting from this sum. The choice of whether to employ a pairwise or joint
resolution also has consequences on the method’s ability for implicit coordination. As
previously mentioned, for example, the ‘shortest-way-out’ principle in pairwise conflicts
ensures implicit coordination. However, when summing or in a joint solution implicit
coordination is not guaranteed. However, as shown by Hoekstra [15], the summing of the
resolution vectors has a beneficial emergent, global effect of distributing the available
airspace between the different vehicles.

2.2.7. AVOIDANCE PLANNING

Planning of a manoeuvre can be defined per the look-ahead time and the state of the
aircraft after the resolution manoeuvre is performed. Strategic is a long-range action that
changes the flight path significantly; tactical is a mid-range action that changes a small
part of the flight path; escape is a short-term manoeuvre that brings aircraft to safety
without considerations regarding the flight path. Figure 2.3 illustrates the differences.
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Figure 2.3: Conflict detection and resolution methods for manned and unmanned aviation per look-ahead time.

A strategic manoeuvre (Figure 2.4(a)) is normally employed with more than 20 minutes
to loss of separation (LoS), and may even extend to a pre-departure action. It consid-
erably affects the planned flight, as future waypoints are modified to avoid conflict. In
manned aviation, ATC is responsible for strategic and tactical avoidance planning. One of
the ways to aid air traffic controllers would be to delegate part (or all) of the separation
responsibility to the aircraft crew. In manned aircraft, this is made possible by resorting
to on-board systems which receive broadcast information from nearby traffic; such a
system is called ADS-B. In comparison, unmanned aviation often employs (independent)
sensors to detect other traffic. Given the physical limitations of such means of surveil-
lance, these are tactical systems. A deviation manoeuvre is carried out to avoid obstacles
(Figure 2.4(b)). Of all possible manoeuvres that prevent loss of separation, CR methods
attempt to identify one that minimises distance from the desired path, flight time, or even
fuel consumption or energy. Recovery to the initial flight plan is often not included in the
tactical plan; normally, aircraft will just redirect to the next waypoint after the conflict
situation has been resolved.

In manned aviation, CD&R methods are used to avoid minimum separation losses.
Escape manoeuvres are not usually employed. Given the large minimum separation
distance in manned aviation, i.e., ICAO’s [58] definition of 5 NM horizontal separation and
1000 ft vertical separation, a loss of separation does not necessarily represent a collision
(see Figure 2.5). In cases where a collision is imminent, the Traffic Alert and Collision
Avoidance System (TCAS) and the Ground Proximity Warning System (GPWS) are used
instead of CD&R. For these systems, pairwise collision avoidance is the only objective. No
similar mechanism is currently available for unmanned aviation, and therefore, CD&R
must atone for this gap. Furthermore, there is no predefined standard separation distance,
and considerably small values may be used (e.g., 50 m [59]). Thus, there is a higher chance
that the drone is close to a collision once it has lost minimum separation. As a result,
contrary to maned aviation, unmanned aviation research employs escape manoeuvres
(Figure 2.4(c)). This, the last resource within seconds prior to collision, solely attempts to
escape the obstacle with no additional considerations. Contrary to a tactical manoeuvre,
typically no coordination or optimisation is employed in these cases due to the lack of
time.
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(a) Strategic planning. (b) Tactical planning. (c) Escape planning.

Figure 2.4: Different types of avoidance planning.

2000ft

10NM

A

R

B

Figure 2.5: The International Civil Aviation Organization’s (ICAO) self separation for manned aviation: 5NM
horizontal separation and 1000ft vertical separation.

2.2.8. RESOLUTION MANOEUVRE
To avoid a future loss of minimum separation, several resolution manoeuvres can be used
which will change the initially intended trajectory. These can be based on changing the
current state: heading variation (Figure 2.6(a)), aircraft change their current heading;
speed variation (Figure 2.6(b)), which will change the position of the aircraft for a given
point in time; vertical variation (Figure 2.6(c)), where aircraft increase or decrease altitude;
or an aircraft can change its future intent by changing its flight-plan. One or multiple of
these manoeuvres are performed so as to follow a conflict-free path. Most CR methods
are set on decreasing the number of manoeuvres performed, resulting in a minimum
deviation from the original path.

(a) Heading manoeuvre. (b) Speed manoeuvre. (c) Vertical manoeuvre.

Figure 2.6: Different types of resolution manoeuvres.

Methods are often restricted to manoeuvres in the horizontal plane. Only a small
percentage also consider vertical resolution manoeuvres. There are advantages for both.
Adding a degree of freedom allows for a variety of conflict resolution movements. However,
the extra degree of freedom results in a more complex optimal route calculation. This
could be vital, given that a solution must be found before loss of minimum separation.
TCAS is singular in applying only vertical manoeuvres. For resolving short-term conflicts,
climb/descend is a fast and efficient action since the required vertical separation is smaller
than the horizontal one. Sunil [60] showed that for a stratified airspace, having only
horizontal resolutions improves stability; fewer conflicts are considered and accounted
for with only an horizontal conflict layer. Not including vertical changes is also acceptable
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from a performance point of view, as the latter is highly affected by the flight level the
aircraft is operating in. Additionally, travelling at high altitudes is not the best scenario for
speed manoeuvring. When the stall speed increases, the manoeuvring space decreases.

Initially, most CD&R methods used heading changes as preferred by air traffic con-
trollers, as they often segment the airspace into layers. Lately, speed variation has received
new attention with ‘subliminal’ speed control, which consists of modifying the aircraft
speeds within a small range around their original speeds without informing air traffic
controllers. As a result, some of the work of air traffic controllers can be automated, thus
reducing their workload. Research such as the ERASMUS project [61] and Chaloulos [62]
show that, although for simple two-aircraft situations subliminal control can reduce
the workload of air traffic controllers, its efficiency depends on the nominal minimal
separation between the aircraft and on the time available to loss of separation. Con-
flict resolution based on speed change alone is only possible with non-(near-)head-on
conflicts. The likelihood of these kind of conflicts is dependent on the airspace structure
and the heading difference between aircraft flying at similar flight levels. In other meth-
ods, such as Hoekstra [15], Rey [63], and Balasooriyan [42], the combination of heading
and speed deviations showed potential results.

Flight plan modifications change the waypoints the aircraft is intended to follow.
This is similar to real-life operations, with flight paths being defined through successive
waypoints. This way of avoiding conflicts has gained new attention with the development
of the concept of four-dimensional trajectory-based operations (4DTBO) [64]. This refers
to 3D waypoints associated with timestamps that define when the aircraft is expected
to reach each waypoint. With 4DTBO, the complete path and duration of the flight
can be defined by specifying arrival times for a sequence of waypoints. Whenever it is
detected that the initially defined 4D waypoints for all involved aircraft will result in one
or more losses of minimum separation, new flight plans are constructed by selecting
either different waypoints, different arrival timestamps, or both.

Performance limitations naturally have an impact on the manoeuvrability of air-
craft. When defining a conflict resolution, maximum turn rates, and maximum speed
and acceleration ranges must be taken into account. Defining a heading and/or speed
change which the aircraft cannot successfully complete, will jeopardise the success of
the manoeuvre on achieving minimum separation from other traffic. Moreover, different
look-ahead requirements may be considered based on speed ranges. For unmanned
aviation, taking into account performance differences is an especially important factor
given the wide range of possible missions, which can involve many different types of
UAVs (e.g., rotorcraft, fixed-wing). To avoid the calculation of resolution manoeuvres
outside of the performance limits, methods, such as Van Dam [43], define a solution
space bounded by the possible range of speeds; it is not possible to define a resolution
manoeuvre outside of these boundaries. However, the speed range is often defined per
aircraft type without taking the environment into account. As mentioned above, the ma-
noeuvring space depends on the altitude of the aircraft. Studies such as Lambregts [65],
attempt to develop a conflict resolution method with envelope protection functionality
that can identify the maximum manoeuvring space in order to take advantage of the full
performance capabilities of the UAV.

Finally, resolution manoeuvres may also be distinguished on whether they are discrete
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or continuous; on whether a resolution is calculated given a discrete state and assumes
no modification of this state until the manoeuvre is terminated, or if the environment is
observed periodically during the manoeuvre, which is adapted incrementally in response.
In theory, most resolution algorithms have a discrete implementation since they calcu-
late resolution manoeuvres that should resolve the conflict without further intervention.
However, in practise, these algorithms can still be used to reevaluate conflicts in each
update cycle of the implementation. In this case, in each update cycle, where the ownship
is detected to be in conflict, the conflict resolution algorithm outputs a resolution ma-
noeuvre given the current state of the environment. As a result, the ownship may change
a previously defined resolution manoeuvre at any update step, based on the changed
nature of the traffic situation.

2.2.9. OBSTACLE TYPES
A CD&R method may prevent collision only with static obstacles, with dynamic obstacles,
or with all (i.e., both static and dynamic obstacles). When a model avoids solely static
objects, it may be inferred that it has strategic planning, with the trajectory being set
before the beginning of the flight in a known environment.

Manned aviation CD&R models will naturally be directed at detecting other dynamic
traffic, as these models are used mostly when aircraft are flying at cruise altitude. Note
that it is not guaranteed that a model directed at dynamic obstacles can also avoid static
obstacles. First, while most of these CD&R models assume obstacles as a circle with
radius equal to the minimum separation distance, a static object can have different sizes.
Second, most models also assume some sort of coordination and non-zero speed. Most
dynamic obstacle oriented CD&R models would have to be enhanced when transposed
to, for example, an urban environment where deviation also from static objects, such as
buildings, must be guaranteed.

For unmanned aviation, a considerable number of CD&R models still focus solely on
static obstacles. However, these can only be used for operations where the environment
is well known in advance. This is the case, for example, of an area where a drone must
carry an object from a start to an end point, and no other traffic is expected.

2.2.10. OPTIMISATION
For CD&R methods, safety is paramount. However, there is a preference for methods
that do not significantly alter the initially planned trajectory or significantly increase the
costs of an operation. The efficiency of a CR method can be evaluated with respect to its
effect on the time and/or path of the flight or even fuel/energy consumption. Note that
a CR method may contain weights of costs which vary based on the mission/situation,
thus its efficiency being dependent not only on the intrinsic method but on the weights
employed.

A simple way to minimise the path length is to be partial to small heading changes
when avoiding obstacles [48]. Minimising flight time can be a direct consequence of min-
imising flight path when the speed is assumed constant. In other cases, minimising flight
time results in a preference for resolution manoeuvres which do not include lowering the
aircraft’s speed.

Computing fuel expenditure is not direct, as it depends on several physical factors
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of the aircraft such as model, speed, and weight at the moment of the operation. A
simplification is to opt for the manoeuvre which minimises speed variation [35] as the
latter is a major coefficient on fuel waste. From the examined research, the Base of Aircraft
Data (BADA) performance model [66] is preferred for fuel consumption calculations [63].
For unmanned aviation, energy efficiency based CD&R is currently being investigated as
more drones are developed and more information on these systems is made available.
Research, such as Dietrich [67] and Stolaroff [68], offer a first look at estimating drones’
energy consumption.

2.2.11. REVIEWED CONFLICT DETECTION & RESOLUTION MODELS

The reviewed manned and unmanned CR methods are presented in Tables 2.3 and 2.4,
respectively. Table 2.5 serves as an indication of the abbreviations used for each category.

2.3. EXPERIMENT: DIRECT COMPARISON OF CR METHODS
This section describes the design of the fast-time simulation experiments conducted
in order to compare four conflict resolution methods in terms of safety and efficiency.
The implementation code can be accessed online at [140]; scenarios and result files are
available at [141].

2.3.1. APPARATUS AND AIRCRAFT MODELS

The evaluation is performed using the open-source Air Traffic Simulator BlueSky [25].
This section gives a description of the most relevant aspects of this simulator, and of the
scenarios that are used to compare concepts. The exact implementation of the simulator
set-up, the scenarios, and the resolution algorithms are available online [140, 141]. The
BlueSky simulator tool can be used to easily implement and evaluate different CD&R
methods, allowing for all CD&R to be tested under the same scenarios and conditions.
The simulation scenarios are based on the work of Sunil [142]. These scenarios were
chosen as they represent a homogeneous traffic picture, uniform in terms of altitude,
spatial, and speed distribution. The results thus reflect the ideal behaviour of the CR
method, and not its response to agglomerates of aircraft that are unaccounted for.

Bluesky uses a kinematic aircraft performance model based entirely on open data [143].
Different aircraft types can be introduced into the Bluesky simulation when performance
limits are known. The aircraft in the simulation are all Boeing 747-400’s and DJI Mavic Pro
quadcopters, for manned and unmanned aviation, respectively. These types of aircraft
were selected for their significant speed range. In this way, the limitations of the aircraft
flight envelope affect the resolution choices as little as possible. The characteristics of
these aircraft are presented in Table 2.6. The data for the B747-400 aircraft comes from
BADA [66]. For the DJI Mavic Pro model, speed and mass were retrieved from the manu-
facturer’s data. Although exact turn rate and acceleration/braking values are not available,
generic values were assumed.

As mentioned above, performance limitations have an impact on the manoeuvrability
of the ownship aircraft, which in turn limits the range of actions that can be performed
to avoid a conflict. For unmanned aviation, this work employs the DJI Mavic Pro, a
well-known model used in a wide range of applications [144–146]. However, a mission
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Table 2.3: Conflict detection and resolution methods for manned aviation. Table 2.5 defines abbreviations.

Surv Traj PAsm Control MultiActor Plan AvMan Obst Examples

C S C S + T H + V A ATC

D S D T D ADS-B

D S N D PSE V D TCAS

D S N D PSE H/V D TCAS II [69]

D S P D PSE V D TCAS X [70]

D S N D PSE V D GPWS

C I P - - - - D Vink [71]

C S N C C S H/S D Cafieri [72] 1

C S N C C T H/S D Pallottino [53]

C S N C C S H + S D Vela [73]

C S N C C S H + V D Hu [52]

C S P C C S S D Rey [63]

C S P C C S FP D Chen [74]

C I N C C T FP D Le Ny [75]

C I N C C S FP D Hu [52]

E
xa

ct

C I P C C S FP D Niedringhaus [76] 2

C S N C S T H D Ayuso [37]

C S N C S T H D Liu [38]

C S N C S T H/S/V D Ayuso [77]

C S P C S S H D Durand [78]

C S P C S T H D Sathyan [39]

C S P C S T H D Yang [79, 80]

C S P C S T H D Allignol [81]

C S P C S T H + S D Tomlin [82]

C I P C S S FP D Visintini [83]

C I P C S S FP D Prandini [84]

H
eu

ri
st

ic

C I P C S S FP D Hao [85] 1,3

D S N D PSE T H D Chipalkatty [86] 2

D S N D PSE T FP D Pritchett [87]

D I N D J T FP D Sislak [88] 1

D I N D PSE T H + S D Harper [89]

D I N D PSE T H D Blin [90]

D I P D PSE T FP D Bicchi [91]

E
xp

lic
it

ly
N

eg
o

ti
at

ed

D I P D PSE T H D Granger [92]

D S N D J T H + S D Balasooriyan [42] 1

D S N D PSU T H + S + V D Hoekstra [15] 1

D S P D PSE T H/S D Paielli [93]

D I N D J T H + S D Van Dam [43] 1

R
ea

ct
iv

e

D I N D J T H + S D Velasco [94]

Prescribed D - - D - T H D RoW [41], RoTA [12]

C S N C C T H D Mao [48]

C S N C S T H D Treleaven [49]

C S N C S T H D Huang [95]

C S P D S T H/V A Viebahn [96]

D S N D J S H D Devasia [97]

D S N D PSE T H D Zhao [98]

D S N D PSE T H D Mao [99]

D S N D J T S D Christodoulou [50]

D S N D PSE T H/S/V D Bilimoria [100]

D S N D PSE T H/S/V D Krozel [101]

D S N D PSE T H + S D Lupu [51]

D S P D PSE T H D Zhang [102]

D S N D PSE T H/S D Peng [103]

D I P D PSE T - D Yang [27]

D I N D J T FP D Menon [104]

D I N D PSE T FP D Burdun [105]

O
th

er

D - N D J T FP S Patel [106]
1 Minimises path length. 2 Minimises time length. 3 Increases distance to threats.
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Table 2.4: Conflict detection and resolution methods for unmanned aviation. Table 2.5 defines abbreviations.

Surv Traj PAsm Control MultiActor Plan AvMan Obst Examples

C S N C C T H + S D Alonso-Mora [107]

C I N C C S FP D Borrelli [35]

E
xa

ct

I - - C C S H + V S Kelly [108] 1,3

C S P C S T H A Yi Ong [109]

C I N C S S FP D Borrelli [35]

C I N C S S FP D Alejo [59]

C I N C S S FP D Beard [110] 1,3

C - - C - S FP S Nikolos [111]

C S N C S T H D Ho [112]

C I N C S T FP A Liao [113]

C S N C S T H + V A Richards [114] 2

C S N C S T FP D Fasano [115]

C S P C S T FP D Rathbun [40]

C S N C S T H + S D Alonso-Mora [107]

I - - C - S FP S Langelaan [116] 1,3

H
eu

ri
st

ic

I - - C S S H S Obermeyer [117]

D S N D PSE T H D Park [118]

D S N D J T H D Duan [119] 1,3

D S N D PSE T V D Manathara [120]

D S P D PSE T H D Yang [45]

D S P D J T FP D Prevost [121]E
xp

lic
it

ly
N

eg
o

ti
at

ed

D S N D PSE E V D Zeitlin [122]

D S P D J T H A Yang [123]

D S N D J T H + S D Alonso-Mora [107]

D S N D J T H D Balachandran [44]

D S N D PSE T S D Mujumdar [124]

D S N D J T H + S D Alonso-Mora [107]

D S N D J T H + S D Jenie [14]

R
ea

ct
iv

e

D S N D PSE T H + V D Leonard [125]

Prescribed D - - D - T H D RoW [41], RoTA [12]

C - N D J T FP S Yang [126] 1,2

D S N D PSE T H D Zhu [127]

D S N D PSE T H D Hwang [128]

D S N D PSE T H/V D Jilkov [129]

D I - - J T FP S Hurley [130]

I S N D J T H + V A Kitamura [131]

I - N D J T FP S Hrabar [132]

I - N D J T H S Jung [133]

I - - D PSE T H S Schmitt [134] 1

I - - D J T FP S Chowdhary [135]

I - - D J T FP S Nikolos [111]

I S P D PSE T H D Klaus [46]

I S N D PSE E H + S + V D Teo [47] 3

I - - D J E H + V S Beyeler [136]

I - - D J E H + V S deCroon [137, 138]

O
th

er

I - - D J E H + V S Muller [139]
1 Minimises path length. 2 Minimises time length. 3 Increases distance to threats.
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Table 2.5: Abbreviations for the Conflict Detection and Resolution (CD&R) categories in Tables 2.3 and 2.4.

Category Abbreviation Meaning

C Centralised Dependent

D Distributed DependentSurveillance (Surv)

I Independent

S State-based
Trajectory Propagation (Traj)

I Intent-based

N Nominal

P ProbabilisticPredictability Assumption (PAsm)

WC Worst-case

C Centralised
Control

D Distributed

S Sequential

C Concurrent

PSE Pairwise Sequential

PSU Pairwise Summed

Multi-Actor Conflict Resolution (MultiActor)

J Joint Solution

S Strategic

T TacticalAvoidance Planning (Plan)

E Escape

H Heading

S Speed

V Vertical

H + V Horizontal AND vertical simultaneously
Resolution Manoeuvre (AvMan)

H/V Can choose either horizontal or vertical

FP Flight-Plan

S Static

D DynamicObstacle Types (Obst)

A All

Table 2.6: Performance data for Boeing 747-400 and DJI Mavic Pro used with BlueSky simulations.

Boeing 747-400 DJI Mavic Pro

Speed [kts] 450–500 −35–35

Mach [-] 0.784–0.871 –

Mass [kg] 285.700 0.734

Turn Rate [◦/s] 1.53–1.70 max: 15

Load Factor in Turns 1.22 –

Acceleration/Breaking [kts/s] 1.0 1.0

employing an UAS model with significant differences in performance (e.g., a fixed-wing
model), should not directly extrapolate from the results herein obtained.

2.3.2. INDEPENDENT VARIABLES

Two independent variable are considered in this experiment: traffic density, and conflict
resolution methods.
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TRAFFIC DENSITY

The experimental scenarios build the volume of traffic from zero to a desired value,
after which traffic density is maintained at this desired value. Traffic density varies from
low to high according to Table 2.7. The instantaneous aircraft value defines the number
of aircraft expected at any given moment during the measurement period. Given the
duration of the measurement and the average flight time, the simulator constantly spawns
(adds to the simulation) aircraft at the same rate as these are removed from the simulation,
to keep a constant traffic density. Density values were defined on the basis of current
expectations. In 2017, the Netherlands had a maximum traffic density of 32 aircraft per
10,000 NM2 in the upper airspace [142]. Given the traffic increase expectations [147],
Netherlands may then expect up to 45 aircraft per 10,000 NM2 by 2025. Unmanned aircraft
are considered for a hypothetical situation where drones are used for light-weight parcel
deliveries. For the urban area of Paris, this would represent over 1 million drones per
10,000 NM2 by 2035 [22]. To keep computation times reasonable, lower densities were
selected.

Table 2.7: Traffic volumes used in simulation.

Traffic Density [ac/10, 000 NM2] Instantaneous Ac. Spawned Ac.

Manned
Aviation

Low 32 648 3070

Medium 37 768 3640

High 45 911 4317

Unmanned
Aviation

Low 12,000 1080 4629

Medium 13,856 247 5345

High 16,000 1440 6172

CONFLICT RESOLUTION METHODS

Four commonly used conflict resolution methods were chosen for direct comparison.
The following section gives a description of these methods, their assumptions, and com-
pares them in terms of planning, control, coordination, and multi-actor conflict resolu-
tion. The exact implementation of these methods, and the rest of the simulation set-up
are available online [140, 141].

• Reactive: in this category, coordination is implicit and adopted by all aircraft; no
negotiation is necessary. Here, we explore two different methods that use implicit
coordination by adopting the ‘shortest-way-out’ principle. The minimum head-
ing/speed displacement which moves the CPA between two conflicting aircraft to
the edge of the intruder’s PZ is calculated using the velocity obstacles (VO) theory. A
VO is defined as the set of all velocity vectors of a moving agent which will result in
a loss of separation with a (moving) obstacle at some future point in time [148, 149].
Figure 2.7(a) illustrates a traffic situation in which the ownship aircraft is in conflict
with an intruder. As a first step, the collision cone (CC) is defined by lines from
the ownship to the intruder, tangential to both sides of the intruder’s protected
zone. The ownship and intruder are in conflict when the relative velocity is inside
the CC. By translating the CC with the intruder’s velocity, the VO in Figure 2.7(b) is
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obtained. This VO represents the set of ownship velocities that will result in a loss
of separation with the intruder.

d
re

l

v
intr uder

C
C

−v
intr uder

R

v ownshi p

v re
l

Pownshi p(t0)

Pi ntr uder (t0)

dcpa

(a) CC in a relative velocity plane.

VO

v
intr uder

v ownshi p

v
intr uder

Pownshi p(t0)

(b) VO in an absolute velocity plane.

Figure 2.7: Cone of collision (CC) and a velocity obstacle (VO) in a situation of a future loss of separation.
R represents the radius of the protected zone. Pownshi p (t0) and Pi ntr uder (t0) denote the ownship’s and
the intruder’s initial position, respectively. vownshi p is the observed aircraft velocity vector, vi ntr uder is the
intruder velocity vector, and vr el is the relative velocity vector. dr el is the relative distance vector, and dC PA
indicates the distance at the closest point of approach (CPA).

The two reactive methods differ in how they deal with multi-actor conflicts, and
will allow for a comparison between pairwise and joint resolution:

1. Potential field [9, 15]: predicted conflicting aircraft positions are represented
by ‘charged particles’ which simultaneously push and are pushed away from
the conflicting aircraft. In the evaluation in this chapter, this category of
CR methods will be represented by a ‘bare’ version of the Modified Voltage
Potential (MVP) method [15], for which the geometric resolution is shown
in Figure 2.8. For conflicting aircraft, the predicted positions at the closest
point of approach (CPA) ‘repel’ each other. This ‘repelling force’ is converted
to a displacement of the predicted position at CPA, in a way that the mini-
mum distance will be equal to the required minimum separation between
aircraft. Such a displacement results in a new advised heading and speed, in
the direction that increases the predicted CPA. Choosing this direction for
each resolution ensures that the MVP is implicitly coordinated for 2-aircraft
conflicts. Both aircraft will take complimentary measures to evade the other.
In case of multi-aircraft conflicts, resolution vectors are summed for each
conflict pair. This method has the advantage of simplicity; the resulting cal-
culations are computationally light, and the geometric representation allows
other possible constraints to be taken into account easily. On the other hand,
because resolutions are solely based on the conflict geometry, they may op-
pose the desired flight direction as proposed by the flight plan.
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•

CPA

Intruder
Speed Change

Figure 2.8: Modified Voltage Potential (MVP) resolution. Adapted from Hoekstra [15].

2. Solution Space [14, 43]: VO theory is used in combination with kinematic
constraints to determine a set of reachable, conflict-free velocity vectors, and
a set of reachable, conflicting velocity vectors. These two sets of velocities
together form the solution space. Figure 2.9 shows this velocity space for
aircraft: two concentric circles, representing the minimum and maximum ve-
locities of an aircraft, bound all reachable combinations of heading and speed.
Within this reachable velocity space, VOs are constructed for each proximate
aircraft, each representing the set of reachable heading/velocity combina-
tions that result in a conflict with the respective aircraft. When all relevant
VOs are subtracted from the set of reachable velocities, what remains is the
set of reachable, conflict-free heading/speed combinations. Solution space
CR methods determine resolution manoeuvres by selecting heading/speed
combinations from this set of conflict-free, reachable velocities. As a result,
these methods provide resolutions that allow multiple conflicts to be solved
simultaneously.
In two-aircraft situations, these methods behave similarly to potential field
VO methods. In multi-aircraft situations, they act as described above. Implicit
coordination is also an issue for these methods in multi-aircraft conflicts, and
additional coordination rules are required in these situations. The algorithm
herein used is the Solution Space Diagram (SSD) method as implemented by
Balasooriyan [42]. Identification of a conflict-free resolution vector consists of
finding a point within the set of spaces within the velocity limits that do not
intersect the VOs [150]. The speed vector resulting in the ‘shortest-way-out‘
manoeuvre (i.e., shortest speed/heading deviation) is picked.

Intruder Intruder

Vmin

Vmax

Figure 2.9: Solution space diagram (SSD) resolution. Adapted from Van Dam [43].
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• Explicit coordination: this coordination works on the basis that aircraft communi-
cate their intention, and thus there is no uncertainty regarding their future move-
ment. We use a negotiation approach in which each aircraft sends its deconflicting
policy to intruders until all broadcast policies result in a global solution. We assume
a communication cycle similar to Yang [45], displayed in Figure 2.10. This was used
due to its satisfactory performance in dealing with complex conflict scenarios as
demonstrated by the authors. Two aircraft share information when they are in a
pairwise conflict; ‘neighbours’ is the set of intruders the ownship is in conflict with.
Aircraft work on the assumption that each aircraft primarily acts towards avoiding
losses of minimum separation. First, each aircraft finds a set of conflict-free res-
olution manoeuvres. It must also be guaranteed that the manoeuvres within this
set will not create new conflicts with other nearby aircraft. This set of solutions is
found by identifying the safe interval between heading/speed displacements that
cross the edge of intruders’ protected zone. A preference for a more significant
heading or speed change is based on the aircraft’s own policy; the ultimate goal
is to achieve an optimal solution for all aircraft. Each aircraft then identifies the
preferred resolution manoeuvre and broadcasts it to the local neighbours.
Once an aircraft receives the neighbours’ manoeuvres, it will verify whether all
conflicts are resolved. If so, communication is terminated, and the aircraft adopts
the previously computed resolution manoeuvre. Otherwise, aircraft use the received
intent information from the neighbours to update the set of conflict-free solutions.
A new resolution manoeuvre is selected from this set. However, now preference
is for a manoeuvre within the smallest variation from the previously broadcast
manoeuvre in an attempt to converge faster to a solution.
In a real-world situation, the time delay between generation and reception of a
message is crucial. Studies, such as Yang [45], focus on optimising the convergence
to an agreement and demonstrating that a reduced number of negotiation cycles
is required to achieve a robust solution. Our objective, however, is to see how the
method behaves within this limited number of negotiation iterations. Yang [45]
obtained an average number of iterations below five, albeit for smaller traffic densi-
ties. We chose to use this value to limit computational effort. However, it should be
noted that a higher limit could favor more robust resolution manoeuvres.

Start

Conflict Detected

Ownship Broadcasts Manoeuvre

Ownship Receives Intruders’ Manoeuvres

Feasible
solution?

End

No

YesConflict Resolution Cycle

Figure 2.10: Iterations of an explicitly negotiated solution. Adapted from Yang [45].
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• Sequential cost: in which a single agent is responsible for redirecting the aircraft.
It is assumed that aircraft will follow the guidelines set by this agent and thus
uncertainty is reduced. At each update step, if conflicts are found, conflicting
aircraft are redirected towards preventing loss of separation. We follow a sequential
approach, setting an order based on the time to loss of separation. Note that
the aircraft order can be defined over multi-criteria and will have an impact on
the final trajectories. With each aircraft, the possible paths are considered; these
are a discrete set of possible heading/speed changes restricted by the aircraft’s
performance range. The cost for each trajectory is calculated and the path with the
lowest cost is chosen. The cost definition used in the simulations performed here is
similar to Hao’s [85]:{

Path cost = wl∆PL +wv∆V +wd D +δP

wl +wv +wd = 1
, (2.1)

where ∆PL represents the variation of the total length of the path, ∆V the change in
velocity, and D the distance to intruders. Lastly, a penalty value P is used to add
an extra cost to trajectories which cross an intruder’s PZ, as to make these more
expensive and, therefore, less desirable. The weight coefficients, wl , wv , and wD

indicate the weights given to the path length variation, to the change in velocity,
and to the distance to intruders, respectively. The value of the weight coefficients
denotes their importance. If, for example, a lower fuel consumption is favoured over
distance to threats, then wl and wv should be given higher values, as to make an
increment in flight path or speed variation significantly expensive. When summed,
the weight coefficients are equal to one. Note that other properties could be added
to the cost equation according to preference.
The chosen weights have an influence on the overall results. When prioritisation is
set over efficiency, it might have a negative effect on safety and vice-versa. In our
work, we chose to emphasize lower fuel consumption, focusing on smaller nominal
trajectory deviations. A penalty value for losses of separation is used, proportionally
to its severity. The same weights were used both for manned and unmanned
aviation, with the purpose of observing possible differences in performance.

Table 2.8 describes the main differences between the four CR methods that are consid-
ered in this comparison. All act on a tactical timescale, and all but the cost method, have
distributed control. While the coord method focuses on explicit intent communication
with other aircraft, in MVP and SSD each aircraft chooses its conflict resolution without
negotiation. Instead, implicit coordination is introduced in pairwise conflicts through
the use of the ‘shortest-way-out’ resolution strategy. MVP resolves pairwise conflicts,
summing resolution vectors in case of multi-aircraft conflicts, whereas SSD decides upon
a joint resolution manoeuvre which resolves conflict with all aircraft simultaneously. All
methods can perform the same type of manoeuvre: heading and/or speed change. There
is no limitation on the number of turns; every aircraft is free to perform the desired reso-
lution manoeuvre. Conflict evaluation interval equals one second; each second, current
conflicts and LoSs are detected and the CR method is computed if necessary. An aircraft
adopts the manoeuvre output by the CR method, until it is past CPA. At this point, it will
redirect to the next waypoint. Wind or performance uncertainties were not considered.
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Table 2.8: Properties of the conflict resolution (CR) methods used in simulation.

CR Methods

Planning: Tactical

Control: Distributed Centralised

Method Category: Reactive Explicitly Negotiated Heuristic

Multi-Actor Resolution: Pairwise Summed Joint Solution Coord Cost

MVP SSD

2.4. EXPERIMENTAL DESIGN AND PROCEDURE

2.4.1. MINIMUM SEPARATION
The value of the minimum safe separation may depend on the density of air traffic and the
region of the airspace. However, for manned aviation, most CD&R studies use ICAO’s [58]
definition of 5 NM horizontal separation and 1000 ft vertical separation. For unmanned
aviation, there are no established separation distance standards yet, although 50 m for
horizontal separation is a value commonly used in research [59] and will therefore be
used in the experiments herein performed. For vertical separation, 65 ft was assumed.

2.4.2. CONFLICT DETECTION
The experiment will employ state-based conflict detection for all conditions. This assumes
a linear propagation of the current state of all involved aircraft. Using this approach, the
time to CPA (in seconds) is calculated as:

tC PA =−
~dr el ·~vr el

~vr el
, (2.2)

where ~dr el is the cartesian distance vector between the involved aircraft (in meters), and
~vr el the vector difference between the velocity vectors of the involved aircraft (in meters
per second). The distance between aircraft at CPA (in meters) is calculated as:

dC PA =
√
~d 2

r el − tC PA
2 ·~v 2

r el . (2.3)

When the separation distance is calculated to be smaller than the specified minimal
horizontal spacing, a time interval can be calculated in which separation will be lost if no
action is taken:

ti n , tout = tC PA ±
√

RP Z
2 −dC PA

2

~vr el
(2.4)

These equations will be used to detect conflicts, which are said to occur when dC PA <
RP Z , and ti n ≤ tl ookahead , where RP Z is the radius of the protected zone, or the minimum
horizontal separation, and tlookahead is the specified look-ahead time. A five-minute
look-ahead time is used for conflict detection for both manned and unmanned aviation.
Note that the look-ahead distance will be bigger for manned aviation, as manned aircraft
will cross a longer path in the five minutes.

This analytical calculation of the time to loss of separation herein performed has
the advantage of not requiring pre-defined nodes. It should be noted that some conflict
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detection models, especially when using a flight plan or intent information, opt for
calculating distance at CPA through the discretisation of a 4D path, where spatial nodes
represent all the possible states within the simulation space. Conflict detection is then
based on checking if any aircraft occupy nodes closer than the minimum separation
distance at any point in time.

2.4.3. SIMULATION SCENARIOS

We first define the measurement area: this is a square area with its dimensions determined
by the average True Air Speed (TAS) and the average flight time. The aircraft spawn
locations (origins) and destinations are placed in alternating order at the edge of this
area, with a spacing equal to the minimum separation distance plus a 10% margin, to
avoid conflicts between the spawn aircraft and the aircraft arriving at their destination.
Additionally, to prevent very short-term conflicts between just spawned aircraft and pre-
existing cruising traffic, aircraft are spawned at a lower altitude, after which they climb
to a common cruise level. Unmanned aircraft are expected to climb almost vertically.
Aircraft fly a straight line towards their destination, with a constant heading computed
with a normal distribution random number generator, varying between 0◦ and 360◦.
This straight line is formed by several waypoints within the measurement area. These
waypoints prevent the aircraft from leaving the measurement area in an attempt to avoid
conflicts. Logging is restricted to the cruise phase of the flight. The cruise flight level is the
same for all aircraft. The total planned flight distance is uniformly distributed between
a pre-defined minimum and maximum value based on a minimum flight time and the
average TAS. TAS values vary between TASmi n and TASmax , as specified by the respective
aircraft model. Note that no wind was considered.

Ideally, aircraft would only operate within the measurement area, thereby ensuring
a constant density of aircraft within that area. However, aircraft may temporarily leave
the measurement area during the resolution of a conflict and should not be deleted
in this case. Therefore, a second, larger area encompassing the measurement area is
considered: the experiment area. As a result, aircraft in a conflict situation close to their
origin or destination are not deleted incorrectly from the simulation. Ultimately, an
aircraft is deleted once it leaves the experiment area or comes close to the ground for
landing. Note that we assume a no-boundary setting, with sufficient flight space around
the measurement area, in order to avoid edge effects from influencing the results.

Each scenario consists of a build-up period to reach a steady state in terms of traffic
volume and traffic pattern. The build-up is followed by the logging phase, during which
traffic volume is held constant, and a build-down period, allowing aircraft created during
the logging period to finish their flights. The experiment is repeated multiple times with
different origin-destination combinations. More details are shown in Table 2.9.

2.4.4. DEPENDENT MEASURES

Three different categories of measures are used to compare the simulated conflict resolu-
tion methods: safety, stability, and efficiency.
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Table 2.9: Properties of the manned and unmanned aviation scenarios used in simulation.

Manned Aviation Unmanned Aviation

Scenario Duration [h] 3

Number of Repetitions [-] 3

Min Flight Time [h] 0.5

Experiment Duration [h] 1 h 30 m (45 m–2 h 15 m)

Measurement Area [NM2] 202,500 900

Experiment Area [NM2] 405,000 1800

Min Flight Distance [NM] 200 15

Max Flight Distance [NM] 250 20

Radius PZ Horizontal [NM] 5 0.027

Radius PZ Vertical [ft] 1000 65

Min TAS [kts] 450 5

Average TAS [kts] 470 30

Max TAS [kts] 500 35

Average Time Flight [min] 40 40

Flight Level [ft] 36,000 300

SAFETY ANALYSIS

Safety is defined in terms of the number and duration of conflicts and losses of separation,
where fewer conflicts and losses of separation are considered safer. Additionally, losses of
separation are distinguished based on their severity according to how close aircraft get to
each other:

LoSsev = R −dC PA

R
. (2.5)

A low separation severity is preferred.

STABILITY ANALYSIS

Stability refers to the tendency for tactical conflict resolution manoeuvres to create sec-
ondary conflicts. Deviating from the nominal path, in order to avoid conflicts, often
results in a longer flight path. At high traffic densities, conflict-free airspace is scarce, and
when each aircraft requires a larger portion of the airspace it often results in more conflicts.
Therefore, tactical resolution manoeuvres tend to create conflict chain reactions. In the
literature, this effect has been measured using the Domino Effect Parameter (DEP) [151].
The latter can be calculated as follows:

DEP =
nON

c f l −nOF F
c f l

nOF F
c f l

, (2.6)

where nON
c f l and nOF F

c f l represent the number of conflicts with CD&R ON and OFF, respec-

tively. A higher DEP value indicates a more destabilising method, creating more conflict
chain reactions.
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EFFICIENCY ANALYSIS

Efficiency is evaluated in terms of the distance travelled and duration of the flight. The
added flight distance and time are compared to the baseline case where no conflict resolu-
tion is performed, and aircraft follow their straight trajectories from origin to destination.
A CR method that results in considerable path deviations, significantly increasing the
path travelled and/or the duration of the flight is considered inefficient. Furthermore, for
manned aviation, the work done (W ) associated with fuel consumption can be calculated:

W =
∫

path

~T ·d~s, (2.7)

where ~T and d~s represent the thrust vector and the displacement vector along the path,
respectively. For unmanned aviation, we are not able to calculate the work done, as we do
not currently have a drag model for drone vehicles.

2.5. EXPERIMENTAL HYPOTHESES
Naturally, it was hypothesised that as the traffic density increases, all safety, efficiency, and
stability parameters worsen. More LoSs, more conflicts and more conflict chain reactions
are expected. However, it was hypothesised that increasing traffic density would especially
affect the performance of the SSD and coord methods. As more intruding aircraft are
taken into consideration, it may be that these methods are unable to find a solution. In
the SSD, if the VOs of all intruders occupy the complete solution space, no solution will
be identified. In the coord method, more aircraft likely results in more iterations before
a consensus is found. If the number of interactions exceeds the maximum number of
iterations imposed, it will mean that aircraft do not reach a global solution.

Regarding safety, it was hypothesised that methods MVP and SSD would have fewer
LoSs and fewer conflicts. The ‘shortest-way-out’ resolution strategy guarantees implicit
coordination in pairwise conflicts, and minimal path deviations, which help limit conflict
chain reactions. While in multi-actor conflicts this implicit coordination is no longer
guaranteed, good results in previous research that used these methods [42, 152] indicate
that this resolution strategy is still effective in multi-actor conflicts. In comparison, the
coord method guarantees coordination in all cases. However, since each aircraft follows
its own policy, it cannot be guaranteed that all aircraft resolution manoeuvres are optimal
in terms of limiting the portion of airspace used. Finally, in the cost model, as LoSs with
a low intrusion severity can be accepted in favour of not increasing flight path/time, it
was hypothesised that it would have more LoSs than the other methods. Additionally,
as a limited number of possible heading/speed manoeuvres are considered, it may be
that an optimal manoeuvre for every conflict situation does not exist within the possible
manoeuvres.

It was hypothesised that the cost method would have better efficiency, as its objective
is to maximise the global efficiency. MVP and SSD methods also are expected to be
efficient, as the resolution heading/speed employed represent the minimum deviation
required to avoid LoS. When using the coord method, each aircraft tries to implement
their optimal policy, which can be to either minimise flight path or flight time deviation.
As a result, this method is not hypothesised to have the best flight distance of flight time
efficiency, as not all aircraft work towards the same objective. For manned aviation, the
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MVP and SSD methods which reduce the deviation from the nominal path, reducing the
negative impact on flight distance, are expected to do less work.

Finally, stability wise, a higher DEP is expected for the coord and cost methods in
comparison with MVP and SSD. The latter guarantee pairwise coordination based on the
‘shortest-way-out’ resolution strategy which is expected to benefit lower airspace area
usage, reducing the amount of conflict chain reactions.

2.6. EXPERIMENTAL RESULTS
The effect of the independent variables on the dependent measures is presented in order
to assess the effect of each conflict resolution method. Box-and-whisker plots are used
to visualise the sample distribution over the several simulation repetitions. Efficiency,
stability, and time in conflict values present outliers; the number of outliers (<10% of
the total data) is consistent throughout. As these do not contribute to the comparison
between the CR methods, these are not displayed for clarity.

2.6.1. SAFETY ANALYSIS

Figure 2.11 displays the mean total number of pairwise conflicts. A pairwise conflict is
counted only once independently of its duration. The results for manned and unmanned
aviation are comparable for each of the CR methods. The increase in number of conflicts,
compared to the situation with CR-OFF, is due to secondary conflicts created by the
tactical resolution manoeuvres. The number increases with the traffic density; with
more aircraft it is progressively more difficult to avoid LoSs without triggering secondary
conflicts. On average, as hypothesised, methods MVP and SSD display fewer secondary
conflicts for both manned and unmanned aviation. These methods use the ‘shortest-way-
out’ resolution strategy, limiting the space used by each aircraft, which limits conflict
chain reactions. Within the two methods, the MVP method has more secondary conflicts
than the SSD method, indicating that joint resolution to multi-actor conflicts is more
efficient than pairwise resolution in limiting the number of secondary conflicts. Pairwise
consideration of conflicts neglects constraints imposed by nearby aircraft not currently
involved in the conflict. As a result, the chance of secondary conflicts is not considered in
the calculation of a pairwise resolution. Additionally, contrary to hypothesised, the cost
model has fewer conflicts than the coord method, although the difference between these
two methods is negligible compared to the difference between them and MVP and SSD.

Figure 2.12 shows the amount of time spent in ‘conflict mode’ per aircraft. An aircraft
enters ‘conflict mode’ when it adopts a new state computed by the CR method. The
aircraft will exit this mode, once it is detected that it is past the previously calculated time
to CPA (and no other conflict is expected between now and the look-ahead time). At this
point, the aircraft will redirect its course to the next waypoint. The time to recovery is not
included in total time in conflict. Based on this information and Figure 2.11, the number
of conflicts is not directly correlated with the amount of time in conflict. For example,
although the MVP method has a higher number of conflicts than SSD, it has a lower time
in conflict. Time in conflicts for methods MVP, SSD, and cost are comparable. Method
coord has the highest time in conflict, as well as a more pronounced tendency for the total
time in conflict to increase with the traffic density. As the traffic density increases, there
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(a) Manned aviation. (b) Unmanned aviation.

Figure 2.11: Total number of conflicts per CD&R method.

are potentially more situations where the break condition terminates the negotiation
cycle before a global solution is found. A non-global solution will result in not all conflicts
being resolved immediately, which in turn results in longer conflicts. Additionally, given
that the coord method also has the highest number of conflicts (Figure 2.11), we can
deduce that it has the highest tendency to create chain conflict reactions.

(a) Manned aviation. (b) Unmanned aviation.

Figure 2.12: Time in conflict per flight and per CD&R method.

Figure 2.13 shows the mean total number of LoSs for each of the conditions. All
methods significantly reduce the number of losses of separation, compared to the baseline
condition where CR is OFF. MVP has the lowest number of LoSs in all traffic densities
examined for both manned and unmanned aviation. Interestingly, a large number of
conflicts (Figure 2.11) or time in conflict (Figure 2.12) does not directly result in a high
number of LoSs. For example, the coord method has a high number of conflicts and time
in conflict but few losses of separation. Thus, it should be considered that a large number
of conflicts does not always have a negative impact on intrusions. In fact, Hoekstra [15]
argues that a moderately positive number of secondary conflicts can be beneficial on
a global scale; the effect of sequentially running into a new conflict creates a wave-like
pattern, spreading the aircraft out in the available airspace thus ‘creating’ more airspace.
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(a) Manned aviation. (b) Unmanned aviation.

Figure 2.13: Total number of losses of separation (LoSs) per CD&R method.

It was hypothesised that MVP and SSD methods woulds have the lower number of
LoS. However, this is only true for MVP, which performs pairwise resolution; the SSD
method, which performs joint resolution, has the highest number of LoSs of all tested CR
methods. This is likely due to the fact that, as the traffic density increases, there are more
situations when the solution space has no possible solution and thus, no manoeuvre is
taken to avoid conflict situations. Additionally, it was hypothesised that the cost method
would have a higher number of LoSs as low severity intrusions would be preferred over a
significant deviation from either the nominal heading or nominal path. However, this is
only true for manned aviation, whereas for unmanned aviation, the method has the lowest
number of LoSs, alongside the MVP method. The cost calculation used displays a much
better performance in the unmanned environment, proving that the weight coefficients
should be adjusted and tested for the intended operational environment. Analogously,
the coord method is better at reducing the number of LoSs in a manned environment
than in an unmanned environment. In conclusion, when weights or policies are put in
place, these should be aligned with the environment in which they are to be applied.

Figure 2.14 displays the intrusion severity for the losses of separation that occurred for
each CR method. Although the overlap between conditions is large, MVP is most effective
at minimising the intrusion when a loss of separation occurs. No direct correlation was
observed between intrusion severity and traffic density for any of the methods.

2.6.2. STABILITY ANALYSIS

Figure 2.15 displays the mean DEP value for each CR method. A high positive value
indicates the occurrence of conflict chain reactions that cause airspace instability. The
coord method is the most unstable of all the CR methods, signifying that a resolution
manoeuvre with this method is likely to trigger secondary conflicts. As seen in Figure 2.12,
this model also has the highest time in conflict, resulting from longer negotiations or
from a negotiation cycle ending without a global solution. When the start of a resolution
manoeuvre is delayed, this alone can also lead to more conflicts. As hypothesised, MVP
and SSD have the lowest DEP values. The ‘shortest-way-out’ strategy requires less airspace,
reducing the number of conflict chain reactions.
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(a) Manned aviation. (b) Unmanned aviation.

Figure 2.14: Intrusion severity rate per loss of separation and per CD&R method.

(a) Manned aviation. (b) Unmanned aviation.

Figure 2.15: Domino effect parameter (DEP) per CD&R method.

2.6.3. EFFICIENCY ANALYSIS
According to Figure 2.16, the MVP method results in the smallest path distance deviation.
In other methods, either because aircraft perform longer deconflicting manoeuvres, or
because they encounter more conflict situations which require a deviation from the
nominal path, these travel for longer before reaching their destination. When assuming
constant speed, increasing the flight path results in a longer flight. However, as seen in
Figure 2.17, for manned aviation the SSD method has superior flight time compared with
the coord method which has a larger flight distance variation. This indicates that the SSD
method is favouring decreasing the speed of the aircraft as a deconflicting manoeuvre.
MVP also has the smallest time deviation. It was hypothesised that the cost method would
have better efficiency; however, overall, MVP and SSD methods proved more efficient.
Having minimal path deviations for CR, reduced the effect of resolution manoeuvres on
flight efficiency. The cost method has considerably better efficiency in the unmanned
simulations versus the manned simulations, showing how cost calculations must be
adjusted towards the characteristics of the environment. Finally, the coord method was
significantly more efficient for manned aviation than for unmanned aviation, showing
that the behaviour of specific policies is also highly dependent on the environment.
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(a) Manned aviation. (b) Unmanned aviation.

Figure 2.16: Extra flight distance per flight and per CD&R method.

(a) Manned aviation. (b) Unmanned aviation.

Figure 2.17: Extra flight time per flight and per CD&R method.

Figure 2.18 identifies the extra work done per flight performed by manned aviation.
These values are directly comparable with the extra flight distance (Figure 2.16). The
increase in work performed is a direct consequence of increasing the flight path due to
conflict resolution manoeuvres. The MVP method has the smallest path deviation and,
therefore, the smallest work increase. Note that the total work presented should not be
used as exact absolute values as it is a generic relative indicator for fuel, which may be
used for comparison.

2.7. DISCUSSION

2.7.1. EVALUATION OF CURRENT METHODS
From Tables 2.3 and 2.4, most current CR methods have tactical planning, distributed
control, and focus on a nominal predictability assumption propagating the current state.
Within manned aviation, there is no clear preference between centralised or decentralised
control, whereas in unmanned aviation most of the models resort to decentralised control
as there is no defined central processing point for unmanned aviation yet. A considerable
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Figure 2.18: Extra work done per flight and per CD&R method for manned aviation.

number of methods for unmanned aviation still focus solely on static obstacles, indi-
cating that further development is still required for beyond visual line of sight (BVLOS)
unmanned operations, where avoidance of other traffic is required. Given the increasing
use of drones in applications such as package delivery in an urban setting, with traffic
densities that are orders of magnitude higher than any observed in manned aviation, the
development of CD&R methods for unmanned aviation capable of avoiding both static
and dynamic obstacles is a pressing issue.

2.7.2. COMPARISON OF CONFLICT RESOLUTION METHODS
The results displayed no significant disparity in terms of which type of CD&R method
performs better between a manned and an unmanned environment. However, the
differences in unmanned over manned aviation heavily favour the performance of the
methods; lower speed of the involved aircraft and smaller minimum separation distance
favour the prevention of LoSs. For the characteristics of the experiment performed,
MVP and SSD methods showed better results overall, in particular the MVP method.
Having minimum path deviations for CR, reduced the effect of resolution manoeuvres on
flight efficiency while still guaranteeing minimal LoSs. At high densities, tactical conflict
resolutions can trigger conflict chain reactions due to the scarcity of airspace [153].

Two different reactive methods were used, MVP and SSD, in order to directly com-
pare the behaviour of pairwise-summed and joint resolution approaches. The latter is
better at conflict prevention, showing a lower number of conflicts (Figure 2.11). While
pairwise-summed methods like the MVP do tend to trigger more secondary conflicts
during resolution in high-density traffic situations, the net result of this is often beneficial.
The emergent behaviour of the traffic situation as a whole shows that these secondary
conflicts are ‘used’ by the algorithm to distribute traffic, and ‘create room’ for resolutions
that would otherwise not be apparent. As a result, its performance in terms of LoSs is
superior compared to a joint-resolution method. In addition it can be noted that other
works [31, 32] have shown, using the MVP method, that disallowing aircraft from turning
into a conflict can help mitigate the number of secondary conflicts. While the SSD method
has the lowest number of conflicts, it has the highest number of LoSs from the four simu-
lated CR methods (Figure 2.13). When using the SSD method, having more surrounding



2

46 REVIEW CONFLICT RESOLUTION METHODS FOR MANNED AND UNMANNED AVIATION

aircraft will likely result in fewer solutions within the solution space. In extreme cases, a
single joint solution may not even exist. As a result, the behaviour of a joint resolution CR
method should be carefully considered when used in high traffic density environments.
Additionally, when comparing the number of conflicts (Figure 2.11) with the number of
LoSs (Figure 2.13), it cannot be inferred that preventing secondary conflicts is always
the best way to prevent LoSs, as there is no direct correlation between these two values.
Indeed it can be argued that, for some situations, not moving towards solving all conflicts
immediately may be beneficial; due to scattering traffic, further away conflicts may be
easier to resolve later on. Additionally, a joint resolution manoeuvre often results in a
larger path deviation, which has a negative impact on the stability of the airspace.

The cost and coord methods showed differences in terms of safety and efficiency per-
formance between the unmanned and manned environments. The former was better at
preventing losses of separation and was more efficient in an unmanned aviation environ-
ment, whereas the latter had better efficiency and better success at preventing intrusions
in a manned aviation environment. This proves that the success of weight coefficients
and employed policies is dependent on the operational environment. Naturally the opti-
mal heading/speed deviations to avoid losses of minimum separation depend heavily
on the speeds and manoeuvring space between neighbouring aircraft. Having weight
coefficients or policies which enforce the optimal resolution manoeuvres is beneficially
to safety. On the other hand, restraining aircraft from employing these optimal choices,
when these differ from their preferred policies, may have a negative impact on the overall
safety of the airspace. In comparison, methods MVP and SSD were not so sensitive to the
differences between manned/unmanned environments.

2.7.3. OPEN AND COMMON SIMULATION PLATFORMS
This results should be considered alongside the results produced by other researchers
in simulations environments with different conditions. For Piedade [152], who used
BlueSky for manned aviation with different scenarios and smaller traffic densities (from
9 ac/10,000 NM2 to 27 ac/10,000 NM2), similarly to the results herein obtained, the MVP
method showed fewer losses of separation than the SSD model. In their implementations,
Yang [45] was able to guarantee safe separation of 48 UAVs in a space of 22 NM2 and
Hao [85] showed no LoSs for five manned aircraft in a 4400 NM2 scenario. These results
should also be taken into account when considering the performance of these methods.
However, it is impossible to directly compare these results from other researchers alone
given the differences in scenarios and traffic densities. Moreover, it is difficult to extrap-
olate these results beyond the specific environment conditions and employed traffic
densities. Such shows the importance of creating repeatable evaluation conditions, by us-
ing open platforms, and publicly sharing implementations, metrics, and data. Developing
an open repository of reference simulation scenarios would allow for direct performance
comparison and a more precise evaluation of the diverse proposed methods.

2.7.4. IMPACT OF IMPLEMENTATION CHARACTERISTICS
Implementation characteristics, such as cost-function gains, can significantly affect
the outcome of an evaluation. As previously mentioned, we observed that the overall
efficiency of the simulated CD&R methods involving either policies or cost functions,
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was highly dependent on the environment. It may be considered that further tuning of
these policies/weights could improve the overall safety of the method, or even that in
a different environment these methods would have significantly different performance.
As a result, the several tuning options in CD&R methods should be carefully adjusted
to the operating environment. Furthermore, several implementation criteria affect the
output of the same algorithm. Some of these criteria have been mentioned in this work:
update rate, performance, types of resolution manoeuvre, turn frequency. Naturally, any
limitation on these properties is expected to deteriorate the performance of the model.

In the simulations herein performed, similar implementation characteristics were
used for all CD&R methods, to the extent possible given the differences in the algorithms.
We intended not only to provide a first approach at a direct comparison, but also to
emphasise how results are conditioned by implementation settings, which are often
overlooked. These settings should be directly associated with the results, with the un-
derstanding that different tuning values, policies, weights, and environments can yield
different evaluations of the same algorithm.

2.7.5. IMPACT OF SIMULATION PROPERTIES
Fast-time simulations are often used to provide insights on the advantages and disadvan-
tages of conflict resolution strategies. However, it can be time consuming to develop a
simulation environment to a high level of realism. It is relevant to make clear assumptions
regarding speed, altitude, and spatial distributions of the aircraft. Sunil [154] researched
how these assumptions affect the conflict outcome; non-ideal altitude and spatial distri-
butions have the largest negative impact on the accuracy of the simulation results. It is
necessary to guarantee an uniform density distribution to prevent traffic concentrations.
A density ‘hotspot’, either vertically or horizontally, results in a higher number of conflicts
relative to the ideal case, providing the wrong insights on the overall safety.

2.8. CONCLUSIONS
More than a hundred conflict resolution (CR) methods for manned and unmanned
aviation were evaluated under a taxonomy based on avoidance planning, surveillance,
control, trajectory propagation, predictability assumption, resolution manoeuvre, multi-
actor conflict resolution, obstacle types, optimisation, and method category. Currently,
most models involve tactical planning, distributed control, and focus on a nominal
propagation of the current state of all involved aircraft. For unmanned aviation, more CR
methods must be developed focusing on assuring minimum separation with both static
and dynamic obstacles to aid beyond visual line of sight operations in an urban setting.

Furthermore, commonly used CR methods were analysed using open-source, multi-
agent ATC simulation tool BlueSky [25], both for manned and unmanned aviation. The
differences between the results here presented and previous research show the impor-
tance of creating repeatable evaluation conditions, by using open platforms, and publicly
sharing implementations, metrics, and data. CD&R methods aim at relieving the work-
load of ATC services and assuring safe integration of UAVs into the civil airspace. However,
a better notion of how current methods behave for specific traffic scenarios is essential in
order to determine a way forward for improvement.
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The results of the Chapter 2 indicate that airspace concepts which reduce the average
relative velocities between aircraft, and opt for the ‘shortest-way-out’ resolution, improve
airspace safety. In this chapter, we apply one of these methods, the Solution Space Diagram
(SSD), to an urban environment. The structure of the airspace plays a (positive) role in
the capacity of the airspace. However, the use of airspace design to optimise distributed
environments has been overlooked in previous research. Moreover, for unmanned aviation,
the structure in place must respect the boundaries of the surrounding urban infrastructure.

In Section 3.2, we examine how to reduce the conflict rate by separating traffic into
different layers according to heading-altitude rules. In Section 3.4, we use a reinforcement
learning agent to implement variable speed limits to create a more homogeneous traffic
situation between cruising and climbing/descending aircraft.

Cover-to-cover readers can choose to skip sections 3.3.1 and 3.3.2, which describe the
theoretical background of the SSD method. This method has also been previously explained
in Chapter 2.

This chapter is based on the following publications:

1. M. Ribeiro, J. Ellerbroek, and J. Hoekstra, Velocity Obstacle Based Conflict Avoidance in Urban Environ-
ment with Variable Speed Limit, Aerospace 8 (2021)

2. M. Ribeiro, J. Ellerbroek, and J. Hoekstra, The Effect of Intent on Conflict Detection and Resolution at
High Traffic Densities, 9th International Conference for Research in Air Transportation (ICRAT) (2020)
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ABSTRACT

Current research on urban aerial mobility, as well as the continuing growth of global air
transportation, has renewed interest in conflict detection and resolution (CD&R) methods.
The use of drones for applications such as package delivery would result in traffic densities
that are orders of magnitude higher than those currently observed in manned aviation.
Such densities not only make automated conflict detection and resolution a necessity,
but it will also force a reevaluation of aspects such as coordination vs. priority, or state vs.
intent. This chapter looks at enabling a safe introduction of drones into urban airspace by
setting travelling rules in the operating airspace, which benefit tactical conflict resolution.
First, conflicts resulting from changes in direction are added to conflict resolution with
intent trajectory propagation. Second, the likelihood that aircraft with opposing headings
meet in conflict is reduced by separating traffic into different layers per heading-altitude
rules. Guidelines are set in place to ensure that aircraft respect the heading ranges allowed
in every crossed layer. Finally, we use a reinforcement learning agent to implement
variable speed limits towards creating a more homogeneous traffic situation between
cruising and climbing/descending aircraft. The effect of all of these variables was tested
through fast-time simulations on an open-source airspace simulation platform. The
results show that we are able to improve the operational safety of several scenarios.

3.1. INTRODUCTION

If current predictions become reality, the aviation domain must prepare for the intro-
duction of a large number of mass-market drones. According to the European Drones
Outlook Study [10], approximately 7 million leisure consumer drones are expected to
operate across Europe, and a fleet of 400K is expected to be used for commercial and
government missions in 2050. Moreover, at least 150K are expected to operate in an
urban environment for multiple delivery purposes. More recently, even more urban
Unmanned Aerial System (UAS) applications have been explored, specifically inspection
and monitoring of several urban infrastructures [155, 156]. Automation of safety within
unmanned aviation is a priority, as drones must be capable of conflict detection and
resolution (CD&R) without human intervention. Both the Federal Aviation Administra-
tion (FAA) and the International Civil Aviation Organisation (ICAO) have ruled that an
UAS must have Sense & Avoid capability in order to be allowed in civil airspace [11, 26].
Over the past three decades, conflict detection and resolution methods have already been
widely explored for manned aviation. However, there are several aspects that separate the
urban applications currently considered from the concepts investigated in these previous
studies. The most consequential difference from conventional aviation is the presence of
constraints in an urban environment, such as obstacles and hyperlocal weather, which
will bring additional considerations in the design of CD&R logic.

Although these differences separate urban air traffic from conventional aviation, they
provide several similarities with the operation of road traffic that make it relevant to
investigate research to prevent traffic congestion of road vehicles [157, 158]. First, in
many of the current urban airspace concepts, unmanned aviation is expected to follow
the existing road infrastructure. In addition, prevention of congestion is comparable
to prevention of ‘hotspots’ of conflicts. Finally, collisions are reduced by guaranteeing
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at all times a safe distance between road vehicles, comparable to the safekeeping of
the minimum separation distance in aviation. Nevertheless, directly applying these
methods poses new challenges: drones are (mostly) non-stationary as opposed to road
vehicles, minimum separation is a bigger margin than normally employed with road
vehicles. Additionally, we prefer not to employ prevention of traffic ‘hotspots’ through
path planning, which increases in complexity with the number of operating agents. In
a real-word scenario, with the expected number of UASs operating simultaneously [22],
this would result in a system that is slow to respond to changes, as well as with limited
capacity [159]. Instead, we focus on setting rules directly into the operational environment
to guarantee safety.

In the current study we employ an urban environment where aircraft must go throw
pre-set ‘delivery points’ simulating a delivery operation. Conflicts with static obstacles
are immediately resolved by following a planned route around these obstacles. Conflict
resolution (CR) is used to further prevent losses of minimum separation with dynamic
obstacles. Normally, most conflict detection and resolution (CD&R) methods use heading
changes as preferred by air traffic controllers. However, an urban environment requires
a different approach to an unconstrained airspace. We favour a speed-based conflict
resolution approach to ensure that the borders of the surrounding urban infrastructure
are always respected. Heading-altitude rules will be used to separate traffic into differ-
ent layers, reducing the likelihood of aircraft meeting in conflict. Additionally, we add
intent-information to conflict resolution. Multiple works [27–30] have used waypoint
information to improve the prediction of a single intruder’s trajectory with favourable
results. Given the high number of turns required to move through an urban setting,
studies on the use of intent are of interest. Naturally, sharing intent information in a
real-case scenario requires a mechanism for data transfer between aircraft or intent in-
ference through trajectory prediction [160]. Both are a challenging problem. This work
will analyse whether the improvements in safety from the addition of intent information
justify its implementation. Finally, reinforcement learning is used to set variable speed
limits (VSLs) in sections where altitude transitions are expected, towards creating a more
homogeneous traffic situation during these transition phases.

Section 3.2 defines the urban environment. Sections 3.3 and 3.4 can be read in-
terchangeably. The former describes how aircraft avoid conflicts by modifying their
current speed. We use a velocity obstacle based CR approach (called Solution Space Dia-
gram (SSD) in related work [43, 94, 161, 162]), which has proven to be efficient in reducing
the effect of resolution manoeuvres on flight efficiency while still guaranteeing minimal
losses of separation (LoSs) [162]. Section 3.4 refers to VSL implementation. As shown in
Figure 3.1, this sets an upper limit to the speeds aircraft may select from. The Deep Deter-
ministic Policy Gradient (DDPG) RL method [163], which has shown promising results in
other studies [164], is used to determine the optimal variable speed limits. Sections 3.5
through 3.8 describe the experimental independent variables, design, hypotheses, and
results, respectively. Finally, Chapters 3.9 and 3.10 present discussions and conclusion.
This study employs the open-source, multi-agent ATC simulation tool BlueSky [25]. The
implementation code can be accessed online at [165]; scenarios, result files are available
at [166].
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Figure 3.1: Prioritisation of rules over speed choice. Hard limits are first imposed by aircraft’s performance limits.
If set, the maximum speed must be respected. Additionally, aircraft perform conflict resolution. A conflict-free
(displayed in green), allowed speed value is then picked.

3.2. URBAN SETTING

In this work, an urban setting is simulated using data from the Open Street Map network
data [167]. We use an excerpt from the San Francisco Area, with a total area of 1.708 NM2,
as represented in Figure 3.2. In the dataset, roads and intersections are represented by
nodes. Each road is defined by the two adjacent nodes that represent the edges of the
road. To reduce complexity, each node is considered to have at most four connecting
roads. Naturally, some nodes may have fewer as only existing roads are used. Additionally,
we assume that each road has only one lane. Having more lanes would signify that the
road would need to be large enough to ensure proper separation between multiple lanes.
As we do not make such assumptions or requirements from the urban setting, we define
each road as having only one lane of traffic.

Figure 3.2: Urban setting used in this work. Data obtained from Open Street Map [167].
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3.2.1. FREEDOM OF MOVEMENT

The exploration of environments with static obstacles has gained a new focus with the
growth of unmanned aviation. Operations such as package delivery in an urban environ-
ment require collision resolution with the surrounding urban infrastructure. The latter is
non-trivial. Most of the existing research on tactical conflict detection and resolution is
directed at manned aviation, as methods are used to detect other dynamic traffic when
manned aircraft are flying at cruise altitude. It is not guaranteed that a method directed
at dynamic obstacles can also (simultaneously) avoid static obstacles. First, while most
of these methods assume obstacles as a circle with radius equal to the minimum sepa-
ration distance, a static object can have different sizes and shapes. These may be larger
than other traffic and non-convex, requiring a route with multiple waypoints as solution.
Second, most methods also assume some sort of coordination and non-zero speed.

Limited existing research on the resolution of tactical conflicts with static obstacles is
based mainly on defining static obstacles as objects that the ownship must go around,
as opposed to those that limit the area accessible to the ownship [168]. Recently, a new
branch of research is integrating LIDAR technology into UASs to detect the distance from
the closest obstacles [169, 170]. However, such systems do not protect against static
obstacles with non-uniform shapes. For example, an aircraft might follow the edge of a
static obstacle until it finds itself in a dead-end, in case this edge ends in a closed space.
We consider that when the environment is known in advance, the most effective way to
resolve conflicts with static obstacles is to strictly follow a known safe route around all
static obstacles. This work assumes that waypoints are set at the centre of the roads, from
which aircraft do not deviate.

3.2.2. TURN ESTIMATION

In an urban environment, the speed at which the aircraft turns is limited by the radius of
the turn, as collisions with buildings must be avoided within the limited space available at
intersections. The same conservative value is used for all aircraft. Naturally, in a real-case
scenario, differences in turn performance can be expected between rotors and fixed-wing
aircraft. Rotors may be able to hover in a stationary position and provide (almost) vertical
take-off and landing.

We assume that during turns, aircraft remain at the same flight level and have constant
speed throughout. In Figure 3.3, the waypoints of the aircraft are identified. As the heading
post-waypointi+1,Ψi+1 , is different than the current heading, Ψi , the aircraft initiates a
turn assumed to start and end at a pre-determined distance, d , from waypointi+1.

◦ ◦

◦

r
β

α
α

d

d

w pti w pti+1

w pti+2

Figure 3.3: Geometry of a turn between waypoints. No wind assumed.

The radius of the turn, r , can be calculated by :
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r = V 2

g × tan(φnom)
, (3.1)

where V represents the speed of the aircraft, and g the gravitational acceleration. Based
on the geometry of Figure 3.3:

α= ∆Ψ

2
. (3.2)

The distance from the waypointi+1 at which the aircraft starts and ends the turn is thus
given by:

d = r × tan(α). (3.3)

The turn rate, Ψ̇, can be determined by:

Ψ̇= g tan(φnom)

V
. (3.4)

3.2.3. SPEED CHANGES THROUGHOUT THE ROUTE
We assume that aircraft prefer to adopt a high speed in order to reduce travel time, and
complete their delivery route as soon as possible. However, due to the limitation imposed
on the turn radius, the aircraft will reduce their speed prior to a turn to fit the confined
space of the intersection. Figure 3.4 shows the assumed behaviour of the aircraft during
the experimental simulations. When possible, aircraft will employ the maximum set
cruise speed of 30 kts. Before a turn, the aircraft will start decreasing their speed, in order
to start the turn at 10 kts. With such a low speed, it is guaranteed that the maximum
turn radius of 3 metres is respected. As soon as the turn is completed, aircraft will again
accelerate towards their desired cruising speed.

r = 3m

vcr ui se = 30kts vtur n = 10kts v cr
ui s

e
= 30

kt
s

Figure 3.4: Speed changes employed by an aircraft in preparation for a turn.

These speed variations result in speed heterogeneity between aircraft, which is recog-
nised as a causal factor for increased complexity in air traffic operations [171]. Part of the
work in this chapter aims at reducing relative speeds, which is expected to improve safety.

3.2.4. HEADING-ALTITUDE RULES
(Near-)Head-on conflicts are practically impossible to resolve in a restricted airspace
where aircraft cannot considerably alter their heading. The best way to prevent this
situation is to separate aircraft into different layers according to their current heading,
creating a more homogeneous traffic situation in each layer. Similar concepts were used
in [13, 172–174]. The results showed that vertical segmentation of airspace, by separating
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traffic with different travel directions into different flight levels, resulted in a lower conflict
rate and thus enabled higher capacity. Two factors contributed to this reduction in conflict
rate. First, by dividing the aircraft over separate layers of airspace, different groups of
aircraft are created that remain separated from each other (segmentation effect). Second,
within each layer, heading limitations enforce a degree of alignment between aircraft,
thus reducing the relative speed between aircraft cruising at the same altitude, which in
turn reduces the likelihood of conflicts within a layer of airspace (alignment effect) [175].

In this work, six altitude (traffic) layers are used as shown in Table 3.1. Heading-altitude
rules are applied, defining the headings permitted per altitude band. It is assumed that
each node has a maximum of four connecting edges. On each of these edges, traffic is
assumed to have (near) equal headings. Therefore, we start by adopting one vertical layer
for each possible direction, creating the four main traffic layers. In addition, two auxiliary
layers are employed to allow aircraft, travelling in a main layer, to cross to a perpendicular
road in any direction just by climbing or descending to the next layer. Given the defined
layers, a heading turn will result in a transition of a maximum of three layers (i.e., when
climbing from the 1st to the 4th layer or descending from the 6th to the 3r d layer).

Table 3.1: Quadrant rules per altitude layer.

1st Layer 2nd Layer 3r d Layer 4th Layer 5th Layer 6th Layer

Auxiliary Layer Main Layers Auxiliary Layer

Altitude

To move to a different layer, aircraft climb or descend into the traffic lane of that layer.
Previous work [13] suffers from a considerable number of conflicts between cruising
and climbing/descending aircraft, and between pairs of climbing/descending aircraft, as
climbing and descending aircraft are exempted from the heading-altitude rules, and can
violate them to reach their cruising altitude or destination. This means that aircraft are
free to directly climb/descend to the final layer without respecting the heading ranges
allowed in the mid layers. In these cases, the safety benefits of vertical layer separation
apply only to cruising aircraft, as there are no procedural mechanisms to separate climb-
ing/descending aircraft from each other or from cruising aircraft [175]. In this study, we
add to this work by implementing rules during the climbing/descending process. First,
during climb/descent, aircraft must adapt to the heading ranges allowed at each layer tra-
versed. Second, aircraft are still restricted to a safe route through the surrounding urban
infrastructure. Finally, we employ variable speed control to improve speed homogeneity
between cruising and climbing/descending aircraft.

TRANSITION LAYERS

We employ transition layers to accommodate traffic slowing down before a turn. A transi-
tion layer is set between two traffic layers to be used only when transitioning between
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the latter. Aircraft perform the heading turns within these transition layers, preventing
conflicts resulting from heterogeneous speed situations caused by an aircraft decelerat-
ing in preparation for a turn. Naturally, conflicts can still occur in the transition layers.
However, transition layers are expected to have a much smaller number of aircraft than
traffic layers at any point in time, reducing the likelihood that aircraft meet in conflict.

Figure 3.5 shows the different layers used in the experimental simulations. Traffic
layers (in blue) are used for the cruising traffic; transition layers (in grey) are only used for
transitioning between traffic layers. Traffic and transition altitudes are set with a height of
30 ft. Note that there is an offset of 10 ft between the layers to prevent false conflicts.
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Figure 3.5: View of the different altitude layers used in the experimental simulations performed in this study.

Finally, turn mechanics are in place to enforce that aircraft perform the necessary
climb/descent actions without crossing the borders of the surrounding urban infras-
tructure and/or violating the heading ranges allowed per traffic layer. Independently of
the flight altitude, aircraft must respect the surrounding infrastructure as we make no
assumptions regarding its height. As a result, this mechanism may be used independently
of the maximum height of the urban architecture, the number of traffic layers, and/or
altitude of each layer.

3.3. VELOCITY OBSTACLE BASED, SPEED-ONLY RESOLUTION

The biggest obstacle to ensuring minimum separation between aircraft in an urban
environment is the limitation of movements caused by the limited available space. Most
conflict prevention methods operate in the horizontal plane, and rely on turns to resolve
conflicts. However, to guarantee safety in the presence of static obstacles (e.g., buildings,
trees), movement within the horizontal plane is severely limited. This work employs a
speed-only conflict resolution method, guaranteeing that aircraft do not deviate from
their safe pre-set route. Vertical conflict resolution is not used as the available airspace is
segmented into different flight levels reserved for different flight directions. For increased
safety, aircraft must remain at their assigned flight level. Although variations in this
vertical layer assignment are possible, these are considered outside the scope of this work.
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3.3.1. VELOCITY OBSTACLE ( VO) THEORY
The conflict resolution method used in this work is based on the velocity obstacle the-
ory [148, 149]. In Figure 3.6, a situation is represented in which the ownship (A) is in
conflict with an intruder (B). A collision cone (CC) can be defined by lines tangential
to the intruder’s protected zone (PZ). A and B are in conflict when the relative velocity
between these two aircraft lies inside the CC. By adding the intruder’s velocity, the CC
is translated forming the intruder’s VO. This VO represents the set of ownship velocities
which result in a loss of separation with the intruder. R represents the radius of the PZ.
P A(t0) and PB (t0) denote the ownship’s and the intruder’s initial position, respectively.
PB (tc ) identifies the position of the intruder at the moment of collision. Each intruder in
the vicinity of an ownship results in a separate VO.
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Figure 3.6: Representation of a VO imposed by intruder B, and the relationship between a circular velocity vector
set and the protected zone (PZ) [94].

3.3.2. SOLUTION SPACE DIAGRAM (SSD) RESOLUTION METHOD
The SSD method consists of finding the intersection between the VOs from all intruders
and the performance limits of the ownship, in order to identify which sets of achievable
velocity vectors result in a future LoS with intruders. Two concentric circles, representing
the minimum and maximum velocities of an aircraft, bound all reachable speed vectors.
Within this reachable velocity space, VOs are constructed for each proximate aircraft, each
representing the set of speed vectors that would result in a conflict with the respective
aircraft. When all relevant VOs are subtracted from the set of reachable velocities, what
remains is the set of reachable, conflict-free speed vectors. Then a new advised speed
vector is picked from this set and used for conflict resolution. Thus, SSD is able to solve
multiple conflicts simultaneously. In two-aircraft situations, this method is implicitly
coordinated, as the conflict geometry, represented by the velocity obstacle, can be used
to select complementary measures to avoid each other.

The algorithm used is the Solution Space Diagram method as implemented by Bala-
sooriyan [42]. Identification of a conflict-free resolution vector, consists of finding a point
inside the set of spaces within the velocity limits that do not intersect the VOs [150].
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3.3.3. CONFLICT RESOLUTION WITH SPEED VARIATION
This work employs speed-only conflict resolution with the SSD method. For reference,
Figure 3.7 depicts the selection of a speed vector for conflict resolution that does not alter
the heading of the aircraft; only the speed is altered. Note that the conflict-free speed
vector that results in the smallest speed change is selected to resolve the conflict.

Intruder

Intruder

Vmin

Vmax

Speed Only Resolution

Destination Heading

Figure 3.7: Representation of speed only based conflict resolution using the SSD method.

Speed-only resolution has previously been explored with flight-level assignments
in [22, 61, 62, 176]. The results show that speed-only conflict resolution is only successful
when aircraft in conflict have similar headings. For example, (near-)head-on conflicts
require heading variations; a speed change is not sufficient to guarantee minimum sepa-
ration. The likelihood of the latter kind of conflicts is dependent on the airspace structure
and the heading difference between aircraft flying at similar flight levels. The introduction
of heading-altitude rules is expected to favour the efficacy of this SSD method. First,
(near-)head-on conflicts during cruising phase are no longer expected as, in each altitude
layer, aircraft have similar headings. Second, when using SSD for speed resolution, having
more surrounding aircraft will likely result in fewer solutions within the solution space. In
extreme cases, a single joint solution may not even exist. As a result, the behaviour of the
SDD method is severely hindered on a high traffic density layer. Dividing all traffic into
several layers is likely to reduce the saturation of the solution space.

3.3.4. STATE-BASED VS INTENT-BASED RESOLUTION
Most tactical conflict resolution methods rely on nominal state-based extrapolations to
determine the closest point of approach (CPA) between aircraft. State-based methods
assume a projection based on the aircraft’s current position and velocity vector. However,
when future trajectory changes of all aircraft involved are not taken into account, false
alarms may occur, and future LoSs may be overlooked. A state-based method can only
adapt to a heading change once the aircraft completes the change and the new heading
is the new state. A method which employs intent trajectory prediction can compute
this future heading change before it starts, and therefore prevent last minute risk prone
situations resulting from the change. Given the high number of turns necessary within an
urban setting, research on the use of intent information in this environment is relevant.

Intent is commonly used in multi-agent coordination to improve safety [177]. For
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example, in road vehicles, light signaling is used to indicate an imminent turn. With air-
craft, explicit intent sharing is not so trivial. The future trajectory is defined by connecting
future trajectory change points (TCPs), which must be shared and processed by other air-
craft. As a result, only aircrafts that have sufficient technology to transmit and handle this
data without considerable delay have access to the airspace. The complete TCP plan may
be shared with one data transmission, reducing the number of necessary data exchanges.
However, uncertainties increase throughout flight time as aircraft progressively deviate
from their nominal intent to avoid conflicts. Another option is to share future TCPs up to
a predefined look-ahead time. This is done in this work; we consider future TCPs up to
the conflict detection look-ahead time to be known by all aircraft.

Nevertheless, state information can never be completely removed from the computa-
tion as, for imminent LoSs, it is often preferable to minimise the state change (‘shortest-
way-out’ principle) than to follow the nominal intent. There are situations where con-
sidering propagation of both state and intent information result in non-intersection
trajectories (e.g., near an almost reverse turn). In cases where considering both pos-
sibilities results in no available conflict-free solutions, one may have to be prioritised.
Thus, the combination of state and intent information, and when to prioritise one of
these, must be accounted for in advance. Speed-only conflict resolution, as used in this
work, has the advantage of not moving aircraft away from their TCPs. However, it can
delay or advance its crossing. Finally, the use of TCP points may limit conflict resolution
coordination. Aircraft may be expected to move towards their next TCP instead of taking
opposite directions to avoid each other. As a result, safety improvements resulting directly
from the use of intent must always be considered in conjunction with the expense of its
implementation.

Intent information can be added to the VOs considered in the SSD based on the work
of Velasco [94]. Such will alter their shape, thus resulting in a different set of velocity
vectors which do not intersect the intruders’ VOs (see Figure 3.8). This section shows how
a VO can be built with intent information.

Intent

State

Vmin

Vmax

2

1

(1) Using state information

(2) Using intent information

Figure 3.8: Shape of the VO depending on whether state or intent information is used to propagate the current
trajectory of the intruder into the future.

The velocity, vc , which will make the ownship occupy the same position as the intruder
at a given time, tc , is equal to:
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vc (P A(tc ) = PB (tc )) = PB (tc )−P A(t0)

tc − t0
= d(tc )

tc − t0
, (3.5)

where dc (tc ) represents the distance the ownship aircraft must travel in order to collide
with the intruder at time tc . In theory, the VO of an intruder can be built from tc = t0 to
tc →∞. For each tc , the distance d(tc ) that the ownship would have to travel, and the
necessary velocity to do so within tc − t0, can be identified. As |vc | increases, tc decreases
from tc →∞ to tc = t0. However, in practise, the upper limit of the VO is set as the look-
ahead time value for conflict detection. Given the symmetrical relationship between
the radius of the circular set of velocities r and the radius of the protected zone R (see
Figure 3.6), the former can be determined:

r (tc )

|vc (tc )| =
R

d(tc )
. (3.6)

Given Equation 3.5, Equation 3.6 can be transformed into:

r (tc ) = R

tc − t0
. (3.7)

For each time to collision, tc , a new VO circle can be calculated based on the predicted
heading, velocity, and acceleration of the intruder at that time. The VO will then be
formed by connecting these circles (Figure 3.9). For a VO without intent, lines connecting
all the circles in the VO are straight, maintaining the same direction and size progression
throughout time. However, when considering intent, circles do not follow the same
progression.

vc (tc )

θ

(vx , vy )

r (tc )

Figure 3.9: VO built with intent information. The VO circles are centered at vc (tc).

Considering that time can be expressed along the bisector of the VO, the VO itself
can be identified as a family of circular curves, with their centre at vc (tc) along the VO
bisector. The envelope of a family of curves is defined as [178]:

[
vx

vy

]
= vc (tc )+ rc (tc )

[
cos(θ)

si n(θ)

]
, ∀ θ ∈ [−π,π], tc ∈ [tc ,∞], (3.8)

where vx , vy are the components of the velocity vector for each VO circle, and θ the
angular coordinate. Deriving the envelope equation will result in the values of θ for which
vx , vy are the tangent points on the envelope curve.
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By assuming that the collision vectors are differentiable, the envelope of the family of
circles defined in Equation 3.8, is [178]:∣∣∣∣∣

∂vx
∂tc

∂vx
∂θ

∂vy

∂tc

∂vy

∂θ

∣∣∣∣∣= 0. (3.9)

By resorting to the following notation:

v̇cx =
∂Vcx

∂tc
, v̇cy =

∂Vcy

∂tc
, ṙ = dr

d tc
= −R

(tc − t0)2 , Θ≡ tan

(
θ

2

)
, (3.10)

we can rewrite Equations 3.8 and 3.9:

Θ2(−v̇cy + ṙ )+Θ(2v̇cy )+ (v̇cx + ṙ ) = 0, (3.11)

which can be solved as a second order polynomial. The solutions identify the values of Θ
for the tangent points of the envelope. However, these are real coordinates only when the
discriminant, |v̇c |2 − ṙ 2, is greater than zero, i.e., |v̇c | ≥ ṙ . As a result, VO circles can only
be calculated when the variation of the radius of the VO circles is less than the variation
of the centre of the circles. Through Equation 3.7, we can consider that VO circles are only
possible when:

|v̇c | < R

(tc − t0)2 . (3.12)

An important case to consider is that, when the minimum separation has already been
lost, no tangent solutions are possible. Therefore, intent VOs are only possible before LoS.

3.4. VARIABLE SPEED LIMIT ( VSL) IMPLEMENTATION
VSL systems set speed limits to avoid unstable traffic conditions. The objective is to create
a more homogeneous traffic situation leading to fewer congestion ‘hotspots’. VSL has
been successfully implemented with road vehicles to prevent crashes. More specifically,
Wu [179] has shown that VSL improves safety when used at highway entrances. There
are common aspects between the behaviour of agents at highway entrances and altitude
transitions, that make applying VSL systems in the latter appealing. First, an outsider
vehicle enters the main traffic lane in both situations. Second, similarly to highway
entrances, agents are not expected to stop or reduce their speed significantly during layer
transitions. Finally, while safety is paramount in both cases, it is also beneficial to improve
efficiency by reducing travel times. This section describes how VSL was implemented for
layer transitions.

3.4.1. AGENT
Multiple works that have applied reinforcement learning within air traffic control define
aircraft as agents [180–184]. However, for air traffic control flow, preference is often given
to some structural element within the operational environment [185]. This allows for a
general control over aircraft, without having to directly control each single aircraft. The
latter approach is not feasible within the high traffic densities expected, for example, for
drone delivery operations [22]. Such would result in a large multi-agent system where
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with each action, the next state depends not only on the action performed by the ownship,
but on the combination of that action with the actions simultaneously performed by the
intruders. Current research [186, 187] shows that emergent behaviour and complexity
arise from agents interacting and co-evolving. From the point of view of each agent,
the environment is non-stationary and, as training progresses, modifies in a way that
cannot be explained by the agent’s behaviour alone. Additionally, in a real-world scenario,
having a fixed point is expected to facilitate the collection of data. Finally, aircraft may
not have complete observability over the environment, more specifically over spaces to
which they will travel in the future. Fixed zones are expected to have sufficient knowledge
within a surrounding radius and can be distributed in a way (almost) covering the entire
environment.

We employ an RL agent whose objective is to learn to set optimal speed limits in ‘roads’
of the environment, creating a homogeneous speed situation that guarantees minimum
separation between cruising and climbing/descending aircraft. These roads do not have
hard set delimiting points as in other works where physical entrances to the roads are
used as limits [185]. We chose to let aircraft transition at whatever road better benefits
their trajectory. As a result, the roads at which speed limits are applied depend on the
route of climbing/descending aircraft. Figure 3.10 displays the following sub-sections:

• Detection Section: where cruising traffic is detected.
• Control Section: where aircraft adjust to the maximum speed set by the VSL agent.
• Entrance/Exit Section: where aircraft from adjacent traffic layers are expected to

enter the current layer and/or cruising aircraft are expected to exit the current layer.
Aircraft are expected to comply with the maximum speed set by the VSL agent.

Detection Section Control Section Entrance/Exit Section

MAX
SPEED

Figure 3.10: Sub-sections forming a road constructed around the movement of a climbing/descending aircraft.
The RL agent will set a maximum speed limit for the entrance/exit section.

The entrance/exit sections of two different roads may not immediately follow each
other. First, there would be not enough space for aircraft to adjust to the maximum speed
on the second road. Second, it would not be possible to correctly assess the effect of
each speed limit individually. As a result, one control section separating the two must
be guaranteed. Figure 3.11 shows an example of entrance/exit sections formed around
climbing/descending aircraft, while still maintaining minimum distance between each
other. When this is not possible with the setting of the sections between two nodes, as is
the case with the first and third roads, the length of the entrance/exit section is increased
to include additional spatial nodes.
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Detection Control Entrance/Exit

1st Road

Detection Control Entrance/
Exit

2nd Road

Detection Control Entrance/Exit

3r d Road

Figure 3.11: Two entrance/exit sections cannot follow each other. At least one control section must be set
between the two.

It is assumed that all aircraft are able to adopt the set maximum speed. The max-
imum speed has a duration of 60 seconds. Afterward, if there are still aircraft climb-
ing/descending to/from the road, a new maximum speed is requested with the state of
the traffic in the road at that point. A 60 second time period was considered sufficient to
correctly assess the consequences of the chosen maximum speed, while still allowing the
RL agent to adequately respond to the changes in traffic flow over time.

3.4.2. LEARNING ALGORITHM

An RL method consists of an agent that interacts with an environment E in discrete
timesteps. At each timestep, the agent receives the current state s of the environment
and performs an action a for which it receives a reward st . The behaviour of an agent is
defined by a policy, π, which maps states to a probability distribution over the available
actions. The goal is to learn a policy that maximises the reward. Many RL algorithms have
been researched in terms of defining the expected reward following action a. This work
uses the Deep Deterministic Policy Gradient (DDPG), defined by Lillicrap [163].

Policy gradient algorithms first evaluate the policy, and then follow the policy gradient
to maximise performance. DDPG is a deterministic actor-critic policy gradient algorithm,
designed to handle continuous and high-dimensional state and action spaces. It has
been shown to outperform other RL algorithms in environments with stable dynam-
ics [164]. However, it can become unstable, being particularly sensitive to reward scale
settings [188, 189]. As a result, the rewards must be carefully defined. The pseudo-code
for DDPG is displayed in Algorithm 3.1.

DDPG uses an actor-critic architecture. The actor produces an action given the current
state of the environment. The critic estimates the value of any given state, which is used
to update the preference for the executed action. DDPG uses two neural networks, one
for the actor and one for the critic. The actor function µ(s|θµ) (also called policy) specifies
the output action a as a function of the input (i.e., the current state s of the environment)
in the direction suggested by the critic. The critic Q(s, a|θQ ) evaluates the actor’s policy,
by estimating the state-action value of the current policy. It evaluates the new state to
determine whether it is better or worse than expected. The critic network is updated from
the gradients obtained from a temporal-difference (TD) error signal at each time step. The
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Algorithm 3.1 Deep Deterministic Policy Gradient
Initialize critic Q(s|aµ) and actor µ(s|θµ) networks, and replay buffer R
for all episodes do

Initialize action exploration
while episode not ended do

Select action at according to the current state st from environment and the current actor network
Perform action at in the environment and receive reward rt and new state st+1
Store transition (st , at ,rt , st+1) in replay buffer R
Sample a random mini-batch of N transitions from R
Update critic by minimizing the loss
Update actor policy using the sample policy gradient
Update target networks

end while
Reset the environment

end for

output of the critic drives learning in both the actor and the critic. θµ and θQ represent
the weights of each network. Updating the actor and critic neural network weights with
the values calculated by the networks may lead to divergence. As a result, target networks
are used to generate the targets. The target networks are time-delayed copies of their
original networks, µ′(s|θµ′ ), and target critic, Q(s′, a|θQ ′

), which slowly track the learnt
networks. All hidden neural networks use the non-sigmoidal rectified linear unit (ReLU)
activation function, as this has been shown to outperform other functions in statistical
performance and computational cost [190].

The neural network parameters used in our experimental results are based on Lilli-
crap [163]. Experience replay is used to improve the independence of the samples in the
input batch. Past experiences are stored in a replay buffer, a finite sized cache R. At each
timestamp, the actor and critic are updated by sampling data from this buffer. However, if
the replay buffer becomes full, the oldest samples are discarded. Finally, exploration noise
is used to promote exploration of the environment; an Ornstein-Uhlenbeck process [191]
is used in parallel to the authors of the DDPG method.

3.4.3. STATE
The state should provide enough information on the evolution of the traffic flow to allow
the RL method to correctly respond to the emergent behaviour. Due to the complexity
of the dynamics of traffic flow, it is non-trivial to precisely define this evolution. As
suggested by other works [179], traffic flow is defined herein as the number of aircraft
passing through a first measure point at the beginning of the road and exiting at a second
measure point at the end of the road. In this work, these correspond to the start of the
detection section and the end of the entrance/exit section represented in Figure 3.10,
respectively. Furthermore, it is assumed that there is enough information available on
the aircraft and speed limits on each road. A fixed state array (dim = 4) is used, with each
position of the array identifying the following:

1. Number of aircraft expected to transition vertically into the entrance/exit section
in the next 60 seconds.

2. Number of aircraft expected to transition vertically out of the entrance/exit section
in the next 60 seconds.
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3. Cruising aircraft expected to travel from the detection area into the entrance/exit
section in the next 60 seconds.

4. Current maximum speed in the detection section.

3.4.4. ACTION
A softmax activation function is used for classification. This function normalises an input
vector,~z, of K real values into a vector of K real values between 0 and 1 that sums up to 1.
As a result, these values can be interpreted as probabilities. The mathematical definition
of the softmax function is as follows:

σ(~z)i = ezi∑K
j=1 exp(z j )

, (3.13)

where zi are the elements of the input vector for the softmax function.
Probability values are set for the discrete options for maximum speed: 10 kts, 15 kts,

20 kts, 25 kts, or 30 kts. The speed value with the highest probability value is used.

3.4.5. REWARD
The reward given to the RL agent is based primarily on safety. However, within safety,
several factors may be considered. The paramount objective is to lead the agent to favour
maximum speeds that reduce the likelihood of LoSs. In previous work [182], we have seen
that focusing mainly on the total number of LoSs is the best reward structure to reduce
it. However, the number of LoSs per call to the RL agent might be too sparse to favour
fast convergence to an optimal solution. As a result, to complement the number of LoSs,
we consider near-LoSs, i.e., aircraft encounters that nearly result in a loss of minimum
separation. Near-LoSs are identified on the basis of the time to LoS. However, naturally, a
near-LoS has a weight lower than that of a LoS.

Although VSL is used primarily to improve safety and not efficiency [192], by favouring
higher speeds, it is possible to reduce travel times. With this in mind, two elements
favouring higher speeds are added to the reward structure: (1) a positive reward for when
the final detected outflow matches/surpasses the expected outflow, and negative when it
is inferior; (2) a positive reward when higher travelling speeds are selected. The expected
outflow is calculated as follows:

outflow = aircraftcruise −aircraftout +aircraftin, (3.14)

where aircraftcruise represents the aircraft detected at the start of the detection section,
aircraftout the aircraft transitioning vertically out of the section, and aircraftin the aircraft
expected to vertically merge into the section. Note that the expected outflow is only
calculated for the 60 seconds period that the maximum speed is set for. The final outflow
is then verified by checking the aircraft that cross the end of the entrance/exit section. In
summary, the final reward value is obtained by summing the following components:

1. A negative reward for a LoS within the road (-10 per LoS).
2. A negative reward for near-LoS within the road (-4 when time to Los < 10s; -2 when

time to LoS > 10s).
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3. The difference between the final detected traffic flow and the expected traffic flow.
Higher traffic flow is positively rewarded (+1 for each additional aircraft that leaves
the road). An inferior traffic flow is negatively rewarded (-1 for each aircraft that
does not exit the road as it was expected).

4. A positive reward for higher maximum speeds (0 for 10 kts; +1 for 15 kts; +2 for
20 kts; +3 for 25 kts; +4 for 30 kts).

3.4.6. AIRCRAFT COMPLIANCE WITH THE MAXIMUM SPEED
The success of VSL implementation is directly related to the percentage of aircraft that
comply with maximum speeds. Otherwise, speed heterogeneity in the environment is
not mitigated, and thus no improvement can be achieved. The effect of non-compliance
per part of the operating aircraft is analysed within the experimental results.

3.5. EXPERIMENT: CR IN URBAN ENVIRONMENT WITH VSL
3.5.1. APPARATUS AND AIRCRAFT MODEL
The Open Air Traffic Simulator Bluesky [25] was used to test the efficiency of speed-only
based conflict resolution with SSD in an urban environment. Bluesky has an Airborne
Separation Assurance System (ASAS) to which CD&R methods can be added, allowing for
different CD&R implementations to be tested under the same scenarios and conditions.
A DJI Mavic Pro model was used for the simulations. Speed and mass were retrieved from
the manufacturers data, and common values were assumed for the turn rate (max: 15◦/s)
and acceleration/breaking (1.0kts/s).

3.5.2. INDEPENDENT VARIABLES
Four independent variables are included in this experiment: state/intent information
usage, heading-altitude rules, compliance with variable speed limits, and traffic density.

STATE/INTENT INFORMATION USAGE

Two different situations with using state and intent information will be tested in order to
establish how to maximise the effect of using intent information:

1. Only state (S) information: common application that will be used as a performance
baseline for comparison.

2. State and intent information is used simultaneously (S ∧ I ). Conflicts are detected
and resolved by preparing for both situations: whether intruding aircraft continue
their current state or follow their intent. This is a conservative approach, with
aircraft working to prevent all possible risk situations. The disadvantage is that
more VOs are included in the solution space and the number of velocity vectors
which can avoid all conflicts becomes smaller; it can potentially even reach a
situation where no solution exists.

HEADING-ALTITUDE RULES

Two different rules settings will be tested with:
1. All aircraft travel at the same altitude layer, independently of heading. Used for

baseline comparison.
2. Multiple altitude layers are used. In each layer, aircraft have similar headings.
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VARIABLE SPEED LIMITS COMPLIANCE

When multiple altitude layers are used, three different situations of VSL usage will be
tested with:

1. No variable speed limits are applied, aircraft to follow the maximum cruise speed.
Used for a baseline comparison.

2. Variable speed limits applied by the RL agent. Aircraft with compliance rate of 100%.
3. Variable speed limits applied by the RL agent. Aircraft with compliance rate of 90%.

TRAFFIC DENSITY

Traffic density varies from low to high according to Table 3.2. High densities spend at least
more than 10% of their flight time avoiding conflicts [193].

Table 3.2: Traffic volume used in the experimental simulations.

Low Medium High

Traffic density [ac/10000NM2] 81,247 162,495 243,744

Number of instantaneous aircraft [-] 25 50 75

Number of spawned aircraft [-] 453 926 1366

The RL agent used to set variable speed limits is trained at a medium traffic density.
Afterward, testing will use all three traffic densities: low, medium, and high. In this way, it
is possible to assess the efficiency of an agent trained at a different traffic density.

3.6. EXPERIMENTAL DESIGN AND PROCEDURE

3.6.1. MINIMUM SEPARATION
The value of the minimum safe separation distance may depend on the density of air
traffic and the region of the airspace. For unmanned aviation, there are no established
separation distance standards yet, although 50 m for horizontal separation is a value
commonly used in research [59], and will therefore be used in the experiments herein
performed. For vertical separation, 30 ft was assumed.

3.6.2. CONFLICT DETECTION
The experiment will employ state-based conflict detection for all conditions. This assumes
a linear propagation of the current state of all involved aircraft. Using this approach, the
time to CPA (in seconds) is calculated as:

tC PA =−
~dr el ·~vr el

~vr el
, (3.15)

where ~dr el is the cartesian distance vector between the involved aircraft (in meters), and
~vr el the vector difference between the velocity vectors of the involved aircraft (in meters
per second), pointed towards the intruder’s protected zone.

The distance between aircraft at CPA (in meters) is calculated as:

dC PA =
√
~d 2

r el − tC PA
2 ·~v 2

r el . (3.16)
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When the separation distance is calculated to be smaller than the specified minimal
horizontal spacing, a time interval can be calculated in which separation will be lost if no
action is taken:

ti n , tout = tC PA ±
√

RP Z
2 −dC PA

2

~vr el
(3.17)

These equations will be used to detect conflicts, which are said to occur when dC PA <
RP Z , and ti n ≤ tl ookahead , where RP Z is the radius of the protected zone, or the minimum
horizontal separation, and tlookahead is the specified look-ahead time. A look-ahead time
of 30 seconds is used for conflict detection and resolution.

3.6.3. SIMULATION SCENARIOS

The geographic area used in the experiment is a small section of San Francisco with an
area of 1.708 NM2, as was illustrated in Figure 3.2. Roads and intersections are represented
by edges and nodes, which aircraft can use to build their route. Aircraft can only travel
from one node to another if there is a road connection between the two. The aircraft
spawn locations (origins) and destinations are placed in alternating order on the edge of
this area, with a spacing equal to the minimum separation distance plus a 10% margin, to
avoid conflicts between spawn aircraft and aircraft arriving at their final destination. In
the case of only one traffic layer, aircraft are spawned at that corresponding altitude. When
multiple layers are used, aircraft spawn at the altitude of the layer that corresponds to
the initial heading. In terms of climb rate, aircraft are expected to climb almost vertically.
Take-off and landing are not simulated.

Each aircraft has three delivery points (or waypoints) through which it must pass. The
delivery points are always nodes on the map. The exact nodes are randomly assigned.
However, the pool of nodes to choose from is spread in such a way that each aircraft
crosses the map. The total flight distance and time depend on the location of these
nodes. During the generation of the scenario files, the total flight path/time of the already
created aircraft was taken into account, so the desired instantaneous traffic densities are
respected. These values will be presented in the experimental results for reference. Each
scenario runs for 2 hours. Each traffic density is tested with three different repetitions,
each with different trajectories.

Between the set delivery points, it is assumed that aircraft will favour safety and
efficiency in their route planning, in this order. The main priority of any aircraft shall be
to limit the number of altitude transitions, as crossing multiple layers is likely to result in
both an increase of the total number of conflicts and of the travel time. Next, adoption of
routes with the fewest turns is also preferable, as in our scenarios more turns lead to more
altitude transitions. Lastly, routes with shorter distances are preferable efficiency-wise. As
a result, aircraft calculate their trajectory prioritising, in decreasing order of preference:

1. Fewer altitude variations.
2. Fewer turns.
3. Shortest distance.

Ultimately, an aircraft is removed from the simulation once it leaves the simulation
area. To prevent aircraft being removed incorrectly when travelling through an edge road,
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aircraft are set to move out of the map once they finish their route and are removed once
they move away from an edge node.

3.6.4. DEPENDENT VARIABLES
Three different categories of measures are used to evaluate the effect of the different
operating rules set in the simulation environment: safety, stability, and efficiency.

SAFETY ANALYSIS

Safety is defined in terms of the number and duration of conflicts and losses of separation,
where fewer conflicts and losses of separation are considered safer. Additionally, losses of
separation are distinguished based on their severity according to how close aircraft get to
each other:

LoSsev = R −dC PA

R
. (3.18)

A low separation severity is preferred.

STABILITY ANALYSIS

Stability refers to the tendency for tactical conflict resolution manoeuvres to create sec-
ondary conflicts. In literature, this effect has been measured using the Domino Effect
Parameter (DEP) [151]:

DEP =
nON

c f l −nOF F
c f l

nOF F
c f l

, (3.19)

where nON
c f l and nOF F

c f l represent the number of conflicts with CD&R ON and OFF, respec-

tively. A higher DEP value indicates a more destabilising method, creating more conflict
chain reactions.

Naturally, conflict resolution manoeuvres that deviate from the nominal path are
expected to create more secondary conflicts, due to the scarcity of free space at high
travelling densities. Herein, speed-only based resolution manoeuvres are applied, and
thus aircraft do not deviate from their path due to conflict resolution. As a result, the
effect on stability from avoiding conflicts is not expected to be as pronounced. However,
when multiple traffic layers are employed, aircraft increase their path to correctly adjust
to the heading range of the crossed layers. The negative effect on stability resulting from
this increase in flight path/time will be analysed.

EFFICIENCY ANALYSIS

Efficiency is evaluated in terms of the distance travelled and the duration of the flight.
Significantly increasing the path travelled and/or the duration of the flight is considered
inefficient. The effect on total flight path/time resulting from layer transitions will be
analysed and compared with the baseline case of having only one traffic layer. Further-
more, conflict resolution and the application of variable speed limits with the RL agent
are expected to have an effect on the average speed of the aircraft. The added flight time
will be compared to the baseline case, where no conflict resolution is performed and no
speed limits are set.
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3.7. EXPERIMENTAL HYPOTHESES

3.7.1. SPEED-ONLY CONFLICT RESOLUTION

Speed-only conflict resolution naturally has its limitations: there are not as many options
for resolution manoeuvres as when heading and/or altitude variations are also possible.
It was hypothesised that the SSD method will have better efficacy when applying heading-
altitude rules. (Near-)head-on conflicts are not expected, as aircraft in the same altitude
layer, have similar headings. Independently of the airspace structure, efficacy of the
speed-only based conflict resolution method is expected to deteriorate as traffic density
increases. Existent research [61, 62] show that the efficacy of speed-only resolution
depends on (1) the nominal minimal separation between the aircraft, and (2) the time
available to loss of separation. As traffic density increases, the space between aircraft is
expected to reduce, and consequently, so is the time to loss of separation.

3.7.2. STATE VS INTENT INFORMATION IN CONFLICT RESOLUTION

It was hypothesised that using intent information alone is not sufficient for successful
conflict resolution. At high traffic transitions, aircraft spent a considerable amount of
time in conflict, where the speed vector output from the conflict resolution method is
used instead of the intent speed vector. Ultimately, the current state information is the
best indication of the state during conflict resolution, as aircraft will try to differ from it as
little as possible (i.e., the conflict-free speed vector that constitutes the smallest deviation
from the current state is always chosen for conflict resolution).

However, it was expected that considering intent information would improve safety.
With state information only, heading/altitude variations would only be detected once
intruders have completed the change, which may be too late to prevent LoSs. It was
hypothesised that using both state and intent information simultaneously (S ∧ I ) would
increase the number of detected conflicts (i.e., false negative conflicts are added and false
positive conflicts are not discarded), but would prevent more LoSs as all possible future
cases (i.e., intruder following intent or entering conflict resolution) are defended from in
advance.

It is not clear in which structure (i.e., with one layer or multiple layers) the use of
intent is more beneficial. There are advantages and disadvantages in both cases. On the
one hand, when all traffic operates at the same altitude, intent has the biggest impact, as
it allows for removing false positive conflicts and adding false negative conflicts resulting
directly from turns. On the other hand, given the high traffic density, adding intent
may saturate the solution space and render finding an optimal solution impossible.
Additionally, with multiple layers, the structure itself already defends from turns, as these
are performed within the transition altitudes. In this case, intent information aids by
removing false positive conflicts from intruders that are about to climb/descend and adds
false negative conflicts from intruders about to join the layer of the ownship. However,
here resolving all conflicts is non-trivial as there are conflicts in both horizontal and
vertical layers. Even though the ownship is better informed regarding conflicts, this may
not be enough to actually find a solution that successfully resolves them all. As a result,
adding intent may not have a pronounced effect on safety.



3.8. EXPERIMENTAL RESULTS

3

71

3.7.3. HEADING-ALTITUDE RULES

The application of heading-altitude rules is expected to strongly reduce the number of
LoSs and conflicts as both the traffic density and the likelihood of aircraft meeting in
conflict decrease compared to having only one traffic layer. The weakness of this method
is the added conflicts resulting from vertical transitions between layers. Having to resolve
conflicts on both the horizontal and vertical dimensions, increases the complexity of
finding a solution to resolve all conflicts. Having a high number of altitude transitions,
which is expected at high traffic densities, hinders conflict resolution efficiency. Efficiency-
wise, heading-altitude rules are expected to increase the 3D flight travel distance and,
consequently, the flight travel distance.

3.7.4. VARIABLE SPEED LIMITS WITH REINFORCEMENT LEARNING

It was hypothesised that setting variable speed limits would improve the speed homo-
geneity of the environment, which in turn improves safety between cruising and climb-
ing/descending aircraft. Between the former and the latter, speed differences are expected.
However, it was also hypothesised that VSL only improves safety when a large majority of
the operating traffic complies with the speed limits. Safety levels are expected to decrease
directly with the compliance rate.

The RL agent will be tested with traffic densities similar and different from those
of the training conditions. The agent is naturally expected to perform better at the
densities at which it was trained. However, applying the agent at different densities allows
one to assess the dependency of maximum speed solutions on traffic densities. It was
hypothesised that the agent may be the least efficient at densities higher than the one in
which it was trained, as the complexity of the emergent behaviour and of the consequent
solution increases proportionally with the density.

3.8. EXPERIMENTAL RESULTS
The final best scenario expected is when all the structural rules are applied to the environ-
ment: (1) heading-altitude rules divide aircraft into multiple layers, (2) variable speed lim-
its are in place to improve speed homogeneity between cruising and climbing/descending
aircraft, and (3) intent trajectory propagation is added to conflict resolution, allowing
the CR method to prepare for all possible future cases (i.e., intruders following intent
or entering conflict resolution mode). However, to properly analyse the effect of the
multiple independent variables on the dependent measures, several baseline situations
are presented alongside this scenario: (a) one layer scenario (i.e., all traffic operates at the
same altitude), (b) a multi-layer situation without variable speed limits, (c) a multi-layer
situation with only 90% compliance rate to the variable speed limits. All of the previous
situations are tested with different traffic densities, and different state/intent information
usage for conflict resolution, as well as a situation without conflict resolution (CR-OFF).

Box-and-whisker plots are used on multiple occasions to visualise the sample distri-
bution over several simulation repetitions. Efficiency, stability, and time in conflict values
present outliers; the number of outliers is consistent throughout (<10% of the total data).
As these do not contribute to the comparison between the different states, they are not
displayed for the sake of clarity.
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3.8.1. TRAINING OF THE RL AGENT FOR VARIABLE SPEED LIMITS
The RL agent responsible for setting the variable speed limits was trained at a medium
traffic density. In total, 300 episodes were run. An episode is a full execution of the
simulation environment, which runs for 2 hours. During training, conflict resolution was
used with state information only, in order to increase computational speed.

SAFETY ANALYSIS

The episodes do not all have the same number of calls to the DDPG method. This is
proportional to the maximum speeds set. Each maximum speed is set for 60 seconds.
If lower speeds are used during the transition progress, traffic will move slower. As a
result, after 60 seconds, the DDPG may be called again for the same section if aircraft
transitioning between layers have not finished their transition yet. Figure 3.12 shows
the evolution of the total number of calls to the DDPG per episode during training. The
trained RL agent stabilised around 1755 calls.

Figure 3.12: Number of calls to the RL agent per episode during training.

Figure 3.13 shows the evolution of the total number of LoSs per episode during training.
The method can converge to a stable value after around 250 episodes.

Figure 3.13: Total number of losses of separation per episode during training of the RL agent.

Figure 3.14 shows the speed limits applied in one episode that lead to a decrease in the
total number of LoSs. At each step, the RL agent picks a speed limit from the set of discrete
options displayed on the y-axis. In almost 95% of the times, a maximum speed of 25 kts
was chosen. Favouring one speed value is a result of aircraft being able to climb/descend
at any point. Consequently, the sections are very close together, and maintaining a
homogeneous maximum speed between neighbouring sections is beneficial. The other
discrete options were used in similar numbers, with no clear preference between the
four options. From our experiments, we see that those singular cases where smaller
maximum speed values (10 kts–20 kts) are used are crucial. These lead to better final
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results safety-wise than an episode where all maximum speeds are set at 25 kts. However,
from the results, it is not clear how or when the agent decides to apply lower speeds as a
limit.

Why 25 kts? The reinforcement learning agent found this value to be the best balance
between the desire for high speed, in order not to considerably increase travel time, and
improving safety. This is naturally related with the performance limits of all aircraft,
separation between traffic layers, rate of climbing. All these factors contribute to the best
decision; different values will likely yield different maximum speeds.

Figure 3.14: All maximum speeds set in one training episode.

Figure 3.15 shows the average reward per call to the RL agent in the same episode
shown in Figure 3.14. In most steps, the RL agent achieves a positive reward. However,
outliers indicate that, on some occasions, preventing LoSs/near-LoSs is practically im-
possible. Naturally, these rewards are directly related to the traffic density in which the
agent is trained and the consequent number of LoSs and near misses.

Figure 3.15: Average reward per action obtained by RL agent in one training episode.

Figure 3.16 shows the evolution of the total number of pairwise conflicts per episode
during training. As seen in Figures 3.17 and 3.19, the total number of conflicts is not
directly correlated with the total number of LoSs. During training, not all episodes with
the fewest conflicts also had the fewest LoSs.

Figure 3.16: Total number of pairwise conflicts per episodes during training of the RL agent.
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3.8.2. TESTING OF THE RL AGENT FOR VARIABLE SPEED LIMITS

SAFETY ANALYSIS

Figure 3.17 shows the mean total number of pairwise conflicts. A pairwise conflict is
counted only once, independently of its duration. As hypothesised, applying heading-
altitude rules reduces the total number of conflicts, on average, by 80%. As aircraft are
dispersed per the several altitude layers, there is more free space in each layer. Additionally,
conflict resolution only reduces the total number of conflicts in the one layer situation,
with a bigger efficiency at a high traffic density. However, the lack of a strong reduction in
the total number of conflicts is not necessarily a sign of poor efficiency, since conflicts
are a necessary element for propagating speed reductions backward at intersections.
Furthermore, as expected, when using both state and intent information, more conflicts
are considered than when using state information alone. Finally, applying variable speed
limits (VSL) on a multi-layer structure does not have a pronounced effect on the number
of conflicts.

Figure 3.17: Mean total number of pairwise conflicts.

Figure 3.18 shows the amount of time spent in ‘conflict mode’ per aircraft. An aircraft
enters ‘conflict mode’ when it adopts a new state computed by the CR method. The
aircraft will exit this mode, once it is detected that it is past the previously calculated
time to CPA (and no other conflict is detected). At this point, the aircraft will redirect
its course to the next waypoint. The time to recovery is not included in the total time in
conflict. Based on this information and Figure 3.17, the number of conflicts is not directly
correlated with the amount of time in conflict. The considerable increase in number
of conflicts with a high traffic density compared to a medium traffic density, does not
have a direct correlation in the average time in conflict. Employing heading-altitude
rules reduces the average time in conflict, albeit more significantly with a lower traffic
density. Additionally, there is no pronounced difference in time of conflict resulting from
employing variable speed limits. Finally, the addition of intent information only increases
the time in conflict with a one-layer structure.

Figure 3.19 shows the mean total number of LoSs. As hypothesised, applying heading-
altitude rules reduces the total number of LoSs on average by 85%. When all traffic
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Figure 3.18: Total time in conflict per aircraft.

is contained in one layer, speed-only based conflict resolution is hardly capable of an
improvement. At medium and high traffic densities, only about 5% of the total number
of LoSs are prevented compared to a CR-OFF situation. With the high likelihood of
aircraft meeting in conflict increasing with traffic density, it is progressively harder for
the SSD method to find a solution that resolves all conflicts. Furthermore, by comparing
Figures 3.19 and 3.17, we see that the relation between the total number of LoSs and
conflicts is not linear; fewer conflicts do not necessarily equal fewer LoSs.

Unfortunately, the addition of intent results in a negligible reduction in the total num-
ber of LoSs with a one-layer structure. As hypothesised, at these high densities, the benefit
of adding intent information is outweighed by the increase in saturation of the solution
space. With a multi-layer structure, the benefit is more pronounced, albeit still small:
adding intent reduces the total number of LoSs to about 5% at high traffic densities com-
pared to a state-only conflict resolution. Adding intent allows aircraft to better assess the
danger of climbing/descending intruders. However, speed-only based conflict resolution
can do little with simultaneous horizontal and vertical conflicts. Additionally, note that a
small look-ahead time reduces the differences between state and intent information. In
these simulations, a look-ahead time of 30 s was used for conflict detection and resolu-
tion. With a higher look-ahead time, as the state of intruders is projected farther into the
future, thus increasing uncertainties, the difference between intent and state information
is greater. Thus, intent becomes progressively more beneficial as the look-ahead time
increases. On the other hand, a larger look-ahead time results in more conflicts being
accounted for, thus saturating the solution space and increasing the number of situations
where no solution is available. All these factors must be taken into account.

Decreasing the number of losses of minimum separation is the paramount objective
of employing variable speed limits with a reinforcement learning agent. With full compli-
ance, there is an average decrease of 15% of the total number of LoSs at the medium traffic
density in which the agent was trained. With different traffic densities, as hypothesised,
the agent is more efficient with a lower density than with a higher one. As traffic densities
increase, so does the complexity of the emergent behaviour, and more complex solutions
need to be developed. Furthermore, as the compliance rate decreases, the benefit is lost.
A 90% compliance rate is already not sufficient. Consequently, a 100% compliance rate
must be guaranteed.
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Figure 3.19: Mean total number of losses of separation.

Figure 3.20 displays the intrusion severity. No direct correlation was observed between
the severity of the intrusion and the traffic density. As the one-layer situation has a much
greater number of total LoSs (see Figure 3.19), there is a more heterogeneous set of values
and the average severity is closer to the median of the total range. However, it is interesting
to note that, with multiple layers, intrusion severity has a high average, meaning that
aircraft in a LoS situation get very close at CPA. This is likely due to conflicts resulting
between cruising and climbing/descending aircraft, which are very hard to defend from
with only speed-based conflict resolution.

Figure 3.20: Intrusion severity rate.

Figures 3.21 and 3.22 focus on the multiple layers configuration in order to gain more
insight into how to further prevent LoSs between cruising and climbing/descending
aircraft. Figure 3.21 shows the relative speed between pairwise aircraft in a LoS situation.
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More LoSs occur when there is a higher relative speed between aircraft. As expected, with
a heterogeneous distribution of speed between aircraft, it is harder to maintain adequate
spacing between aircraft. Interestingly, at both low and medium traffic densities, variable
speed limits appear to have the same effect of reducing relative speeds as applying conflict
resolution.

Figure 3.21: Relative speed between pairs of aircraft during losses of separation with multiple layers.

Figure 3.22 shows where LoSs occur in a multi-layer situation without VSL. As expected,
most LoSs occur during the transition to different altitude layers. Improving safety during
these transitions should thus be the focus when using a multi-layer structure.

Figure 3.22: Schematic view of the altitude at which LoSs occur with multiple layers. The size of the points varies
between a maximum value of 182 and a minimum value of 3 LoSs.
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STABILITY ANALYSIS

Figure 3.23 displays the mean DEP value. A high positive value indicates the occurrence
of conflict chain reactions that cause airspace instability. As seen previously with the
total number of conflicts (see Figure 3.17), speed-only based conflict resolution does not
greatly influence the stability of the environment.

Figure 3.23: Domino effect parameter values.

EFFICIENCY ANALYSIS

For reference, Figures 3.24 and 3.25 show the average flight time and flight path per aircraft,
respectively, without conflict resolution. As expected, with multiple layers, aircraft travel
longer. Adding to their route, aircraft have to transition between layers which increases
their 3D flight distance and, consequently, their flight time.

Figure 3.24: Flight time per aircraft without CR. Figure 3.25: Flight path per aircraft without CR.

Figure 3.26 shows the average number of instantaneous aircraft per timestep of an
episode. The simulation scenarios were built taking into account an intended instan-
taneous traffic density of 25, 50, and 75 aircraft per low, medium, and traffic density,
respectively. These values were calculated for a CR-OFF, one-layer situation. In a multi-
layer situation, as seen in Figure 3.24, average flight time increases as a result of extra
climbing/descending actions as well as of the extra horizontal path to correctly adjust to
the traffic heading in each traversed layer. As a result, the average instantaneous traffic
density also increases. Additionally, it was expected that the application of conflict resolu-
tion increases flight time, as aircraft employ resolution speeds instead of their preferred
cruising speed, which is usually higher in order to decrease travel time. However, this
effect is pronounced only in a one-layer structure.

Figure 3.27 shows the extra flight time resulting of employing conflict resolution vs a
CR-OFF situation. Both situations, one-layer and multiple layers, have naturally different
CR-OFF values, as previously displayed in Figures 3.24 and 3.25. With only one layer,
conflict resolution has a worse efficiency. With a higher number of conflicts and time in
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Figure 3.26: Mean number of instantaneous aircraft per timestep throughout simulation scenarios.

conflict (see Figures 3.17 and 3.18, respectively), conflict resolution tends to pick solutions
with lower speeds, which increases flight time. When state and intent information are
used simultaneously (S ∧ I ), more conflicts are consider; the increase in flight time is
visible below.

Figure 3.27: Extra flight time per aircraft.

3.9. DISCUSSION
The application of heading-altitude rules, VSL, and the combination of intent with state
information had a positive effect in reducing the total number of LOSs (in decreasing
order of effect). However, there are questions regarding their implementation: (1) the
benefit of adding intent information is lost as traffic density increases, and thus its usage
should be weighted against the expected densities and cost of implementation; (2) VSL
implementation resulted in the same maximum speed value being employed most of the
time, which raises questions regarding the ability of the method to adapt and personalise
maximum speed values. Comparison with previous VSL research indicates that this might
be due to the characteristics of the environment: adjacent sections, one unique lane
with uniform cruising traffic, and rewards based on a safety factor that improves with
speed homogeneity. Further work with different airspace structures is needed to better
understand them. The following sub-sections dwell further into these subjects.

3.9.1. STATE VS INTENT INFORMATION IN CONFLICT RESOLUTION
Combining intent and state information reduces the number of LoSs compared to us-
ing state information alone. The efficacy of this method is due to the combination of
information of the current state and intent which provides guidance regarding the future
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state. However, a disadvantage of using both intent and state information simultaneously
with the SSD method is that the solution space becomes saturated faster, especially as the
traffic density increases. As a result, combining state and intent was more effective when
more traffic layers were in place, since there are fewer conflicts per layer to consider.

Furthermore, the benefit of using intent is directly associated with the type of varia-
tions allowed for conflict resolution. In previous work [194], intent information was added
to a no-boundary setting, with heading/speed variations for conflict resolution, and a
higher look-ahead time. The previous characteristics improved the benefit of adding
intent information. Being allowed to modify heading for conflict resolution, greatly in-
creases the number of conflict-free speed vectors which can be selected from the solution
space. Consequently, reduction of the amount of these vectors when intent information
is added, is not as detrimental as when only speed variation is possible. Thus, when using
a conflict resolution method such as SSD, using intent information might be beneficial
only at low traffic densities and/or when both heading and speed variation are allowed,
as more conflict-free resolution speed vectors are available.

Finally, the efficacy of all resolution manoeuvres is dependent on the speed, accelera-
tion, of the involved aircraft. Applying different resolution methods, and/or aircraft type,
may naturally produce different results. It may still be of interest to research how other
conflict detection and resolution methods react to adding intent information and which
differences may exist in the final resolution speeds selected. However, safety improve-
ments that result directly from the use of intent information must be considered together
with the expense of its implementation. First, the deterioration of safety improvements
must be hypothesised in a real-case scenario. Delays in data transmission and processing
may delay the reaction to state changes in neighbouring aircraft. Second, the effect on
safety is directly associated with the number of aircraft that can share and analyse intent
information. To achieve the desired improvement, most aircraft in the airspace would
require this capability.

3.9.2. HEADING-ALTITUDE RULES
The paramount factor in safety is the number of minimum separation violations. Here,
the airspace design can be seen as a first layer of protection, where structure is used to
reduce the likelihood of aircraft meeting and, consequently, the likelihood of conflicts.
Segmenting operating traffic into multiple altitude layers reduces both the number of
conflicts and the number of losses of minimum separation. Moreover, these rules allow for
prevention of (near-)head-on conflicts, which would otherwise be impossible to resolve
when heading variation for conflict resolution is not possible.

The improvement in safety comes at the cost of decreasing efficiency, as aircraft
must now add transition between altitude layers to their route. However, the decrease
in efficiency was small compared to the reduction in the number of losses of separation.
Ultimately, improving safety increases the number of aircraft allowed into the airspace.
Thus, heading-altitude rules are a good option from an operational perspective.

3.9.3. VARIABLE SPEED LIMIT WITH REINFORCEMENT LEARNING
Experimental results have shown that DDPG-based control of the maximum speeds
allowed in sections where vertical transitions are taking place, reduces losses of minimum
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separation. However, the benefit of variable speed limits is dramatically limited by the
following:

• The compliance rate of 90% already cancels out the benefit of employing speed
limits. Consequently, the necessary infrastructure should be in place to ensure that
the aircraft can identify and react correctly to these variable speed limits.

• Training in a specific traffic density proved somewhat inefficient for higher densities.
The RL agent should at least be trained at the highest traffic density expected in
actual operations. It may also be that different traffic densities require different
resolution strategies, as also hypothesised in the Metropolis project [13]. In this
case, the RL method must learn different responses per complexity of emergent
behaviour resulting from increasing traffic densities.

The excerpt of actions chosen by the RL method during one training episode shows
a recommendation of the same speed value for the majority of the episode. We assume
that this is due to the following reasons:

• Aircraft were able to climb/descend at any point, setting variable speed sections
in close proximity. A homogeneous maximum speed value between all sections
proved beneficial.

• The reward values were based on the efficiency of conflict resolution. Having
aircraft (rapidly) accelerate greatly reduces the efficiency of conflict resolution, as it
increases uncertainty regarding intruders’ trajectory propagation.

• A uniform distribution of the traffic density was favoured to establish a relation
between the allowed traffic density and the resulting safety level. Throughout one
episode, the number of instantaneous aircraft is expected to remain (almost) con-
stant, with variations resulting only from conflict resolution and/or randomisation
of trajectories.

Previous research [179, 195, 196] commonly employed highway sections far apart.
Thus, these do not have as much influence on each other. Additionally, traffic variation
was more pronounced (off-peak vs. peak traffic). Additionally, in a real-case scenario,
vehicles slow down to a halt to avoid collisions. In these cases, lower maximum speeds are
applied to limit frequent speed breaks. This behaviour is not present in our simulations,
and thus the RL method is free to favour higher speeds, which optimise traffic outflow.
From Wu [179], we learnt that the maximum speed variability is influenced both by the
reward formulation and by the traffic scenario in the lane. We advise future research to
focus on the validation of VSL behaviour with different airspace rules (e.g., predefined,
fixed climb/descent points; non-uniform traffic scenarios) for a better understanding of
the relation between airspace properties and speed control.

3.9.4. ADVICE FOR FUTURE WORK
In this work, a DDPG method was employed. As seen in previous research, this method
showed a fast convergence to an optimal solution. However, previous research has also
shown that it is sensitive to unstable dynamics [164]. This should be taken into account
when applying to different types of agents. In terms of further improvements with the
reinforcement learning method, the following is also advised:

• Exploring more powerful states and reward formulations.
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• Exploring different time periods for the duration of a maximum speed in a section.
Duration may be based instead on observable changes in the traffic scenario in the
section.

• The current implementation is unaware of the congestion that is building up some
distance ahead. Greater observability over the environment could be obtained by
adding knowledge within a larger surrounding radius to the state formulation. Such
a situation introduces more complexity to the system, but should be considered in
favour of a more homogeneous traffic situation throughout the entire environment.

• Further testing with more heterogeneous environments (e.g., different aircraft
types, different performance limits, different separation between layers, different
climbing/descending rates, different minimum separation distances).

Finally, when employing a multi-layer structure, most of the LoSs result from interac-
tions between cruising and climbing/descending aircraft. Speed-based conflict resolution
is not sufficient to defend against simultaneous vertical and horizontal conflicts. More
operating rules can be added to the environment to improve safety between cruising and
climbing/descending aircraft. For example: (1) airspace structuring can be extended to
warrant sufficient space for vertical resolution manoeuvres; (2) setting multiple steps
during climb/descent, in order to delay the final approach in case the upcoming layer is
too congested.

3.10. CONCLUSIONS
This chapter looks at enabling the safe introduction of drone operations into urban
airspace. The results show that the separation of traffic into different altitude layers
by employing heading-altitude rules greatly reduced the total number of conflicts and
losses of minimum separation. With this structure, interactions between cruising and
climbing/descending aircraft should be the main focus in order to improve safety. Training
a reinforcement learning (RL) agent to apply variable speed limits (VSL) enabled a more
homogeneous traffic situation during the layer transition phase. When aircraft fully
comply with these speed limits, these increase the distance between aircraft, reducing
the total number of violations of minimum separation.

As traffic densities increase, so does the complexity of emergent behaviour from neigh-
bouring aircraft. In these cases, simple sets of rules and analytical methods implemented
by common conflict detection and resolution methods are no longer sufficient. In addi-
tion to VSL, future work may also consider the use of RL to improve the structure of the
operational environment. The number of traffic layers, and the heading ranges allowed
in each, can potentially be defined by an RL agent. Additionally, movement within the
transition layers can also be further enhanced. For example, the implementation of sev-
eral steps during climb/descent, delay of the final approach to the main traffic lane, can
reduce the likelihood of cruising and climbing/descending aircraft meeting in conflict.
Finally, the research presented here can be extended to more competitive operational
environments, in terms of differences in performance limits, as well as preference for
efficiency over safety.
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USING REINFORCEMENT LEARNING

IN LAYERED AIRSPACE TO IMPROVE

LAYER CHANGE DECISION

Chapter 3 concluded that merging conflicts severely affect safety within a layered airspace.
First, simultaneous vertical and horizontal conflicts severely hinder the efficacy of conflict
resolution. Second, merging actions can force a conflict chain reaction where the follower
aircraft have to readjust their speed to avoid collision. Chapter 3 proposed to use rein-
forcement learning (RL) to improve the steps taken during climb/descent, or even to delay
the final approach to a traffic lane until is it safe to merge. This chapter explores these
hypotheses.

Two RL methods are developed: a decision-making module (Section 4.4.2), and a
control-execution module (Section 4.4.3). The former issues a lane change command based
on the planned route. The latter performs operational control to coordinate the longitude
and vertical movement of the aircraft for a safe merging manoeuvre. These two methods
are tested independently and together.

Cover-to-cover readers may chose to skip Section 4.4.1, which describes the theoretical
background of a Deep Deterministic Policy Gradient (DDPG) algorithm. This is very similar
to its counterpart in previous Chapter 3.

This chapter is based on the following publication:

1. M. Ribeiro, J. Ellerbroek, and J. Hoekstra, Using Reinforcement Learning in Layered Airspace to Improve
Layer Change Decision, Aerospace 9 (2022)
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ABSTRACT
Current predictions for future operations with drones estimate traffic densities orders
of magnitude higher than any observed in manned aviation. Such densities call for
further research and innovation, in particular, into conflict detection and resolution
without the need for human intervention. The layered airspace concept, where aircraft
are separated per vertical layer according to their heading, has been widely researched
and proven to increase traffic capacity. However, aircraft traversing between layers do
not benefit from this separation and alignment effect. As a result, interactions between
climbing/descending and cruising aircraft can lead to a large increase in conflicts and
intrusions. This chapter looks into ways of reducing the impact of vertical transitions
within the environment. We test two reinforcement learning methods: a decision-making
module, and a control-execution module. The former issues a layer change command
based on the planned route. The latter performs operational control to coordinate the
longitude and vertical movement of the aircraft for a safe merging manoeuvre. The results
show that reinforcement learning is capable of optimising an efficient driving policy for
layer change manoeuvres, decreasing the number of conflicts and losses of minimum
separation compared to manually defined navigation rules.

4.1. INTRODUCTION
The European Drones Outlook Study [197] estimates that as many as 400 k drones will be
operating in the airspace by 2050. Moreover, this study underlines the need to further
develop and validate current conflict detection and resolution (CD&R) for high-density
operating environments without the need for human intervention. The use of machine
learning in tactical CD&R is highlighted as a potential tool to support advanced and
scalable U-space services. The present work aids this research by developing reinforce-
ment learning modules that decrease conflict rate and severity for an unmanned aviation
operation in an urban environment.

In the current study, we employ a layered airspace, a concept developed by the
Metropolis project [175], which separates traffic vertically based on their heading. The
separation of the existent traffic density into smaller groups of aircraft travelling in similar
directions helps reduce occurrences of conflicts and losses of minimum separation (LoSs)
during the cruising phase. However, in an environment where aircraft cannot fly a straight
line from the origin to destination, changes in heading force the vertical deviations to a
different layer where the new direction is allowed. These vertically manoeuvring aircraft
may have to cross through multiple layers of cruising aircraft, potentially running into
multiple conflicts and intrusions.

Using reinforcement learning (RL) to improve lane change decision-making has been
widely used with road vehicles [198, 199]. Optimal lane selection and longitudinal/lateral
merging control can lead to better separation of agents, preventing traffic flow disrup-
tions and collisions. Urban air traffic has several similarities with road traffic that justify
exploring machine learning techniques that have been successfully applied in the latter.
First, unmanned aviation is set to follow road infrastructure. Thus, the effects of the
environment topology on traffic agglomeration are similar in both cases. Highway lane
merging is comparable to layer merging in a layered airspace: (1) aircraft must also keep a
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minimum separation distance from each other; (2) both types of agents prefer to remain
close to their desired cruising speed so as not to increase travel time. Thus, we apply
these same methods to a layered airspace environment. First, a decision-making module
determines the layer that the aircraft should move into based on the cruising traffic and
the distance to the next turning point. Second, a control-execution module decides on
the best longitudinal/vertical control for a safe merging manoeuvre. However, there are
remarkable differences between drones and road vehicles; the latter can become station-
ary, contrary to (most) drones. Additionally, in aviation, minimum separation distances
are typically larger. These challenges will be further examined in this work.

Experiments are conducted with the open-source, multi-agent ATC simulation tool
BlueSky [25]. During flight, aircraft follow a pre-planned route avoiding collision with the
static surrounding infrastructure. To avoid LoSs between operating aircraft, all employ
the conflict resolution method Modified Voltage Potential (MVP) [15]. Finally, the RL
modules for the layer change procedure make use of the Deep Deterministic Policy
Gradient (DDPG) model, as created by Lillicrap [163]. The operational efficiency of
these modules, both individually and when working together, is directly compared with
previous analytical rules for layer change behaviour.

Section 4.3 describes the characteristics of a layered airspace in more detail and how it
is used in the simulation environment. This information is necessary to better understand
how layer change behaviour is set with reinforcement learning, as specified in Section 4.4.
Section 4.5 further details the experiment herein performed, and Section 4.6, the hypothe-
ses considered. Section 4.7 shows the results of the experiments, comparing usage of
the decision-making and control-execution RL modules to the baseline navigation rules.
Finally, Sections 4.8 and 4.9 present the discussion and conclusion, respectively.

4.2. RELATED WORK
Given the interdisciplinary nature of this work, this section analyses the state-of-the-art
in two different areas. First, we go over how the RL methods employed in this work have
been used in previous research related to road vehicles. Second, we describe the main
methods used to improve safety in a layered airspace operational environment, especially
regarding layer change decisions.

RL has been widely applied to road vehicles. The research includes, but is not limited
to, controlling traffic flow to prevent agglomeration of traffic [200, 201], implementing
velocity speed limits resulting in a more homogeneous traffic situation [157, 158], and en-
suring minimum distance gaps between vehicles during lane change [198, 199, 202, 203].
We focus on the latter. Wang [198] showed that an RL-based vehicle agent was capable
of successfully learning a lane change policy and ensuring a minimum safety distance
under current speeds. Hoel [199] developed a deep Q-Network agent that matched or
surpassed the performance of hand-crafted rules and emphasised that, rather than de-
pending on rules laboriously created by domain experts, RL can create a much larger
set of rules adapted to a multitude of different traffic situations. Alizadeh [202] showed
that RL can adapt to the performance limits of each individual vehicle, achieving better
performance within uncertain and stochastic environments than hand-crafted methods.
Finally, Shi [203] demonstrated that an RL method can smoothly move a vehicle towards
the target lane.
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The layered airspace concept was first introduced by the Metropolis project [175].
In previous work, the authors point out that the safety benefits of this concept apply
only to the cruising phase. Transitions between vertical layers can trigger a substantial
number of merging conflicts, thus cancelling out a large part of the benefits gained
from airspace structuring. Recently, a hand-crafted method for improving safety during
merging manoeuvres was developed by Doole [204]. Results show that, with a limited
number of rules, it is difficult to create solutions that can defend against the different
topology of every street, as well as the relative relationship between the merging and
cruising aircraft in different conflict geometries. These are comparable to the limitations
previously seen with hand-crafted rules in lane change manoeuvres with road vehicles.
Thus, we attempt to apply the same solutions that researchers found in that field. To
the best of the author’s knowledge, this is the first time that RL methods, previously
successfully applied to lane change decision, are applied to layer merging in an aviation
environment. Nevertheless, several questions remain on whether it is possible to translate
the success of RL methods for road vehicles to aviation. The present work adds to this
discussion.

4.3. LAYERED AIRSPACE DESIGN

Operating in an urban environment raises several challenges. First, aircraft must avoid
collision with the surrounding urban infrastructure. Although detection of edges of static
obstacles is possible through instrumentation, the only way to make sure that aircraft
follow the shortest path towards the destination, or even that they do not end up in a
closed space when following the edge of an obstacle, is by setting a pre-defined route
based on the known characteristics of the environment. Second, conflict resolution
manoeuvres must be adapted towards respecting the borders of the static obstacles.
To guarantee that knock-on effects of successive manoeuvres do not lead to collisions,
especially near non-uniform static obstacles, conflict resolution is limited to speed and
altitude variation.

Limiting the freedom of conflict resolution manoeuvres naturally limits the number
of conflict geometries that aircraft are capable of successfully resolving. The focus must
then be put on additional elements that decrease conflict rate and severity. One of these
elements is the structure of the airspace, which directly influences the likelihood of
aircraft meeting in conflict. The Metropolis project has shown that a layered airspace
structure considerably reduces the rate of conflicts [175]. Two effects contribute to this
reduction: (1) segmentation: the total traffic density is divided into groups of aircraft
allocated in different altitude layers; (2) alignment: the groups are divided per aircraft’s
heading, enforcing a degree of alignment between aircraft, which decreases the likelihood
of conflicts in each layer.

4.3.1. SIMULATED ENVIRONMENT

The urban operational area is built using the Open Street Map networks (OSMnx) python
library [167], an open-source tool for street network analysis. We use an excerpt from the
San Francisco Area, representing an orthogonal street layout with a total area of 1.708 NM2,
as shown in Figure 4.1. Note that the RL method herein developed could, in theory, be
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used in any environment. We make use of an orthogonal layout for simplification, as
non-orthogonal layouts typically have a high number of conflicts associated with merging
streets and non-regular street shapes. This simplification allows us to focus on the
conflicts resulting from vertical deviations. The OSMnx library returns a set of nodes, with
two adjacent nodes defining the edges of a road. A flight route is formed by connecting
adjacent nodes that form a road. To reduce complexity, an intersection is considered to
have at most four connecting roads. Each road is unidirectional per altitude level.

We allow directions per altitude, as defined in Figure 4.2. In conventional aviation,
temporary altitude layers are often used as a level-off at an intermediate flight level along
a climb or descent to avoid conflicts [205]. In our urban airspace, we apply the same
concept: for each direction, three vertical layers exist, with increasing altitude. These are
comparable to lanes on a highway. Each layer may adopt different uses for optimising
cruising and turning. For example, following the rules of a highway, the middle layer may
be used for longer cruising while the 1st and 3rd are used by aircraft about to turn in the
directions below and above, respectively.

Figure 4.1: Map of the urban environment used in this work. Data obtained from the OSMnx python library [167].
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Figure 4.2: Altitude sets employed in this study. All layers have a height of 15 ft. A margin of 5 ft between the
layers is used to prevent false conflicts.
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4.4. LAYER CHANGE BEHAVIOUR WITH REINF. LEARNING

Research into automated lane-changing manoeuvres with road vehicles can broadly be
divided into two functional categories. First, a decision-making module determines
which layer the agent should move into and emits a lane change command. Second, a
control-execution module receives this command and coordinates the longitudinal and
lateral movement of the vehicle for an efficient lane merging manoeuvre [198]. Figure 4.3
depicts the decisions taken by each module, translated to an aviation environment.

(a) Decision-making module: issues layer change
commands based on the planned route and the cur-
rent traffic scenario.

(b) Control-execution module: longitudinal and ver-
tical coordinates control during vertical manoeuvre
based on the traffic surrounding the ownship.

Figure 4.3: Visual depiction of the range of the responsibilities of each reinforcement learning module.

Figure 4.4 depicts a high-level functioning of the decision-making and the control-
execution modules. The decision-making module is called upon whenever a new aircraft
is created (and thus requires a starting layer) or whenever an aircraft is about to perform
a turn, which results in a vertical deviation to a new set of layers where its new heading is
allowed. When this module is used independently, the layer change action is immediately
performed. In turn, when the control execution module is used independently, the target
layer is dictated by the baseline rules (see Section 4.5.4 for more detail). When the two
modules are used together, the decision-making module decides upon the target layer,
and the control-execution modules can decide whether to merge immediately towards
the target layer or to delay the action.

In a setting with an extremely high number of agents, as is the case with the expected
traffic densities for unmanned aviation, representing the full state of the environment is
too complex to train an RL method within an acceptable amount of time. Moreover, we
assume that, in a real-world implementation, each aircraft would only (have to) be aware
of its immediate surroundings. However, during training in a simulated environment,
we have access to additional information. Thus, although the policies of the modules
are based only on the surrounding information and executed in a decentralised manner,
during training, the reward is based on a larger amount of information, specifically con-
flict/LoSs in each layer. Furthermore, each module should be able to learn an optimal
policy independently of the other module. In theory, when used together, their improve-
ments in the airspace should accumulate. In practice, it may be that actions of one
module modify the environment in a way that reduces the efficacy of the actions of the
other module. Past research has often focused on one of the modules; their conjugation
is normally not tested. Thus, it is of interest to examine how these two modules work
together.
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Figure 4.4: High level diagram of the functioning of the decision-making and the control-execution modules,
both independently and together.

4.4.1. REINFORCEMENT LEARNING ALGORITHM
An RL method consists of an agent that interacts with an environment E in discrete
timesteps. At each timestep, the agent receives the current state s of the environment
and performs an action a in accordance, for which it receives a reward st . An agent’s
behaviour is defined by a policy, π, which maps states to a probability distribution over
the available actions. The goal is to learn a policy which maximises the reward. Many RL
algorithms have been researched in terms of defining the expected reward following the
action a. In this work, we used the deep deterministic policy gradient (DDPG), defined by
Lillicrap [163].

Policy gradient algorithms first evaluate the policy and then follow the policy gradient
to maximise performance. DDPG is a deterministic actor–critic policy gradient algorithm
designed to handle continuous and high-dimensional state and action spaces. It has
been proven to outperform other RL algorithms in environments with stable dynam-
ics [164]. However, it can become unstable, being particularly sensitive to reward scale
settings [188, 189]. The pseudo-code for DDPG is displayed in Algorithm 4.1.

DDPG uses an actor–critic architecture. The actor produces an action given the
current state of the environment. The critic estimates the value of any given state, which
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is used to update the preference for the executed action. DDPG uses two neural networks,
one for the actor and one for the critic. The actor function µ(s|θµ) (also called policy)
specifies the output action a as a function of the input (i.e., the current state s of the
environment) in the direction suggested by the critic. The critic Q(s, a|θQ ) evaluates the
actor’s policy by estimating the state–action value of the current policy. It evaluates the
new state to determine whether it is better or worse than expected. The critic network is
updated from the gradients obtained from a temporal-difference error signal from each
time step. The output of the critic drives learning in both the actor and the critic. θµ and
θQ represent the weights of each network. Updating the actor and critic neural network
weights with the values calculated by the networks may lead to divergence. As a result,
target networks are used to generate the targets. The target networks are time-delayed
copies of their original networks, µ′(s|θµ′ ) and target critic Q(s′, a|θQ ′

) that slowly track
the learnt networks. All hidden neural networks use the non-sigmoidal rectified linear
unit (ReLU) activation function, as this has been shown to outperform other functions in
statistical performance and computational cost [190].

Algorithm 4.1 Deep Deterministic Policy Gradient
Initialise critic Q(s|aµ) and actor µ(s|θµ) networks, replay buffer R, and action exploration
for all episodes do

while episode not ended do
Select action at according to the state st from environment and the actor network
Perform action at in the environment and receive reward rt and new state st+1
Store transition (st , at ,rt , st+1) in replay buffer R
Sample a random mini-batch of N transitions from R
Update critic by minimising the loss
Update actor policy using the sample policy gradient
Update target networks

end while
Reset the environment

end for

The neural network parameters used in our experimental results are based on Lilli-
crap [163]. Other hyperparameters may be used; nevertheless, the parameters defined by
Lillicrap [163] has shown promising results. Experience replay is used in order to improve
the independence of samples in the input batch. Past experiences are stored in a replay
buffer, a finite-sized cache R . At each timestamp, the actor and critic are updated by sam-
pling data from this buffer. However, if the replay buffer becomes full, the oldest samples
are discarded. Finally, exploration noise is used in order to promote the exploration of the
environment; an Ornstein–Uhlenbeck process [191] is used in parallel to the authors of
the DDPG model.

4.4.2. DECISION-MAKING MODULE
The decision-making module chooses the layer that the ownership should move into
based on the current traffic scenario and planned route. This decision is made when an
aircraft enters the airspace at the beginning of its flight and when a heading turn requires
a deviation to a different layer where the new direction is allowed. It should be noted that
this module could potentially be used for aircraft to move to adjacent intermediate layers
during cruising in order to overtake a slower leading aircraft, for example. However, this
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would heavily increase the complexity of the learning environment. When evaluating the
results of a layer change action, the module can only learn if most of the alteration to the
environment was caused by that one action. With multiple simultaneous deviations, the
change to the environment is a result of the impact of all actions combined. It would,
thus, be near impossible to connect an action to a direct alteration of the environment.

STATE

The state input must contain the necessary data for the module to be able to successfully
determine an optimal solution. Ideally, the complete environment would be represented.
However, a large state formation leads to a large number of possible states and state-
action combinations. In practice, such results in the RL method having an exponential
number of solutions to test, which may increase training time to an impracticable amount.
Thus, we focus on the information we find essential: the current state of the ownship,
the number of aircraft currently in each layer, the time to loss of separation to the leader
and follower aircraft (if the ownship would move to the layer in this longitudinal/lateral
position), and the number of waypoints until the next turn as per the planned route (see
Table 4.1).

Table 4.1: State formulation for the decision-making module.

State Element

s0 Ownship’s current speed

s1 Ownship’s current layer

s2 Number of aircraft in 1st layer

s3 TLoS to front aircraft in 1st layer

s4 TLoS to back aircraft in 1st layer

s5 Number of aircraft in 2nd layer

s6 TLoS to front aircraft in 2nd layer

s7 TLoS to back aircraft in 2nd layer

s8 Number of aircraft in 3rd layer

s9 TLoS to front aircraft in 3rd layer

s10 TLoS to back aircraft in 3rd layer

s11 Number of waypoints until next turn

We consider the relation between the leader and follower aircraft to be the most
important information. The distance to the surrounding aircraft will, at least, account
for the LoSs directly suffered by the ownship. The module must decide whether the gap
available for merging is adequate to ensure a minimum safety distance at the current
speed. Moreover, the module should also give preference to layers with fewer cruising
aircraft. A merging manoeuvre can cause the follower aircraft to reduce its speed to
prevent getting too close to the ownship, for example. When there is not enough distance
between aircraft in the layer, this deceleration can cause a propagation of conflicts as
aircraft slow down in succession to prevent becoming too close to the leader aircraft.

ACTION

The module determines the action to be performed for the current state. We use a softmax
activation function that turns an input vector into an output vector with values between
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zero and one, which sum to one. These values represent a probability distribution and
are used to define which layer the ownship should move into, as per Table 4.2. Staying in
the same layer is also possible.

As described in Section 4.3.1, there are three layers for each direction set. These
decrease conflict likelihood and speed heterogeneity during turns. However, they can be
used with a different rationale. As per Figure 4.2, the first layer has the closest access to
the direction just below, and the third layer is the closest to the direction above. An aircraft
in the first layer, which needs to turn into the direction just above the current direction,
will need to cross the second and third layers; an aircraft in the third layer would only
have to climb towards the top layer.

Table 4.2: Action formulation for the decision-making module. The layers increase in altitude from the 1st to the
3rd layer. For a visual representation, see Figure 4.2.

Action Element

a0 Move to 1st layer

a1 Move to 2nd layer

a2 Move to 3rd layer

REWARD

The objective is for the module to favour layer change decisions that reduce the likelihood
of LoSs. However, often the number of LoSs, especially in environments where CD&R
is applied, is too scarce to provide enough information for the module to train within
an optimal amount of time. Thus, we consider conflicts as well: the module receives
a reward of −1 for each conflict, and of −10 for each LoS. As conflicts represent future
detected LoSs, reducing the total number of conflicts is expected to also reduce the total
number of LoSs. Although not an ideal reward formulation, as this should be as simple as
possible, it was found necessary for the module to converge towards optimal decisions.
Note that it is the relative relation between the values, −1 and −10, not the absolute values,
that influence the behaviour of the RL method. The method follows the highest rewards.
Nevertheless, a different weight relation could have been applied. These weights were
found to be the best empirical values for the particular operational environment/traffic
scenarios herein employed. Nevertheless, it was taken into consideration that LoSs are
the paramount values and should (heavily) outweigh the value of each conflict to make
sure that the RL method does not opt for having one LoS in favour of preventing a small
number of conflicts.

Moreover, the conflicts and LoSs included in the reward are not only the ones that the
ownship (which performed the action) is involved in. The reward will also consider the
effect on the layer that the ownship moves into. Such was found to be an important factor
in guaranteeing that the module converged to optimal solutions, which have a positive
effect on the global environment. It may be that the ownship does not suffer a conflict/LoS
situation due to the follower aircraft decreasing its speed, or the leader aircraft increasing
its speed, in order to keep a minimum distance from the ownship. However, these changes
in speed disrupt the traffic flow; successive acceleration/deceleration over the following
aircraft may result in a LoS further down the layer.
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Finally, an important question related to the decision-making module is whether it
should consider conflicts/LoSs occurring in the intermediate layers between the initial
and target layer, as depicted in Figure 4.5. On the one hand, considering intermediate con-
flict/LoSs may decrease the total number of conflicts/LoSs during layer change actions.
On the other hand, it may be considered that the decision-making module should focus
only on finding the best target layer for cruising and not having this decision hindered over
favouring nearer layers (i.e., that do not require crossing a great vertical distance). Within
the total duration of their flight, aircraft will spend more time cruising than vertically ma-
noeuvring between layers (which the module is unaware of). Thus, selecting the optimal
cruising layer may be better for the global number of conflicts/LoSs. In this case, the
control-execution module is then solely responsible for decreasing conflicts/LoSs encoun-
tered during transition between the initial and target layers. The effects of considering
intermediate conflicts/LoSs will be analysed with the experimental simulations.

+1 LoS

+1 LoS

=2 LoS (Reward)

(a) Intermediate conflicts/LoSs considered.

+1 LoS

=1 LoS (Reward)

(b) Intermediate conflicts/LoSs not considered.

Figure 4.5: Difference in the final reward received by the decision-making module.

4.4.3. CONTROL-EXECUTION MODULE
Once a layer change decision is produced, the control-execution module takes over to
guide the ownship towards the best action to prevent conflicts/LoSs with aircraft both at
the current layer and target layer. The existing gap on both layers is evaluated, and the RL
module may choose to move the ownship vertically towards the target layer or to modify
its current state in order to improve the gap in the future. When the module decides on
an action that keeps the ownship in the current layer, this action is considered to have a
duration of five seconds. After these five seconds, the execution module is called again
to decide which longitudinal/vertical movement the ownship should follow now. This
process is repeated until the ownship reaches its target layer.

STATE

The state formulation, as shown in Table 4.3, focuses on giving enough information to
the module to decide whether the gaps in the current and target layers are sufficient to
guarantee minimum separation between the leader and follower aircraft. Moreover, the
number of layers until the target may influence how long the ownship delays the move
to the next layer, as it may affect the following merging actions that the ownship must
perform until reaching the target layer.

ACTION

This module also uses a softmax activation function for classification. As displayed in
Table 4.4, the control-execution module controls the ownship’s longitudinal and vertical
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Table 4.3: State formulation for the control-execution module.

State Element

s0 Ownship’s current speed

s1 Relative heading of current layer

s2 TLoS to front aircraft in current layer

s3 TLoS to back aircraft in current layer

s4 Relative heading of target layer

s5 TLoS to front aircraft in target layer

s6 TLoS to back aircraft in target layer

s7 Number of layers until target layer

movements. When merging into the target layer is not yet safe, the module may opt
instead for: (1) accelerating the ownship, (2) decelerating the ownship, or (3) keeping
the same speed, while remaining in its current layer. Naturally, this decision must also
consider the time to LoS with the neighbouring aircraft in the current layer.

Table 4.4: Action formulation for the control-execution module.

Action Element

a0 Stay in current layer, keep current speed

a1 Stay in current layer, change speed: +2m/s

a2 Stay in current layer, change speed: −2m/s

a2 Move to target layer

Note that different speed change values could have been employed. Nevertheless,
these should always take into account the performance limits of the operational vehicles.
The main reason for this (low) speed change value was the acceleration performance
of the simulated aircraft. At each timestep, there is a maximum state variation that an
aircraft may achieve. With great state variations, the reward received by the RL method
may not be based on the results with the state output by the method but, instead, on the
maximum variation that the aircraft was able to achieve within the available time. This
may make it harder for the RL method to correctly relate actions to expected rewards.

REWARD

The reward received by the module is based not only on the conflicts/LoSs suffered by the
module but also on the immediate effect on the layer occupied by the ownship (this is the
target layer when the module moves the ownship vertically, or the current layer otherwise).
Similarly to the decision-making module, the control-execution module receives a reward
of −1 for each conflict, and of −10 for each LoS. Additionally, +1 is given for a completed
merging manoeuvre, guaranteeing that in a safe situation, the module will favour moving
to the target layer.

4.5. EXPERIMENT: SAFETY OPTIMISED LAYER CHANGE
The following subsections describe the properties of the performed experiment. Note
that the experiment is divided between the training and testing phases. First, the two RL
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modules are trained continuously with a fixed training scenario. Second, they are tested
with a set of previously unknown traffic scenarios; the performance of these modules is
directly compared to baseline navigation rules.

4.5.1. SCENARIO DESIGN
Aircraft spawn on the edge of the simulation area in a layer that allows for the initial
direction. Origin points are separated by at least a minimum separation distance to avoid
conflicts between just spawned aircraft. Each route is formed by connecting adjacent
nodes of the map. Aircraft are removed from the experiment when they move away from
an edge node, once they finish their route. Different trajectories will be tested, with the
objective of evaluating the performance of the RL modules in multiple situations. The
following settings are defined per traffic scenario:

• Heading distribution: the heading adopted by the simulated aircraft. Having the
majority of the aircraft following the same direction leads to an agglomeration of a
high number of aircraft in one layer, which likely decreases the average distance
between aircraft and, in turn, increases the number of conflicts. A more uniform
heading distribution increases the distribution of aircraft per the airspace, reducing
the likelihood of conflicts. Using different heading range distributions tests the
capacity of the RL modules to successfully segment different traffic scenarios over
the available airspace. The heading distribution (per percentage) is defined in
Table 4.5. In traffic scenario #1, for example, 100% of the aircraft travel East. In
practice, if 100 aircraft are simulated, all 100 will be travelling East. In comparison,
traffic scenario #15 has a uniform distribution: with 100 aircraft, 25 aircraft would
travel east, 25 travel south, 25 travel west, and 25 travel north. Note that all aircraft
start at a side of the map, which allows for a straight route towards their initial
direction (e.g., an aircraft with initial direction east will start at the west end of the
map).

Table 4.5: A total of 15 different heading distributions are used.

Traffic Scenario: #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15
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East (E): 100 0 0 0 50 50 50 0 0 0 33 33 33 0 25

South (S): 0 100 0 0 50 0 0 50 50 0 33 33 0 33 25

West (W): 0 0 100 0 0 50 0 50 0 50 33 0 33 33 25

North (N): 0 0 0 100 0 0 50 0 50 50 0 33 33 33 25

• Different number of turns: a turn in a layered airspace signifies a necessary change
in the vertical layer. Thus, a different number of turns are used to elicit sufficient
layer changes to analyse (1) the effect of a different number of vertical deviations in
the environment, and (2) the ability of the modules to protect against successive
changes in heading distribution. Five different turning settings are employed, as
per Table 4.6. If there are no turns, aircraft will travel towards their initial direction
throughout the complete route. For example, running traffic scenario #1 with turn-
ing option #A means that all aircraft travel East throughout the complete duration
of the traffic scenario. In comparison, running traffic scenario #1 with turning
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option #E signifies that each aircraft will perform five turns throughout their flight
route. Thus, they all start their flights heading east but then change direction a total
of five times. Note that a turn to the right from an aircraft with an initial direction
east indicates that the aircraft will turn towards the direction south during its route.
A turn to the left would result in this aircraft turning towards the north.

Table 4.6: A total of 5 different turning options aree used.

Turning Option Number of Turns

#A No Turns

#B 2 Turns to the Right

#C 4 Turns to the Right

#D 2 Turns to the Left

#E 4 Turns to the Left

Each heading distribution is performed five times with a different turning option, i.e.,
heading distributions #1 to #15 are each run with turning options #A to #E. In total, 75
traffic scenarios (15 heading distributions × 5 turning options) are run for each traffic
density. A total of three different traffic densities are tested: low, medium, and high traffic
densities. More detail on these is given in Section 4.5.4.

4.5.2. VEHICLE/AGENT CHARACTERISTICS

This work uses the open Air Traffic Simulator Bluesky [25] to test the efficacy of the layer
change RL modules. Aircraft are defined per the performance characteristics of the DJI
Mavic Pro drone model. Speed and mass were obtained from the manufacturer’s data,
and common conservative values were assumed for turn rate (max: 15◦/s) and accelera-
tion/breaking (1.0kts/s). Aircraft have a preferred cruising speed of 30 kts. However, in
line with their performance limits, aircraft must decrease their speed prior to a turn to
ensure that the turning radius does not lead to a collision with any surrounding static
obstacle. Once the aircraft has completed a turn, the aircraft will again accelerate towards
its desired cruising speed. It is assumed that the aircraft have constant altitude and speed
during a turn.

4.5.3. CONFLICT DETECTION AND RESOLUTION

This work employs a horizontal separation of 50 m, which is commonly used in works with
unmanned aviation [59]. A vertical separation of 15 ft is assumed based on the dimension
of the vertical layers. Conflicts are detected by linearly propagating the current state
of all aircraft involved and determining if two aircraft will be closer than the minimum
separation distance within a look-ahead time of 30 seconds. For conflict resolution, we
employ the Modified Voltage Potential (MVP) method, as defined by Hoekstra [2, 15].
Once a conflict is found, MVP displaces the predicted future positions of both ownship
and intruder at the closest point of approach (CPA) in the shortest way out of the protected
zone of the intruder. More details on state-based detection and the resolution manoeuvres
calculated by MVP can be obtained from previous work [206].
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4.5.4. INDEPENDENT VARIABLES

During training, the only independent variable is the reward formulation for the decision-
making module. During testing, different traffic densities are introduced to analyse
how both RL modules perform at traffic densities they were not trained in. Additionally,
we compare the use of decision-making and control-execution modules with baseline
analytical rules.

REWARD FORMULATION FOR THE DECISION-MAKING MODULE

In Section 4.4.2, it was mentioned that it is not clear whether considering intermediate
conflicts will limit the ability of the module to select the best layer for the cruising phase.
This module will be trained with and without considering intermediate conflicts. The
results will be directly compared.

USING REINFORCEMENT LEARNING VS. BASELINE ANALYTICAL RULES

The effect of employing either the decision-making or control-execution module will
be compared with resorting to baseline analytical rules. With the latter, aircraft initially
always move into the first layer, which is the main cruising layer. The second layer is
used for vertical conflict resolution. The third layer is used for deceleration and turning
before moving to a different traffic layer with a different direction. This prevents conflicts
resulting from heterogeneous speed situations caused by aircraft reducing speed in
preparation for a turn. In this baseline situation, the aircraft immediately perform the
layer change command.

Both the decision-making and the control-execution modules are first trained and
tested individually to directly analyse their effect. When the decision-making module is
tested alone, the aircraft follows its layer change commands and immediately performs
them. Regarding the control-execution module, when tested individually, aircraft follow
the layer change commands as defined by the baseline rules and perform/delay this
manoeuvre as instructed by the control-execution module.

TRAFFIC DENSITY

Three traffic densities, in an increasing number of operating aircraft, are used. The exact
values are shown in Table 4.7. At high densities, aircraft spend more than 10% of their
flight time in conflict resolution mode [193]. Both RL modules are trained first in a
medium traffic density and then tested with low, medium, and high traffic densities to
assess their efficiency in lower/higher traffic densities.

Table 4.7: Traffic volume used in the experimental simulations (in 1 hour of simulation time). The range of
results from different flight paths as the necessary time to traverse the environment is dependent on the initial
direction(s) and number of turns.

Low Medium High

Number of instantaneous aircraft (-) 50 100 150

Number of spawned aircraft (-) 242–1190 483–1972 721–2958
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4.5.5. DEPENDENT VARIABLES
The effect of the RL modules on the environment is measured on multiple metrics: safety,
stability, and efficiency. The first includes the occurrences and duration of conflicts
and LoSs. Inclusion of RL modules in the operational environment should reduce these
elements. Additionally, LoSs are evaluated on their severity according to how close aircraft
get to each other:

LoSsev = R −dC PA

R
. (4.1)

Stability evaluates the secondary conflicts created by tactical conflict resolution ma-
noeuvres. When free airspace is scarce, having aircraft move laterally and occupying a
larger portion of the airspace often results in conflict chain reactions [175]. This effect
has been measured using the Domino Effect Parameter (DEP) [151]:

DEP =
nON

c f l −nOF F
c f l

nOF F
c f l

, (4.2)

where nON
c f l is the number of conflicts with CD&R ON, and nOF F

c f l the number with CD&R

OFF. Higher DEP values signify destabilising behaviours.
Finally, efficiency is evaluated in terms of the total distance travelled by the aircraft

and the duration of the flight. Methods that do not result in a considerable increase in the
path and/or the duration of the flight are considered more efficient.

4.6. EXPERIMENT: HYPOTHESES

4.6.1. EFFICACY OF THE DECISION-MAKING MODULE
It is hypothesised that the decision-making RL module decreases the number of con-
flicts/LoSs by segmenting aircraft optimally per the available layers, with special emphasis
on scenarios where all aircraft are placed in the same layers (i.e., the scenarios where the
majority of aircraft start from the same direction). Regarding the decision of whether
to include conflicts/LoSs resulting from the ownship crossing the intermediate layers
between the initial and target layer, it is hypothesised that not including them will lead
to the module picking a more optimal cruising segmentation. Since aircraft spend more
time cruising than manoeuvring vertically, it is expected that this will lead to a reduction
in the global number of conflicts/LoSs.

4.6.2. EFFICACY OF THE CONTROL-EXECUTION MODULE
The control-execution RL module is hypothesised to decrease the number of conflicts/LoSs
compared to a situation where aircraft simply move to the target layer when a layer change
command is received. However, the effect of this module will only be noticeable in an
environment where a high number of turns is expected.

4.6.3. WHEN THE TWO MODULES WORK TOGETHER
In theory, the best-case scenario is when both modules are used together. The decision-
making module will output a layer-changing command towards the best cruising layer,
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and the control-execution module will control the longitudinal and vertical moment of
the ownship, making sure that the merging action is as safe as possible. In practise, it may
be that one of these modules alters the environment in such a way that it decreases the
efficiency of the other module. Nevertheless, the control-execution module is hypothe-
sised to reduce the extreme LoSs cases resulting from layer change commands that cross
multiple intermediate layers.

4.6.4. EFFECT OF TRAFFIC DENSITIES
The RL modules will be tested within the same traffic density in which they were tested,
and at lower and higher densities for comparison. Different traffic densities help analyse
the capability of the modules to generalise to unseen and more complex multi-actor
conflict geometries. It is hypothesised that the agents will perform better under the exact
conditions in which they were trained in and that, under different conditions, the agents
may be the least effective in higher traffic densities.

4.7. EXPERIMENT: RESULTS

4.7.1. TRAINING OF THE REINFORCEMENT LEARNING MODULES
Both RL modules, decision-making and control-execution, are first trained in a medium
traffic density. Each module is trained repetitively on one traffic scenario; an episode cor-
responds to a repetition of this traffic scenario, which runs for 1 hour. Within one episode,
each module is called thousands of times. Here, we focus on analysing the choices made
by the modules. Only speed conflict resolution was added to the environment during
training.

SAFETY ANALYSIS

Figures 4.6 and 4.7 display the evolution of the actions chosen by the decision-making
module throughout training. In each episode, the module is called upon when an aircraft
is introduced into the environment to decide the layer that the aircraft is to be introduced
in, and this occurs before a turn as the aircraft will have to change to a different layer set
where the new direction is allowed.

In Figure 4.6, intermediate conflicts/LoSs are considered. As mentioned above, the
graphs show the evolution of the decisions of the RL method during training. At the end
of its training, in practise, the RL module ‘discards’ a layer, allocating aircraft mainly in the
second and third layers. This division is optimal in decreasing intermediate conflicts/LoSs
when aircraft are divided per the second and third layers according to their next turn.
Aircraft in the third layer only climb one layer towards the next direction. Aircraft in the
second layer can move to the direction below by descending two layers; however, the
first layer does not contain cruising traffic, and thus, the ownship is not likely to run
into conflicts/LoSs here. Finally, Figure 4.6(b) shows that this behaviour adopted by the
module leads to a reduction in conflicts/LoSs per action.

Figure 4.7 shows the evolution of the decision-making module when intermediate
conflicts are not added to the reward. Compared to Figure 4.6, this version of the module
strongly prioritises proper segmentation of the aircraft per the available vertical space.
Keeping the traffic density to a minimum in each layer helps reduce conflicts/LoSs during
the cruising phase.
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(a) Evolution of the balance between possible actions throughout episodes during training.

(b) Evolution of the average reward per action throughout episodes during training.

Figure 4.6: Evolution of the actions and rewards during the training of the decision-making module when
intermediate conflicts/LoSs are considered. Roughly 3.8 M actions were performed.

(a) Evolution of the balance between possible actions throughout episodes during training.

(b) Evolution of the average reward per action throughout episodes during training.

Figure 4.7: Evolution of the actions and rewards during the training of the decision-making module when
intermediate conflicts/LoSs are not considered. Roughly 1.7 M actions were performed.

Figure 4.8 displays the time to LoS to the leader and follower aircraft in the target
layer. Figure 4.8(a) shows the results with the RL module trained without considering
intermediate conflicts/LoSs. According to Figure 4.6, the module mainly uses two layers
per set only. Thus, aircraft move to layers with higher traffic densities. In this case, the
module prefers to move aircraft to layers where the time to loss of separation between the
ownship and the surrounding aircraft is greater than 120 seconds. Figure 4.8(b), shows
the results with the RL module trained considering intermediate conflicts/LoSs. Here,
the traffic density is expected to be lower as the module prioritised segmentation per the
three layers per set (see Figure 4.7). In this case, the module will still occasionally move to
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a layer even if the time to LoS with the follower aircraft is below 60 seconds. This is likely
due to the fact that, with fewer aircraft per layer, the follower aircraft has ‘more space’ to
decelerate to avoid an LoS with the ownship, analogously to what occurs on a highway.
This shows the relevance of looking into the effect of a merging action in the complete
layer—aircraft consecutively breaking down to avoid conflicts may result in back-end
conflicts.

(a) Module trained considering all conflicts/LoSs. (b) Module trained not considering intermediate con-
flicts/LoSs.

Figure 4.8: Time to loss of separation between the ownship and the leader and follower aircraft for the actions
performed by the decision-making module.

Figure 4.9 shows the likelihood of aircraft being set on each layer according to the
number of waypoints until their next turn. Negative waypoint values mean that the
aircraft will descend to a different layer set, and positive values indicate a climb. The
modules place aircraft that will climb in the third layer and aircraft that will descend in the
lowest cruising layer (i.e., the 2nd layer in Figure 4.9(a) and the 1st layer in Figure 4.9(b)).
This is an optimal choice, as aircraft are already closer to their next layer set in altitude.

(a) Module trained considering all conflicts/LoSs.

(b) Module trained not considering intermediate conflicts/LoSs.

Figure 4.9: Likelihood (in percentage) of aircraft being set on each layer according to the number of waypoints
until their next turn.
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Figure 4.10 displays the actions chosen by the control-execution module. During
training, this module is called upon when a layer change decision command is output
based on the baseline navigation rules (see Section 4.5.4). The module opts for a move
to the next layer about 95% of the time. Note that when the module decides to delay
merging towards the target layer by selecting to stay in the current layer instead, the
module will again be called after 5 seconds to check upon the viability of a merging
manoeuvre. This process is repeated until the ownship moves into the target layer. Per-
forming a ‘move to the next layer’ action 100% of the time would be the same as not
having a control-execution module; the layer-changing command is always performed
immediately. Thus, the main focus is when this module decides to ‘delay’ the merge,
which hopefully decreases conflict/LoSs during vertical transitions. Figure 4.10 shows
that the actions adopted by the module lead to a reduction in conflicts/LoSs.

(a) Evolution of the balance between possible actions throughout episodes during training.

(b) Evolution of the average reward per action throughout episodes during training.

Figure 4.10: Evolution of the actions and rewards during the training of the control-execution module. Roughly
1.4 M actions were performed.

Figure 4.11 displays the environment status during each action of the control-execution
module. Figure 4.11(a) shows the time to LoS to the leader and follower aircraft on the
ownship’s current layer. Figure 4.11(b) maps the time to LoS to the leader and follower
aircraft on the target layer. First, the main motivator of whether to move to the next
layer appears to be the distance between the leader and follower aircraft in the next layer.
Nevertheless, on some occasions, the module will still move aircraft to the next layer when
the follower aircraft is in close proximity (see darker points on the top left of the ‘Move to
Next Layer’ action in Figure 4.11(b)). Other variables (such as TLoS to the neighbouring
aircraft in the current layer, the ownship’s speed, and the number of waypoints to the
final target layer) also affect this decision. However, how these values combine for this
decision is not clear when looking at them individually. Second, although small, there is a
preference for accelerating when the follower aircraft is closer (see darker points on the
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top left of the ‘Stay Current Layer, +2 m/s’ actions) and for decelerating when the leader
is near (see darker points on the right side of the ‘Stay Current Layer, −2 m/s’ actions).
Finally, similarly to the decision-making module, the control-execution module seems to
prioritise a larger distance to the leader than to the follower aircraft.

(a) Time to loss of separation between the ownship and the leader and follower aircraft in the current layer for each
possible action.

(b) Time to loss of separation between the ownship and the leader and follower aircraft in the target layer for each
possible action.

Figure 4.11: Time to loss of separation between the ownship and the leader and follower aircraft.

4.7.2. TESTING OF THE REINFORCEMENT LEARNING MODULES

The RL modules are tested with a total of 225 traffic scenarios; 75 scenarios in each one
of the traffic densities (i.e., low, medium, and high). These vary in the number of turns
and initial direction(s), as previously described in Section 4.5.1. The RL modules were
previously trained within a medium traffic density; it is interesting to see how they behave
at lower and higher traffic densities. All testing episodes are different from the one in
which the modules were trained. For each traffic scenario (i.e., combination of specific
traffic density, initial direction(s), and number of turns), three repetitions with different
flight trajectories are performed. Each traffic scenario ran for one hour. In all graphics,
the ‘baseline’ comparison data corresponds to the traffic scenarios run with the analytical
rules previously described in Section 4.5.4. Speed and vertical conflict resolution are
performed during testing. When traffic scenarios have different trends, line graphs are
used to show the results for all scenarios. When the trend is similar to all scenarios,
boxplot graphs display the results for all traffic scenarios in each traffic density in favour
of simplicity.
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SAFETY ANALYSIS

Figure 4.12 shows the mean total number of pairwise conflicts. Both RL modules are tested
independently and together; all decreased the total number of conflicts when compared
to the baseline navigation rules. Figure 4.12(a) displays the difference between training
the decision-making module with and without considering intermediate conflicts/LoSs.
Although there was a small difference, the module trained without considering intermedi-
ate movements achieved a greater reduction in conflicts. Not considering intermediate
conflicts has a negative impact locally, as merging actions will suffer more conflicts/LoSs.
However, globally, the fact that the module focuses on efficient segmentation throughout
the entire airspace becomes the most beneficial factor. This segmentation is especially
relevant at higher traffic densities. Thus, at these densities, better traffic segmentation
may outweigh reserving free space for vertical deconflicting manoeuvres.

(a) Mean total number of pairwise conflicts during testing of the decision-making module. A comparison is
made between the RL module when trained considering all conflicts/LoSs (in blue), and when no intermediate
conflicts are considered (in orange).

(b) Mean total number of pairwise conflicts during testing of the control-execution module.

(c) Mean total number of pairwise conflicts during testing of the two RL modules together.

Figure 4.12: Mean total number of pairwise conflicts during the testing of the RL modules. All traffic densities
have 75 traffic scenarios, with initial direction(s) and number of turns as defined in Section 4.5.1.
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The test results for the control-execution module are shown in Figure 4.12(b). When
used independently, this module receives layer change commands from the baseline rules.
Its ‘delay’ actions (i.e., when it chooses to stay in the current layer instead of merging into
the target layer) are able to reduce the total number of conflicts for all traffic scenarios
and densities. Naturally, the module is only called when there are heading turns, so there
is no impact in traffic scenarios with only straight flight routes. The impact is greater
in traffic scenarios with a high number of turns. Initial hypotheses considered that the
module would lose its effectiveness at high traffic densities due to more intruders and
smaller distance gaps between aircraft. However, its influence is especially noticeable in
these densities, where it can prevent a large number of conflicts/LoSs occurring due to
merging manoeuvres within these small gaps.

Finally, Figure 4.12(c) displays the testing of both modules together. In this case, the
decision-making module outputs a layer change command, which is received by the
control-execution module. We employ the decision-making module trained without
considering intermediate conflicts due to the best testing results. The combination
of both modules has fewer conflicts than the baseline navigation rules. However, the
combination of both modules increases the total number of conflicts for some traffic
scenarios when compared to using the decision-making module alone with immediate
merging upon the layer change command. The following safety graphs will show the
results of decision-making next to the combination of both modules to analyse the reason
for the worsening of the total number of conflicts.

Figure 4.13 shows the mean total number of LoSs. The two modules were able to
reduce the number of LoSs for all traffic scenarios and densities when compared to the
baseline navigation rules. The total number of LoSs is not a direct result of the total
number of conflicts (see Figure 4.12). However, reducing the number of conflicts has a
positive influence on the number of LoSs.

Similarly to the total number of conflicts in Figure 4.13(c), for some traffic scenar-
ios, adding the control-execution module results in an increase in the total number of
LoSs compared to employing the decision-making module alone and having immediate
merging manoeuvres. The ‘delays’ caused by the control-execution module increase the
total number of conflicts/LoSs, especially for traffic scenarios with a single origin (i.e.,
all aircraft start their route in the same direction). Per Figures 4.12(c) and 4.13(c), this
effect worsens as the traffic density increases. The fact that aircraft all have the same
origin means that delaying the vertical manoeuvres also delays the dispersion of this
localised high traffic density per the rest of the available airspace. Reducing this traffic
concentration as fast as possible has a greater effect globally in reducing the total number
of conflicts and LoSs. Although the control-execution module reduces the conflicts/LoSs
resulting from merging manoeuvres, in these specific traffic scenarios, these are negligible
compared with the instability effect resulting from having such a high number of aircraft
travelling in the same layers for a long period of time.

However, there is one traffic scenario where adding the control-execution reduced
the total number of conflicts/LoSs when compared to using the decision-making module
alone, and it does it at medium and high traffic densities. Here, all aircraft start their
flight heading north and will perform four turns to the left during their flight. This traffic
scenario has the highest number of conflicts/LoSs of all 75 scenarios, meaning that this
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(a) Mean total number of losses of separation during testing of the decision-making module.

(b) Mean total number of losses of separation during testing of the control-execution module.

(c) Mean total number of losses of separation during testing of the two RL modules together.

Figure 4.13: Mean total number of losses of separation (LoSs) during the testing of the RL modules. All traffic
densities have 75 traffic scenarios, with initial direction(s) and number of turns as defined in Section 4.5.1.

particular direction with a high amount of turns tends to be unsafe in this operational
environment. This shows that a control-execution module, as hypothesised, is essential
when the merging conflicts/LoSs are the main source of risk. This is the case for flight
routes with multiple turns at higher traffic densities, where likely distance gaps between
aircraft are smaller. The module reduces merging conflicts while, unfortunately, delaying
the dispersion of aircraft clusters in the process, increasing cruising conflicts. Its value is
thus highly connected to the traffic scenario.

Figure 4.14 displays the amount of time each aircraft spends in conflict with other
aircraft. While in conflict, aircraft will follow the new state computed by the CR method.
Aircraft return to their pre-defined route state once detected that they are no longer in a
conflict situation with intruders. The final solution, using both RL modules, was able to
reduce the time in conflict for all traffic scenarios and densities when compared to the
baseline rules. Note that the total number of conflicts (see Figure 4.12) and the total time
in conflict do not have a direct correlation. Fewer pairwise conflicts do not necessarily
mean less time in conflict per aircraft and vice versa.
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Figure 4.14: Total time in conflict per aircraft. All traffic densities have 75 traffic scenarios, with initial direction(s)
and the number of turns following the order defined in Section 4.5.1.

Figure 4.15 displays the intrusion severity. For most traffic scenarios, there is no
relevant discrepancy between the efficiency of the combination of the two RL modules
and the baseline rules. However, there is a difference between these and the average
intrusion severity when employing the decision-making module solely. This is expected:
the decision-making module does not take intermediate conflicts/LoSs into account.
Thus, it does not try to reduce proximity with other aircraft in intermediate layers, leading
to severe intrusions. As a result, adding the control-execution module could be a trade-off
between the total number of LoSs (see Figure 4.13(c)) and their severity.

Figure 4.15: Mean intrusion severity rate. All traffic densities have 75 traffic scenarios, with initial direction(s)
and number of turns following the order defined in Section 4.5.1.

Figure 4.16 depicts the relative speed between two aircraft in an LoS situation. Higher
relative speeds indicate speed heterogeneity, which increases complexity in the airspace.
With the baseline rules, transition layers are in place to minimise the effect of high
relative speeds from aircraft exiting and entering a cruising layer; aircraft only deceler-
ate/turn/accelerate within the third layer. These layers are safer for this state change, as
they are expected to be (almost) devoid of aircraft. Although the RL solution does not
leave a layer ‘free’, such does not result in a considerable increase in relative speed be-
tween aircraft. In some traffic scenarios, it even achieved a slight improvement. Optimal
segmentation is also beneficial in reducing relative speeds. With fewer conflicts and less
time in conflict (see Figures 4.12(c) and 4.14, respectively), aircraft spend a higher amount
of time at the ideal cruising speed. Frequent speed variations for conflict resolution
may increase speed heterogeneity. Finally, employing the decision-making RL module
alone shows some peaks of low relative speeds. These also correspond to traffic scenarios
where all aircraft are initially flying in the same direction. Once again, these differences in
performance result from a delay in the dispersion of these clusters of aircraft.
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Figure 4.16: Mean relative speed between pairs of aircraft in loss of separation. All traffic densities have 75 traffic
scenarios, with initial direction(s) and number of turns following the order defined in Section 4.5.1.

STABILITY ANALYSIS

Figure 4.17 shows the mean DEP value. The RL solution shows considerably better stability
than the baseline navigation rules. This is likely due to better segmentation of aircraft; the
greater distance between aircraft reduces the chance of secondary conflicts when aircraft
alter their state.

Figure 4.17: Domino effect parameter values. All traffic densities have 75 traffic scenarios, with initial direction(s)
and number of turns following the order defined in Section 4.5.1.

EFFICIENCY ANALYSIS

Figure 4.18 shows the average length of the 3D flight path per aircraft. The differences in
length of the flown trajectory originate mainly from: (1) the different vertical distances
between traffic layers that the aircraft occupy throughout their path, and (2) the different
number of vertical manoeuvres to avoid conflicts. Employing both RL modules shows a
slight reduction in flight path length for some of the traffic scenarios when compared to
the baseline navigation rules. A bigger reduction in flight path can potentially be achieved
when efficiency is also added to the reward formulation. However, this may have the same
effect as considering intermediate conflicts in the decision-making module: an optimal
cruising layer may be disregarded in favour of a smaller vertical deviation.

Figure 4.19 displays the average flight time per aircraft. For most traffic scenarios,
employing the RL solution achieved a faster flight than with the baseline navigation rules.
The difference in flight time increases along with traffic density. This results not only from
shorter flight paths (see Figure 4.18) but also from aircraft spending less time in conflict
(see Figure 4.14). Often, conflict resolution manoeuvres lead to aircraft adopting lower
deconflicting speeds, which increase flight time.
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Figure 4.18: Flight path length per aircraft. All traffic densities have 75 traffic scenarios, with initial direction(s)
and number of turns following the order defined in Section 4.5.1.

Figure 4.19: Flight time per aircraft. All traffic densities have 75 traffic scenarios, with initial direction(s) and
number of turns following the order defined in Section 4.5.1.

4.8. DISCUSSION
Using reinforcement learning to improve the layer change decision proved more suc-
cessful, safety- and efficiency-wise, than using manually defined baseline rules, both for
different traffic scenarios and different traffic densities. First, a decision-making module
was used to output layer change commands based on the planned route of the ownship
and the position of neighbouring aircraft. The decision-making module proved better
at reducing the global number of conflicts and LoSs when conflicts/LoSs resulting from
crossing intermediate layers between the initial and the target layer are not taken into
consideration. In this way, the module can focus on optimising the cruising phase, which
is beneficial for the global traffic scenario, as aircraft try to maximise the cruising phase on
their planned route. Second, a control-execution module improves safety during merging
manoeuvres by controlling the longitudinal and vertical movements of the merging air-
craft. It reduces the negative local impact of the layer change decisions when the ownship
crosses multiple layers. By delaying the merging manoeuvre until there is an adequate
distance gap between the ownship and the leader and follower aircraft, the intrusion
severity during vertical manoeuvres is reduced.

The optimal actions found by an RL method can be used to improve the rules of
current navigation analytical methods. Looking at the choices made by the two modules
previously described, the following guidelines can be defined:

1. At high traffic densities, a high degree of segmentation during the cruising phase is
an effective strategy to decrease conflict and losses of minimum separation.

2. With multiple layers, the separation of aircraft per layer should be performed in
relation to how close aircraft are to the next turn. Aircraft closer to a turn should be
placed in the outward layers, as they will move out sooner.

3. Delaying a merging manoeuvre may result in a trade-off between reducing the
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number of LoSs or keeping LoS severity to a minimum. At high traffic densities,
when the gaps between neighbouring aircraft are minimal, most aircraft will likely
delay their vertical movement. However, these decisions together result in the
local traffic density staying the same, with no improvement in the local situation.
Whereas in a method without delays, although the first dispersed aircraft are ex-
pected to encounter several conflicts/LoSs, their movement reduces local traffic
density. Consequently, the distance gaps between the aircraft increase, facilitating
the next vertical manoeuvres.

The unexpected finding that adding the control-executing module to the decision-
making module increased the total number of conflicts/LoSs raises questions regard-
ing the observability and reward formulation of the trained RL modules. The control-
execution module still has a positive effect locally by reducing the intrusion severity
during vertical manoeuvres. However, it also has a negative global effect, delaying the
dispersion of aircraft per the available airspace. These elements are further discussed in
the following sections.

4.8.1. OBSERVABILITY OF THE REINFORCEMENT LEARNING MODULES

Both RL modules presented in this work have partial observability: the agent has informa-
tion only on its surroundings, making the observations correlated with its geographical
position. However, the results obtained show that the information available is not suf-
ficient for the agent to fully understand the repercussions of its actions. First, given
that most of the flight routes favour spending most of their flight cruising, for global
safety, it is more beneficial to optimise the cruising phase than to decrease the number
of conflicts/LoSs resulting from crossing multiple vertical layers. The latter may result
in the module preferring to move to a nearer vertical layer instead of one further away
that is potentially safer to cruise in. However, this is not clear to the module as its ob-
servability/reward is restricted to the layer change action. Second, delaying the merging
manoeuvre until there is a safe distance gap in the target layer prevents the high severity
LoSs that the ownship would otherwise suffer, but it also delays the reduction in the local
traffic density. Depending on the number of aircraft involved, such may cause instability.

A possible solution would be to increase the amount of information to which each
agent has access. For example, the decision-making module can be extended to have
more information on the ownship’s flight route, hopefully resulting in a more informed
decision between prioritisation of cruising and/or turning phases. The reward must also
then reflect the safety during the following cruising phase so that the total impact of the
layer change manoeuvre plus the cruising phase on the selected layer can be evaluated.
However, safety in the cruising phase is also dictated by the other aircraft that join the
layer after the ownship. Therefore, it is not clear whether it is possible for the module to
correctly evaluate the impact of cruising in a layer. In turn, the control-execution module
can be improved to take into account the instability of the surroundings in the form of the
local traffic density and relative distance between all aircraft. Increasing the information
that each agent has access to requires the exploration of larger state sizes, which also
heavily increases the training time and complexity of the state-actions formulations.
These are balanced considerations that should be present in future research.
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4.8.2. REWARD FORMULATION
The efficacy of a reinforcement learning method is highly dependent on the reward values.
The reward formulation used here was based on the number of conflicts and LoSs, as
these are considered the main elements of safety. However, the reduction in the absolute
value of these elements may have a negative impact on LoS severity (Figure 4.15). This
can be a simple action as, for example, the ownship moving away from one intruder and
becoming closer to a second intruder in the process. This may result in two not so severe
LoSs, versus one severe LoS. This raises the question of whether to prioritise: (1) a low
number of LoSs, or (2) a low LoS severity even at the cost of a higher number of LoSs.

Future implementations may benefit from including intrusion severity in the training
of RL methods. However, a trade-off must be established between these two aspects.
For example, in this work, one LoS was valued as 10 conflicts. The same would need to
be established with LoS severity: (1) what are low and high severity intrusions?; (2) how
many low severity intrusions count for one high severity intrusion? These seem arbitrary
decisions, but they heavily influence the decisions made by the RL modules, and are also
dependent on the traffic scenarios and simulation environment.

4.9. CONCLUSIONS
This chapter focused on mitigating the impact of vertical deviations in a layered airspace.
Previous hand-crafted rules have limited impact. Notwithstanding the arduous work of
experts on the development of these rules, these do not cover the great multitude of differ-
ent relative geometries between merging, follower, and leader aircraft during a merging
manoeuvre. This work took inspiration from extensive research with road vehicles in
the area of lane change decisions, where reinforcement learning (RL) techniques have
surpassed the performance of hand-crafted rules. We translated these methods into an
aviation environment, where they are used for vertical layer change decisions.

This work compared the behaviour of a reinforcement learning-based solution for
layer-changing decisions versus employing manually defined navigation rules. Two RL
modules were used: a decision-making module, which outputs layer change commands,
and a control-execution module, which controls the aircraft longitudinally and vertically
to ensure a safe merging manoeuvre. Both modules, working independently and together,
reduced the total number of conflicts/LoSs when compared to manually defined baseline
rules. The benefit of this approach was especially noticeable at high traffic densities and
with routes with a high number of turns. However, it was also shown that delaying a
merging manoeuvre, while the gap between the aircraft is yet not sufficient for a safe ma-
noeuvre, also delays the dispersion of aircraft clusters in the process, negatively affecting
global safety. Future work should look into the local and global effects, as an action that
protects the ownship may increase the risk of conflicts for other neighbouring aircraft.

There is still a long way to go before these RL methods can be implemented in a real-
world scenario. However, the behaviour of the methods can already provide guidelines for
the implementation of navigation rules. Optimal segmentation during the cruising phase,
setting aircraft closer to turns in outward layers, and delaying merging actions so as to limit
intrusion severity, can be used to improve the current analytical layer navigation rules.
For future improvement of the performance of the RL methods, the reward formulation
can be extended to include other safety factors, such as intrusion severity. Finally, this
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work can also be extended to more heterogeneous operational environments in terms of
differences in performance limits, as well as preference for efficiency over safety.



5
USING REINFORCEMENT LEARNING

TO IMPROVE AIRSPACE

STRUCTURING IN AN URBAN

ENVIRONMENT

The results of the Chapters 3 and 4 show that separation of traffic into different altitude
layers by employing heading-altitude rules greatly increases safety. Chapter 3 concluded
that reinforcing learning (RL) could also be used to improve the structure of the operational
environment, catering to the expected traffic scenario. This chapter explores this hypothesis.

In Section 5.5, RL techniques are used to determine the heading range per layer in
accordance with the current and expected traffic scenario. Multiple traffic demand scenarios
are simulated. Subsequently, the structure-traffic scenario relationship is inferred from the
effect of traffic demand variations on a number of airspace performance metrics.

Cover-to-cover readers may chose to skip Sections 5.3, 5.4.2, 5.5.7 which describe a lay-
ered airspace, the theoretical background of a Deep Deterministic Policy Gradient (DDPG)
algorithm, and the Modified Voltage Potential method, respectively. These are very similar
to their counterparts in previous Chapters 3 and 4.

This chapter is based on the following publication:

1. M. Ribeiro, J. Ellerbroek, and J.Hoekstra, Using Reinforcement Learning to Improve Airspace Structuring
in an Urban Environment, Aerospace 9 (2022)
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ABSTRACT
Current predictions on future drone operations estimate that the traffic density will
be orders of magnitude higher than any observed in manned aviation. Such densities
redirect the focus towards elements that can decrease conflict rate and severity, with
special emphasis on airspace structures, an element that has been overlooked within
distributed environments in the past. This work delves into the impact of different
airspace structures in multiple traffic scenarios, and how appropriate structures can
increase the safety of future drone operations in urban airspace. First, reinforcement
learning is used to define optimal heading range distributions with a layered airspace
concept. Second, transition layers are reserved to facilitate the vertical deviation between
cruising layers and conflict resolution. The effects of traffic density, non-linear routes,
and vertical deviation between layers are tested in an open-source airspace simulation
platform. Results show that optimal structuring catered to the current traffic scenario
improves airspace usage by correctly segmenting aircraft according to their flight routes.
The number of conflicts and losses of minimum separation was reduced versus using a
single, uniform airspace structure for all traffic scenarios, thus enabling higher airspace
capacity.

5.1. INTRODUCTION
The European drones outlook study [197] estimates that as many as 400.000 drones will
be operating in the airspace by 2050. The use of machine learning in tactical conflict
detection and resolution (CD&R) could potentially support advanced and scalable access
to the airspace for a large number of drone (U-space) services. The present work aids this
research by developing a reinforcement learning module that selects the optimal airspace
structure for the current traffic. The objective is to decrease the conflict severity and rate
for unmanned aviation operations in urban environments. A conflict is a predicted future
loss of minimum separation (LoS). A loss of minimum separation (or intrusion) occurs
when two aircraft are closer to each other than the minimum separation distance. The
paramount objective of Air Traffic Control (ATC) is to prevent intrusions.

Airspace structure plays a positive role in airspace capacity. Within centralised ATC,
structuring consists of separating the airspace into different sectors. Each air traffic
controller (ATCo) is responsible for one sector. The number of aircraft in each sector
is limited to how many aircraft each ATCo can control simultaneously [207]. However,
it is yet not clear how to optimally structure a distributed airspace. The Metropolis
Project explored different types of airspace structures for manned flights in a dense
urban area, using distributed separation assurance [142]. Results showed that a ‘layers’
concept, where the available airspace is segmented vertically, increases airspace capacity
by reducing the number of conflicts and losses of minimum separation. This concept was
further developed recently for unmanned aviation [172], where all directions within an
urban infrastructure were divided per the available vertical layers. This research focused
on a single, uniform structure and analyzed its effect. The present work builds upon the
latter by exploring optimized structures catered to the expected traffic scenario.

Research related to road vehicles explored reinforcement learning (RL) to improve
lane configuration [208, 209]. Dynamic lane configurations reduced the average travel
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time in congested road networks when compared to a fixed, traditional lane-direction
configuration [210]. Fixed configurations assume pre-known, static traffic patterns. How-
ever, in the real world, traffic may change considerably; one single configuration is not
necessarily optimal for all traffic situations [211]. Urban air traffic has several similarities
with road traffic that justify exploring machine learning techniques successfully applied
in the latter [212, 213]. First, unmanned aviation is set to follow road infrastructure [214].
Thus, the effects of the environment topology on traffic agglomeration are similar in both
cases. Collisions are prevented by maintaining a minimum distance between vehicles,
comparable to aviation. However, there are remarkable differences between drones and
road vehicles. The latter can become stationary, but not all drones can hover [215]. Addi-
tionally, in aviation, minimum separation distances are typically larger. These challenges
will be further examined in this work.

This study uses the open-source, ATC simulation tool BlueSky [25] to simulate opera-
tions in an urban environment. Aircraft follow pre-planned routes around urban infras-
tructure (thus, preventing collisions with static obstacles). Conflicts between aircraft are
resolved with conflict resolution (CR) with implicit coordination. This work resortes to
CR method Modified Voltage Potential (MVP) [15], which has proved effective in reducing
losses of separation with minimal state deviation [162]. Normally, most conflict detection
and resolution (CD&R) methods favor heading deviations as preferred by air traffic con-
trollers. However, in an urban environment, such deviations could result in collisions with
the surrounding infrastructure. We favor a speed and altitude-based conflict resolution
approach, guaranteeing that the frontiers with the surrounding urban infrastructure are
always respected. Finally, the deep deterministic policy gradient (DDPG) [163] method
was used to determine optimal directions per layer within a layered airspace concept.

5.2. RELATED WORK
ATM is a critical domain, with safety as the top priority, which explains the slow progress
in the use of machine learning (ML) approaches in the ATM domain when compared to
other research fields [216]. Here, we focus on the application of ML for airspace design.
The body of work in this area is narrow; ML approaches are often limited to assessing
the complexity in an airspace sector. Brito [217] used supervised learning to predict air
traffic demand in airspace sectors, enhancing the predictability of airspace sector demand
versus a baseline demand estimation model, which mimics the current practice. Li [218]
employed an unsupervised learning approach for the airspace complexity evaluation;
results showed that it outperformed state-of-the-art methods in terms of airspace com-
plexity evaluation accuracy. Finally, Wieland [219] showed that ML approaches can help
determine the importance of each complexity feature in predicting airspace capacity.

Regarding airspace structuring, existent ML methods are more directed at manned
aviation, focusing on airspace sectors. Xue [220] approached dynamic vector resectoriza-
tion with Voronoi diagrams and genetic algorithms. Results show that these are capable
of determining the dominant traffic flow, which is one of the main concerns in sector
design. Kulkarni [221] used dynamic programming to partition airspace based on the
ATCos workload, showing that this could be a viable tool. Finally, Tang [222] proposed an
agent-based method to dynamically partition the airspace, to accommodate the traffic
growth while satisfying efficiency metrics. The trained method showed promising results
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both in balancing the ATCos workload and the average sector flight time.
To the best of the authors’ knowledge, this is the first work that approaches airspace

structuring for unmanned aviation environments. The latter entails a very specific chal-
lenge: these types of operations entail a much higher number of heading deviations (i.e.,
turns during the flight route) than manned aviation, where aircraft employ (as much
as possible) direct routes from the start to the endpoint. We employ an urban environ-
ment with the objective of ‘forcing’ turns to analyse whether the RL method can adapt to
these changes. The RL method is responsible for defining the ‘directions’ allowed at each
layer, following the topology of the urban environment. Note that the RL method herein
employed could also be applied to an unconstrained, layered airspace. In this case, the
method should be used to define the heading ranges allowed in each vertical layer.

5.3. LAYERED URBAN AIRSPACE DESIGN
The usage of drones in an urban environment entails several challenges. Separation with
the urban infrastructure must be guaranteed at all times. Most of the current tactical
CD&R methods are directed at manned aviation, aimed at detecting other flying traffic
at cruise altitude. A method directed at dynamic obstacles cannot automatically be
translated to defend against static obstacles. In most existing research on tactical conflict
resolution, static obstacles are predominantly defined as (sparse) objects to fly around, as
opposed to a multitude of objects that dominate the available space to operate [168]. This
work considers that aircraft follow a pre-defined safe route around all static obstacles.
Waypoints are set at the center of the roads, from which aircraft do not deviate.

Conflict resolution is not as efficient as it would be in non-constrained airspace,
as aircraft cannot modify their headings to avoid conflicts. Near head-on conflicts are
practically impossible to resolve without heading deviation. The focus must then be on
conflict prevention. Airspace structures directly reduce conflict probability by decreasing
the likelihood of aircraft meeting during their flights. The Metropolis Project has shown
that a layered airspace structure considerably reduces the rate of conflicts [175]. Two
effects contribute to this reduction. First, the total traffic density is segmented into groups
of aircraft allocated at different altitude layers. Second, these groups are divided per
aircraft heading, enforcing a degree of alignment between the aircraft, which decreases
the likelihood of conflicts in each layer.

Previous research [13, 172–174] investigated the layered concept in urban environ-
ments. However, only evenly distributed heading ranges per layer (as exemplified in
Figure 5.1) have been researched. However, this is only optimal when the heading distri-
bution of the traffic is uniformly distributed as well. In reality, this is often not the case.
Flights may be performed predominantly in specific directions, following the topology of
the bigger avenues in the urban environment. Aircraft may be expected to heavily move
towards areas with higher population densities, or to a few specific storage points when
employed for delivery purposes. Additionally, the directions of flight may change often as
aircraft redirect at intersections to avoid collisions with static obstacles.

Aircraft will not be equally distributed over the available airspace when the structure
of the airspace does not align with the current heading distribution. One layer will have
a higher traffic density than the others when aircraft predominantly adopt a certain
direction. In the worst-case scenario, the segmentation factor will be lost, canceling
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out the benefit of having a layered structure. Thus, the airspace structure should be set
as a function of the current traffic scenario to prevent conflicts and reduce travel time.
Moreover, given the fast-changing nature of the traffic, an automated control is preferable
to guarantee fast response times and higher structure variability. In this work, we propose
a reinforcement learning approach responsible for defining the heading range per traffic
layer as a function of the expected traffic scenario. The objective is for this automated
agent to focus on dividing aircraft per layer according to the real distribution, making full
use of the available airspace.

0◦–60◦

120◦–180◦

240◦–300◦

60◦–120◦

180◦–240◦

300◦–360◦

Figure 5.1: Evenly distributed airspace structure; the total heading range (360◦) is divided per the available
traffic layers.

5.4. AIRSPACE STRUCTURE WITH REINFORCEMENT LEARNING

5.4.1. AGENT
We employ an RL agent whose objective is to optimise the airspace structure in function
of the traffic scenario. We assume that the agent has full information on the future traffic
density and trajectories. In a real-world application, this agent might be seen as a central
component, responsible for defining the structure of the operational airspace.

5.4.2. LEARNING ALGORITHM
An RL method consists of an agent interacting with an environment E in discrete timesteps.
At each timestep, the agent receives the current state s of the environment and performs
an action a in accordance with which it receives a reward rt . An agent’s behavior is
defined by a policy, π, which maps states to actions. The goal is to learn a policy that
maximizes the reward. Many RL algorithms have been researched in terms of defining the
expected reward following action a. In this work, we used the deep deterministic policy
gradient (DDPG), defined in [163].

Policy gradient algorithms first evaluate the policy and then follow the policy gra-
dient to maximise the performance. DDPG is a deterministic actor–critic policy gradi-
ent algorithm, designed to handle continuous and high-dimensional state and action
spaces. It has proven to outperform other RL algorithms in environments with stable
dynamics [164]. Additionally, DDPG has been successfully implemented in the aviation
environment [223–225], proving that it can adapt to aircraft dynamics. However, DDPG
can become unstable, being particularly sensitive to reward scale settings [188, 189]. As a
result, rewards must be carefully defined.
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DDPG is an instance of the actor–critic model. The deterministic actor receives a
state from the environment and outputs an action. The critic maps each state–action
pair, informing the actor how to adjust towards outputting the best actions. Furthermore,
the DDPG method employs target networks and a replay buffer. The target networks are
mostly useful to stabilise function approximation when learning for the critic and actor
networks. The replay buffer stores multiple past experiences, from which mini-batch
samples are used to update the actor and critic. The pseudo-code for DDPG is displayed
in Algorithm 5.1. Additionally, noise is added to promote exploration of the environment;
an Ornstein–Uhlenbeck process [191] is used in parallel with the authors of the DDPG
method. Table 5.1 presents the hyperparameters employed in this work. We resort to 2
hidden layer-neural networks with 120 neurons in each layer.

Algorithm 5.1 Deep deterministic policy gradient.

Initialize critic Q(s|aµ) and actor µ(s|θµ) networks, replay buffer R, and action exploration
for all episodes do

while episode not ended do
Select action at according to the current state st from the environment and the current actor network
Perform action at in the environment and receive a reward rt and new state st+1
Store transition (st , at ,rt , st+1) in the replay buffer R
Sample a random mini-batch of N transitions from R
Update critic by minimizing the loss
Update the actor policy using the sample policy gradient
Update the target networks

end while
Reset the environment

end for

Table 5.1: Hyperparameters of the employed RL method used in this work.

Parameter Value

TAU 0.001

Learning rate actor (LRA) 0.0001

Learning rate critic (LRC) 0.001

EPSILON 0.1

GAMMA 0.99

Buffer size 1 M

Minibatch size 256

# hidden layer-neural networks 2

# Neurons 120 in each layer

Activation functions Rectified linear unit (ReLU) in the hidden layers, Softmax in the last layer

5.4.3. STATE
The state input into the RL method must contain the necessary data for the RL agent
to successfully determine an optimal heading division per traffic layer. We consider
that such a decision requires information on the traffic demand, flight routes, and their
evolution over time. However, representing correct traffic flow evolution is non-trivial
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and can assume various shapes. Moreover, with RL, a simplified representation of the
environment is often needed to optimise the training of the neural network. Representing
the complete flight routes for all aircraft would greatly increase the size of the state
formulation and with it the number of possible states and state–action combinations. As
the size of the problem’s solution space grows exponentially with the number of states, it
may reach a point where the training time becomes unrealistic.

To enable a fixed array size, representing a simplified version of the environment,
a maximum number of four possible directions are considered within the simulated
urban environment: East, South, West, and North. Then, ‘snapshots’ are taken of the
predicted future traffic scenario at different points in time. Each point in time is defined
by four variables, with each variable representing the number of aircraft in each of the
four possible directions. Figure 5.2 represents the complete state array. A total of four
‘snapshops’ are taken, each one further in time by five minutes. For example, E1 represents
the number of aircraft traveling East, 5 minutes past the start of the traffic scenario.
Naturally, having more ‘snapshops’ provides more information regarding the environment
but at the cost of adding more complexity to the method.

Additionally, for simplification, a fixed number of vertical layers is assumed. Six traffic
layers are defined. The six final elements of the state array (L1 to L6), are used to indicate
the current number of aircraft in each traffic layer. It is considered that the structure is
set before the aircraft initiated their flights. Thus, the airspace is empty at the beginning
of each episode, and the six final positions equal 0 in the initial state. However, at the
end of the episode, as the RL method is informed about the next state, this information
becomes relevant. Ideally, the RL agent should opt for a structure that homogeneously
divides aircraft across the available airspace (segmentation effect). Additionally, this
state formulation could potentially be used in a situation where the traffic volume at the
beginning of the episode is not zero, as it is capable of transmitting such information.

E0 S0 W0 N0 E1 S1 W1 N1 E2 S2 W2 N2 E3 S3 W3 N3 L1 L2 L3 L4 L5 L6

Traffic in 0 min Traffic in 5 min Traffic in 10 min Traffic in 15 min Layer Occupancy

Figure 5.2: State formulation of the reinforcement learning agent. The first 16 positions represent the expected
traffic intensity per direction (East, South, West, and North) at the expected point in time. The last 6 position
represents the current number of aircraft in each traffic layer.

5.4.4. ACTION
The RL agent determines the action to be performed for the current state. The incoming
state values are transformed through each layer of the neural network, in accordance with
the neuron weights and the activation function in each layer. The activation function
takes in the output values from the previous layer and converts them into a form that can
be taken as the input for the next layer. The output of the final layer must be turned into
values that can be used to define the ‘direction’ in each traffic layer. A softmax activation
function is employed in the last layer; the output values are used to define which direction
was allowed at each traffic layer. The dimension of the action array is set to 24 (4 directions
× 6 layers). Figure 5.3 shows how the necessary information is extracted from the action
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array. For example, the first 4 positions of the array correspond to the 4 directions possible
in the first layer; the direction with the highest integer value was picked.

E0 S0 W0 N0 E1 S1 W1 N1 E2 S2 W2 N2 E3 S3 W3 N3 E0 S0 W0 N0 E1 S1 W1 N1

1st Layer 2nd Layer 3r d Layer 4th Layer 5th Layer 6th Layer

Figure 5.3: Action array output by the reinforcement learning method. Each successive 4 positions represent
a traffic layer. The highest integer indicates the direction (East, South, West, or North) to be allowed in the
respective layer.

Thus there are two main components upon which the RL agent decides:

• The number of layers for each direction: the RL agent may decide to select more
layers for a direction adopted by the majority of aircraft. However, an important
safeguard was implemented upon the airspace structure output by the RL agent. To
make sure that all directions were allowed in the airspace, a final check was applied
to the structure. If all possible directions were not yet allowed, the last layer was
overwritten to allow for the missing directions. Note that it may occur that more
than one flight direction is allowed in this layer.

• The order of the layers: the RL agent decides which directions are in adjacent layers.
For a fixed structure, it is good practice to allow the left or right turning by just
climbing or descending one layer. However, on purpose, the agent is free to choose
the order of directions. It will be evaluated whether the structure output by the RL
agent includes an understanding of perpendicular directions.

5.4.5. REWARD
The RL method should prioritise safety, with the paramount factor being the number of
conflicts/LoSs. However, it is unclear, at this state, which element will result in a more
optimal convergence: (1) the total number of conflicts, or (2) the total number of losses
of minimum separation. As a result, the following reward formulations will be tested
and compared:

1. The RL method receives a −1 for each conflict.
2. The RL method receives a −1 for each loss of minimum separation.

A loss of separation is detected when two aircraft are closer to each other than the
minimum separation distance. A conflict is a predicted future loss of minimum separa-
tion. More details on the state-based conflict detection used in this work are given in
Section 5.5.6.

Note that a considerable limitation of this reward formulation is the fact that it does
not take into consideration efficiency, more specifically, (1) extra energy consumption
resulting from drones traversing between layers far away, and (2) extra energy consump-
tion due to the vertical conflict resolution manoeuvres. Urban air mobility vehicles are
limited energy-wise. Thus, these manoeuvres can hinder the paths and travel times of
these vehicles. Nevertheless, this work is the first approach intended to study whether RL
methods can successfully set an airspace structure adapted to the traffic scenario; thus,
we opted for a simple reward formulation focusing only on safety. Notwithstanding, it
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may be considered that safety has an indirect positive effect on efficiency: decreasing
both the total number of conflicts or LoSs directly reduces the number of vertical conflict
resolution manoeuvres. Future work should consider efficiency elements as well. Never-
theless, weights of safety and efficiency should be carefully considered. Safety should not
be jeopardised in favor of faster or shorter flights.

5.5. EXPERIMENT: SAFETY-OPTIMISED AIRSPACE STRUCTURE
The following subsections define the properties of the performed experiment. The latter
aims at using RL to define the heading range at each vertical traffic layer within layered
urban airspace. Note that the experiment involves a training and a testing phase. First,
the RL method was trained continuously with a set of traffic scenarios. Second, it was
tested with unknown traffic scenarios. Performances with these new scenarios are directly
compared to a baseline that employed evenly distributed heading ranges per layer.

5.5.1. SIMULATED ENVIRONMENT
We first define the simulation area. This is an urban setting built using the Open Street
Map networks (OSMnx) python library [167], an open-source tool for street network
analysis. We used an excerpt from the San Francisco Area, representing an orthogonal
street layout with an area of 1.708 NM2, as depicted in Figure 5.4. The OSMnx library
returned a set of nodes from which a network of roads could be defined.

In this area, roads and intersections were defined by vertices and nodes, respectively.
Two adjacent nodes represent the edges of a road. Aircraft can only travel from one node
to another when these are connected. With the intention of reducing complexity, each
node was considered to have (upmost) four connecting roads, as shown in Figure 5.5. Only
existing roads were considered. Additionally, we assume that each road was unidirectional,
with only one lane. We did not make any assumption regarding the width of the road,
which would have been needed if more directions were considered.

Figure 5.4: The urban environment used in these
experiments. The data was retrieved from the
OSMnx python library [167].

Figure 5.5: Possible directions in each one of six
available traffic layers: W (west), N (north), E (east),
and S (south).

5.5.2. TRANSITION LAYERS
In conventional aviation, temporary altitude layers are often used as a level-off at an
intermediate flight level along a climb or descent to avoid conflicts [205]. In our urban
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airspace, we applied the same concept: we include (low-speed) transition layers in the
airspace to be used only by aircraft that were transitioning between traffic layers. Aircraft
perform the heading turns in these transition layers, preventing conflicts resulting from
heterogeneous speed situations when an aircraft decelerated just before a turn. Transition
layers are expected to be (almost) depleted of aircraft at any point in time, reducing the
likelihood of aircraft meeting in conflict. Moreover, we consider that aircraft fly along
the middle of the road. Since we also make no assumptions about the width of a street,
aircraft were also not allowed to use heading changes for conflict resolution. This means
that aircraft can only resort to speed and altitude changes to avoid conflicts. However,
a vertical space needs to be reserved for vertical conflict resolution, preventing aircraft
from entering adjacent traffic layers. Thus, additional vertical layers are allocated for this
purpose. Figure 5.6 depicts the different layers used in the experimental scenario.
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Figure 5.6: Different altitude layers used in this work.

Three different layer types were considered, each dedicated to different actions:

• Six traffic layers (blue): the main layers used by cruising traffic.
• Six slow transition layers (light grey): are used for transitioning between traffic

layers. This is a necessary mid-step prior to the aircraft entering different traffic
layers. First, the aircraft exit the current traffic layer without modifying their speed,
to not create conflict with other cruising aircraft, and they move towards the slow
layer. Here, the aircraft decrease their speed to reach the speed required to comply
with the turn radius. After turning, the aircraft start accelerating towards the desired
cruising speed/moving to the destination traffic layer.

• Six fast transition layers (dark grey): are used to perform vertical conflict resolution
when necessary. The overtaking aircraft resolve the conflict by moving into the fast
layer; aircraft being overtaken have the right of way. Once the conflict is resolved, the
aircraft move back into the traffic layer to guarantee that the fast layers are (mostly)
depleted of other traffic when the aircraft need to perform vertical resolution.

All layers were set with a height of 15 ft. There is a margin of 5 ft between the layers to
prevent false conflicts.
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5.5.3. FLIGHT ROUTES

Aircraft spawn locations (origins) are placed in alternating orders on the edge of the
simulation area, with a minimum spacing equal to the minimum separation distance, to
avoid conflicts between spawn aircraft and aircraft arriving at their destinations. Multiple
traffic layers are used; aircraft are spawned at a layer that allowed for the initial heading.
Aircraft climb almost vertically. Finally, an aircraft is deleted from the simulation once
it leaves the simulation area. To prevent aircraft from being removed incorrectly when
traveling through an edge road, aircraft are set to move out of the map once they finished
their route and are removed once they moved away from an edge node.

Each aircraft has several waypoints it must pass through. These are always nodes from
the map and are calculated based on the defined initial direction, number, and direction
of turns, as displayed in Table 5.2. There are a total of 75 traffic scenarios (15 initial
heading distribution × 5 turns) per traffic density. During the creation of the simulation
scenarios, the total flight time of the already created aircraft is accounted for so that the
desired instantaneous traffic densities are respected. All aircraft start at the corresponding
end of the map, allowing for a linear route towards their initial directions (e.g., an aircraft
with an initial direction of the East starts at the West end of the map). If there are no turns,
the aircraft will travel in their initial directions throughout the complete route. A turn to
the right from an aircraft with the initial direction East indicates that the aircraft will turn
South during its route. A turn to the left would result in this aircraft turning North.

Table 5.2: Flight routes are defined as per the initial direction and the number of turns. The aircraft initial
distribution defines, for each scenario, the percentage of flights starting in each initial direction. A total of 15
scenarios with different initial distributions were used. Each scenario was performed five times, with a different
number and direction of turns.

Traffic Scenario: #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15
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East (E): 100 0 0 0 50 50 50 0 0 0 33 33 33 0 25

South (S): 0 100 0 0 50 0 0 50 50 0 33 33 0 33 25

West (W): 0 0 100 0 0 50 0 50 0 50 33 0 33 33 25

North (N): 0 0 0 100 0 0 50 0 50 50 0 33 33 33 25

Flight Path With Turns: All traffic scenarios are repeated with:

•No Turns (0)
•2 Turns to the Right (2R)
•4 Turns to the Right (4R)
•2 Turns to the Left (2L)
•4 Turns to the Left (4L)

During the training of the RL method, one set of 75 traffic scenarios with medium
traffic density was used. During testing, three different sets of each traffic density (low,
medium, and high traffic density) is run. Thus, testing was conducted for three differ-
ent trajectories for each combination of initial direction and the number of turns. This
variability of traffic scenarios is aimed at testing the performance of the RL method in
multiple situations. Using different heading distributions tests the capacity of the RL
method to successfully segment different traffic scenarios over the available airspace. Us-
ing a different number of turns tests the ability of the method to protect against successive
changes in the heading distribution.
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5.5.4. APPARATUS AND AIRCRAFT MODEL
The open-air traffic simulator BlueSky [25] is used to test the efficacy of dynamic airspace
structuring. The performance characteristics of the DJI Mavic Pro are used to simulate
all vehicles. Here, speed and mass were retrieved from the manufacturer’s data, and
common conservative values were assumed for the turn rate (max: 15◦/s), acceleration,
and breaking (1.0kts/s).

5.5.5. MINIMUM SEPARATION
The appropriate minimum safe separation distance depends on the operational envi-
ronment and type of aircraft involved. For unmanned aviation, there are no established
separation distance standards yet. We opt for 50 m for horizontal separation, as com-
monly used in research [59]. For vertical separation, 15 ft was assumed, based on the
dimension of the vertical layers.

5.5.6. CONFLICT DETECTION
This study employs state-based conflict detection, which assumes the linear propagation
of the current state of all aircraft involved. Thus, the time to the closest point of approach
(CPA), in seconds, is calculated as:

tC PA =−
~dr el ·~vr el

~vr el
, (5.1)

where ~dr el is the Cartesian distance vector between the involved aircraft (in meters) and
~vr el is the vector difference between the velocity vectors of the involved aircraft (in meters
per second). The distance between aircraft at CPA (in meters) is calculated as:

dC PA =
√
~d 2

r el − tC PA
2 ·~v 2

r el . (5.2)

When the separation distance is calculated to be smaller than the specified minimal
horizontal spacing, a time interval can be calculated in which separation will be lost if no
action is taken:

ti n , tout = tC PA ±
√

RP Z
2 −dC PA

2

~vr el
. (5.3)

These equations will be used to detect conflicts, which are said to occur when dC PA < RP Z ,
and ti n ≤ tlookahead , where RP Z is the radius of the protected zone or the minimum hori-
zontal separation and tl ookahead is the specified look-ahead time. A look-ahead time of
30 seconds was used for conflict detection and resolution.

5.5.7. CONFLICT RESOLUTION
To guarantee safety in between static obstacles (e.g., buildings, trees), movement within
the horizontal plane was severely limited. For conflict resolution, we look at the remaining
degrees of freedom, namely speed and altitude variations. Within an urban environment,
we may consider two main conflict geometries: (1) conflicts with aircraft traveling along
the same road; (2) conflicts at intersections. Within the first case, aircraft fly in the
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same direction; intruders are positioned directly in front or behind the ownship. These
conflicts can be treated as pairwise conflicts, with a simple resolution, where each aircraft
respects a minimum distance to the aircraft in front. The second type of conflict is more
complicated. Crossing traffic flows, or merging aircraft, leads to multi-aircraft conflicts for
which simple rules no longer suffice. For these conflicts, we resort to the velocity obstacle
theory [148, 149], which translates the two-dimensional problem of crossing flows into
speed constraints, identifying which velocities result in conflicts.

Figure 5.7 exemplifies the construction of a velocity obstacle (VO). Ownship (A) is in
conflict with an intruder (B). A collision cone (CC) can be defined as the triangular area
between the lines tangential to the intruder’s protected zone (PZ). A and B are in conflict
when the relative velocity between these two aircraft is inside the CC. A VO is defined
as a collision cone translated by the intruder’s velocity; thus, expressing the separation
constraints to the absolute velocity space of the ownship. This VO represents the set of
ownship velocities that lead to a loss of separation with the intruder. R represents the
radius of the PZ. P A(t0) and PB (t0) denote the initial positions of the ownship and the
intruder, respectively. PB (tc ) identifies the intruder’s position at the moment of collision.
Each intruder in the vicinity of an ownship results in a separate VO.
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Figure 5.7: Representation of a velocity obstacle (VO) imposed by intruder B, and the relationship between a
circular velocity vector set and the protected zone (PZ) [94]. By adding the intruder’s velocity, the collision cone
(CC) is translated, forming the intruder’s VO.

The geometric resolution of the MVP method, as defined by Hoekstra [2, 15], is dis-
played in Figure 5.8. When a conflict is detected, MVP uses the predicted future positions
of both ownship and intruder at the closest point of approach (CPA). These calculated
positions ‘repel’ each other, and this ‘repelling force’ is converted to a displacement of the
predicted position at CPA. The resolution vector is calculated as the vector starting at the
future position of the ownship and ending at the edge of the intruder’s protected zone, in
the direction of the minimum distance vector. Thus, this displacement is the shortest way
out of the intruder’s protected zone. Dividing the resolution vector by the time left to CPA
yields a new speed, which can be added to the ownship’s current speed vector, resulting
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in a new advised speed vector. From the latter, a new advised heading and speed can
be retrieved. The same principle is used in the vertical situation, resulting in an advised
vertical speed. In a multi-conflict situation, the final resolution vector is determined by
summing the repulsive forces with all intruders. As it is assumed that both aircraft in a
conflict will take (opposite) measures to evade the other, MVP is implicitly coordinated.

PZIntruder
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Figure 5.8: Modified voltage potential (MVP) geometric resolution. Adapted from [15].

5.5.8. INDEPENDENT VARIABLES

During training, reward formulation and conflict resolution are introduced as indepen-
dent variables to observe how each influenced the training of the RL agent. During testing,
different traffic densities are introduced to analyse how the RL method performs at traffic
densities in which it was not trained. Additionally, airspace structures output by the RL
method are compared with a commonly used fixed, uniform airspace structure. More
details are given below.

REWARD FORMULATION

Two different reward formulations are tested and compared in terms of training efficacy:
(1) −1 per each conflict; (2) −1 per each LoS.

CONFLICT RESOLUTION

The effect of conflict resolution on safety results is tested by directly comparing the
efficacy of an RL agent trained in an environment without conflict resolution (CR-OFF),
with another RL agent trained in an environment where MVP was used to generate conflict
resolution manoeuvres through speed and altitude variation (CR-ON).

TRAFFIC DENSITY

Traffic density ranges from low to high according to Table 5.3. The instantaneous aircraft
defines the number of aircraft expected at any given time during the measurement period.
At high densities, aircraft spent more than 10% of their flight times avoiding conflicts [193].
The RL agent responsible for setting the airspace structure was trained at a medium traffic
density and then tested with low, medium, and high traffic densities. In this way, it is
possible to assess the efficacy of an agent performing at a traffic density different from
that in which it was trained.
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Table 5.3: Traffic volume used in the experimental simulations. The number of spawned aircraft correspond
to 20 min of simulation time; the range results from different flight paths as the necessary time to traverse the
environment is dependent on the initial direction(s) and the number of turns.

Low Medium High

Traffic density [ac/10,000 NM 2] 292,740 585,408 878,112

Number of instantaneous aircraft [-] 50 100 150

Number of spawned aircraft [-] 80–397 159–794 236–1189

AIRSPACE STRUCTURE

The airspace-structured output by the RL agent must be compared to a baseline-fixed
structure ([W,N, E, S, W,N]), to verify that there is a significant improvement in having
dynamic structuring catered to each traffic scenario vs one pre-defined structure. The
latter is the structure defined in Table 5.4, which obtained good results in previous re-
search [206]. This baseline structure adopts one direction per vertical layer. It is possible
to cross into a perpendicular road by climbing or descending to the next layer. The lat-
ter is the main benefit of this structure, as it reduces the number of necessary vertical
deviations.

Table 5.4: Quadrant rules per altitude layer.

1st Layer 2nd Layer 3r d Layer 4th Layer 5th Layer 6th Layer

Altitude

5.5.9. DEPENDENT VARIABLES
Three different categories of measures, safety, stability, and efficiency, are used to evaluate
the effects of the different operating rules in the simulation environment.

SAFETY ANALYSIS

Safety is defined in terms of the number and duration of conflicts and losses of separation.
Fewer conflicts and losses are considered safer. Additionally, losses of separation are
distinguished based on their severity according to how close the aircraft are to each other:

LoSsev = R −dC PA

R
. (5.4)

A low separation severity is preferred.

STABILITY ANALYSIS

Stability refers to the tendency for tactical conflict resolution manoeuvres to create sec-
ondary conflicts. In the literature, this effect has been measured using the domino effect
parameter (DEP) [151]:
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DEP =
nON

c f l −nOF F
c f l

nOF F
c f l

, (5.5)

where nON
c f l and nOF F

c f l represent the number of conflicts with CD&R ON and OFF, respec-

tively. A higher DEP value indicates a more destabilising method, creating more conflict
chain reactions.

EFFICIENCY ANALYSIS

Efficiency is evaluated in terms of the distance travelled and the duration of the flight.
There is a preference for methods that do not considerably increase the path travelled
and/or the duration of the flight.

5.6. EXPERIMENT: HYPOTHESES

5.6.1. SIMULATED TRAFFIC SCENARIOS
A set of 75 different scenarios was simulated for each traffic density (low, medium, and
high traffic densities). During training, only the medium traffic density is employed;
during testing, the three different traffic densities are employed. Within the different
scenarios, different initial directions and number of turns throughout the flight routes
were set. This is an attempt to introduce a varying number of aircraft per direction
and a different number of vertical deviations. Given that the traffic density is constant
throughout each scenario, it is hypothesised that a smaller number of different initial
traffic directions leads to a higher number of conflicts and LoSs, due to the fact that
all aircraft would be travelling in the same vertical layers, on the same ‘roads’. When
more initial directions are in place, existing traffic is distributed among the airspace to
a greater extent, reducing the probability of aircraft meeting in conflict. Additionally,
it is hypothesised that a higher number of turns is harder to optimise, as turns are not
explicitly represented in the state formulation.

However, looking only at the number of initial directions and turns is not enough to
immediately identify the total number of conflicts and LoSs at the end of the simulation.
Safety also depends on the trajectories taken and the topology of the environment. The
latter may make some directions more prone to conflicts than others; the position of
static obstacles may lead to certain locations turning into conflict ‘hotspots’. The latter
will be analysed with the experimental results.

5.6.2. DYNAMIC AIRSPACE STRUCTURING
It is hypothesised that having a dynamic airspace structure that caters to the expected
traffic scenario results in fewer conflicts and LoSs compared to having one fixed structure,
which is not optimal for all different traffic cases. For an unbiased comparison, we employ
a fixed structure that is expected to perform reasonably well in a wide range of different
traffic scenarios. The structure (W, N, E, S, W, N) was chosen; the latter has been proven to
be successful in previous research [206]. Naturally, it could even be that there are specific
traffic scenarios for which this baseline structure is more efficient and may outperform
the structure output by the RL method. This is relevant for comparison to assess which
structuring characteristics lead to improved safety.
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5.6.3. TRAINING OF THE REINFORCEMENT LEARNING METHOD
The use of conflict resolution during the training of the RL method was hypothesised to be
optimal, as it is a better representation of the testing environment, where aircraft attempt
to avoid each other. Additionally, having CR during training would allow optimisation
to focus on the conflicts that a geometric conflict resolution algorithm cannot resolve,
instead of focusing on conflicts with small severity. The latter may be the majority, but
are easily resolved through conflict resolution. However, without conflict resolution, the
RL agent can focus on conflict prevention; having fewer conflicts may result in fewer
multi-conflicts situations.

Furthermore, the main objective of the RL agent is to reduce the LoS number, as this
is the paramount value considered for safety. However, LoSs are sparse compared to
conflicts, which may limit the optimal convergence of the RL method. The LoS number
may not be sufficient for the RL to gather enough information to provide a proper under-
standing of the environment. Looking at conflicts results in more information for the RL
agent, as these occur in a larger number. Thus, the latter was hypothesised to warrant
more optimal training. It is assumed that, although the total number of conflicts is not
directly proportional to the number of LoSs [162], fewer conflicts lead to fewer LoSs.

Finally, testing of the RL agent included traffic densities similar and different to those
of the training conditions. The agent was expected to perform better in the traffic density
in which it was trained. However, applying the agent to different densities allows one
to assess how the efficiency of airspace structures varies with the traffic density. It is
hypothesised that the agent may be the least effective at densities higher than the one in
which it was trained, as the complexity of the emergent behaviour, and of the consequent
solution, increases proportionally to the density.

5.7. EXPERIMENT: RESULTS

5.7.1. TRAINING OF THE REINFORCEMENT LEARNING AGENT
The RL agent responsible for setting the airspace structure is trained at a medium traffic
density; 75 different traffic scenarios are repeatedly tested. These vary in the number
of turns and initial direction(s), as previously described in Section 5.5.3. Each scenario
execution corresponded to an episode, which, during the training phase, ran for 20 min.
In total, 100.000 episodes are run. Thus, the set of (different) 75 episodes is repeated
roughly 1330 times. Four (2 × 2) different RL agents are trained and compared directly to
confirm the hypotheses set in Section 5.6.3; two agents are trained in an environment with
CR (CR-ON), and two others without CR (CR-OFF). The two agents in each environment
will be used to compare the effectiveness of training based on LoSs and conflicts.

SAFETY ANALYSIS

Figure 5.9 displays the evolution of the total number of pairwise conflicts and LoSs
during training without CR. Each point represents the average conflicts or LoSs for the
75 traffic scenario cycles. The shaded and solid lines represent all values and the moving
average over the previous 50 values, respectively. For reference, the high variability at
the beginning of the training is due to the impact of exploration noise. This noise was
intentionally set to be stronger at the initial cycles to promote exploration. Its impact was
reduced throughout training. We can see that although the number of conflicts and the
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number of LoSs are strongly correlated, a LoS-based reward results in convergence to an
optimal value, whereas training based on conflicts did not. The former converged to a
minimum number of conflicts and LoSs after approximately 200 cycles of the 75 training
traffic scenarios (200×75 = 15 k episodes in total). Focusing on reducing the number of
LoSs also reduced the number of conflicts. In comparison, training based on conflicts
did not lead to the finding of an optimal value during a run of 100.000 episodes. There
is no clear trend of decrement in conflicts throughout training. One possible reason is
that the large magnitude of the total number of conflicts may have had a negative effect
on performance. It could be that decreasing the reward per conflict, or normalising the
reward value, as is often done in practise to boost performance, could reduce the training
time. However, such an investigation was deemed not relevant given the better success
with a LoS-based reward.

(a) Evolution of the total number of pairwise conflicts (CR-OFF).

(b) Evolution of the total number of LoSs (CR-OFF).

Figure 5.9: Evolution during training of two RL agents—one trained based on the number of conflicts (in blue),
and the other on the number of LoSs (in orange). Conflict resolution was not applied in this environment.

Figure 5.10 shows the evolution of the total number of conflicts and LoSs during
training with CR. The differences here are not as great as with the previous RL methods
trained without CR. However, contrary to the latter, the agent optimised based on the
number of conflicts achieved fewer conflicts and LoSs. We consider this to be a direct
consequence of the number of LoS occurrences in the environment. As hypothesised, in
an environment with fewer LoSs, the number of conflicts is a better reward formulation,
as its higher value provides more information to the RL agent. However, without conflict
resolution, the number of LoSs and conflicts is higher. Thus, the LoS provides enough
information and, being the paramount safety value, should be used.

The most effective RL agents, ‘CR-OFF, LoS’—the agent trained based on LoS in an
environment without CR, and ‘CR-ON, conf’—the agent trained based on conflicts in
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(a) Evolution of the total number of pairwise conflicts (CR-ON).

(b) Evolution of the total number of LoSs (CR-ON).

Figure 5.10: Evolution during training of two RL agents, one trained based on the number of conflicts (in blue)
and the other on the number of LoSs (in orange). Conflict resolution was applied in this environment.

an environment with CR, must now be directly compared within the same conditions.
Figure 5.11 shows an example of the airspace structures produced by the two agents. Each
row corresponds to one traffic scenario. For example, the first row identifies the traffic
scenario in which all aircraft initiated their flights directed East, and no turns were made
during the flight. The last row identifies the traffic scenario where aircraft initiated their
flights directed East, South, West, or North (with equal distribution); each aircraft made
four turns to the left during their flights. The structure outputs by the ‘CR-OFF, LoS’ and
‘CR-ON, conf’ agents are displayed in the left and right columns, respectively.

In Figure 5.11, symbol (←) identifies the airspace structure most commonly used
for each RL agent. Agent ‘CR-OFF, LoS’ used 28 different structures, with structure
E,N,S,W,E,N being used in 29 of the traffic scenarios. This structure is employed more
often when aircraft are more dispersed throughout the environment, i.e., when more dif-
ferent initial directions are employed. As expected, the more uniform the traffic scenario
is, the more the RL agent tends to pick a structure where all directions have similar prior-
ity. In comparison, the ‘CR-ON, conf’ agent used 29 different structures, with structure
E,E,E,E,W,(N,S) employed on 10 of the training traffic scenarios. This selection shows
a different structure approach than the ‘CR-OFF, LoS’ agent. The latter opted for a uni-
form structure that performed relatively well for most traffic scenarios; the ‘CR-ON, conf’
agent preferred a structure that heavily focused on two directions, East and West, as per
Figure 5.11. This is considered to be a direct result of applying conflict resolution. CR
resolves many of the conflicts that the ‘CR-OFF, LoS’ agent prevents with a structure that
promotes even segmentation of aircraft throughout the airspace. Thus, the ‘CR-ON, conf’
agent focuses on conflict ‘hotspots’ at which CR is ineffective. Given that the most used
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Figure 5.11: Example of airspace structure output by the two best-performing RL agents. On the left: the RL
agent trained without CR, based on the number of LoSs. On the right: the RL agent trained with CR, based on
the number of conflicts.

structures strongly prioritise the West and East directions, this indicates that the topology
of the environment leads to most of the ‘hotspots’ occurring when aircraft travel in the
directions West–East and vice versa.

The efficacy of the segmentation performed by the RL agent is more clearly evalu-
ated when aircraft travel predominantly in one direction. Here, the structure should be
optimised to adapt most vertical layers to this direction. For example, the ‘CR-OFF, LoS’
agent outputs structure N,N,S,N,N,(W,E) (highlighted in Figure 5.11 with the symbol (.))
for traffic scenarios with: (1) the initial direction North without turns; (2) initial direc-
tions South, West, and North without turns. In both situations, the RL method found
that guaranteeing a minimum of conflicts between aircraft travelling North had the best
impact on reducing LoSs. The ‘CR-ON, conf’ agent prioritised, for example, structure
E,E,E,E,E,(W,N,S) (highlighted in Figure 5.11 with the symbol (/)) for most traffic scenar-
ios where all aircraft initiated flights heading East. It should be noted that more than
one direction in the last layer means that a safeguard was implemented to ensure that
all directions were allowed in the final structure, even though the RL agent did not opt
to do so. In these cases, this decision was understandable, as aircraft do not follow all
directions, and there is a chance that, without the safeguard, the structure would have
been even more optimal. Moreover, it is interesting that, often, with multiple directions,
the agents chose to focus on one instead of trying to evenly distribute all directions. It
seems that, at the current traffic density, strongly optimising one direction results in fewer
LoSs and conflicts than trying to equalise all.
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Regarding turns (and consequent vertical deviations to move to a traffic layer where
the new direction is allowed), the RL agent is able to gather some information on direction
changes through the state formulation. The structure selected by the RL agent for no turns
was not repeated for the same initial directions(s) when turns were in place. For example,
structure W,W,N,W,W,(E,S) (highlighted in Figure 5.11 with the symbol (¦)) was used for
the traffic scenario with an initial direction East and two turns to the left (aircraft will
first turn North and then West). Thus, the RL favours the directions to which the aircraft
moved after turning. Furthermore, the order of directions per vertical layer also affects the
final number of vertical deviations that the aircraft must perform. Allowing aircraft to turn
left or right by moving one layer upward or downward is often good practise. However,
these structures often employ , East–West and North–South in adjacent layers. The impact
of climb/descent on final safety will be further analysed during the testing phase.

Figures 5.12 and 5.13 show the results obtained by directly comparing the final struc-
tures output by the ‘CR-OFF, LoS’ and the ‘CR-ON, conf’ agents in environments with and
without conflict resolution, respectively. As previously hypothesised, the agent trained
with CR performed better when CR was applied; the ‘CR-ON, conf’ agent (in green) had
fewer conflicts and LoSs (see Figure 5.13). Analogously, the ‘CR-OFF, LoS’ agent per-
formed better in an environment without CR. However, while the ‘CR-OFF, LoS’ agent still
performed reasonably well in an environment with conflict resolution (often resulting
in fewer conflicts and LoSs than the baseline, fixed structure in orange), the ‘CR-ON,
conf’ agent had the worst performing structures when no conflict resolution was applied.
This was expected given the structures chosen by this agent (see Figure 5.11). While the
‘CR-OFF, LoS’ agent selected structures that evenly distributed the existent traffic per the
available airspace (which favoured the efficacy of any CR algorithm), the structure output
by the ‘CR-ON, conf’ agent seemed to work directly on the behaviour of the CR algorithm.
The agent prioritised directions where the CR algorithm seemed to be unable to resolve
conflict ‘hotspots’. However, this added pressure in other directions. Although the CR
algorithm appeared to be able to resolve conflicts in these directions, without conflict
resolution, these directions become concentrations of conflicts.

Furthermore, from the previous results, some conclusions can be drawn regarding
the safety impact of singular and multiple directions and the number of turns in the
environment:

• Within traffic scenarios starting with a single direction, East and West stand out,
resulting in considerably more conflicts. This justifies the emphasis of the ‘CR-ON,
conf’ agent on these directions. Moreover, as expected, when aircraft are initially
distributed through more directions, the consequent segmentation results in fewer
conflicts and LoSs.

• It was hypothesised that increasing the number of turns would lead to a higher
number of conflicts and LoSs. Turns lead to vertical deviations between cruising lay-
ers, and having aircraft enter and leave these layers leads to conflict situations [206].
However, within the experimental results, more turns sometimes result in fewer
conflicts and LoSs. This is considered a result of the additional segmentation cre-
ated by the vertical deviations. Aircraft become more distributed throughout the
available airspace, as now they also move within the transition layers. This effect
appears to have had a positive impact on safety.
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(a) Total number of pairwise conflicts.

(b) Total number of losses of minimum separation.

Figure 5.12: Final comparison of the best RL agents during training in an environment without conflict resolution.
The results are directly compared using a baseline, fixed structure. All traffic densities have 75 traffic scenarios,
with initial direction(s) and number of turns as defined in Section 5.5.3.

5.7.2. TESTING OF THE REINFORCEMENT LEARNING AGENT
Due to the training results, the ‘CR-ON, conf’ agent was picked for the forthcoming testing
verification with additional traffic scenarios. This RL agent was tested with a total of 225
traffic scenarios; 75 scenarios in each traffic density (i.e., low, medium, and high). The
RL agent was previously trained within a medium traffic density; it is interesting to see
how it behaved at lower and higher traffic densities. All testing episodes were different
from those in which the RL agent trained. For each traffic scenario (i.e., the combination
of specific traffic density, initial direction(s), and the number of turns), three repetitions
with different flight trajectories were performed. Each traffic scenario lasted one hour.
However, note that the state formulation was not modified; it still covered only the first
20 minutes of the traffic scenario. The duration of the traffic scenario was increased to
analyse the effect of having a scenario longer than the state contemplated. Additionally, a
longer run allowed for a more complete analysis of the impact of employing the structure
output by the RL agent vs. a fixed, uniform one. Finally, testing was performed in an
environment where aircraft can change speeds and altitudes to avoid conflicts.

SAFETY ANALYSIS

Figure 5.14 shows the mean total number of pairwise conflicts. The RL method reduced
the number of conflicts for all traffic scenarios and densities when compared to having a
fixed airspace structure. Contrary to the hypothesis, the RL agent did not perform worse
at high traffic densities. The airspace structures, which led to an optimal number of
conflicts at a medium traffic density, were also applicable to higher traffic densities.
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(a) Total number of pairwise conflicts.

(b) Total number of losses of minimum separation.

Figure 5.13: Final comparison of the best RL agents during training in an environment with conflict resolution.
The results are directly compared using a baseline, fixed structure. All traffic densities have 75 traffic scenarios,
with initial direction(s) and number of turns as defined in Section 5.5.3.

Figure 5.14: Mean total number of pairwise conflicts during testing of the RL agent. All traffic densities have 75
traffic scenarios, with initial direction(s) and number of turns as defined in Section 5.5.3.

Figure 5.15 shows the amount of time spent with a deconflicting state decided by the
CR method, rather than following its preferred state. This does not include the time to
recovery when aircraft are no longer in conflict and are redirected to their next waypoints.
The RL method was able to reduce the time in conflict for all traffic scenarios and densities
compared to having a fixed airspace structure. Although the RL reduced both the number
of conflicts and the total time in conflict, these do not have a direct correlation. Fewer
pairwise conflicts do not necessarily mean less time in conflict per aircraft and vice versa.

Figure 5.16 shows the mean total number of LoSs. The RL method was able to reduce
the number of LoSs for all traffic scenarios and densities when compared to having a
fixed airspace structure. Although the focus of the RL agent was on reducing conflicts,
fewer conflicts led to fewer LoSs. Similarly to the total number of pairwise conflicts (see
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Figure 5.15: Total time in conflict per aircraft. All traffic densities have 75 traffic scenarios, with initial direction(s)
and number of turns as defined in Section 5.5.3.

Figure 5.14), there was no decrease in efficacy for higher traffic densities. Interestingly,
compared to the fixed structure, the improvement obtained with the RL agent appeared
to be stronger in the high traffic density than in the low one.

Figure 5.16: Mean total number of losses of separation. All traffic densities have 75 traffic scenarios, with initial
direction(s) and number of turns as defined in Section 5.5.3.

Figure 5.17 displays the intrusion severity. For most traffic scenarios, there was no
relevant discrepancy between the fixed uniform structure and the structure output by
the RL agent. However, with the former, there were outliers in which the mean intrusion
severity reached higher values. With a more efficient segmentation, aircraft were better
able to maintain a safer distance and were not as close. Finally, no direct correlation was
observed between intrusion severity and traffic density.

Figure 5.17: Mean intrusion severity rate. All traffic densities have 75 traffic scenarios, with initial direction(s)
and number of turns as defined in Section 5.5.3.

Figure 5.18 presents the relative speed between aircraft in an LoS situation. Higher
relative speeds indicate speed heterogeneity that increases complexity in the airspace.
Transition layers were in place to minimise the effect of high relative speeds from aircraft
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exiting and entering a cruising layer; aircraft only decelerate, turn, and accelerate within
the slow layers. Slow layers are considered safer for this state change, as they are expected
to be (almost) depleted of aircraft. This might not be the case when multiple aircraft
initiate vertical deviations simultaneously. Additionally, a high relative speed can occur in
a fast layer. Aircraft performing an resolution manoeuvre in close proximity with different
resolution speeds will result in high relative speed conflict situations. On average, the
structure output by the RL agent leads to a lower relative speed between aircraft in conflict.
However, surprisingly, at lower traffic densities, there are outliers of high relative speeds.
This may explain why, in some low-density traffic scenarios, the RL agent was unable to
significantly decrease the number of LoSs (see Figure 5.16).

Figure 5.18: Mean relative speed between pairs of aircraft during LoSs with multiple layers. All traffic densities
have 75 traffic scenarios, with initial direction(s) and number of turns as defined in Section 5.5.3.

Figures 5.19 and 5.20 show where LoSs occurred for all traffic scenarios tested for
the fixed structure and the structures produced by the RL agent, respectively. As shown
in Figure 5.16, with the RL agent, there were fewer LoSs. Figure 5.19 shows that, with a
uniform structure, most of the LoSs occurred in the transition layers. Figure 5.20 also
displays LoSs in the transition layers, but not predominantly. In this case, the last layer
stands out as having the most LoSs. This is due to the safeguard implemented on the
structure output by the RL agent; if not all directions are included in the structure, the
last layer is overwritten to allow for the missing directions. Consequently, this layer may
have an agglomeration of aircraft with different headings, leading to a high incidence of
LoSs. As per Figure 5.11, the RL agent opted for heavily prioritising certain directions,
instead of a more uniform distribution. This approach proves to be more reasonable
in the medium traffic density in which the RL agent was trained than in a higher traffic
density. In a medium traffic density, including multiple directions in one layer may still
result in a number of conflicts that do not cancel out the benefit of prioritising other
directions. However, at high traffic densities, a high incidence of traffic in one layer may
result in a significant number of conflict chain reactions with a negative impact on safety.

STABILITY ANALYSIS

Figure 5.21 displays the mean DEP value. A high positive value represents conflict chain
reactions, resulting from conflict resolution manoeuvres, causing airspace instability.
Previous work on unconstrained airspace showed that applying conflict resolution ma-
noeuvres at high traffic densities tends to create secondary conflicts while reducing
LoSs [175]. When free airspace is scarce, having aircraft move laterally and occupy a
larger area of airspace often results in more conflicts. However, in this work, as resolution
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Figure 5.19: Altitudes at which LoSs occur with a baseline structure. The sizes of the points vary between a
maximum value of 3128 and a minimum value of 1 LoS. All traffic densities have 75 traffic scenarios, with initial
direction(s) and number of turns as defined in Section 5.5.3.

manoeuvres only move aircraft to a vertical layer dedicated to this purpose, they did
not cause secondary conflicts. For most simulated traffic scenarios, employing conflict
resolution reduced the number of conflicts compared to a situation without CR.

Figure 5.21 shows peaks very close to -1 and 1, showing how the effect on stability of
applying conflict resolution must be correlated with the traffic scenario and flight routes.
Additionally, the RL method selects a different structure for each traffic scenario. Some
structures may put stress on some traffic layers, which may create conflict ‘hotspots’ with
aircraft continuously resolving and creating conflicts. Interestingly, the highest peaks (i.e.,
traffic scenarios in which conflict resolution induced instability) were more frequent at
lower traffic densities. Negative peaks, where conflict resolution strongly reduced the
number of conflicts, occurred more often at higher traffic densities. From these results, it
can be derived that the greatest benefit of conflict resolution was the decrease in conflict
‘hotspots’ resulting from the high incidence of traffic on the same ‘road’. Although vertical
conflict resolution can be expected to result in secondary conflicts, due to uncertainty
regarding the intruder’s manoeuvres, it reduces the number of aircraft cruising at the
traffic layer by moving some aircraft to the ‘fast’ layer. At higher traffic densities, the
latter effect significantly reduces the number of conflicts. At low traffic densities, conflict
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Figure 5.20: Altitudes at which LoSs occurred with the structure produced by the RL agent. The sizes of the
points vary between a maximum value of 7519 and a minimum value of 1 LoS. All traffic densities have 75 traffic
scenarios, with initial direction(s) and number of turns as defined in Section 5.5.3.

‘hotspots’ are not as common and, therefore, secondary conflicts due to vertical deviations
increase in the total number of conflicts.

Figure 5.21: Domino effect parameter values. All traffic densities have 75 traffic scenarios, with initial direction(s)
and number of turns as defined in Section 5.5.3.

EFFICIENCY ANALYSIS

Figure 5.22 shows the average length of the 3D flight path per aircraft. The differences in
flight paths between different structures originate mainly from: (1) different vertical



5

140 REINFORCEMENT LEARNING TO IMPROVE AIRSPACE STRUCTURING

distances between traffic layers that aircraft occupy throughout their paths, and (2)
different numbers of vertical manoeuvres to avoid conflicts. The RL method shows
a reduction in the flight path lengths for some of the traffic scenarios when compared to
having a fixed and uniform airspace structure; however, this behaviour is not consistent
across all traffic scenarios.

Figure 5.22: Flight path per aircraft. All traffic densities have 75 traffic scenarios, with initial direction(s) and
number of turns as defined in Section 5.5.3.

Figure 5.23 shows the average flight time per aircraft. There is no clear improvement
in flight time when the RL method is employed. Furthermore, the flight path and time
are not directly proportional (see Figure 5.22). A shorter flight path does not necessarily
mean a shorter flight time, as sometimes speed changes resulting from conflict resolution
manoeuvres also affect flight time.

Figure 5.23: Flight time per aircraft. All traffic densities have 75 traffic scenarios, with initial direction(s) and
number of turns as defined in Section 5.5.3.

5.8. DISCUSSION
Using reinforcement learning to find an airspace structure that caters to the traffic sce-
nario has a positive effect by reducing the total number of conflicts and losses of minimum
separation compared to using a uniform, fixed heading distribution per vertical layer.
The latter is optimal for a uniform traffic distribution. However, this is hardly the case
in an urban environment where aircraft must respect the topology of static obstacles
(e.g., buildings, trees). Adapting the airspace to the operational traffic scenario allows for
maximising the efficiency with which the available airspace is utilised. When an inade-
quate structure is employed, the vertical distribution of traffic will be uneven, reducing
the intrinsic safety provided by the layered design.



5.8. DISCUSSION

5

141

However, there are still questions regarding this implementation. First, the final struc-
ture output by the RL agent seems to be directly correlated with the behaviour of the
conflict resolution algorithm. Structures lose efficacy severely when applied in an envi-
ronment without conflict resolution. Similarly, it is likely that the structures will be less
than optimal when different conflict resolution rules are implemented. Which structures
benefit capacity is entirely dependent on the conditions of the operational environment.
Second, it is not yet clear how the safety of operations can be guaranteed during config-
uration changes. Traffic scenarios will naturally vary substantially throughout the day;
therefore, the airspace structure should also. In this work, the change from one structure
to another was not analysed. It was assumed that such transitions would involve several
vertical deviations to allow the cruising aircraft to adapt to the new structure. Increasing
the number of vertical deviations can increase the number of conflicts. Therefore, it is
likely that, during a direct change in the airspace structure, the RL agent must take into
account the previous structure to reduce the number of vertical deviations. The following
sub-sections dwell further into these subjects.

5.8.1. EFFICACY OF REINFORCEMENT LEARNING

As initially hypothesised, the structure output by the RL agent is highly dependent on
whether conflict resolution is applied or not. Without conflict resolution, the airspace
structure is optimised to efficiently segment the existing traffic throughout the available
airspace. With conflict resolution, structures focus on increasing segmentation for the
directions where most conflicts remain after conflict resolution is applied. The structures
depend on the topology of the environment and the conflict resolution strategies that
are applied. Under different conditions, these structures may not be as optimal. In
conclusion, as is the case with most reinforcement learning research, the RL method
performs better during testing when trained in a similar environment. The conflict
resolution and navigation rules with which the RL agent is trained should be as similar to
the real environment as possible.

Furthermore, the reward formulation strongly influences the performance of the
reinforcement learning agent. It is often considered that the reward should specify what
the agent should be doing, but not how it should be doing it [226]. The reward should
be based on the number of LoSs as this is the paramount value for safety. However, in
an environment with conflict resolution, it is often the case that the number of LoSs is
not sufficient to provide enough information for proper training. Conflict resolution is
often able to resolve most LoSs, and the remaining ones may not be preventable with
the airspace structure alone. Thus, the RL agent will not be able to find a clear path
through optimisation. Based on the test results, with conflict resolution, the number of
conflicts proved to be a more efficient reward formulation. Naturally, this is only valid
because it is fair to assume that fewer conflicts will lead to fewer LoSs. Interestingly, the
opposite was true for training without conflict resolution, where a LoS-based reward
formulation resulted in faster and more optimised training. In this case, the airspace
structure had a direct impact on the number of LoSs as these were not resolved by a
conflict resolution algorithm. Therefore, the reward formulation should be carefully
tuned to the environment.
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5.8.2. CONFLICT RESOLUTION

Previous work on layered airspace structures in urban environments focused on speed-
only conflict resolution [172, 206]. However, this was found to be insufficient to prevent
conflicts at high traffic densities. As was the case with this work, conflict resolution
through heading variation is often not possible. To do so would require knowing the width
of every ‘road’ in order to decide where aircraft can resolve conflicts laterally. Additionally,
in a multi-conflict situation, the lateral resolution could potentially cause aircraft to push
each other into the surrounding urban infrastructure. Therefore, the remaining degree
of freedom is the vertical dimension. By reserving vertical space for upward vertical
resolution manoeuvres, we are able to reduce the total number of conflicts and losses
of minimum separation. This is due to increasing the amount of manoeuvres aircraft
may perform to resolve conflicts, as well as temporally increasing segmentation as some
aircraft temporarily move to the layer reserved for vertical resolution.

The results of the current study show the importance of having vertical space specif-
ically reserved for vertical conflict resolution. The vertical manoeuvre will effectively
resolve the conflict if: (1) the aircraft moves towards a flight level that is not already
densely populated (i.e., moving vertically does not result in secondary conflicts), and/or
(2) small relative speeds with aircraft present at the altitude the ownship moves into. The
former is achieved by reserving the layer for vertical resolutions only. Aircraft return to
the main traffic layer once the conflict has been resolved. The latter is guaranteed as the
MVP employs a ‘shortest-way-out’ solution. The variation will always be as minimal as
possible from the aircraft’s current state to resolve the conflict. As a result, the relative
speed between aircraft travelling in the ‘fast’ layer will be relatively small, as they opt to
travel as close as possible to the desired cruising speed. Thus, the relative speed with
other aircraft in the ‘fast’ layer is not as great as with aircraft in the ‘slow’ layer, which is
purposely used for turns that must be performed at a limited speed necessary to comply
with the turn radius.

Another point of concern for the success of vertical deviation is the uncertainty
regarding intruder manoeuvres. If the intruders also initiate a similar vertical manoeuvre,
the conflict will probably not be resolved. Future research can reduce uncertainty by:
(1) applying priority rules defining which aircraft has the right of way; (2) sharing intent
information, making aircraft aware of the intruder’s future trajectory. However, prior
to using intent information, the risks of its implementation must be considered. First,
data transmission and processing delays will affect aircraft reaction times, decreasing
the effectiveness of resolving short-term conflicts. Second, the aircraft must have the
necessary equipment to receive and transmit data if they want to take advantage of this
safety. Consequently, the safety of each aircraft also depends on how many of its intruders
have this system.

Finally, the effectiveness of resolution manoeuvres depends on the speed and accel-
eration of the operating aircraft. Aircraft with different performance limits will resolve
a different number of conflicts. Additionally, a different number of vertical layers or
different safety margins for minimum separation will affect climbing and descending
times, which may affect the number of conflicts and losses of minimum separation during
vertical manoeuvres. In this work, a ‘fast’ layer per traffic layer was used for conflict
resolution. More layers dedicated to vertical resolution may improve safety, but it would
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also increase the number of vertical layers aircraft must traverse. These choices are highly
dependent on the operating environment and the aircraft involved.

5.8.3. ADVICE FOR FUTURE WORK
The following are advised for further research and improvements:

• Exploring more powerful states and reward formulations. For the state formula-
tion, four ‘snapshots’ of the evolution of the traffic were considered. However, in
fast-changing traffic scenarios, the RL agent may need more snapshots to fully un-
derstand the progression of traffic over time. Additionally, only safety factors were
considered as reward. Future implementations may also benefit from including
efficiency elements such as flight path and flight time.

• In this work, the last traffic layer was used to allow directions for which the RL
did not allocate space. However, this layer may become a ‘hotspot’ for conflicts
when more than one direction is set. Other possibilities could be researched
(e.g., distributing aircraft travelling within ‘missing directions’ over layers with
small heading differences).

5.9. CONCLUSIONS
This chapter examined adapting a layered airspace design to the operational traffic sce-
nario through the use of reinforcement learning. The structures produced by an RL agent
optimised the use of airspace by segmenting aircraft efficiently throughout the available
airspace by taking into account their flight plans. The results showed a reduced num-
ber of conflicts and losses of minimum separation when compared to a uniform, fixed
structure, which assumed a uniform traffic scenario (as has been the case with previ-
ous research). Furthermore, the introduction of layers reserved for vertical resolution
manoeuvres further improved the efficacy of conflict resolution.

The application of RL with different environments and rewards showed how optimal
structuring is directly related to the behaviour of the aircraft. In an environment where
aircraft actively try to resolve conflicts, focusing on prioritising layers for specific direc-
tions reduced the total number of conflicts and LoSs. Without conflict resolution, the RL
method preferred structures in which aircraft were uniformly distributed throughout the
available airspace. Additionally, rewards should be carefully tuned. Safety-wise, focus
may be placed on reducing the total number of conflicts and/or LoSs. Prioritisation of
one of these two elements, or the weights given to each, must be set according to the
number of occurrences during the operation.

However, there are some considerations before this method can be implemented in a
real-world scenario. Future work should look into transitions between different structures,
and the impacts on safety that may arise from the necessary vertical deviations in order
for aircraft to adapt to the new structure. Finally, this work can be extended to more
heterogeneous operational environments, in terms of differences in performance limits,
as well as preference for efficiency over safety.



PART II:
DIRECT APPLICATION OF

REINFORCEMENT LEARNING IN CONFLICT

RESOLUTION



6
DISTRIBUTED CONFLICT

RESOLUTION WITH

REINFORCEMENT LEARNING

This Chapter marks the beginning of Part II of this thesis, where reinforcement learning (RL)
is used directly to resolve conflicts. This is different from Part I, where RL was used to reduce
the conflict rate and severity within the environment.

Section 6.2 defines an RL method that takes the local observations of each agent and is
responsible for distributed conflict resolution. The RL method is tested with different action
formulations and different traffic densities to evaluate its performance under complex
multi-actor conflict geometries. The results obtained are directly compared to a state-of-
the-art distributed CR algorithm.

Cover-to-cover readers will find several differences in the simulated environment in
this Chapter when compared to Chapters 3 to 5. Previous chapters focus on investigating
whether RL techniques can be used to reduce conflict and severity in an urban environment.
This chapter no longer employs an urban environment. The main objective is to investigate
whether RL can be used to successfully decide upon the conflict resolution manoeuvre.
Geofences are removed not to hinder the training of the RL method. Finally, the readers may
choose to skip Section 6.3.5 which describes the Modified Voltage Potential (MVP) method,
already described in Chapter 2.

This chapter is based on the following publications:

1. M. Ribeiro, J. Ellerbroek, and J. Hoekstra, Distributed Conflict Resolution at High Traffic Densities with
Reinforcement Learning, Aerospace 9 (2022)
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ABSTRACT
Future operations involving drones are expected to result in traffic densities that are
orders of magnitude higher than any observed in manned aviation. Current geometric
conflict resolution (CR) methods have proven to be very efficient at relatively moderate
densities. However, at higher densities, performance is hindered by the unpredictable
emergent behaviour of surrounding aircraft. Reinforcement learning (RL) techniques
are often capable of identifying emerging patterns through training in the environment.
Although research has started introducing RL to resolve conflicts and ensure separation
between aircraft, it is not clear how to employ it with a higher number of aircraft, and
whether it can compare to or even surpass the performance of current CR geometric
methods. This work employs an RL method for distributed conflict resolution; the method
is completely responsible for ensuring minimum separation of all aircraft during oper-
ation. Two different action formulations are tested: (1) where the RL method controls
heading, and speed variation; (2) where the RL method controls heading, speed, and
altitude variation. The final safety values are directly compared to a state-of-the-art
distributed CR algorithm, the Modified Voltage Potential (MVP) method. Although, in
general, the RL method is not as efficient as MVP in reducing the total number of losses
of minimum separation, its actions help identify favourable patterns to avoid conflicts.
The RL method has a more preventive behaviour, defending in advance against nearby
surrounding aircraft not yet in conflict, and head-on conflicts while intruders are still far
away.

6.1. INTRODUCTION
Should the predictions become reality, the aviation field will have to prepare for the intro-
duction of a large number of mass-market drones. Up to 400,000 drones are estimated
to provide services in European airspace by 2050 [197]. At least 150,000 are expected to
operate in an urban environment for multiple delivery purposes. This is expected to result
in traffic densities that are orders of magnitude higher than those observed in manned
aviation. As a result, automation of separation assurance in unmanned aviation is a
priority, as drones must be capable of conflict detection and resolution (CD&R) without
human intervention. Both the FAA [11] and the ICAO [26] have ruled that a UAS must
have Sense and Avoid capability in order to be allowed in civil airspace.

Operations with high traffic densities also increase the likelihood of aircraft encoun-
tering so called ‘multi-actor’ conflict situations, where an aircraft is in a state of conflict
with multiple other aircraft at the same time. In a pairwise conflict, conflict resolution
(CR) methods, or rules, can be implemented so that aircraft work together towards pre-
venting a loss of minimum separation (i.e., implicit coordination). However, these rules
alone cannot predict the traffic patterns that emerge from successive conflict resolution
manoeuvres and the consequent knock-on effects. As a result, these methods can no
longer predict the characteristics that lead to optimal behaviour at these higher densities.

Through continuous improvement, reinforcement learning (RL) can potentially iden-
tify trends and patterns in this otherwise unpredictable emergent behaviour. RL can
adjust to this emergent behaviour, and develop a large set of rules and weights for differ-
ent conflict geometries, from the knowledge of the environment captured during training.
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In this specific context, a high traffic operating scenario is essentially a multi-agent prob-
lem, with emergent behaviour and complexity that arise as a result of aircraft interacting.
The knowledge gathered from the actions performed by RL methods to increase safety, can
be used to improve current conflict resolution methods and support the decision-making
process of air traffic controllers. In this work, we pose the following questions:

1. Can RL methods, by adapting to the global patterns emerging from multi-actor con-
flicts and knock-on effects, find geometry-specific resolution manoeuvres capable
of improving safety compared to current geometric CR methods?

2. Is it possible to derive conflict resolution rules, from the actions performed by the
RL method, that improve the performance of current geometric CR methods?

The answer to these questions must take into account the limitations of reinforcement
learning approaches. The complexity of training, and consequently the time required for
the method to reach an optimal performance, is directly proportional to the number of
state-action combinations. Consequently, environments are often discretised to a level
such that only a small amount of information is available to the RL method. Additionally,
to reach an optimal solution within an acceptable amount of time, degrees of freedom are
often limited, as exemplified in previous work such as Pham [227]. Finally, aircraft must
prioritise global safety as well as their own. Global safety can only be achieved through
coordinated actions. Nevertheless, any level of coordination between agents is non-trivial.
A common approach to incite coordination is to resort to multi-agent RL, as exemplified
by Isufaj [228]. However, this limits the number of aircraft, as the RL method must learn
different policies per aircraft. In summary, it may be that the limitations set in an RL
method, to limit its convergence time, may also limit its ability to generalise towards
unseen conflict geometries and/or traffic densities. The result would be an RL method
with limited rules/solutions, which represents the main issue with geometric CR methods.

In this work, an operational unmanned airspace scenario is implemented with the
open-source, multi-agent ATC simulation tool BlueSky [25]. We use the Soft Actor–
Critic (SAC) algorithm, as created by UC Berkely [229], for the RL method responsible
for conflict resolution. Several versions of the method are tested to determine the best
action formulation: (1) action and speed variation only; and (2) action, speed, and alti-
tude variation. Additionally, we consider all aircraft homogeneous and test whether a
global safety reward can lead to coordinated movements. The final efficacy and efficiency
of the RL method are directly compared to a state-of-the-art geometric distributed CR
algorithm, the Modified Voltage Potential (MVP) [15], which resolves conflicts with a
minimum path deviation. Finally, the rules that can be used to improve the behaviour of
current geometric CR methods are derived from the actions performed by the RL method.

6.2. CONFLICT RESOLUTION WITH REINF. LEARNING
This section defines the parameters of the RL method responsible for conflict resolution,
which guarantees minimum separation between all aircraft. When applying RL to mitigate
undesirable emergent patterns resulting from multi-actor conflicts and knock-on effects,
several questions follow:

1. What information does the RL method need to successfully resolve conflicts?
2. Which degrees of freedom should the RL method control to perform effective
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conflict resolution manoeuvres?

Additionally, two problems arise when using RL in cooperative multi-aircraft situa-
tions. First, with each action, the next state depends not only on the action performed by
the ownship, but on the combination of that action with the actions performed simultane-
ously by the surrounding aircraft. From the point of view of each agent, the environment
is non-stationary and, as training progresses, modifies in a way that cannot be explained
by the agent’s behaviour alone. Second, a certain action may be favourable to the ownship
but may have negative results on the surrounding aircraft. The latter may, for example,
have to perform bigger deviations from their nominal path to avoid a loss of minimum
separation with the ownship. In the following subsections, the parameters chosen to
tackle these challenges will be discussed.

Finally, to answer the second question (i.e., which degrees of freedom should the RL
method control), two different action formulations will be tested and compared directly.
For the larger action formulation (i.e, with altitude variation on top of heading, and speed
variation), extra information is also added to the state formulation, so that the method
knows which values to employ for the altitude variation. Tables 6.1 and 6.2 identify the
parameters in the state and action formulations, respectively.

6.2.1. AGENT
This work employs an RL agent responsible for guaranteeing a minimum separation
distance between the aircraft at all times. The RL method performs actions based on
the information specific to each aircraft, namely its current state, distance, and relative
heading to the nearest surrounding aircraft. During training, rewards are based on the
global number of losses suffered by all aircraft in the environment.

6.2.2. LEARNING ALGORITHM
An RL method consists of an agent interacting with an environment in discrete timesteps.
At each timestep, the agent receives the current state of the environment and performs
an action in accordance, for which it receives a reward. An agent’s behaviour is defined
by a policy that maps states to actions. The goal is to learn a policy that maximises the
expected cumulative reward over time. Defining the reward is one of the biggest problems
affecting the performance of RL methods. The reward tells the agent what to do, not how
to do it [226]. Nevertheless, the agent should complete the task in the most desirable
way. However, it can be that it finds undesirable ways to satisfy the objective, even if
the algorithm was implemented flawlessly. Finally, the defined reward also influences
convergence speed, and the likelihood of the agent becoming stuck in local optima.

This work uses the Soft Actor–Critic (SAC) as defined in [229]. SAC is an off-policy,
actor–critic deep RL algorithm. It employs two different deep neural networks to approxi-
mate an action-value function and a state-value function. The actor maps the current
state based on the action that it estimates to be optimal, while the critic evaluates the
action by calculating the value function. The main feature of SAC is its maximum entropy
framework: the actor aims to maximise the expected reward while also maximising en-
tropy. This results in an exploration/exploitation trade-off. The agent is explicitly pushed
towards the exploration of new policies while at the same time avoiding being stuck in
sub-optimal behaviour.



6.2. CONFLICT RESOLUTION WITH REINF. LEARNING

6

149

6.2.3. ACTION FORMULATION
The RL agent determines the action to be performed for the current state. The incoming
state values are transformed through each layer of the neural network, in accordance to
the neurons’ weights and the activation function in each layer. The activation function
takes as input the output values from the previous layer and converts them into a form
that can be taken as input to the next layer. The output of the final layer must be converted
into values that can be used to define the elements of the state of the aircraft that the RL
agent controls. In this study, all actions are computed using a tanh activation function.
The tanh function outputs values between −1 and +1, which can prevent the output
value of the policy network from being too large and causing great state changes per
action [230].

The output of the tanh function is translated to a variation of the current state of the
ownship, as identified in Table 6.1. Note that a variation in heading of −15◦ and +15◦
indicates a turn of 15◦ to the left and 15◦ to the right, respectively. With regard to speed,
the ownship can reduce or increase its speed up to 5 m/s every timestep. A timestep of 1
second is employed. Finally, the vertical speed can decrease or increase every action to a
maximum of 2 m/s. These values were empirically tuned. Different values may be used
depending on the operating environment. However, the following should be taken into
account:

• A greater range of state variation increases the number of different aircraft states
that the RL agent may set with each action. Thus, also increasing the number of
possible actions and, in turn, convergence time. Additionally, small variations in
the agent’s actions will have a greater impact on the aircraft’s state. This requires
the agent to learn a high level of precision.

• Consider the acceleration limits of the aircraft models involved. At each timestep,
there is a maximum state variation that an aircraft may achieve. With great state
variations, the reward received by the RL method may not be based on the state
output by the method. Instead, it will be a result of the maximum variation that the
aircraft was able to achieve within the available time. This may make it harder for
the RL method to correctly relate actions to expected rewards.

Two different action formulations are tested: (1) the RL method controls heading,
and speed variation; or (2) heading, speed, and altitude variation. The two action formula-
tions allow for defining the best usage of the RL method. On the one hand, increasing the
size of the action formulation may decrease the optimality of the actions performed by the
RL method. The latter must pick from a much larger set of state-action combinations. On
the other hand, the RL method also has more control over aircraft and thus may influence
the environment to a greater extent.

Table 6.1: Action formulation for the RL method. First, the RL method will be tested controlling only heading
and speed variation. Second, it will also control vertical speed variation on top of the former elements.

Action Limits Units Dimension

Heading Variation [−1,+1] transforms to [−15,+15] ◦ 1

Speed Variation [−1,+1] transforms to [−5,+5] m/s 1

Only when the RL method can also vary altitude:

Vertical Speed Variation [−1,+1] transforms to [−2,+2] m/s 1
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6.2.4. STATE FORMULATION
The state input into the RL method must contain the data required for the RL agent
to successfully resolve conflicts. Such a decision requires information regarding the
current state of the ownship, and the relative position and speed of the surrounding
aircraft. However, representing all aircraft in the airspace is impractical. We limit the
state information to the closest aircraft, in terms of physical distance. We consider the
four closest aircraft. This decision is a balance between giving enough information to the
method, so that it can make a based decision while keeping the state formulation to a
minimum size. The size of the problem’s solution grows exponentially with the number of
possible state permutations. The size of the state formulation must be limited to ensure
that the method trains in an acceptable time. However, it may be that considering only
the four closest aircraft is not ideal for every operational scenario; such must be decided
on a case-by-case basis.

As defined in Table 6.2, the RL method is informed of the ownship’s current heading,
bearing to target, and current speed. Regarding surrounding aircraft, it has knowledge of
their current distance to the ownship, relative heading, distance at the closest point of
approach (CPA), and time to CPA. Figure 6.1 depicts the data used to defined the relation
between ownship and surrounding aircraft in the horizontal plane. When the agent also
controls altitude variation, it additionally receives information on the ownship’s current
altitude and relative altitude to the closest aircraft.

Table 6.2: State formulation for the RL method. Note that the current altitude and relative altitude to aircraft, are
only added to the state formulation when the RL method controls altitude on top of heading and speed variation.

Element Dimension

Current heading 1

Relative bearing to target 1

Current speed 1

Current distance to #surrounding aircraft #surrounding aircraft

Distance at CPA with #surrounding aircraft #surrounding aircraft

Time to CPA with #surrounding aircraft #surrounding aircraft

Relative heading to #surrounding aircraft #surrounding aircraft

Only when the RL method can also vary altitude:

Current altitude 1

Relative altitude to #surrounding aircraft #surrounding aircraft

6.2.5. REWARD FORMULATION
The reward given to the RL agent is primarily based on safety. However, within safety,
several factors may be considered. The paramount objective is to lead the agent to
favour deconflicting actions that reduce the likelihood for LoSs. Thus, the reward is
set based on the number of LoSs. Moreover, to favour coordinated manoeuvres which
improve global safety, the reward given for each action is based on the number of LoSs
suffered by all aircraft in the previous time step. A value of −1 is added to the reward
for every LoS that occurred in the environment since the action was initiated, i.e., in
the last timestep. A negative factor of this reward approach is that the reward to an
action will be affected by unrelated LoSs, suffered by other (far away) aircraft. Such may
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Figure 6.1: Parameters defining the (horizontal) representation of the relationship between the ownship and its
closest neighbours. Pownshi p (t0) and Pnei g hbour (t0) denote the ownship and the neighbour’s initial position,
respectively. vownshi p is the observed aircraft velocity vector, vnei g hbour is the neighbour’s velocity vector,
and vr el is the relative velocity vector. dr el is the distance vector, and dC PA indicates the distance at the closest
point of approach (CPA). brgr el represents the relative bearing to target.

increase convergence time, or even affect the capacity of the RL method to converge
towards optimal values. The consequences of this reward implementation will be further
examined in the discussion of the results.

6.3. EXPERIMENT: CONFLICT RESO. WITH REINF. LEARNING
The following sections define the properties of the performed experiment. The latter uses
RL to perform optimal deconflicting manoeuvres at high traffic densities. The experiment
involves a training and a testing phase. First, the RL method is trained continuously with a
set of 16 known traffic scenarios. For reference, without conflict resolution, each training
episode has on average about 1000 conflicts in 20 minutes running time. The evolution of
the amount of LoSs and conflicts, for every training episode, is directly compared with
the average number of LoSs and conflicts when running these 16 scenarios with the MVP.
Additionally, the final optimal actions of the RL method for every conflict situation are
directly compared with the ones that MVP would perform for those exact situations. Each
training scenario runs for 20 minutes. Second, the RL method is tested with unknown
traffic scenarios at the same and different traffic densities that it was trained in. The safety,
stability, and efficiency results of the method are directly compared to running the same
scenarios with the MVP method. Each testing scenario runs for 30 minutes.

6.3.1. FLIGHT ROUTES

The measurement area is a square-shaped with an area of 144 NM2. The aircraft spawn
locations (origins) are placed on the edges of this area, with a minimum spacing equal to
the minimum separation distance, to avoid conflicts between recently spawned aircraft
and aircraft arriving at their destination. All aircraft fly a straight route towards their
destination, at the same altitude level. Three waypoints are added between origin and
target points which aircraft must pass through in order. Ideally, aircraft would only
operate within the measurement area, thereby ensuring a constant density of aircraft
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within that area. However, aircraft may temporarily leave the measurement area during
the resolution of a conflict and should not be deleted in this case. Therefore, a second,
larger area encompassing the measurement area is considered: the experiment area. As a
result, aircraft in a conflict situation close to their origin or destination are not deleted
incorrectly from the simulation. Ultimately, an aircraft is removed from the simulation
once it leaves the experiment area. We assume a no-boundary setting, with sufficient flight
space around the measurement area, to avoid edge effects from influencing the results.

6.3.2. APPARATUS AND AIRCRAFT MODEL
The open air traffic simulator BlueSky [25] is used in order to test the efficiency of RL
in resolving conflicts. The performance characteristics of the DJI Mavic Pro were used
to simulate all vehicles. Here, speed and mass were retrieved from the manufacturer’s
data, and common conservative values were assumed for turn rate (max: 15◦/s) and
acceleration/breaking (1.0kts/s).

6.3.3. MINIMUM SEPARATION
The value of the minimum safe separation distance may depend on the density of air
traffic and the region of the airspace. For unmanned aviation, there are no established
separation distance standards yet, although 50 m for horizontal separation is a value com-
monly used in research [59], and will therefore be used in these experiments. For vertical
separation, 15 ft was assumed.

6.3.4. CALCULATION OF CLOSEST POINT OF APPROACH (CPA)
This work assumes linear propagation of the current state of all aircraft involved to
calculate the CPA between two aircraft. Using this approach, the time to CPA (in seconds)
is calculated as:

tC PA =−
~dr el ·~vr el

~v2
r el

, (6.1)

where ~dr el is the Cartesian distance vector between the involved aircraft (in meters),
and ~vr el the vector difference between the velocity vectors of the involved aircraft (in meters
per second). The distance between aircraft at CPA (in meters) is calculated as:

dC PA =
√
~d 2

r el − tC PA
2 ·~v 2

r el . (6.2)

Both tC PA and dC PA are added to the state formulation of the RL method as previously
defined in Table 6.2.

6.3.5. CONFLICT RESOLUTION (MODIFIED VOLTAGE POTENTIAL ONLY )
As previously mentioned, the results obtained with the RL method will be directly com-
pared to those obtained with the state-of-the-art CR method MVP. This work employs
the method as defined by Hoekstra [15, 231]. An important difference between the RL
method and MVP, from the very beginning, is how they select ‘intruders’. We apply as
little bias on the state formulation of the RL method as possible. Thus, we simply select
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aircraft based on their distance to the ownship. It may be considered that adding only
the aircraft that the ownship is in conflict with might be more efficient. However, the RL
method would then not have a full perception of the consequence of its actions when
moving toward a non-conflicting nearby aircraft.

MVP, on the other hand, considers only aircraft that are actually in conflict in its reso-
lution. Conflicts are detected when dC PA < RP Z , and ti n ≤ tl ookahead , where RP Z is the
radius of the protected zone (PZ), or the minimum horizontal separation, and tlookahead

is the specified look-ahead time. A look-ahead time of 300 seconds is used for conflict
detection and resolution. This value was selected since, empirically, it was found to result
in the best behaviour of the MVP method in this specific simulation environment. Note
that this is a larger look-ahead time than typically used in unmanned aviation, where
values can be even less than 1 minute. Nevertheless, these values are often considered
in constrained airspace, as larger look-ahead times would result in the inclusion of false
conflicts past the borders of the environment [204]. Additionally, it is likely this large
look-ahead time would perform worse in environments with uncertainty regarding in-
truders’ current position and future path. Finally, delays in data transmission and severe
meteorologic conditions are often a source of errors in the estimation of future positions.

The behaviour of MVP is displayed in Figure 6.2. MVP uses the predicted future
positions of both ownship and intruder CPA. These calculated positions ‘repel’ each
other, and this ‘repelling force’ is converted to a displacement of the predicted position
at CPA. The resolution vector is calculated as the vector starting at the future position
of the ownship and ending at the edge of the intruder’s protected zone, in the direction
of the minimum distance vector. This displacement is thus the shortest way out of the
intruder’s protected zone. Dividing the resolution vector by the time left to CPA, yields
a new speed, which can be added to the ownship’s current speed vector resulting in a
new advised speed vector. From the latter, a new advised heading and speed can be
retrieved. The same principle is used in the vertical situation, resulting in an advised
vertical speed. In a multi-conflict situation, the final resolution vector is determined by
summing the resolution vectors from all intruders. By taking the shortest way out, each
aircraft in a conflict will take (opposite) measures to evade the other in a way that makes
MVP implicitly coordinated.

PZIntruder
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Figure 6.2: Modified Voltage Potential (MVP) geometric resolution. Adapted from [15].

6.3.6. INDEPENDENT VARIABLES
The main independent variable is the method used to resolve conflicts and ensure min-
imum separation between all aircraft; this is either the RL or the MVP method. Both
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the training and testing results of the RL method are directly compared to the results
obtained when the same traffic scenarios are run with the MVP method instead. Ad-
ditionally, different action formulations are employed to analyse how the RL method
reacts to different degrees of freedom: (1) the CR method only performs heading and
speed variation to resolve conflicts; (2) the CR method uses heading, speed, and altitude
variation. The variations of heading, speed, and altitude performed by the RL method
during training, are directly compared with the ones that the MVP would perform for the
exact same conflict situations.

Finally, during testing, different traffic densities are introduced to analyse how the RL
method performs at traffic densities in which it was not trained. These range from low
to high according to Table 6.3. At high densities, vehicles spend more than 10% of their
flight time avoiding conflicts [193]. The RL agent is trained at a medium traffic density,
and is then tested with low, medium, and high traffic densities. In this way, it is possible
to assess the efficiency of an agent performing in a traffic density different from that in
which it was trained.

Table 6.3: Traffic volume used in the experimental simulations.

Training (20 minutes simulation) Testing (30 minutes simulation)

Traffic density Medium Low Medium High

Number of aircraft per 10000NM2 40000 20000 40000 60000

Number of instantaneous aircraft 576 288 576 863

Number of spawned aircraft 886 665 1330 1994

6.3.7. DEPENDENT VARIABLES
Three different categories of measures are used to evaluate the effect of the different
conflict resolution methods in the simulation environment: safety, stability, and efficiency.

SAFETY ANALYSIS

Safety is defined in terms of the number and duration of conflicts and losses of minimum
separation. The most important factor is a reduction in the total number of LoSs com-
pared to a situation in which no conflict resolution is performed. Additionally, LoSs are
distinguished on the basis of their severity according to how close aircraft get to each
other, where a low separation severity is preferred. The latter is calculated as follows:

LoSsev = RP Z −dC PA

RP Z
. (6.3)

STABILITY ANALYSIS

Stability refers to the tendency for tactical conflict resolution manoeuvres to create sec-
ondary conflicts. In the literature, this effect has been measured using the Domino Effect
Parameter (DEP) [151]:

DEP =
nON

c f l −nOF F
c f l

nOF F
c f l

, (6.4)
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where nON
c f l and nOF F

c f l represent the number of conflicts with conflict resolution ON and

OFF, respectively. A higher DEP value indicates a more destabilising method, which
creates more conflict chain reactions.

EFFICIENCY ANALYSIS

Efficiency is evaluated in terms of the distance and duration of the flight. Significantly
increasing the path travelled and/or the duration of the flight is considered inefficient.

6.4. EXPERIMENT: HYPOTHESES

It is hypothesised that the RL method will be able to understand the concept of minimum
separation and resolve the majority of conflicts. A direct performance comparison be-
tween the RL and MVP methods is uncertain at this point. On the one hand, the latter
can perform geometric manoeuvres that guarantee conflict resolution with minimum
path and state deviation. This is a level of precision that limits the creation of secondary
conflicts. It is hypothesised that the RL method will likely perform greater state variations
than the MVP method. On the other hand, the RL method is capable of adapting to the
global patterns emerging from multi-actor conflicts, and knock-on effects from successive
resolution manoeuvres. It can create a much larger set of rules and solutions for resolu-
tion of different conflict geometries. Whether this can help the RL method surpass the
performance of the MVP method remains to be seen. Nevertheless, it is also hypothesised
that the manoeuvres performed by the RL method can provide guidelines to improve the
efficacy of the existing distributed, geometric CR algorithms.

Additionally, CR methods are normally able to resolve more conflicts as the degrees of
freedom increase. It is expected that the MVP method will resolve more conflicts when it
can vary altitude, heading, and speed versus a situation where it can only vary heading
and speed. However, as the state formulation increases, so does the set of possible state-
action combinations. This often results in longer training times, and not so optimal
choices by an RL method. Thus, it is hypothesised that when the RL method only controls
heading and speed, its final efficacy in resolving conflicts will be closer to that of the
MVP method.

Finally, the RL method will be tested with different traffic densities. It is hypothesised
that the method will be most effective at low and medium traffic densities. The method is
trained at medium traffic densities. The higher the traffic density, the more complex the
conflicts’ geometries are to resolve, with each aircraft potentially facing multiple conflicts
with multiple simultaneous intruders. Thus, the optimal actions learnt during training
may not be sufficient to resolve conflicts with a higher number of intruders. Moreover,
the state formulation contains only information regarding the four closest neighbouring
aircraft. In a conflict situation with a considerably higher number of near-by aircraft,
the method may not have enough information to resolve all conflicts with all these aircraft.
As previously mentioned, the limitation of the state and action formulations to improve
convergence times, may limit the ability of the RL method to generalise its actions to
operational environments with different characteristics.
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6.5. EXPERIMENT: RESULTS
In the results section, a distinction is made between the training and the testing phases.
The former shows the evolution of the RL method while training with a repeating cycle
of 16 episodes, at medium traffic density, to investigate how well the RL method learns.
In total, 300 episodes are run. During training, each episode runs for 20 minutes. Second,
the trained RL method is tested with different traffic scenarios at a low, medium, and high
traffic density. For each traffic density, 3 repetitions are run with 3 different route scenarios,
for a total of 9 different traffic scenarios. During the testing phase, each scenario runs for
30 minutes. Safety, stability, and efficiency results of the RL method are directly compared
to the ones obtained when running the same scenarios the MVP method.

6.5.1. TRAINING OF THE RL AGENT FOR CONFLICT RESOLUTION
This section presents the results of the training phase of the RL method. The latter is
trained with a repeating cycle of 16 episodes at medium traffic density. Its results are
directly compared with the average total number of conflicts and LoSs obtained with the
MVP method with the same traffic scenarios. Furthermore, the actions performed by the
method are examined in order to understand the conflict resolution decisions adopted.

SAFETY ANALYSIS

Figure 6.3 shows the evolution in safety performance of the RL method in terms of
losses of separation (Figure 6.3(a)) and number of conflicts (Figure 6.3(b)) for both action
formulations. The values obtained when both the MVP and RL methods control only the
heading and speed variations are indicated by ‘MVP Method (H + S)’ and ‘RL method
(H + S)’, respectively. The values with ‘(H + S + A)’ indicate the performance of the
previous methods when these control altitude variation, on top of heading and speed
variation. The values presented for the MVP method represent the average values for
all 16 training episodes. With and without altitude deviation, the RL method is able to
converge towards actions that resolve the great majority of the conflicts. Considering
the total number of conflicts in Figure 6.3(b), the RL method is able to resolve 99.7 %
and 99.83 % of the conflicts with heading + speed and heading + speed + altitude control,
respectively. Contrary to what was hypothesised, the RL method is able to achieve safety
results comparable to those of the MVP when it can control more degrees of freedom.
This indicates that the method is able to use the increased number of possible actions to
resolve conflicts effectively.

With only heading and speed variation, the RL method has a higher total number of
LoSs than MVP. However, MVP has fewer conflicts than the RL method. Tactical CR ma-
noeuvres typically create secondary conflicts. Deviating from the nominal path, in order
to avoid conflicts, often results in a longer flight path. At high traffic densities, conflict-free
airspace is scarce, and when each aircraft requires a larger portion of the airspace it often
results in more conflicts. MVP employs a ‘shortest-way-out’ resolution strategy, limiting
the space used by each aircraft, which in turn limits conflict chain reactions. The RL
method resolves conflicts with path deviations larger than MVP, resulting in a higher
number of secondary conflicts. The latter in turn leads to a higher final count of LoSs.

When altitude variation is also controlled, the RL method is able to reach the same
level of efficacy in resolving conflicts as MVP. With the three degrees of freedom, the ac-
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(a) LoS evolution during training.

(b) Conflict evolution during training.

Figure 6.3: Evolution of the total number of LoSs and conflicts resolved by the RL method during training.

tions of the RL method do not have to be as precise. With all aircraft travelling at the same
altitude, the success of conflict resolution may lie in having heading variations just large
enough to resolve conflicts, but not so large that they move the ownship into the flight
path of other aircraft. However, vertical deviation is a powerful tool that allows moving
away from this one layer of traffic. As the ownship is moving to ‘free space’, it is less likely
that deconflicting actions will result in secondary conflicts. Thus, such precise heading
and altitude deviations are not as crucial.

Figure 6.4 shows the difference in the actions carried out by the RL and MVP methods,
for the same conflict situations, in all training episodes. In this case, the episodes are run
with the conflict resolution decisions by the RL method. Simultaneously, the actions that
MVP would output for every conflict situation are recorded, making sure that the actions
can be directly compared. The graphs on the left show the difference in actions when
both MVP and RL control only heading and speed variation. The top graph indicates the
smallest angle difference between the heading solutions produced by the two methods.
First, the difference in heading is at most 20◦ between the two methods. Second, the nega-
tive values indicate that the solutions output by the MVP method are, in general, directed
more towards the left than the solutions by the RL method. This may be because the RL
method has a preference for resolving conflicts by turning aircraft in one direction, in this
case right. This preference is not an optimal solution for every conflict geometry, but it is
likely a result of the RL method finding a local optimum with this decision. These local
optima are often dependent on the method’s initialisation, and a product of chance.

Regarding the horizontal speed (middle graph), negative values represent a decrease
in the current speed. In general, the MVP employs slightly stronger speed variations to
resolve conflicts than the RL method. In comparison, the heading and speed actions
produced by the RL method are much similar to those of the MVP method, when both
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Figure 6.4: Difference between actions performed by the RL and MVP methods for the same conflict situations.

methods can also move aircraft in the vertical dimension. It seems that, as the RL method
can vary more degrees of freedom, it has learnt not to vary each degree as strongly to
resolve conflicts. Finally, the RL method typically employs slightly stronger climbing
actions than the MVP method.

The following sections will further explore the differences between the actions of the
RL and the MVP methods.

HEADING VARIATION

Figure 6.5 connects elements of the state formulation with the average heading variation
chosen by the RL and MVP methods. Interestingly, the RL method performs larger heading
variations whenever the average distance at CPA or time to CPA, is smaller, but not when
both are small. At every timestep, contrary to the RL method, the heading variation
performed by the MVP is not limited. Thus, the extremes of the heading variation are
stronger. On average, MVP performs very small heading variations, which are likely a
result of the ‘shortest-way-out’ resolution strategy. However, MVP still scarcely resorts
to large values. Note, however, that the great state changes output by the MVP method
are likely not achievable within the observation timestep, due to performance limits.
The effective state changes are likely smaller in these cases.

Taking into account all variables, it appears that the current distance to intruders
played a bigger role in the RL method’s decisions, than the distance at CPA. The method
adopts strong heading variations when surrounding aircraft are at a very short distance.
This behaviour is not as consistent with a smaller distance at CPA and/or short times to
CPA. This may be because the method was able to relate negative rewards with a small
distance between aircraft. Additionally, the RL method has information over the closest
surrounding aircraft. These are not necessarily always the intruders with the shortest
distance at CPA or time to CPA. It could be that, as a result, the method has learnt to
prioritise current distance.

Additionally, as expected, the closer the intruders are, the stronger the deconflicting
heading variation is. However, the RL method still resorts to strong heading deviations in
some situations where the intruders are far away. Taking into account the average relative
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heading, these intruders would result in head-on conflicts if they were to continue with
their current state. Thus, it seems that the RL method is adopting preventive actions
against possible future severe conflicts. Finally, the method shows a strong preference for
turning one direction, in this case right, independently of the positions of the intruders. It
may have been found that this resulted in some degree of coordination between aircraft.

(a) RL method controlling heading, and speed variation.

(b) MVP method controlling heading, and speed variation.

Figure 6.5: Heading variation by both the RL and the MVP methods controlling heading and speed variation.

Figure 6.6 presents the same values as Figure 6.5, with the difference being that the
methods can now also vary altitude. As seen in Figure 6.4, the RL method performs,
on average, smaller heading variations in this case. Furthermore, here, the RL method
seems to prefer heading deviations to the left. The RL method is not capable of learning
when right or left might be a better option, depending on the conflict geometry. Instead,
it learns that a common direction used by all aircraft results in some sort of coordination.
The actions produced by the MVP are very similar to those seen in Figure 6.6(b). This is
expected; altitude variation is decoupled from heading and speed in the calculation of
the resolution manoeuvre by the MVP. Thus, adding altitude variation will not alter MVP’s
heading and speed deviations. However, the values in Figures 6.5(b) and 6.6(b) are not
exactly the same. Figure 6.5(b) shows the actions of the MVP method as it would respond
to the conflict situations that occur in the traffic episodes run with the RL method that
controls speed and heading variation. In comparison, Figure 6.6(b) has different conflict
situations, since the episodes are run with a different RL method that now also controls
altitude. Different resolution manoeuvres lead to different secondary conflict situations.
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(a) RL method controlling heading, speed, and altitude variation.

(b) MVP method controlling heading, speed, and altitude variation.

Figure 6.6: Heading by the RL and the MVP methods controlling heading, speed, and altitude variation.

SPEED VARIATION

Figure 6.7 shows the speed variation produced by the RL and MVP methods when these
control heading and speed variation. Unlike the MVP method, the RL method often
chooses to reduce speed. This explains the higher average speed variations previously
seen in Figure 6.4. The RL method opts for a defensive position, where speeds may be
reduced to increase the time to CPA. Naturally, this has a negative effect on efficiency,
as it increases flight time. However, efficiency is not included in the reward formulation
of the method, and thus the method is unaware of this. The RL method only increases
speed when surrounding aircraft are very close in proximity, likely in an attempt to rapidly
increase the distance between the ownship and these aircraft.

Finally, Figure 6.8 shows the speed variation performed by the RL and MVP methods
when these control heading, speed, and altitude variation. When the RL method also
controls altitude, it outputs smaller horizontal speed variations.

VERTICAL SPEED VARIATION

Figure 6.9 displays the vertical speed variation performed by the RL and MVP methods
when these control the heading, speed, and altitude variation. The RL method learnt
to disperse aircraft quite efficiently, using climbing and descent actions almost equally.
In practise, the RL method is creating three separated layers of traffic. MVP employs
smaller vertical speed variations to resolve conflicts. Here, MVP is again more precise
than the RL method, employing only the minimum altitude variation necessary to resolve
conflicts. The RL method disperses aircraft more significantly through the airspace. This



6.5. EXPERIMENT: RESULTS

6

161

(a) RL method controlling heading, and speed variation.

(b) MVP method controlling heading, and speed variation.

Figure 6.7: Speed variation by the RL and the MVP methods controlling heading and speed variation.

(a) RL method controlling heading, speed, and altitude variation.

(b) MVP method controlling heading, speed, and altitude variation.

Figure 6.8: Speed variation by the RL and the MVP methods controlling heading, speed, and altitude variation.
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spread of traffic is likely to contribute to the reduction in conflicts and LoSs (see Figure 6.3).
However, it is likely to negatively affect flight path and time. This will be covered in more
detail in the testing results in Section 6.5.2.

(a) RL method controlling heading, speed, and altitude variation.

(b) MVP method controlling heading, speed, and altitude variation.

Figure 6.9: Vertical speed by the RL and MVP methods controlling heading, speed, and altitude variation.

6.5.2. TESTING OF THE RL AGENT FOR CONFLICT RESOLUTION
This section presents the testing phase of the RL method. The latter is tested with different
traffic scenarios at a low, medium, and high traffic density. For each traffic density, three
repetitions are run with three different route scenarios. The results of the RL method,
related to safety, stability, and efficiency, are directly compared to those obtained when
running the same traffic scenarios the MVP method.

SAFETY ANALYSIS

Figure 6.10 displays the average total number of pairwise conflicts. At low and medium
traffic densities, the difference between the total number of conflicts with the RL and
MVP methods is small, similar to the training results (see Figure 6.3(b)). With speed and
heading deviation, there is a small difference in high traffic density, with the RL method
achieving slightly fewer conflicts. Nevertheless, this is not a considerable difference.
However, when altitude is also controlled, the RL method is capable of a great reduction
in conflicts compared to MVP. This is probably a result of the larger altitude variations,
as seen previously in Figure 6.9. These variations move aircraft out of the main traffic layer
both by climbing and descending, thus reducing the likelihood of secondary conflicts.
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Figure 6.10: Average mean total number of pairwise conflicts during testing of the RL agent.

Figure 6.11 displays the average time in conflict per aircraft. An aircraft enters ‘conflict
mode’ when it adopts a new state computed by the CR method. The aircraft will exit this
mode once it is detected that it is past the previously calculated time to CPA (and no other
conflict is expected between now and the look-ahead time). At this point, the aircraft
will redirect its course to the next waypoint. The time to recovery is not included in the
total time in conflict. Similarly to the average total number of conflicts (see Figure 6.10),
the total time in conflict is similar in both methods when these control heading and
speed variation. In the H + S + A scenarios, with the RL method, aircraft spend less time
in conflict at all traffic densities. This is likely the result of the same choices in altitude
variation that lead to a reduction in the total number of conflicts.

Figure 6.11: Average time in conflict per aircraft during testing of the RL agent.

Figure 6.12 displays the total number of LoS. This is the paramount safety factor
that the RL method aims to reduce. The RL method achieves a similar performance
level at the medium traffic density independent of the action formulation, and an even
stronger reduction in the number of LoSs at low traffic density when the methods control
heading and speed variation. This is probably a result of the ‘defensive’ posture adopted
by the RL method with distant intruders and close aircraft, as seen in Figure 6.5(a). Head-
on conflicts at relatively large distances, and nearby aircraft that can create imminent
conflicts with only a small change in their velocity vector, can both be dangerous. However,
this behaviour is not as efficient at higher traffic densities. Here, the CR methods must
be more selective in the aircraft to defend against, as considering too many aircraft may
result in a solution that does not fully resolve any conflict.

As hypothesised, the performance of the RL method deteriorated at a higher traffic
density than that in which it was trained. This may be a result of the small number of
surrounding aircraft considered in the state formulation. With a higher number of intrud-
ers per conflict geometry, the ownship will be ‘blind’ to part of the intruders. Limitation
of the information in the state formulation limited the capability of the RL method to
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generalise the learnt behaviour to conflict geometries with more intruders. Furthermore,
different traffic densities may require different resolution strategies: in this case, an RL
method must be trained at least at the traffic density at which it will be used.

Figure 6.12: Total number of LoS during testing of the RL agent.

Figure 6.13 displays the average LoS severity. With heading and speed control, at low
traffic densities, the RL method reduces the LoS severity on top of the total number of LoSs
(see Figure 6.12). In all other situations, the average LoS severity is very similar. With all
methods, there is a slight increase in the LoS severity as the traffic densities increases.

Figure 6.13: Average LoS severity during testing of the RL agent.

STABILITY ANALYSIS

Figure 6.14 shows the average DEP value during the testing of the RL method. A high DEP
symbolises a method that tends to create a larger number of secondary conflicts, resulting
from large deviations with conflict resolution manoeuvres. With heading and speed
control, the increase in the number of conflicts is negligible (as also seen in Figure 6.10).
With additional altitude control, the RL method is better at preventing secondary conflicts
than the MVP method, which is also in line with the average total number of conflicts.

Figure 6.14: Average domino effect parameter (DEP) during testing of the RL agent.
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EFFICIENCY ANALYSIS

Figures 6.15 and 6.16 show the average 2D and 3D flight path lengths per aircraft during
testing of the RL method, respectively. There is only a noticeable difference between
the RL and MVP methods, when altitude is also controlled. In this case, the RL method
is able to reduce the increase in flight path resulting from tactical conflict manoeuvres,
in comparison to the MVP method. Previously in Section 6.5.1, it was mentioned that
the large vertical deviations performed by the RL method could have a negative effect on
efficiency, by considerably increasing flight path length. However, it appears as though the
decrease in total time in conflict (see Figure 6.11) may have counterbalanced these non-
efficient vertical manoeuvres. As aircraft spend more time travelling towards the target
and less time following a deconflicting state, the increase to the flight path is reduced.

Figure 6.15: Average 2D flight path during testing of the RL agent.

Figure 6.16: Average 3D flight path during testing of the RL agent.

Figure 6.17 shows the average flight time per aircraft during testing of the RL method.
The differences between the RL and MVP methods in efficiency with heading and speed
control are again negligible. When the methods also performed altitude variation, there
is a slight increase in the average flight time per aircraft. Since the method achieves a
shorter flight path (see Figures 6.15 and 6.16), the RL methods adopt on average lower
horizontal speeds. This is in line with the speed variation decisions performed by the RL
method during training (see Figure 6.9(a)), where, contrary to the MVP, it often opts for a
decrease in horizontal speed.

6.6. DISCUSSION
This work investigated whether RL methods can mitigate the undesirable global pat-
terns emerging from successive conflict resolution manoeuvres in multi-actor conflicts,
and improve safety compared to current geometric CR methods. The results obtained
show that, at low traffic densities, RL methods can match, and sometimes even surpass,
the performance of these geometric algorithms. The RL method learnt that the high
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Figure 6.17: Average flight time during testing of the RL agent.

number of conflicting aircraft force aircraft to frequently change their velocity vector. De-
fending in advance against nearby aircraft, even when not in conflict, has benefits given
that a sudden change in the velocity vector can create imminent conflicts. Furthermore,
defending in advance against head-on conflicts, even when still at a large distance, may
be crucial to prevent future LoSs.

However, performance deteriorates when these methods are exposed to traffic densi-
ties higher than those in which they were trained. The actions learnt from a set of conflict
geometries, at smaller traffic densities, do not generalise well to conflict geometries with
a higher number of intruders. This is a weakness of the approach. The benefit of RL
is the potential to make generalisations about emerging patterns. If an RL method is
only capable of creating a limited set of rules, its performance will be similar to that
of geometric CR methods. Such may be a result of the limited information and variety
of training scenarios provided to the RL method. Within the state representation, we
considered a limit number of aircraft, which was found to be efficient within specific
training scenarios while still resulting in practicable convergence times. However, in con-
flict geometries with a higher number of intruders, the RL method may not have enough
information to perform successful resolution manoeuvres. Thus, limiting state-action
combinations may have a negative impact on the ability of RL methods to generalise
solutions to different operational environments. However, this limitation is often required
to achieve convergence.

Naturally, it may also be that the RL method requires a longer training time, or even a
more generalised training environment, than was provided in this work. Further testing
is needed, with more information given to the method and more extensive training
scenarios. However, it should also be taken into account that doing so greatly increases
the necessary training time of the method. Notwithstanding, the actions performed by
the RL method in this study can provide guidelines on how to improve the performance
of current geometric CR methods. This topic, as well as further analysis of the actions
performed by the RL method, is addressed in the following sections.

6.6.1. ACTIONS PERFORMED BY THE REINFORCEMENT LEARNING METHOD
This work proved that an RL method can successfully resolve conflicts and prevent losses
in minimum separation. Furthermore, having a global reward improved action coordi-
nation between aircraft. The actions of the RL method are the result of the combination
of multiple factors. However, the results show that the current distance to aircraft and
relative heading have a greater impact on the method’s decisions than, for example,
the distance at the closest point of approach. This is possibly because the method was
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able to establish that small distances between aircraft result in negative rewards. Addi-
tionally, the method learnt that head-on conflicts are especially hard to resolve in the
short-term. Finally, by observing all actions performed during training, it is clear that the
RL method has a preference to always turn one direction when resolving conflicts. Al-
though this is a very simple coordination rule, it is efficient in pairwise conflicts. However,
it is likely that a better coordination rule is necessary when more aircraft are involved in a
conflict situation. This might explain why the performance of the RL method deteriorated
at higher traffic densities.

Moreover, with three degrees of freedom (i.e., heading, speed, and altitude), the RL
method achieved fewer conflicts and LoSs than with 2 degrees of freedom (i.e., heading,
and speed). This is unexpected, since larger actions formulations are often negative for RL
methods, as it increases the possible combinations of state-action that the method must
learn and adapt to. However, the improvement in resolution manoeuvres is intrinsically
related to best practises for conflict resolution. With more degrees of freedom, the method
learnt to perform smaller deviations on each. This reduces the amount of airspace that
the ownship occupies during a deconflicting manoeuvre, thus also reducing the likelihood
of colliding with other aircraft. Additionally, given the characteristics of the operational
environment in this work, where all aircraft travel in one layer, fast singular vertical
manoeuvres can be very efficient in resolving conflicts. The RL method took advantage
of this fact. It is likely that the RL method would find different optimal options in an
environment with different characteristics, e.g., a layered airspace.

6.6.2. RULES FOR CONFLICT RESOLUTION
Reinforcement learning applications are often a ‘black-box’; the reasons for their choices
are often not clear or predictable. However, if these are to be certified as safety critical
systems, we must find ways to make their behaviour interpretable and traceable. Many
researchers also defend the idea that we should look at RL methods as a source of best
practises. These practises can then be implemented in human-built CR methods, whose
actions are predefined and can be trusted upon. With this implementation in mind,
and considering the behaviour of the RL method in this work, the following rules for
improving geometric CR methods can be derived:

• The RL method often prioritised the current distance to aircraft over the distance at
CPA. Nearby aircraft can potentially change course and immediately turn into an
(almost) impossible to resolve conflict. Geometric CR methods often simply look
at the distance at CPA, and the time to CPA. Nearby aircraft, even if not in conflict,
should be defended against.

• The RL method defends against head-on conflicts in advance. Based on the results,
the RL method also performs strong state variations when intruders are far away,
but (near-)head-on. Short-term head-on conflicts can only be resolved with coor-
dinated sharp heading turns. When the intruder is farther away, smaller heading
deviations are needed to resolve the conflict. Geometric CR methods initiate de-
conflicting actions for all conflict situations in the same manner, i.e, when these
are within a pre-defined look-ahead time. However, the decision of when a resolu-
tion manoeuvre is initiated should be made with regard to the relative geometry
between the ownship and the intruder. In practise, different rules for look-ahead
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times could be implemented per relative heading.

In summary, the RL method adopts a more preventive/cautious position towards
nearby aircraft, even when not in conflict, and defends in advance against severe conflict
geometries. However, given the results obtained, it may be that the previous rules are
more efficient at low traffic densities where there is enough space. The previous measures
resulted in the method defending against more aircraft, per deconflicting action, than a
typical geometric CR method would have. At higher traffic densities, it may be that this
behaviour results in too high a number of conflicts that saturates the solution space.

6.6.3. FUTURE WORK
This work should be extended to different operational environments. Comparison of
the optimal manoeuvres performed by RL methods trained in different environments
provides valuable information. First, it helps identify potential risks in each type of
operation. Second, it helps identify an optimal global usage of reinforcement learning to
improve safety in aviation. In particular, the following is suggested for future work:

• Different traffic densities may require different resolution strategies, as was also
hypothesised in the Metropolis project [13]. In this case, the RL method must learn
different responses per complexity of emergent behaviour resulting from increasing
traffic densities. RL methods should be tested at different traffic densities, and their
actions compared, before they can be implemented in a real-world scenario.

• With only heading and speed control, the RL method employed large heading devi-
ation which led to a large number of secondary conflicts. This may be because all
losses of minimum separation are valued the same. The method may benefit from
ensuring large distances between aircraft to avoid negative rewards. As a possible
solution, less weight could be given to minor, less severe LoSs. Such a scenario
could potentially lead the method to adopt smaller state changes, running the risk
of scraping the protected zone of intruders over large deconflicting manoeuvres
that would place the ownship in the direct path of other aircraft.

6.7. CONCLUSIONS
Reinforcement learning (RL) has the potential to adapt to the detrimental emergent be-
haviour from multi-actor conflicts, and knock-on effects from successive conflict resolu-
tion manoeuvres, which occur as traffic densities increase. An RL method can potentially
develop a large set of rules, adapted to different conflict geometries, from knowledge of
the environment captured during training. Adding to the success of RL approaches in
other scientific areas, this chapter has shown that RL methods can be used to guarantee
minimum separation between all aircraft in an unmanned aviation environment.

The RL method developed herein successfully resolved conflicts and reduced the
number of losses in minimum separation (LoSs). Moreover, it matched, and at lower
traffic densities even surpassed, the performance of a state-of-the-art geometric conflict
resolution (CR) algorithm. The advantage of an RL method is the ability to learn safe
procedures, beyond the limitations of a fixed set of rules, as implemented with geometric
CR methods. However, there are still some weaknesses in this approach. The performance
of the RL method deteriorated when exposed to traffic densities higher than those in
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which it was trained. The RL method receives limited information from the environment,
in order to limit the number of possible state-action combinations. This probably also
limited its ability to generalise its solutions to different operational environments.

Additionally, RL methods can inspire the creation of additional rules/guidelines to
improve the performance of geometric CR algorithms. How RL methods resolve conflicts
in different environments can help identify the risks in every type of operation, as well as
possible solutions. In this specific work, the RL method showed that: (1) adopting a more
‘preventive’ position towards nearby aircraft, even when not in conflict, and (2) defending
in advance against difficult conflict geometries, help prevent LoSs at low traffic densities.

The next steps will focus on further exploring state and action formulations in order
to increase the efficacy of the RL method at traffic densities higher than the one in which
it is trained. Furthermore, related studies should extend the training and testing of
conflict resolution RL methods to different operational environments. Different methods,
with different amounts of information and control, should be applied and compared. Such
will make it possible to evaluate the influence of these parameters on the method’s ability
to generalise and identify conflict geometry-specific solutions. However, these decisions
must be evaluated together with the consequent necessary training time, and resources,
for the method to converge towards optimal actions.





7
IMPROVING CONFLICT

RESOLUTION MANOEUVRES WITH

REINFORCEMENT LEARNING

The results of the Chapter 6 show that reinforcement learning (RL) methods can be used
to improve the efficacy of current state-of-the-art distributed CR algorithms. These algo-
rithms often resort to pre-defined, fixed values that are used to calculated a deconflicting
manoeuvre for every conflict geometry. However, at thigh traffic densities each aircraft will
face a multitude of conflict geometries for which the same values might not be optimal.

Section 7.3 defines an RL method responsible for defining the values that an CR algo-
rithm uses for generating a deconflicting manoeuvre for every conflict geometry. Different
action formulations are tested to better understand the potential of RL methods. The RL
method is tested with different traffic densities to evaluate its performance under complex
multi-actor conflict geometries.

Cover-to-cover readers may chose to skip Sections 7.3 and 7.4.5, which describes the
theoretical background of a Soft Actor-Critic (SAC) and of the Modified Voltage Potential
methods (MVP), respectively. These are very similar to their counterparts in previous
Chapter 6.

This chapter is based on the following publications:

1. M. Ribeiro, J. Ellerbroek, and J. Hoekstra, Improving Algorithm Conflict Resolution Manoeuvres With
Reinforcement Learning, Aerospace, 2022

2. M. Ribeiro, J. Ellerbroek, and J. Hoekstra, Determining Optimal Conflict Avoidance Manoeuvres At High
Densities With Reinforcement Learning, 10th SESAR Innovation Days (2020)
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ABSTRACT

Future high traffic densities with drone operations are expected to exceed the number of
aircraft that current air traffic control procedures can control simultaneously. Despite
extensive research on geometric CR methods, at higher densities, their performance is hin-
dered by the unpredictable emergent behaviour from surrounding aircraft. In response,
research has shifted its attention to creating automated tools capable of generating con-
flict resolution (CR) actions adapted to the environment and not limited by man-made
rules. Several works employing reinforcement learning (RL) methods for conflict reso-
lution have been published recently. Although proving that they have potential, at their
current development, the results of the practical implementation of these methods do
not reach their expected theoretical performance. Consequently, RL applications cannot
yet match the efficacy of geometric CR methods. Nevertheless, these applications can im-
prove the set of rules that geometrical CR methods use to generate a CR manoeuvre. This
work employs an RL method responsible for deciding the parameters that a geometric CR
method uses to generate the CR manoeuvre for each conflict situation. The results show
that this hybrid approach, combining the strengths of geometric CR and RL methods,
reduces the total number of losses of minimum separation. Additionally, the large range
of different optimal solutions found by the RL method shows that the rules of geometric
CR method must be expanded, catering for different conflict geometries.

7.1. INTRODUCTION

Recent studies estimate that as many as 400,000 drones will be providing services in the
European airspace by 2050 [197]. Several geometric CR methods have been developed
to implement the tactical separation function for these operations. These methods are
capable of guaranteeing separation between aircraft without human intervention. Never-
theless, at the traffic densities envisioned for drone operations, these methods start to
suffer from destabilising emergent patterns. Multiactor conflicts and knock-on effects
can lead to global patterns that cannot be predicted based on limited man-made rules.
Researchers have started employing reinforcement learning (RL) techniques for conflict
resolution, which can defend against this multiagent emergent behaviour [232]. RL can
train directly in the environment and adapt directly to the interaction between the agents.
In previous work [233] (Chapter 6 of this thesis), we compared an RL approach with the
geometric state-of-the-art Modified Voltage Potential (MVP) method [15]. The results
showed that the employed RL method was not as efficient as the MVP method in pre-
venting losses of minimum separation (LoSs), at higher traffic densities. Nevertheless,
at lower traffic densities, the RL method defended in advance against severe conflicts.
The MVP method was not able to resolve these in time, as it initiated the conflict resolu-
tion manoeuvre later. This suggests that RL approaches can improve the decisions taken
by current geometric CR methods. This hypothesis is explored in this work.

Geometric CR algorithms are typically implemented using predefined, fixed rules
(e.g., predefined look-ahead time, and in which direction to move out of the conflict) that
are used for all conflict geometries. However, at high traffic densities, each aircraft will
face a multitude of conflict geometries for which the same values might not be optimal.
For example, in some situations it may be useful to have a larger look-ahead time to defend
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against future conflicts in advance. In other cases, prioritising short-term conflicts may
be necessary to avoid false positives from uncertainties accumulating over time. Similarly,
fast climbing actions can prevent conflicts with other aircraft when these occupy a single
altitude. Additionally, a speed-only state change may be sufficient to resolve the conflict
while preventing the ownship from occupying a larger portion of the airspace. All these
decisions are dependent of the conflict geometry. Nevertheless, the number of potential
geometry variations are too large for experts to create enough rules to cover them all.
However, RL approaches are known for their ability to find optimised solutions in systems
with a large number of possible states.

We propose a Soft Actor–Critic (SAC) model, as created by UC Berkeley [229], that
trains within the airspace environment to find the optimal values for the calculation of
a conflict resolution manoeuvre. Specifically, in each conflict situation, the RL method
defines the look-ahead time (0 s–600 s) and how many degrees of freedom to employ (i.e,
heading, speed, or altitude variation) that the MVP method then uses to generate the CR
manoeuvre. The RL method uses the local observations of the aircraft to define these
values. This hybrid RL + MVP approach is used for all aircraft involved in the conflict.
Finally, experiments are conducted with the open-source, multiagent ATC simulation tool
BlueSky [25]. The source code and scenarios files are available online [234].

Section 7.2 introduces the current state-of-the-art research employing RL to improve
separation assurance between aircraft. Several works are described, as well as how this
chapter adds to this body of work. Section 7.3 outlines the RL algorithm used in this work,
as well as the state, action, and reward formulations used by the RL method. Section 7.4
describes the simulation environments of the experiments performed, as well as the
conflict detection and resolution (CD&R) methods employed. The hypotheses initially set
for the behaviour of hybrid RL + MVP approach are specified in Section 7.5. Section 7.6
displays the results of the training and the testing phases of the RL method. Finally,
Sections 7.7 and 7.8 present the discussion and conclusion, respectively.

7.2. RELATED WORK
This chapter adds to the body of work that uses RL to improve CD&R between aircraft.
Recently, an overview of the most recent studies in this area was published [232], showing
that a variety of different RL approaches had been implemented. In previous work,
Soltani [235] used a mixed-integer linear programming (MILP) model to include conflict
avoidance in the formulation of taxiing operations planning. Li [236] developed a deep RL
method to compute corrections for an existing collision avoidance approach to account
for dense airspace. Henry [237] employed Q-Learning to find conflict-free sequencing and
merging actions. Pham (2019) [227] used the deep deterministic policy gradient (DDPG)
method [163] for conflict resolution in the presence of surrounding traffic and uncertainty.
Isufah (2021) [228] proposed a multiagent RL (MA-RL) conflict resolution method suitable
for promoting cooperation between aircraft. Brittain (2019) [238] defined an MA-RL
method to provide speed advisories to aircraft to avoid conflict in high-density, en route
airspace sector. Groot [239] developed an RL method capable of decreasing the number
of intrusions during vertical movements. Dalmau [240] used message-passing neural
networks (MPNN) to allow aircraft to exchange information through a communication
protocol before proposing a joint action that promoted flight efficiency and penalised
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conflicts. Isufah (2002) implemented an algorithm based on graph neural networks where
cooperative agents could communicate to jointly generate a resolution manoeuvre [241].
Brittain (2022) proposed a scalable autonomous separation assurance MA-RL framework
for high-density en route airspace sectors with heterogeneous aircraft objectives [242].
Panoutsakopoulos employed an RL agent for separation assurance of an aircraft with
sparse terminal rewards [243]. Finally, Pham (2022) trained an RL algorithm inspired from
Q-learning and DDPG algorithms that can serve as an advisory tool [244].

All the aforementioned works show that RL has the potential to improve the set of
rules used for conflict resolution. RL trains directly in the environment, and can thus
adapt to the emergent behaviour resulting from successive avoidance manoeuvres in
multiactor conflict situations. However, RL also has its drawbacks, such as nonconver-
gence, a high dependence on initial conditions, and long training times. We consider
that having an RL method that is completely responsible for the definition of avoidance
manoeuvres is (practically) infeasible, as it would have severe issues converging to the
desirable behaviour. In this chapter, we hypothesise that the best usage of RL is, instead,
to work towards improving the current performance of state-of-the-art CR methods. We
develop a hybrid approach, combining the strengths of geometric methods and learning
methods, and hopefully mitigating the drawbacks of each of the individual methods.
In this approach, rewards are scaled by the efficacy of the conflict resolution manoeuvres,
and the starting point is the current efficacy of the CR method.

7.3. IMPROVING CONFLICT RESOLUTION WITH RL
This chapter employs RL to define the values to input into the CR algorithm responsible
for calculating CR manoeuvres. RL was chosen due to its ability to understand and com-
pute a full sequence of actions. A consequence of resolving conflicts is often the creation
of secondary conflicts when aircraft move into the path of nearby aircraft while changing
their state to resolve a conflict. This often leads to consequent CR manoeuvres to resolve
these secondary conflicts. Additionally, knock-on effects of intruders avoiding each other
may result in unforeseen trajectory changes. The latter increases uncertainty regarding
intruders’ future movements, decreasing the efficacy of CR manoeuvres. RL techniques
are often capable of identifying these emerging patterns through direct training in the en-
vironment.

Several studies have used other tools such as supervised learning, where classification
and regression can be used to estimate the values to be used to aid CR [151, 245, 246].
These works have shown that these methods can also lead to favourable results. However,
these methods do not train directly in the environment, instead resorting to prior knowl-
edge and repeating this knowledge on a large scale. Nevertheless, we assume no previous
knowledge and were mainly interested in the knowledge that RL can learn by adapting to
the emergent behaviour experienced in the environment.

Section 7.3.1 specifies the theoretical background of the RL algorithm employed in this
work as well as the defined hyperparameters. Next, Section 7.3.2 describes the RL agent
employed and how it interacts with the environment. Section 7.3.3 details the information
that the RL agent receives from the environment, and Section 7.3.4 the actions performed
by the agent. Finally, Section 7.3.5 presents the reward formulation used to evolve the RL
agent towards finding optimal actions.
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7.3.1. LEARNING ALGORITHM
An RL method consists of an agent interacting with an environment in discrete time steps.
At each time step, the agent receives the current state of the environment and performs
an action accordingly, for which it receives a reward. An agent’s behaviour is defined by
a policy, π, which maps states to actions. The goal is to learn a policy which maximizes
the reward. Many RL algorithms have been researched in terms of defining the expected
reward following an action.

This chapter uses the Soft Actor–Critic (SAC) method as defined in [229]. SAC is an
off-policy actor–critic deep RL algorithm. It employs two different deep neural networks
for approximating action-value functions and state-value functions. The actor maps the
current state based on the action it estimates to be optimal, while the critic evaluates
the action by calculating the value function. The main feature of SAC is its maximum
entropy objective, which has practical advantages. The agent is encouraged to explore
more widely, which increases the chances of finding optimal behaviour. Second, when
the agent finds multiple options for a near-optimal behaviour, the policy commits equal
probability to these actions. Studies have found that this improves learning speed [247].

Table 7.1 presents the hyperparameters employed in this work. We resorted to two-
hidden-layer neural networks with 256 neurons in each layer. Both layers used the
rectified linear unit (ReLU) activation function.

Table 7.1: Hyperparameters of the employed RL method used in this work.

Parameter Value

TAU 0.005

Learning rate actor (LRA) 0.0001

Learning rate critic (LRC) 0.001

EPSILON 0.1

GAMMA 0.99

Buffer size 1 M

Minibatch size 256

#Hidden layer-neural networks 2

#Neurons 256 in each layer

Activation functions Rectified linear unit (ReLU) in the hidden layers, tanh in the last layer

7.3.2. AGENT
We employ an RL agent responsible for setting the parameters for the calculation of a
CR manoeuvre by a geometric CR method. At each time step, the CR method outputs a
new deconflicting state for all aircraft in conflict. The new state aims at preventing LoSs
with the necessary minimum path deviation. Every time the CR method computes an
avoidance manoeuvre, it uses the following parameters decided by the RL method:

1. The look-ahead value (between 0 and 600 s).
2. A selection of which state elements vary (i.e., heading, speed, and/or altitude

variation).

The previous values are used by the CR method to generate the CR manoeuvre. The latter
is performed by the ownship in order to resolve the conflict and avoid an LoS. Note that
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all aircraft involved in a CR perform a deconflicting manoeuvre computed by the hybrid
RL + CR method.

A single RL agent is considered in this work. Note that several works previously
mentioned in Section 7.2 have considered the application of MA-RL instead for CR.
Looking at the existent body of work [232], there is no clear preference for either MA-RL or
single RL in current studies. The selection of a single agent or multiagent mainly depends
on the problem being tackled. Although, theoretically, MA-RL is expected to better handle
the nonstationarity of having multiple agents evolving together, a single RL is used in this
work for the following reasons:

• The single agent can be used on any aircraft; it does not limit the number of aircraft.
Instead, MA-RL represents the observations of all agents in its state formulation.
As the state array has a fixed size, it can only be used with a fixed number of aircraft.

• Through practical experiments, Zhang [248] concluded that MA learning was
weaker than a single agent under the same amount of training. It is thus nec-
essary to balance the optimisation objectives of multiagents in an appropriate
way. It is reasonable to expect that MA-RL may require more training due to the
increasing state and action formulation, as well as the need to correctly identify
which actions had more impact on the reward.

Figure 7.1 is a high level representation of how the RL agent interacts with the CR
algorithm. As per Figure 7.1, the state input is transformed into the action output through
each layer of the neural network. The compositing of the state and action arrays is
described in Sections 7.3.3 and 7.3.4, respectively. The variables of the state array have
continuous values within the limits presented in Table 7.2. The action formulation
contains both continuous and discrete values as shown in Table 7.3.

Figure 7.1: High level of the hybrid conflict resolution system implemented in this work. Based on the ownship’s
current state and closest surrounding aircraft, the RL method makes a decision on look ahead time and in
which way the state of the ownship will vary. The geometric CR algorithm then uses these values to generate the
conflict resolution manoeuvre.
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7.3.3. STATE
The RL method must receive the necessary data for the RL agent to successfully decide
which values to input into the CR algorithm for the generation of an effective CR ma-
noeuvre. We took inspiration from the same data that typically distributed, geometric
CR methods have access to so as to create a fair comparison. These data included the
current state of the ownship aircraft, and the distance, relative heading, and relative
altitude of the closest surrounding aircraft. Furthermore, the distance at the closest point
of approach (CPA) and the time to the CPA were also considered as this is also information
that the CR method has access to. When RL controls altitude variation, on top of heading
and speed, it also receives information on the ownship’s current altitude and its relative
altitude to the closest intruders. Table 7.2 defines the complete state information received
by the RL method. Note that the RL method was tested with 2 different implementations
of the CR method: (1) the CR method varies heading and speed; (2) the CR method varies
heading, speed, and altitude. Thus, the optimal look-ahead times could be related to the
level of control that the geometric CR algorithm had over the ownship.

In the state representation, we considered the closest 4 surrounding aircraft. This
decision was a balance between giving enough information on the environment, while
keeping the state formulation to a minimum size. The size of the problem’s solution
grows exponentially with the number of possible states permutations. Thus, this must be
limited to guarantee that the RL method trains within an unacceptable amount of time.
The 4 closest aircraft (in distance) were chosen in order of their proximity, independently
of them being in conflict or not. The reason for considering all aircraft was to allow the RL
method to make its decision based not only on the conflicting aircraft but also on nearby
nonconflicting aircraft, which could create severe conflicts if they modified their state in
the direction of the ownship.

Table 7.2: State formulation of the RL method.

Dimension Element Limits

1 Current heading −180 ◦–180 ◦

1 Relative bearing to next waypoint −180 ◦–180 ◦

1 Current speed 0 m/s–18 m/s

#surrounding aircraft Current distance to #surrounding aircraft 0 m–3000 m

#surrounding aircraft Distance at CPA with #surrounding aircraft 0 m–3000 m

#surrounding aircraft Time to CPA with #surrounding aircraft 0 s–600 s

#surrounding aircraft Relative heading to #surrounding aircraft −180 ◦–180 ◦

Only when the geometric CR method can also perform altitude variation:

1 Current altitude 0 ft–100 ft

#surrounding aircraft Relative altitude to #surrounding aircraft 0 ft–100 ft

7.3.4. ACTION
The RL agent determines the action to be performed for the current state. As previously
displayed in Figure 7.1, the incoming state values are transformed through each layer of
the neural network, in accordance to the neurons’ weights and the activation function in
each layer. The output of the final layer must be turned into values that can be used to
define the elements of the state of the aircraft that the RL agent controls. All actions were
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computed using a tanh activation function; the RL method thus output values between
−1 and +1. Table 7.3 shows how these values were then translated to the values to be used
by the geometric CR method.

Table 7.3: Action formulation of the RL method.

Dimension Action Limits Units

1 Look-ahead time (for CR only) [−1, + 1] transforms to [0, 600] Seconds

1 Heading variation Yes if ≥ 0, no otherwise Yes/no

1 Speed variation Yes if ≥ 0, no otherwise Yes/no

Only when the geometric CR method can also perform altitude variation:

1 Vertical speed variation Yes if ≥ 0, no otherwise Yes/no

The RL method was tested with the geometric CR method controlling (1) heading and
speed variations, and (2) heading, speed, and altitude variations. In both cases, the RL
method defined the look-ahead value to be used. This was a continuous action. Note
that this was the look-ahead time used for resolving conflicts. The RL method received
information regarding the aircraft surrounding the ownship through the state input.
This was how it ‘detected’ conflicts. Then, it decided on the look-ahead time used for CR,
as displayed in Figure 7.2. This meant that the method decided which conflicts to consider
in the next avoidance manoeuvre. The method could opt, for example, for prioritising
closer conflicts.

Figure 7.2: The RL method receives information on the aircraft surrounding the ownship through the state input,
and outputs a look-ahead value to be used for conflict resolution.

Furthermore, depending on the degrees of freedom that the geometric CR algorithm
controlled, the RL method defined how the state of the ownship could vary. This selection
was a discrete action. For heading, speed, and altitude variation, if the respective value
on the state array was higher than 0, the resolution by the geometric CR method included
a variation within that degree.

Finally, note that these options took a continuous value (from the RL method’s output)
and turned it into a discretised option (≥0 ∨ <0). This could hinder the ability of the
RL method to properly understand how its continuous values were used, and limit the
efficacy of training. Nevertheless, this was preferred in order to (1) have one RL method re-
sponsible for all actions so that the effect of their combination could be directly evaluated
by the method, and (2) to have continuous values for the look-ahead time, which allowed
the RL method to directly include or disregard specific aircraft in the generation of the
avoidance manoeuvre. Future work will explore whether there is an increase in efficiency
by having 2 different RL methods. The first may produce continuous actions to define the
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look-ahead time. The second receives this look-ahead value and outputs discrete actions
for the selection/deselection of heading, speed, and altitude variation. Nevertheless, here
the first RL method was not aware of the decisions of the second method.

7.3.5. REWARD
The RL method was rewarded at the time step following the one where it set the parame-
ters for the CR manoeuvre calculation for an aircraft. The reward for each state (st ) was
based on the number of LoSs, as this was the paramount safety objective:

R (st ) =
{

−1 Loss of Separation occurs

0 otherwise
(7.1)

The RL method was not aware of the MVP method, as the latter only contributed
indirectly to the reward by attempting to prevent LoSs. Note that efficiency elements could
also be added to the reward to decrease flight path and time. Nevertheless, the weight
combination of the different elements must be carefully tuned to establish how one LoS
compares to a large path deviation. At this phase of this exploratory work, we therefore
opted for a simple reward formulation focusing on the main objective.

Furthermore, a reward can be local, when based on the part of the environment that
the agent can directly observe, or global, when the reward is based on the global effect
on the environment. There are advantages and disadvantages for both types of rewards.
On the one hand, local reward may promote ‘selfish’ behaviour as each agent attempts to
increase its own reward [249]. When solving a task in a distributed manner, if each agent
tries to optimise its own reward, it may not lead to a globally optimal solution. On the
other hand, the task of attributing a global, shared reward from the environment to the
agents’ individual actions is often nontrivial since the interactions between the agents
and the environment can be highly complex (i.e., the ‘credit assignment’ problem).

In this work, the primary objective was to reduce the total number of LoSs in the
airspace. Thus, a global reward was used, where each agent was rewarded based on the
total number of LoSs suffered in the airspace. Note that there are technique to (partially)
handle the credit assignment problem that were not used in this work. To the best of
the authors’ knowledge, these focus mainly in value function decomposition and reward
shaping [250–253]. However, value function decomposition is hard to apply in off-policy
training and potentially suffers from the risk of unbounded divergence [254]. In our case,
we opted for having a simplified reward formulation (see Equation (7.1)). Thus, we did not
make use of any strategy directed at reducing the credit assignment problem. As a result,
however, it was expected that the training phase would take longer, as the RL agent had to
explore the state and action spaces at length to understand how its actions influenced the
global reward.

7.4. EXPERIMENT: IMPROVING ALGORITHM CONFLICT RESO-
LUTION MANOEUVRES WITH REINFORCEMENT LEARNING

This section defines the properties of the performed experiment. The latter aimed at
using RL to define the values that a distributed, geometric CR method used to generate
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CR manoeuvres. Note that it was divided into two main phases: training and testing. First,
the hybrid RL + CR method was trained continuously with a predefined set of 16 traffic
scenarios, at a medium traffic density. Each training scenario ran for 20 min. Afterwards,
it was tested with unknown traffic scenarios at different traffic densities. Each testing
scenario ran for 30 min. Each traffic density was run with 3 different scenarios, containing
different routes. During testing, the performance of the hybrid method was directly
compared to the performance of the distributed, geometric CR method, with baseline
rules that have been commonly used in other works [162].

7.4.1. FLIGHT ROUTES

The experiment area was a square with an area of 144 NM2. Aircraft were created on the
edges of this area, with a minimum spacing equal to the minimum separation distance,
to avoid LoSs between spawn aircraft and aircraft arriving at their destination. Aircraft flew
a linear route, all at the same altitude. Each linear path was built up of several waypoints.
Aircraft were spawned at the same rate as they were deleted from the simulation, in order
to maintain the desired traffic density. Naturally, when conflict resolution was applied
to the environment, the instantaneous traffic density could be higher than expected
as aircraft would take longer to finish their path due to path deviations to avoid LoSs.
In order to prevent aircraft from being incorrectly deleted from the simulation when
travelling through the edge of the experiment area, or when leaving the area to resolve a
conflict, a larger area was set around the experiment area. An aircraft was removed from
the simulation once it left this larger area.

7.4.2. APPARATUS AND AIRCRAFT MODEL

An airspace with unmanned traffic scenarios was built using the Open Air Traffic Sim-
ulator Bluesky [25]. The performance characteristics of the DJI Mavic Pro were used
to simulate all vehicles. Here, speed and mass were retrieved from the manufacturer’s
data, and common conservative values were assumed for turn rate (max: 15◦/s) and
acceleration/breaking (1.0kts/s).

7.4.3. MINIMUM SEPARATION

Minimum safe separation distance may vary based on the traffic density or the structure
of the airspace. For unmanned aviation, a single, commonly-used value does not (yet)
exist. In this experiment, we chose 50 m for horizontal separation and 50 ft for vertical
separation.

7.4.4. CONFLICT DETECTION

The experiment will employ state-based conflict detection for all conditions. This assumes
linear propagation of the current state of all aircraft involved. Using this approach, the
time to CPA (in seconds) is calculated as:

tC PA =−
~dr el ·~vr el

~vr el
, (7.2)
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where ~dr el is the cartesian distance vector between the involved aircraft (in meters), and
~vr el the vector difference between the velocity vectors of the involved aircraft (in meters
per second). The distance between aircraft at CPA (in meters) is calculated as:

dC PA =
√
~d 2

r el − tC PA
2 ·~v 2

r el . (7.3)

When the separation distance is calculated to be smaller than the specified minimal
horizontal spacing, a time interval can be calculated in which separation will be lost if no
action is taken:

tLoS = tC PA −
√

RP Z
2 −dC PA

2

~vr el
. (7.4)

These equations will be used to detect conflicts, which are said to occur when dC PA <
RP Z , and tLoS ≤ tlookahead , where RP Z is the radius of the protected zone, or the minimum
horizontal separation, and tlookahead is the specified look-ahead time.

With the baseline CR method, a look-ahead time of 300 seconds is used. This value
was selected as, empirically, it was found to be the most efficient common value for
the 16 training scenarios within the simulated environment. This is a larger value than
commonly used with unmanned aviation. However, smaller values are often considered
in constrained airspace to reduce the amount of false conflicts past the borders of the
environment [204]. Finally, this large look-ahead time should not be used in environments
with uncertainty regarding intruders’ current position and future path. Expanding the
intruders trajectory far into the future can result in a great amount of false positive
conflicts.

7.4.5. CONFLICT RESOLUTION
We use the distributed, geometric CR method MVP. The values used by MVP to calculate
conflict avoidance manoeuvres are defined by the RL method. The principle of the
geometric resolution of the MVP method, as defined by Hoekstra [2, 15], is displayed in
Figure 7.3. MVP uses the predicted future positions of both ownship and intruder at CPA.
These calculated positions ‘repel’ each other, towards a displacement of the predicted
position at CPA. The avoidance vector is calculated as the vector starting at the future
position of the ownship and ending at the edge of the intruder’s protected zone, in the
direction of the minimum distance vector. This displacement is thus the shortest way out
of the intruder’s protected zone. Dividing the avoidance vector by the time left to CPA,
yields a new speed, which can be added to the ownship’s current speed vector resulting
in a new advised speed vector. From the latter, a new advised heading and speed can be
retrieved. The same principle is used on the vertical situation, resulting in an advised
vertical speed. In a multi-conflict situation, the final avoidance vector is determined by
summing the repulsive forces with all intruders. As it is assumed that both aircraft in a
conflict will take (opposite) measures to evade the other, MVP is implicitly coordinated.

7.4.6. INDEPENDENT VARIABLES
First, two different implementations of the hybrid RL+MVP method are trained with
different action formulations. During testing, different traffic densities are introduced to
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Figure 7.3: Modified Voltage Potential (MVP) geometric resolution. Adapted from [15].

analyse how the RL method performs at traffic densities it was not trained in. Finally, the
efficacy of the hybrid RL+MVP is directly compared to that of the baseline MVP method.
More detail is given below.

ACTION FORMULATION

Different action formulations were employed (1) when the CR method only performed
heading and speed variations to resolve conflicts and (2) when the geometric CR method
used heading, speed, and altitude variation. These allow direct analyses of how the
decisions of the RL method change depending on the control it has over the state of all
aircraft involved in a conflict situation.

TRAFFIC DENSITY

Traffic density varies from low to high according to Table 7.4. The RL agent is trained at a
medium traffic density, and is then tested with low, medium, and high traffic densities.
Thus, it is possible to assess the efficiency of the agent when performing in a traffic density
different from that in which it was trained.

Table 7.4: Traffic volume used in the experimental simulations.

Training (20 minutes simulation) Testing (30 minutes simulation)

Traffic density Medium Low Medium High

Number of aircraft per 10000NM2 40000 20000 40000 60000

Number of instantaneous aircraft 576 288 576 863

Number of spawned aircraft 886 665 1330 1994

CONFLICT RESOLUTION MANOEUVRES

All testing scenarios were run with (1) the hybrid RL + MVP method and (2) the baseline
MVP method. The latter used a look-ahead time of 300 s, and moved all aircraft in all
available directions. For example, in the case where MVP could vary heading, speed,
and altitude, all of these directions were used to resolve the conflict. All aircraft involved
in the conflict situation moved in these directions.

7.4.7. DEPENDENT VARIABLES
Three different categories of measures are used to evaluate the effect of the different
operating rules set in the simulation environment: safety, stability, and efficiency.
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SAFETY ANALYSIS

Safety is defined in terms of the total number of conflicts and losses of minimum sep-
aration. Fewer conflicts and losses of separation are preferred. Additionally, LoSs are
evaluated based on their severity according to how close aircraft get to each other:

LoSsev = R −dC PA

R
. (7.5)

Finally, the total time that aircraft spend resolving conflicts is accounted for.

STABILITY ANALYSIS

Stability refers to the tendency for tactical conflict avoidance manoeuvres to create sec-
ondary conflicts. Aircraft deviate from their straight, nominal path occupying more space
of the environment, increasing the likelihood of running into other aircraft. In literature,
this effect has been measured using the Domino Effect Parameter (DEP) [151]:

DEP =
nON

c f l −nOF F
c f l

nOF F
c f l

, (7.6)

where nON
c f l and nOF F

c f l represent the number of conflicts with CD&R ON and OFF, respec-

tively. A higher DEP value indicates a more destabilising method, which creates more
conflict chain reactions.

EFFICIENCY ANALYSIS

Efficiency is evaluated in terms of the distance travelled and the duration of the flight.
Shorter distances and shorter flight duration are preferred.

7.5. EXPERIMENT: HYPOTHESES
The RL method dictated how far in advance the MVP method initiated a deconflicting
manoeuvre, and in which direction(s) each aircraft moved to resolve the conflict. The RL
method could adjust its resolution to every conflict geometry. As a result, it was hypoth-
esised that using an RL method to decide the values that the MVP method used for the
calculation of the conflict resolution manoeuvres would reduce the total number of LoSs.
However, it was also hypothesised that the hybrid RL + MVP method could lose efficiency
at traffic densities higher than the one in which it had been trained. Conflict geometries
with a higher number of involved aircraft could require different responses from those
that the RL learnt.

It was hypothesised that the RL method would make use of a range of look-ahead
values, as this could be a powerful way to prioritise short-term conflicts and to defend
in advance against potential future severe LoSs. In previous work [233], an RL method,
directed at conflict resolution, chose to defend against several LoSs (i.e., near head-on)
in advance. Thus, it was expected that the RL + MVP method would choose larger look-
ahead values than the baseline value of 300 s for these kinds of situations. This could
increase the number of conflict resolution manoeuvres performed by the hybrid RL +
MVP method. Thus, the hybrid RL + MVP solution was expected to have a higher number
of conflicts when it used larger look-ahead values.
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Finally, the solutions output by the MVP method were implicitly coordinated in pair-
wise conflicts. It was guaranteed that both aircraft would move in opposite directions.
There is no such guarantee in a multi-actor conflict. Different aircraft may resolve the
conflict by moving in the same direction, making CR manoeuvres ineffective. Neverthe-
less, in order to reduce LoSs, the RL method had to find some sort of coordination. The RL
method could not decide whether the ownship climbed or descended when the altitude
was varied; this was calculated by the MVP method. However, it could decide whether the
altitude was varied or not. Altitude variation would assuredly move the ownship out of
conflict when intruders remained at the same altitude level. Thus, the RL method was
expected to employ different combinations of actions, preventing aircraft in a multi-actor
conflict from attempting to move out of conflict in the same direction.

7.6. EXPERIMENT: RESULTS
As mentioned above, the results section is divided between the training and testing phases.
The first shows the evolution of the RL method during the training process. The objective
was to reduce the total number of LoSs. In the testing phase, the hybrid RL + MVP method
was applied to unknown traffic scenarios. Its performance was directly compared to the
baseline MVP method with the same scenarios.

7.6.1. TRAINING OF THE REINFORCEMENT LEARNING AGENT
This section shows the evolution of the RL method during training. An episode was a
full run of the simulation environment described in Section 7.4.1. During training, each
episode lasted 20 min. Sixteen different episodes with random flight trajectories and
a medium traffic density (see Section 7.4.6) were created for the training phase. These
16 episodes were run consecutively during training, so it could be evaluated whether
the RL method was improving by reducing the number of LoSs for these 16 training
scenarios. In total, 150 episodes were run, or roughly nine cycles of the 16 training
episodes. For reference, without intervention from the CR method, when aircraft followed
their nominal trajectories, the training scenarios had, on average, roughly 1800 conflicts
and 600 LoSs.

SAFETY ANALYSIS

Figure 7.4 shows the evolution of the RL method for both action formulations in terms
of pairwise conflicts and LoSs. A conflict was found once it was identified that two
aircraft would be closer than the minimum required separation at a future point in
time. Regardless of the number of aircraft involved in a conflict situation, conflicts were
counted in pairs. Note that an aircraft could be involved in multiple pairwise conflicts
simultaneously. A pairwise conflict was counted only once, independently of its duration.

The values obtained when the hybrid RL + MVP method controlled only heading
and speed variations are indicated by ‘RL + MVP Method (H + S)’. The values with ‘RL +
MVP Method (H + S + A)’ indicate the performance when the method controlled altitude
variation, on top of heading and speed variations. Both methods converged towards
optimal conflict resolution manoeuvres after approximately 90 episodes (see Figure 7.4(a).
They both achieved a comparable number of LoSs. However, ‘RL + MVP (H + S + A)’ did
it with considerably fewer conflicts (see Figure 7.4(b)). This was the result of the traffic
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conditions of the simulated scenarios. As all aircraft were initially set to travel at the same
altitude, vertical deviations removed aircraft out of this main layer of traffic, reducing the
chance of secondary conflicts.

(a) Total number of LoSs during training of the RL + MVP method.

(b) Total number of pairwise conflicts during training of the RL+MVP method.

Figure 7.4: Evolution of the hybrid RL + MVP method during training.

Table 7.5 shows the actions performed by the hybrid RL + MVP method at the end
of training. Naturally, the exact values used were dependent on the conflict situations
that the RL faced. However, the general preference for certain actions was common to
all training episodes. When RL + MVP controlled only heading and speed, it strongly
favoured performing both heading and speed variations simultaneously (around 99.7%
of the total). Moreover, the method favoured speed-only over heading-only actions.
Subliminal speed changes can be helpful in resolving conflicts with intruders far away,
without the ownship having to occupy a larger amount of airspace. However, given that
speed-only actions were employed a small number of times (around 0.3% of the total), it
was not clear whether the RL method understood this.

When heading, speed, and altitude were controlled, the method opted for either
using all degrees of freedom simultaneously or heading and speed only (around 49.8%
and 45.4% of the total, respectively). This shows that the RL method found that these
two combinations were the most effective manoeuvres with the MVP conflict resolution
method. Furthermore, the RL method found it advantageous to combine these two
manoeuvres. As mentioned in Section 7.5, having aircraft in conflict move in different
directions can be beneficial for the resolution of the conflict. The conditions in which
each combination was employed are developed further in the following sections.

The RL method uses a wide range of look-ahead values. The look-ahead value directly
affects when and how the ownship resolves conflicts. On average, the RL method chooses a
larger look-ahead value than the baseline value of 300 s. Nevertheless, implementing these
averages instead of using 300 s did not improve the efficacy of the baseline MVP method.
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Table 7.5: Summary of the actions employed by the RL method in the training episodes.

Experiment Manoeuvre (State Variation) Look-Ahead Time

(Degrees of Freedom) Heading Speed Altitude Usage Average Standard Deviation

Heading + Speed

X ≈0% - -

X 0.3% - -

X X 99.7% 426 s 40 s

Heading + Speed + Altitude

X 1.2% - -

X 0.4% - -

X ≈0% - -

X X 46.7% 512 s 80 s

X X 0.5% - -

X X ≈0% - -

X X X 51.2% 137 s 163 s

The optimal moment to act against a conflict was highly dependent on the conflict
geometry, as shown by the standard deviations of the values generated by the RL method.
The RL method selects shorter look-ahead values when altitude is employed. The method
learnt to use altitude deviations as a tool to quickly resolve short-term conflicts.

The following sections further explore the actions of the hybrid RL+MVP method in
relation to the state of the environment.

ACTIONS BY THE REINFORCEMENT LEARNING MODULE (HEADING + SPEED)
Figure 7.5 connects some of the data available in the state formulation to the actions
chosen by the RL method, which could vary only the heading and speed. The look-ahead
time value employed by the RL method in relation to the average distance at the CPA
and time to the CPA are shown on the left. The right image displays look-ahead values in
relation to the average current distance and average relative bearing.

Figure 7.5 displays the look-ahead values when both heading and speed variations
were used to resolve conflicts. The RL + MVP method had a strong preference for look-
ahead values above the baseline value of 300 s, as colour values below 300 s are rare in the
graph. Finally, the RL method seemed to prioritise conflicts based on their average time
to the CPA and distance at the CPA, as visible from the darker points on the bottom left
corner of the left graph.

Figure 7.6 shows the final heading and speed variation of the RL + MVP method for
the training episodes. As expected, the heading and speed variations were greater when
the surrounding aircraft were closer in distance (see darker points at the bottom of the
graphs on the right). The graph to the right of Figure 7.6(b) presents acceleration points
(in red) when the surrounding aircraft were closer in distance, and deceleration points (in
blue) when aircraft were farther away. When aircraft were closer, the ownship accelerated
in order to quickly increase the distance from the surrounding aircraft. When the latter
were farther away, the ownship decreased its speed in order to delay the start of the loss of
minimum separation. Note, however, that although the CR method output these speeds,
it was not guaranteed that the ownship would adopt the final output speed. The adoption
of the new deconflicting state was dependent on the performance limits of the ownship.
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Figure 7.5: Look-ahead time values employed by the RL + MVP method when both heading and speed variations
were used to resolve conflicts.

(a) Heading variation performed by the hybrid RL+MVP method.

(b) Horizontal speed variation performed by the hybrid RL+MVP method.

Figure 7.6: State variation output by the hybrid RL+MVP method for conflict resolution in the training scenarios.

The results of the baseline MVP method are not shown, as differences from Figure 7.6
are not clearly visible to the naked eye. The use of an RL method to define the parameters
that the MVP method used to generate the CR manoeuvre does not greatly change the
magnitude of the heading and speed variations performed. However, the RL method
impacts the number of intruders considered in the calculation and how far in advance
the ownship initiated the CR manoeuvre. For example, when the method selects a longer
look-ahead time than the baseline value of 300 s, it initiated CR manoeuvres before the
baseline MVP did. In contrast, when the RL method selected lower values, it was both
prioritising short-term conflicts and delaying the reaction towards conflicts farther away.

Figure 7.7 displays the situations for which the RL + MVP method instructed the
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ownship to defend against a conflict and the baseline MVP method did not. This referred
to situations where the RL method output a look-ahead time greater than 300 s. This
resulted in the RL + MVP method defending in advance against many conflicts that the
baseline MVP would only consider later in time. The graphs show that these intruders
were still far away (see graph on the right) and thus would not lead to a LoS situation
shortly. Nevertheless, some represent severe LoSs given the small distance at the CPA (see
graph on the left).

Figure 7.7: Situations in which the RL + MVP defended against surrounding aircraft, but the baseline MVP
method did not.

ACTIONS BY THE REINFORCEMENT LEARNING MODULE (HEADING + SPEED + ALTITUDE)
Figure 7.8 shows the different look-ahead times selected by the RL method depending on
the varied degrees of freedom. Figure 7.8(a) displays the look-ahead values produced by
the RL method when it varied the heading, speed, and altitude of the ownship to resolve
conflicts. Here, it had a preference for look-ahead time values under 200 s (points on the
graphs are overwhelming on the darker side of the spectrum representing lower values).
As a result, conflicts were resolved later than with the RL method that could only vary
heading and speed. This was expected given the extra degree of freedom, i.e., the altitude
variation. Since all traffic was set to fly at the same altitude level, vertical deviations were
a fast way to resolve a conflict, as the ownship moved away from the main traffic layer.

Figure 7.8(b) displays the look-ahead values used for manoeuvres varying only the
heading and horizontal speed. Compared to the values shown previously in Figure 7.5,
the points in the graph here are lighter in colour, indicating larger look-ahead values.
In this case, the RL method resorted to larger look-ahead values. This is in line with the
information displayed in Table 7.5.

The direct comparison between Figures 7.8(a) and 7.8(b) show that (1) heading, speed,
and altitude deviations were used with short look-ahead time values, and (2) heading and
speed variations were used with larger values. Thus, it seemed that the RL method used
heading and speed manoeuvres to resolve conflicts with more time in advance and re-
sorted to altitude variation to resolve the remaining short-term conflicts. Prioritisation
of short-term conflicts benefits its resolution, as the generated deconflicting manoeuvre
was calculated by taking into account only the best solution for these conflicts. Moreover,
by having fewer aircraft resolve conflicts in the vertical dimension, when the latter was
used, it was more effective, as most of the aircraft were in the main traffic layer.
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(a) When heading, speed, and altitude variation is employed.

(b) When heading, and speed variation is employed.

Figure 7.8: Different look-ahead time values employed by the hybrid RL+MVP method.

Figure 7.9 shows the final heading and speed variation of the RL + MVP method
varying the heading, speed, and altitude. Compared to the heading and speed variations
performed by the RL method that controls only heading and speed variations (Figure 7.6),
stronger speed variations are visible (darker points at the bottom of the right graph).
Furthermore, based on the average values of Table 7.5, this RL method defended against
conflicts later than its counterpart that controlled only heading and speed variation.
In conclusion, more imminent conflicts required larger state variations to resolve.

Figures 7.10(a) and 7.10(b) show the final vertical speed variation for the baseline MVP
and the hybrid RL + MVP methods, respectively. There were differences in the number of
conflict situations in which the methods employed altitude deviation, as Figure 7.10(b)
has fewer data points than Figure 7.10(a). The baseline MVP method employed headings,
speed, and altitude in all conflict situations. However, as previously shown in Table 7.5,
the hybrid RL + MVP method employed altitude variation in approximately ≈50% of the
total conflict situations. Thus, there were fewer occasions with altitude deviation.

Finally, analogously to the method examined in Section 7.6.1, certain look-ahead
values resulted in no defensive action being adopted by the ownship. Figure 7.11(a) shows
the situations where the baseline MVP did not perform a deconflicting manoeuvre but
the hybrid method RL + MVP did. This was the result of the RL + MVP selecting a longer
look-ahead time than the baseline value of 300 s. In turn, Figure 7.11(b) displays the
situations for which the hybrid RL + MVP method did not instruct the ownship to initiate
conflict resolution, and the baseline MVP method did. Here, the look-ahead values were
below 300 s, during which no intruder was found. The hybrid RL + MVP method defended
against conflicts more frequently than the baseline MVP method.
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(a) Heading variation performed by the hybrid RL+MVP method.

(b) Horizontal speed variation performed by the hybrid RL+MVP method.

Figure 7.9: State variation output by the hybrid RL+MVP method for conflict resolution in the training scenarios.

(a) Vertical speed variation performed by the baseline MVP method (look-ahead time = 300 seconds. Heading,
speed, and altitude variation is always active).

(b) Vertical speed variation performed by the hybrid RL+MVP method.

Figure 7.10: Vertical speed variation performed by the baseline MVP and the hybrid RL+MVP methods.
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(a) Situations in which the RL+MVP defended against surrounding aircraft, but the baseline MVP method did
not.

(b) Situations in which the MVP defended against surrounding aircraft, but the tested RL+MVP method did not.

Figure 7.11: Situations in which only of the methods, either the hybrid RL+MVP method or the baseline MVP,
defended against surrounding aircraft but the other method did not.

7.6.2. TESTING OF THE REINFORCEMENT LEARNING AGENT
The trained RL + MVP method was then tested with different traffic scenarios at low,
medium, and high traffic densities. For each traffic density, three repetitions were run with
three different route scenarios, for a total of nine different traffic scenarios. During the
testing phase, each scenario was run for 30 min. In both phases, the results of the RL
method were compared directly with those of the baseline MVP method.

SAFETY ANALYSIS

Figure 7.12 displays the mean total number of pairwise conflicts. A pairwise conflict
was counted only once, independently of its duration. Note that this was the number of
detected conflicts with a baseline value of 300 s, independent of the final value selected
by the RL method, to warrant a direct comparison. Employing the RL method with
MVP resulted in a considerably higher number of conflicts than using the baseline MVP
method. However, this is not necessarily negative, as previous research has shown that
conflicts help spread aircraft within the airspace [2].

The increase in the total number of conflicts was a direct consequence of the higher
number of deconflicting manoeuvres performed by the hybrid RL + MVP method in
comparison to the baseline MVP method (see Figures 7.7). At high traffic densities,
conflict avoidance manoeuvres led to secondary conflicts, as aircraft occupied more
airspace by deviating from their nominal, straight path. The increase in the total number
of conflicts was less significant when MVP could vary altitude, on top of heading and
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speed (see graph on the right). This was related to the fact that most aircraft travelled at
the same altitude; thus, varying the altitude was less likely to result in secondary conflicts.

Figure 7.12: Mean total number of pairwise conflicts during testing of the RL agent.

Figure 7.13 displays the time in conflict per aircraft. An aircraft entered ‘conflict mode’
when it adopted a new state computed by the MVP method. An aircraft exited this mode
once it was detected that it was past the previously calculated time to the CPA (and no
other conflict was expected between now and the look-ahead time). At this point, the
aircraft redirected its course to the next waypoint in its route. The time redirecting towards
the next waypoint was not included in the total time spent in conflict.

While aircraft spent more time in conflict with the hybrid RL + MVP method, the in-
crease in time in conflict did not correlate directly with the increase in the total number
of conflicts (see Figure 7.12). This meant that most conflicts were short in duration and
quickly resolved. Additionally, the hybrid RL + MVP method controlling only heading and
speed variation (see graph on the left), at the lowest traffic density, had the highest time
in conflict, although it had the fewest conflicts. This indicated that the way conflicts were
resolved had a greater impact on the total time spent in the conflict.

Figure 7.13: Time in conflict per aircraft during testing of the RL agent.

Figure 7.14 displays the total number of LoSs. Reducing the total number of LoSs was
the main objective of the RL method. The results show that having the RL method decide
the input values for the MVP method led to a reduction of the total number of LoSs on
all traffic densities, even at a higher traffic density than the RL method was trained on.
This proved that the elements optimised by the RL method, namely, (1) the prioritisation
of conflicts depending on the degrees of freedom and (2) the heterogeneity of directions
between aircraft in a conflict situation, were common to all traffic densities.

Figure 7.15 displays the LoS severity. With the hybrid RL + MVP method, the LoS
severity was slightly higher, but not to a significant extent. It was likely that the RL + MVP
method prevented some of the lowest severity LoSs, leaving out the more severe ones.
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Figure 7.14: Total number of LoS during testing of the RL agent.

Figure 7.15: LoS severity during testing of the RL agent.

STABILITY ANALYSIS

Figure 7.16 shows the DEP during the testing of the RL method. The increase in DEP
was comparable to the increase in the total number of conflicts (see Figure 7.12). The in-
crease in the total number of conflicts was a result of a higher number of deconflicting
manoeuvres, leading to a higher number of secondary conflicts.

Figure 7.16: Domino effect parameter (DEP) during testing of the RL agent.

EFFICIENCY ANALYSIS

Figures 7.17 and 7.18 show the flight time and 3D flight path, per aircraft, during testing of
the RL method, respectively. The total flight time was a direct result of the time in conflict
(see Figure 7.13). The resolution of the higher number of conflicts also increased the 3D
path travelled as aircraft moved away from their nominal, straight path to resolve conflicts.

7.7. DISCUSSION
Recent studies have focused on using RL approaches to decide the state deviation that
aircraft should adopt for successful CR. However, the efficacy of these methods still cannot
surpass the performance of state-of-the-art geometric CR algorithms at higher traffic
densities. This study posed the question of whether the RL method could, instead, be used
to improve the behaviour of these geometric CR algorithms. This was an exploratory work



7

194 IMPROVING CONFLICT RESOLUTION WITH REINFORCEMENT LEARNING

Figure 7.17: Flight time during testing of the RL agent.

Figure 7.18: 3D flight path during testing of the RL agent.

in which an RL method was used to generate the parameters used by an CR algorithm to
generate a CR manoeuvre.

The results showed that a hybrid method, combining the strengths of both RL and
geometric CR algorithms, led to fewer losses of minimum separation when compared
to using fixed, predefined rules for CR. The benefit from the RL method lay on (1) the
ability to determine how far in advance the ownship should initiate the CR manoeuvre
and (2) in which directions to resolve the conflict. The former allowed for the prioritising
of short-term conflicts or the advanced defence against far away conflicts. The latter
induced an heterogeneity of the directions that aircraft used to move out of a conflict,
which could be beneficial as it prevented aircraft from moving in the same direction.
The following subsections further develop these topics.

Finally, questions remain regarding the application of this RL approach to other geo-
metric CR methods and operational environments. Here, the RL method had a limited
action formulation, being responsible for modelling only four parameters. Nevertheless,
a generation of a conflict resolution manoeuvre can include a multitude of parameters.
Additionally, the efficacy of a hybrid RL + CR method is dependent on the RL understand-
ing how the values affect the performance of the CR algorithm. More research is needed
to determine whether this approach can be successfully applied in a real-world scenario.

7.7.1. CONFLICT PRIORITISATION

By controlling look-ahead time, the RL method selected against which layers of aircraft the
ownship would defend. With shorter look-ahead values, the ownship defended against
the closest layers of aircraft, prioritising short-term conflicts. With larger look-ahead
values, a higher number of layers of aircraft were defended against, and conflicts were
resolved with more time in advance. However, considering a greater number of intruders
in the generation of the resolution could make the final CR manoeuvre less effective
against each of these intruders.
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The RL method prioritised short-term conflicts when the surrounding aircraft were
closer in time to a loss of minimum separation. This ensured that CR focuses only on
these conflicts, increasing the likelihood of successfully resolving them. Larger look-
ahead values were employed when the surrounding aircraft were farther away. In a way,
the look-ahead values varied so that a limited number of aircraft were included in the
generation of the CR manoeuvre.

Furthermore, how far the RL method defended in advance depended on the efficacy
of the CR manoeuvre. With a less efficient manoeuvre, the RL method understood that a
longer reaction time was needed, as the manoeuvre employed needed a longer time to
establish a safe distance. On the contrary, when altitude variation was used to resolve
conflicts, lower look-ahead values were used. As all aircraft flew at the same altitude,
climbing or descending was a powerful tool, moving the ownship out of the main traffic
layer. Thus, less reaction time was needed in that case.

7.7.2. HETEROGENEITY OF CONFLICT RESOLUTION DIRECTIONS
The RL method found that, to resolve a conflict, moving the ownship in multiple directions
simultaneously was beneficial. However, altitude or heading deviations were less effective
when intruding aircraft moved in the same direction to resolve the conflict. The RL
method understood that having different combinations of state variations (i.e., heading,
speed, and/or altitude variation) led the intruding aircraft to resolve in different directions,
increasing the chances of the resolution manoeuvres being effective.

It can be considered that the biggest advantage of allowing a CR algorithm to control
multiple degrees of freedom is the ability to use different combinations of state variations
to resolve conflicts. However, this heterogeneity should be based on rules to ensure that
different combinations are used per aircraft in conflict with each other. From the results
obtained, it was not clear how the RL method made these decisions.

7.7.3. FUTURE WORK
The values chosen by the RL method depended on the operational environment, flight
routes, and performance limits of the aircraft involved. Future work will explore this
RL approach under uncertainties. In this case, it is likely that smaller look-ahead times
would be picked, as higher values would entail the propagation of more uncertainties.
Additionally, having a single RL method responsible for separating aircraft under po-
sition uncertainties may lead the method to adopt a more defensive stance and start
considering bigger separation distances. The latter will lead to larger CR manoeuvres,
which, in turn, increase flight path and time. A better option may be to have a second
RL method responsible for determining the most likely position of the intruders under
uncertainties [255]. This new position would then be used by the RL method responsible
for guaranteeing the minimum separation between aircraft.

Finally, future work can benefit from using RL methods to directly prioritise specific
intruders. This is far from a trivial task. Previous work has shown that a great deal of
training is necessary for an RL method to understand the effect of enabling/disabling
each intruder in the generation of a CR manoeuvre [256]. However, it is of interest to
explore this area of research. Different aircraft at similar look-ahead values can then be
included/excluded from the CR manoeuvre.
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7.8. CONCLUSION
This chapter proposed a different application of reinforcement learning (RL) in the area
of conflict resolution. RL is typically used as the method that is fully responsible for
safeguarding the separation between aircraft. Although great progress has been made
in this area, these methods cannot yet surpass the performance of the state-of-the-art
distributed, geometric CR methods. This work used RL, instead, to help improve the
efficacy of the latter geometric methods. This article employed an RL method responsible
for optimising the values that a geometric CR algorithm used for the generation of conflict
resolution manoeuvres. Namely, the RL was responsible for defining the look-ahead time
at which the geometric CR method started defending against conflicts, as well as in which
directions to move towards a nonconflicting trajectory.

The advantage of RL approaches is that they can find optimal solutions to a multitude
of different conflict geometries, which would be arduous to develop through man-written
rules. The hybrid combination of RL + CR successfully obtained fewer losses of minimum
separation than a baseline CR method which used hard-coded, predefined values for all
conflict geometries. The main benefits resulted from (1) the prioritisation of conflicts
depending on the degrees of freedom and (2) the heterogeneity of deconflicting directions
between aircraft in a conflict situation. These two rules improved the resolution of conflicts
at different traffic densities.

However, more research is needed to validate whether this approach is still effective
in real-world scenarios under uncertainties, which can increase the gap between the
practical efficacy of RL methods and its expected theoretical performance. Additionally,
future work will focus on translating this application to other geometric CR algorithms
and operational environments. The work performed herein was focused solely on one
geometric CR algorithm that took two values as input. To fully analyse whether RL ap-
proaches can define the best values for the generation of CR manoeuvres, this work must
be expanded to different algorithms, especially those with a larger number of variables.



8
ON THE LIMITATIONS OF USING

REINFORCEMENT LEARNING IN

AVIATION

Reinforcement learning (RL) approaches have been successfully used in multiple areas
of research. Deep reinforcement learning, in particular, has recently emerged as a very
successful method to tackle decision-making problems where the objective is to increase the
distance between operating agents.

The introduction of RL approaches in aviation is still modest, due to hesitation in
moving from human to autonomous control, in part due to the black-box nature of RL
approaches. However, the need for methods capable of faster processing, in order to enable
the higher traffic densities predicted for future operations, has led researchers to study how
reinforcement learning can improve current aviation procedures.

Throughout the previous chapters of this thesis, published works were introduced that
looked directly at techniques on how to improve multi-agent conflict resolution, specifically
in an urban airspace. This chapter falls outside of this scope, working as a reflection of
the work that did not get published, mainly due to unsuccessful techniques, limitations of
employing reinforcement learning, and the lessons resulting from it.
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8.1. PREFACE
Many studies, including those presented in this thesis, have been developed on the use
of reinforcement learning (RL) to resolve conflict resolution problems. These offer a
variety of different methods and approaches. However, research often fails to explore the
several issues that one may encounter when developing an RL approach. Published works
focus only on its achievements under a positive outlook. However, several iterations and
decisions taken towards facilitating the convergence of the RL method are often not given
enough attention. Moreover, attempts that did not succeed are not published; although
much can be learnt from these. This chapter aims to shed light on the other side, namely,
the various problems that one may encounter when employing RL for conflict resolution.

8.2. CHAPTER ORGANISATION
A graphical representation of the content of this chapter can be found in Figure 8.1. Three
different elements belonging to the development process of an RL method were consid-
ered: the necessary steps (in blue), and the parameters to consider before implementing
these steps (in yellow) to prevent potential issues (in orange). The chapter is divided into
three main sections that follow a timeline progression on the implementation of an RL
method:

1. Building the RL method: describes the considerations one must take before actually
implementing the RL method. This includes decisions regarding the type of RL
algorithm, whether a single or multi-RL agent is more appropriate to the problem
at hand, and limitations in terms of action type.

2. Training of the RL method: approaches potential issues during training of an RL
method, such as long training time or non-convergence of the method. To avoid
these issues, several decisions must be made on how much information to give the
method and how to balance exploration/exploitation must be made.

3. Testing of the RL method: analyses potential issues with poor generalisation of
the method to situations different from the ones it was trained with. Additionally,
the need for benchmark situations and a direct comparison with other conflict
resolution methods is briefly addressed.

Each section is independent and can be read separately. In some of the sections,
the properties of some existing work are shown to illustrate which practises are more
common. The same works are referred to in each section. Thus, for a full picture of these
works, the reader should consider Tables 8.1 to 8.4 simultaneously. Note that this chapter
focuses only on the RL methods used for conflict resolution. Other environments, with
different dynamics, can lead to different conclusions.

8.3. BUILDING THE REINFORCEMENT LEARNING METHOD
The decision of which RL algorithm to use is not trivial and has a great impact on the final
results obtained. In this section, we describe the main questions that one must consider:
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Figure 8.1: High-level diagram of the organisation of this chapter.

• Whether multi or single agent should be applied: multi-agent RL is often used to
handle the non-stationarity of the environment. However, it limits the number of
agents with which the method can interact and increases the complexity of the
implementation.

• Action formulation: the preference for static or continuous actions directly condi-
tions the type of RL algorithms that can be employed, as algorithms may be limited
to one type.

• Value or policy based RL algorithms: RL algorithms are value-based, policy-based,
or both. Value-based optimises first the value function and then derives the opti-
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mal strategy. Policy-based directly optimises the objective function. Actor-critic
methods attempt to do both.

The previous questions are developed in further detail in the following sections. Fi-
nally, common selected RL algorithms for conflict resolution are shown in Tables 8.2 to 8.1
for reference.

8.3.1. NON-STATIONARITY AND EXPERIENCE REPLAY
Current research [186, 187] shows that emergent behaviour and complexity arise, not
as a result of the number of agents, but from the agents interacting and co-evolving.
From the point of view of each agent, the environment is non-stationary and, as training
progresses, modifies in a way that cannot be explained by the agent’s behaviour alone.
Non-stationarity is particularly important when the RL method is used for distributed
conflict resolution, as the result of an action is also based on the actions taken by the
surrounding aircraft.

Non-stationarity is a problem when RL methods make use of experience replay (ER).
Off-policy RL methods reuse early experience for training. ER consists of storing, into a
buffer, experience about the agent actions in the environment, and then replaying this ex-
perience during training. This is, for example, the case with Deep Q-Network (DQN) [257],
Deep Deterministic Policy Gradient (DDPG) [163], and the Soft Actor-Critic [229]. These
methods sample data uniformly from the buffer when performing parameter updates.
A uniform sampling scheme implicitly assumes that the data in the replay buffer are of
equal importance. However, this is not the case; the data in the agent’s replay memory
quickly becomes obsolete as it no longer reflects the current dynamics of the environment,
when all agents are learning and evolving throughout their training [258].

Recent studies have tried to overcome these issues with ER by improving the use of
replay experience to emphasise recently observed data while not forgetting the past [259].
A simple solution can be to limit the size of the replay buffer. As a result, only information
from the more recent past is retained. Larger replay buffers typically contain more off-
policy data, since data from older policies remain in the buffer for longer [260]. Other
RL methods, such as Proximal Policy Optimisation (PPO) [261], do not rely on ER. When
using PPO, the agent learns directly from the environment, and once it uses a batch of
experiences, it discards it after performing a gradient update.

8.3.2. SINGLE VS MULTI-AGENT REINFORCEMENT LEARNING
A solution to handle the non-stationarity of having all agents evolving together, is to
use multi-agent reinforcement learning (MA-RL). Instead of considering one agent’s
interaction with the environment, multiple agents that share the same environment are
trained. In MA-RL, each agent has its own centralised critic, that approximates and learns
the action value function given the observations and actions of all agents. Note, however,
that MA-RL uses the actions and observations of all agents as input. Consequently,
complexity is proportional to the number of agents.

It is not clear whether it is more advantageous to use single or multi-agent RL. As
visible in the last column of Table 8.1, there is no clear preference for one kind in current
studies. The selection of a single agent or multi-agent mainly depends on the problem to
be tackled. The single agent approach has two advantages. First, it is easier to implement
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compared to MA-RL. Second, the single-agent can be used on any aircraft, it does not
limit the number of aircraft. Instead, MA-RL represents the observations of all agents in
its state formulation. As the state array has a fixed size, it can only be used with a fixed
number of aircraft. However, theoretically, MA-RL is expected to achieve a better global
safety, by optimising the actions of all agents together. In practise, this is not always
observed. For example, through practical experiments, Zhang [248] concluded that multi-
agent learning is weaker than single agent under the same amount of training. It is thus
necessary to balance the optimisation objectives of multi-agents in an appropriate way. It
is reasonable to expect that MA-RL may require more training due to the increasing state
and action formulation, as well as the need to correctly identify which actions had more
impact on the reward.

Moreover, single agent RL resembles the behaviour of geometric CR methods. These
look at the current situation of each aircraft and its closest neighbours to calculate implic-
itly coordinated conflict resolution manoeuvres. The shortest-way-out principle ensures
implicit coordination in one-to-one conflicts. As single conflicts are always geometrically
symmetric [43], both aircraft in a conflict will take (opposite) measures to evade the other.
Ultimately, the hope would be that a single RL agent could emulate the success of geomet-
ric CR methods, and produce implicitly coordinated actions based on the same limited
information. Nevertheless, this level of success has not yet been achieved. In previous
work [233], we show that the actions of the RL method are (somewhat) coordinated in
pairwise actions by having the aircraft always turning in the same direction.

8.3.3. VALUE-BASED VS POLICY-BASED

RL algorithms can be value-based, policy-based, or both. Value-based algorithms do
not store any explicit policy, only a state-action value. Their predictions assign a score
(maximum expected future reward) for each possible action, at each time step, given the
current state. The policy here is implicit, and the best action is selected. In turn, policy-
based methods directly learn the policy function that maps state to action. The method
tries to optimise this policy without using a value function. An actor-critic algorithm
learns both a policy and a value function. The critic learns a value function, which is then
used to update the actor’s policy parameters in the direction that increases the expected
rewards.

Both types, value and policy based, are theoretically guaranteed to converge to an
optimal policy in the end. However, there are different advantages and disadvantages for
their implementation:

X Value-based methods are easier to implement, as they remove the need to balance
exploration and exploitation.

× Value-based methods must create a value for each possible action, which is not
feasible for a large number of possible actions.

× Value-based methods can have a large oscillation during training, as their choice of
action may change dramatically due to the small changes in the estimated action
values.

× Value-based methods cannot learn a stochastic policy.

X Policy-based methods are more effective in high dimensional action spaces, or
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when using continuous actions.
X Policy-based methods typically have a more linear convergence than value-based

methods.
X As policy-based methods choose between actions using a distribution, they can

learn a stochastic policy.
× Policy-based methods often converge on a local maximum rather than the global

optimum.

According to existing research, policy-based methods are typically faster and more
stable than value-based methods [262]. However, some works have also found that
value-based can outperform policy-based with simple state formulations [263].

8.3.4. WHICH REINFORCEMENT LEARNING ALGORITHM TO PICK?
The previous subsections defined the main considerations that limit the number of
possible RL algorithms from which to choose. From the final set of suitable algorithms, it
is not always clear which one to choose. Typically, the choice depends on how often the
algorithm has been successfully implemented and tested in other work.

As a reference, Table 8.1 shows some examples of studies that use reinforcement
learning to resolve conflicts. The column ‘Algorithm’ defines the RL algorithm employed
by the study, and ‘Type’ whether it is value-based, policy-based, or both. The column
‘Discrete/Continuous Actions’ indicates whether the RL method produces discrete or
continuous actions, and finally the ‘Single/Multi Agent RL’ indicates whether Single or
Multi-Agent RL is employed. Based on the overview in Table 8.1, PPO and DDPG are the
most commonly used methods. This may serve as an indication for researchers. However,
ultimately the best algorithm can only be decided by empirical testing.

Table 8.1: Example of algorithms employed in RL methods for conflict resolution in recent studies.

Study Algorithm Type Discrete/Continuous Action Single/Multi Agent RL

Brittain [180] PPO Value + Policy Discrete Multi

Dalmau [240] DGN [264] Value Discrete Multi

Henry [237] Q-Learning Value Discrete Single

Isufah [228] PPO Value + Policy Continuous Multi

Li [236] DQN Value Discrete Single

Pham [227] DDPG Value + Policy Continuous Single

Ribeiro [233] SAC Value + Policy Continuous Single

Tran [265] DDPG Value + Policy Continuous Single

Zhao [21] PPO Value + Policy Continuous Single/Multi

8.3.5. ACTION FORMULATION

Table 8.2 identifies the action formulations for the same studies whose RL algorithms were
previously described in Table 8.1. The column labelled ‘When?’ indicates when the action
is taken, and the column ‘Degrees of Freedom’ describes which degrees of movement of
the aircraft the RL method controls. Note that whether the RL method employs discrete
or continuous actions was previously defined in Table 8.1 for the same studies.
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Table 8.2: Example of action formulations employed in RL methods for conflict resolution in recent studies.

Study When? Degrees of Freedom

Brittain [180] Every 12 seconds 3 discrete speed options (decelerate, hold current speed, acceleretate)

Dalmau [240] Every 5 seconds Heading + Speed discrete options

Henry [237] Every 20 seconds Discrete options: accelerating, decelerating, increasing/decreasing
entry time in TMA, increasing decreasing Point Merging System arc
length, changing landing runway, no action

Isufah [228] Every 15 seconds Heading + speed variation

Li [236] Every seconds Discrete advisories: clear of conflict, weak turn left, weak turn right,
strong turn left, strong turn right

Pham [227] Every 30 seconds Heading change, time, x and y coordinates of the return point

Ribeiro [233] Every second Heading + speed (+ altitude) variation

Tran [265] Once per episode Heading variation

Zhao [21] Every 40 seconds Heading + speed variation

First, the number of degrees of freedom that the RL method controls should be care-
fully decided. A larger action formulation increases the number of possible state-action
combinations, increasing the necessary training time to find the optimal combination.
In certain cases, it may even limit the ability of the RL method to converge to optimal
solutions in an acceptable amount of time.

The choice of RL method is directly connected to the type of action space. DQN, for
example, can handle only a discrete action space. Other methods, such as SAC and PPO,
can be used for both discrete and continuous action spaces. With regard to discrete and
continuous actions, there is an advantage for both. Discrete solutions limit the number of
possible solutions, likely resulting in faster training. Works such as Zhao [21], show that
discrete action spaces perform better than the continuous action space in convergence
speed and robustness. However, limiting the number of actions of the method also limits
the impact that it may have on the environment. With continuous actions, the method
may perform more efficient conflict resolution manoeuvres, with the state varying only
the amount necessary to resolve the conflict. However, more precise actions come at the
cost of longer training times.

But even with continuous actions, the range of possible values that this action may
take must be limited [228]. The action output by the RL methods must be translated
into the state variation of the aircraft. For example, when the RL method outputs values
between 0 and 1 which are then translated into heading values of 0◦ to 360◦, it means
that a variation of 0.1 in the action of the method results in a heading variation of 36◦.
This is a large heading variation that may have a great impact on the final reward. When
small-magnitude differences in the actions of the method result in very different rewards,
it is likely that the method will not be able to correctly identify the impact of the action
in the environment. Finally, performance limits must be taken into account. At each
timestep, there is a maximum state variation that an aircraft can achieve. With great state
variations, the reward received by the RL method may not be based on the results with
the state output by the method but, instead, on the maximum variation that the aircraft
was able to achieve within the available time.
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8.4. TRAINING OF THE REINFORCEMENT LEARNING METHOD
This section discusses the decisions to be made during the training of the RL method:

• State representation: it must provide enough information for the RL method to
be able to decide upon the action and correctly understand its impact on the
environment. However, larger state arrays considerably increase training time and
the complexity of finding the optimal action per state.

• Reward formulation: the penalties given to the method must be a direct conse-
quence of its produced actions. Additionally, the variation of rewards must be
enough for the method to be able to determine which actions maximise the rewards
received.

Tables 8.3 and 8.4 describe the state and reward formulations defined by the RL
methods previously included in Tables 8.1 and 8.2. State and reward information should
be optimised to prevent issues with the RL method, such as getting stuck on local optima,
impractical training times, and non-convergence. Finally, this section refers to previous
usages of pre-training with RL methods and its advantages and disadvantages.

8.4.1. STATE REPRESENTATION
Table 8.3 describes the state formulation for the same studies analysed previously in
Tables 8.1 and 8.2. The type of information in the state formulation is indicated in
column ‘Information’. Column ‘Number of Neighbours’ defines total number of aircraft
represented in the state. Finally, column ‘Conflicts’ identifies the type of conflicts that
aircraft may run into, whether pairwise or multi-actor conflicts. We consider that the
type of conflict strongly influences the amount of information represented in the state
formulation.

Table 8.3: Example of state formulations employed in RL methods for conflict resolution in recent studies.

Study Information Number Aircraft Conflicts

Brittain [180] Distance to target, ownship’s speed, acceleration, route
identifier, distance to other aircraft, distance from
ownship to intersection, distance from other aircraft to
intersection

1 aircraft Single

Dalmau [240] Distance and bearing to target, ownship’s speed. Distance
at CPA, time to CPA. and bearing to other aircraft

All other aircraft
(N=15)

Multi-Actor

Henry [237] Ownship’s speed, entry time TMA, Point Merge System
arc length, runway assignment

0 aircraft Single

Isufah [228] Latitude, longitude, heading, and speed of each aircraft 0 aircraft Pairwise

Li [236] Distance from the ownship to other aircraft, relative angle
to other aircraft, speed of the ownship, speed of the other
aircraft

Closest 4 aircraft Pairwise

Pham [227] Environmental uncertainty level, x/y positions of the
ownship at CPA, x/y directions of the ownship at CPA,
distance at CPA

1 - 13 aircraft Pairwise/
Multi-Actor

Ribeiro [233] Ownship’s speed, drift to target, distance at CPA, time to
CPA

4 aircraft Multi-actor

Tran [265] Relative position between aircraft 3 aircraft Pairwise

Zhao [21] Raw pixels of velocity plane with velocity obstacles 4 aircraft Multi-Actor
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The main concern when defining a state formulation is whether the information
present in the state is sufficient for the RL method to successfully resolve conflicts. This is
not trivial. The state will never be a complete representation of the real-world scenario
in which the method is applied. Such would result in a large state dimension, which can
lead to unpractical training times or even non-convergence towards an optimal solution.

As seen in Table 8.3, most methods employ a state formulation that contains part of the
current state of the aircraft that is resolving the present conflict, as well as some relative
data to other nearby aircraft. However, having a high number of aircraft represented in
the state formulation would also lead to a large state array. Most examples represent a
maximum of 4 neighbouring aircraft. However, most studies also focus only on pairwise
conflicts or multi-actor conflicts with a small number of involved aircraft. Thus, these 4
aircraft are sufficient to resolve the conflicts and, in most cases, guarantee that the aircraft
do not move towards creating secondary conflicts with adjacent aircraft. This is not the
case in high traffic densities, where more aircraft may be involved in a conflict.

Studies have developed state formulations that can describe an infinite number of
aircraft. In previous work [182], we set the number of aircraft in the areas surrounding
the ownship in each position of the state formulation array. However, this system also
has its disadvantages. All aircraft in one portion of the airspace are considered identical,
and their relative position is rounded to the same position. In turn, Zhao [21] uses raw
pixels from the velocity space surrounding the ownship to define the environment. An
image may contain unlimited information. However, to be used by an RL method, an
image must be discretised into a limited amount of information, resulting in the same
generalisation issues.

8.4.2. REWARD FORMULATION
Table 8.4 shows the reward formulation for the same studies that have been previously
evaluated in Tables 8.2 to 8.1. Column ‘When?’ indicates when the reward is received
by the RL method. Columns ‘Safety Penalty’ and ’Efficiency Penalty’ describe the safety
and efficiency elements that are penalised with a negative reward, respectively. Finally,
the column ‘Single/Global’ defines whether a single reward, taking only into account the
current state of the ownship, or whether a global reward that considers the state of all
aircraft is considered.

SAFETY PENALTY

The choice of rewards can greatly influence the results of a reinforcement learning method.
In particular, in terms of providing enough information for the method to learn. Two
main elements can be defined for safety: a loss of minimum separation (LoS) when
two aircraft get closer to each other than the predefined minimum separation distance.
A conflict is a future prediction of a LoS. Previous work [266], tested two different RL
methods: (1) one RL method rewarded only on the total number of conflicts; (2) one
RL method rewarded only on the total number of losses of minimum separation. We
show that the great variation in the number of conflicts may make it harder for the RL
method to correctly relate actions to potential rewards. As a consequence, the training
time was considerably longer when the reward was based on the total number of conflicts.
Nevertheless, the total number of LoSs, may be too scarce for a successful training.
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Table 8.4: Example of reward formulations employed in RL methods for conflict resolution in recent studies.

Study When? Safety Penalty Efficiency Penalty Single/Global

Brittain [180] Every step Losses of Separation,
Distance Between
Aircraft

Speed changes Global (to all
aircraft in conflict)

Dalmau [240] Every step Losses of Separation,
Conflict

Delay, drift, speed change Global

Henry [237] Every step Losses of Separation Landed in the correct
runway

Single

Isufah [228] Every step Time until loss of
separation and CPA,
LoSs

Difference from track and
optimal speed, fuel
consumption, airspace
complexity

Global

Li [236] Every step Distance between
aircraft, LoSs, conflicts

Heading deviations Multi-actor

Pham [227] Every step Distance between
aircraft

Trajectory deviation Single

Ribeiro [233] Every step Losses of Separation Global

Tran [265] Termination step Losses of Separation Deviation from route Single

Zhao [21] Termination step Losses of Separation Deviation from route Single

In chapter 4, both the total number of LoSs and conflicts were used to give enough
information to the RL method. However, the relationship between two safety elements
must be taken into account. For example, tactical conflict resolution often results in an
increase in the total number of conflicts. However, these additional conflicts can also
have a positive impact on safety [2]. Additionally, studies often reward an increase in
the relative distance between the ownship and intruders (see Table 8.4). Nevertheless,
this should only be rewarded up to the minimum separation distance. Creating larger
distance will force considerably more state variations that can have a negative impact
on global safety, as the behaviour of the intruders becomes more unpredictable as they
constantly modify their movement to increase their distance to neighbouring aircraft.

Additionally, it often happens that the RL methods adopt a defensive behaviour
towards preventing negative rewards. In previous work [233], we showed that the RL
method can apply, on average, greater distances than the minimum separation distance
to ensure that it will not receive a negative reward for slightly crossing the protected
zone of an intruder. However, often non-severe LoSs can be better for stability of the
environment than forcing aircraft to change their state. A recommendation is for the
behaviour of the RL methods to be smoothed out by reward shaping [267] in the future,
where the RL method may choose not to alter the state of aircraft significantly in the case
of short, non-severe LoSs.

EFFICIENCY PENALTY

One of the biggest advantages of RL methods is their ability to consider several factors
simultaneously. A human can successfully react to the distance between multiple aircraft.
This task becomes more complex when, together with the distance, the fuel cost, and the
increase in travel time, are taken into account simultaneously. When multiple parameters
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are considered, especially with different weight values, this can become too complex for a
human, but not for an RL method.

A common way to incorporate efficiency into the reward is to penalise great state
variations (Table 8.4), hopefully redirecting the RL methods towards learning to perform
minimum state deviations to resolve conflicts. This is very helpful in environments with
very low traffic density, where the RL method is not penalised by performing large state
variations that move the ownship into the trajectory of neighbouring aircraft, thus creating
secondary conflicts. In these cases, the only penalty for large trajectory changes is the
one present in the reward. However, at high traffic densities, an RL method is expected to
learn to perform small variations by choosing directions that do not result in secondary
conflicts. Naturally, to prevent secondary conflicts, the RL method must be aware of the
position of neighbouring aircraft.

GLOBAL REWARDS

An action that improves the current situation of the ownship, can still have a negative
influence on global safety. For example, the conflict resolution manoeuvre performed
by an ownship may force neighbouring aircraft to perform large state deviations, which
may ultimately result in LoSs far from the ownship. In a single-agent RL, it is very difficult
for an RL method to understand how an action taken at a particular time step affects the
final outcome.

A possible solution to prevent actions that negatively affect global safety is to employ
global rewards [233]. The objective of global rewards is for the RL method to favour
actions that improve global safety. However, the RL method must then estimate how
much the action of each aircraft contributes to the global reward. This is known as the
credit assignment problem [268]. An action that leads to a higher final cumulative reward
should have more value (credit), than an action that leads to a lower final reward. This
is especially complicated when the final outcome of an action is only clear after several
time steps (delayed reward). This is a difficult problem that requires further research. So
far, studies have focused, for example, on methods that replace the original reward with a
shaped reward that compares the reward received when that agent’s action is replaced
with a default action [269].

SECONDARY CONFLICTS

A consequence of resolving conflicts, which may not be clear to an RL method, is the
creation of secondary conflicts when aircraft move into the path of nearby aircraft while
changing their state to resolve a conflict. This is not studied when RL methods are trained
only in pairwise conflicts. Nevertheless, it is an important factor if the RL method is to be
tested in environment with higher traffic densities, where there is less free airpace.

Secondary conflicts are not always negative, studies have shown that more conflicts do
not always necessarily mean more intrusions [162]. Sometimes these secondary conflicts
are useful to create room and improve stability on a larger scale [15]. However, a solution
that solves the current conflicts while leading to a smaller number of secondary conflicts
is often preferable to one that creates a higher number of secondary conflicts. Therefore,
it is beneficial to include this information in the design of the reward function. Any action
by the RL method should be rewarded not only in terms of the resolution of the existent
conflicts, but also on the final position of the ownship regarding nearby aircraft.



8

208 USING REINFORCEMENT LEARNING FOR CONFLICT RESOLUTION IN AVIATION

8.4.3. FALLING INTO LOCAL OPTIMA
A common issue with RL methods, similarly to many numerical methods, is the tendency
for these to get stuck in local optima. This means that the method will not find the best
possible solution (i.e., the global optimum) and, as a consequence, may not result in
any improvement compared to current geometric CR methods, for example. There is a
difficult balance between the rates of ‘explore’ or ‘exploit’. On the one hand, the method
should explore the solution space, or otherwise it may never find the global optimum. On
the other hand, it should also exploit the known solutions to return a high reward.

Several works, such as [248, 270], mention the practical difficulties in implementing
the theoretical high performance of RL methods. Ilyas [270] concludes that there is a
significant gap between the theory that defines the current algorithms and the actual
mechanisms driving their performance. There is no single good mechanism that can be
implemented to ensure that the RL methods find the most optimal actions. There are
only a handful of possibilities with which researchers must experiment until they achieve
a better result:

• Fine-tuning the hyperparameters such as the learning rate: finding a perfect com-
bination of hyperparameter values can be quite challenging, as these are specific
for each particular environment. The most common way of selecting values for
hyperparameters is unfortunately through manual tuning. The learning rate, often
considered the most important parameter, must be discovered through trial and
error. However, as an indication, the learning rate value should be increased if
the method converges too slowly, meaning that the updates to the weights in the
network are too small, and should be decreased if there are a lot of oscillations
throughout the training of the method.

• Learning rate annealing: a varying learning rate throughout the training of the RL
method can help create a better balance between exploitation and exploration. The
simplest implementations employ higher learning at the beginning of the training
so that the method gains information over the entire action space. As training
progresses, the learning rate is decreased, so that the method can exploit the learnt
action space to achieve high rewards.

• Addition of noise to help with exploration: noise increases the selection of unknown
actions to the current policy, which can increase the ability of the method to jump
out of local optima. The amount of noise is, however, another value that must be
manually tuned. Large amounts of noise may lead to policy instability. Low noise
quantities may not benefit explorability enough.

• Increasing buffer size: the replay buffer should be large enough to contain a wide
range of experiences, which benefits a stable behaviour. Only using the very-most
recent data may lead the method to overfit on that data. However, a large experience
replay also requires a lot of memory and might slow the training. Again, manual
tuning is required to achieve a proper buffer size.

8.4.4. UTILISATION OF PRIOR KNOWLEDGE (PRE-TRAINING)
Due to exploration, the RL method is often slow in the early stage of training. In theory,
pre-training can be carried out in order to decrease training time of the RL method, as
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it would thus ‘start’ from learnt behaviour. However, in practise, this implementation is
not trivial. Previous research [245], used ATC controllers’ decisions to train a supervised
learning method. However, this is a typical framework for supervised learning, which
is different from reinforcement learning. However, this study raised interesting points.
Both controllers used different strategies to resolve conflicts and prioritised different
elements of the conflict geometry. Furthermore, both controllers were shown to have a
defensive position, ensuring an average separation between aircraft of more than 8 NM.
This is considerably more than the predefined separation of 5 NM, leading to larger state
deviations than necessary. This shows that it is not clear which tactics should be used as a
reference.

More recently, Zhao [21] used the solution space diagram (SSD) method to form an
image that is then input into a convolutional network. The embedded physics knowledge
shows significantly improved scalability of the RL method. In previous work [271], we
showed that pre-training of a DDPG method with actions performed by a geometric CR
method can help the RL method start exploration with better decisions. Nevertheless,
this may also have negative results, such as putting the RL method into a local optima
from which it does not improve, or even limiting the probability of the method reaching
new solutions that are not included in current procedures.

8.5. TESTING OF THE REINFORCEMENT LEARNING METHOD
This section describes potential issues when testing an RL method. Overfitting of the
training scenarios, or limited training cases, can hinder the ability of the RL method to
generalise to unseen situations. In this case, larger or more diverse training scenarios
are necessary. Nevertheless, the limitations inputted into the method for faster training,
i.e. small state and action formulations, may have limited the capacity of the method to
successfully prevent conflicts in more complex scenarios. Finally, there is the need for a
benchmark of known scenarios for explainability of the actions produced by the method.

8.5.1. GENERALISATION TO MULTIPLE TRAFFIC SCENARIOS

At high traffic densities, each aircraft will face multiple conflict situations with the number
of intruders and their positions varying greatly. It is often hard to train an RL method in
a number of scenarios large enough to generalise well to different conflict geometries.
Throughout this thesis, training in a specific traffic density led to models that proved inef-
ficient at higher densities. The RL method should at least be trained at the highest traffic
density that is expected in actual operations. It may also be that different traffic densities
require different resolution strategies, as hypothesised in the Metropolis project [13]. In
this case, the RL method must learn different responses according to the complexity of
emergent behaviour resulting from increasing traffic densities.

Another possibility is that the limitations often set in the state and action formulations,
to ensure fast training and convergence to optimal values, limits the ability of the RL
method to generalise to more complex conflict geometries. The first issue is the reduction
of the number of aircraft represented in the state formulation to a minimum value con-
sidered necessary in the training environment (see Table 8.3). At higher traffic densities,
the method may not have enough information to resolve all conflicts, as all intruders may
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not be represented in the state formulation. Additionally, without enough information on
neighbouring aircraft, the RL method is not able to evaluate when a conflict resolution
manoeuvre will result in secondary conflicts.

A solution may be to introduce lifelong learning and to have the RL method retrain
itself when faced with unseen data. Isufah [241], for example, first trained an MA-RL agent
in multi-actor conflicts with 3 aircraft, and then re-trained the method in multi-actor
conflicts with 4 aircraft. The authors concluded that retraining of the method refines the
policies learnt in the previous setting, while the new agent (the fourth agent) learnt a
desirable policy.

8.5.2. VERIFICATION OF SOLUTIONS
Reinforcement learning applications are often a ‘black-box’, which does not inspire con-
fidence. Their behaviour must be interpretable and traceable if they are to be certified.
It is not trivial to rationalise the actions of an RL method, especially since these result
from the combination of multiple factors in the state formulation. Several works, such
as Zhao [21] and Li [236], show the final path of the aircraft when conflict resolution is
carried out using the RL method. Nevertheless, these are for a limited set of conflict
geometries tested.

There is a need for unified testing ATC scenarios with a multitude of different pairwise
and multi-actor conflict geometries, so that the different resolution decisions by each RL
method can be directly compared. Analysing the different solutions found by the methods,
from simple pairwise to complex multi-actor conflict geometries, can help provide a base
from which results can be examined and trusted upon. A known benchmark set of testing
scenarios can lead to the creation of automatic tools for the analysis of the RL decisions
for this set.

8.6. SUGGESTIONS FOR FUTURE RESEARCH
The following are proposed research directions and suggestions for future work:

• It is recommended to develop a library of reference traffic scenarios, containing a
multitude of conflict scenarios for different use cases. The different state, action,
and reward formulations could then be directly compared, as it is not yet clear
which formulations optimise the behaviour of an RL method for conflict resolution.
Reference traffic scenarios would also help to make the results of simulation studies
more transparent and accessible.

• Deeper study of the best state formulations: RL methods for conflict resolution
still show limitations in terms of generalising to more complex conflict geometries.
This is often due to an oversimplification of the information available in the state
formulation. Nevertheless, it is also true that geometric CR states do not consider
all aircraft. Far away aircraft are dismissed as there is a high level of uncertainty
regarding their future trajectory. On the one hand, there must be a balance between
providing information on enough nearby aircraft, so that the RL method can re-
solve conflicts while avoiding secondary conflicts. On the other hand, the state
formulation should not consider aircraft far away that may generate a false alarm
and should limit the state formulation to a size that does not exponentially increase
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training time. More research is needed on this topic.

• Common evaluators: this chapter showed an example of studies that evaluate RL
methods in different ways (see Tables 8.1 to 8.4). Different numbers of intruders
are considered. Some studies only consider pairwise conflicts, and different safety
and efficiency preferences are implemented. Having common evaluators can help
establish an universally accepted evaluation system, so that different RL implemen-
tations for conflict resolution can be directly compared. Finally, it can also help
create common reward formulations.

8.7. FINAL NOTES
Looking at the existing body of work, there is a significant gap between the theory that
inspires the current algorithms and the actual result of the implementation. Simplification
of state and actions formulations to limit training and convergence time, as well as the
complexity of implementing methods that can handle the non-stationarity of a multi-
aircraft environment, still limits the potential of RL methods to generalise their policies to
real-world scenarios. More studies must be performed on RL methods capable of dealing
with multi-actor conflict geometries, and finding solutions that do not result in a great
number of secondary conflicts.

At present, the explainability of deep RL algorithms in conflict resolution remains to be
explored. New guidelines and tools must be developed to better understand the decisions
taken by RL methods. One way could be to develop a set of unified ATC scenarios, where a
multitude of different pairwise and multi-actor conflict geometries can be tested. Finally,
it is likely that researchers will find that (currently) RL methods do not generalise correctly
for every conflict geometry. However, this is an important stepping stone for research.





9
DISCUSSION AND

RECOMMENDATIONS

High traffic densities, as expected in future unmanned aviation operations, increase the
likelihood of aircraft encountering multi-actor conflict situations where they have to coor-
dinate their own actions with those of neighbouring aircraft to successfully avoid getting
too close to each other. However, successive conflict resolution manoeuvres can lead to
traffic patterns with a negative effect on the global safety. Knock-on effects of intruders
avoiding each other may result in unexpected trajectory changes. It is practically impossible
to know which actions are more efficient in coordination with the future unknown actions
from multiple other aircraft. This challenge was formulated as follows:

Primary Research Objective

Investigate whether reinforcement learning applications can improve aircraft self-
separation efficacy at higher traffic densities, with an emphasis on employing airspace
designs and approaches applicable to future unmanned operations.

To meet the previous research object, this thesis covered the usage of several reinforce-
ment learning approaches to decrease conflict rate and severity, in a high density aviation
environment. This chapter provides a comprehensive discussion of all these approaches. In
addition, recommendations for presented for future work are presented.
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9.1. DISCUSSION
The discussion of the results of this thesis is divided into the following subsections.

9.1.1. TRANSITIONING FROM MANNED TO UNMANNED AVIATION
To be able to improve the current performance of self-separation methods, these were
first evaluated and analysed. Chapter 2 directly compares the performance of commonly
used CD&R methods both in manned and unmanned aviation operational environments.
The results showed that the approaches that reduce the total number of conflicts and
losses of minimum separation are common to both types of aviation. Geometric CR
methods that opt for the ‘shortest-way-out’ tend to resolve conflicts more efficiently. At
high traffic densities, resolutions that require aircraft occupying a larger portion of aircraft
will likely result in an increased number of conflicts, as it leads to crossing the path of
more aircraft.

Within geometric conflict resolutions, a direct comparison was made between meth-
ods that resolve pairwise conflicts (i.e., the Modified Voltage Potential (MVP) [15]) and
methods that resolve all existing conflict simultaneously (i.e., the Solution Space Dia-
gram (SDD) [42]). The results show that, although resolving all conflicts simultaneously
offers faster conflict resolution and less time in conflict, it has the disadvantage of the solu-
tion space becoming easily saturated in conflicts with multiple aircraft. In the worst-case
scenario, no solution might be available.

9.1.2. REDUCING CONFLICT RATE AND SEVERITY (Answer to RQ1/RQ2)
Chapters 3 and 4 focus on the re-evaluation of coordination elements to decrease conflict
rate and severity. Speed heterogeneity between neighbouring aircraft is one of the main
causes for increased conflict rate and probability. In Chapter 3, a reinforcement learn-
ing (RL) method was used to set velocity speed limits in areas with vertical deviations
between layers. The results show that speed control during merging actions helps reduce
the likelihood of aircraft meeting in conflict.

However, safety during a merging manoeuvre is dictated not only by the direct conflicts
and intrusions suffered by the merging aircraft. Often the ownship remains at a safe
distance from the follower and leader aircraft, as these alter their speed to avoid getting
too close to the ownship. This creates a chain reaction in which aircraft decelerate to
avoid getting too close to the leader aircraft. Ultimately, this may result in conflicts and
intrusions far from the ownship, which increase instability in the airspace. In Chapter 4,
an RL method is responsible for deciding when to perform a lane change manoeuvre.
The results show that delaying merging manoeuvres until a safe distance gap is reached,
between the aircraft and the leader and follower aircraft in the target layer, significantly
reduces the severity of intrusions during a lane change procedure. However, it may also
delay the dispersion of the local traffic density.

USAGE OF INTENT INFORMATION TO DECREASE CONFLICT RATE

Intent sharing between aircraft was explored in Chapter 3. Adding explicit intent improves
conflict detection, as aircraft are informed, in advance, of future conflicts resulting from
future state changes, such as turns, and can better avoid them. However, resolution
manoeuvres cannot be calculated on the basis of intention information alone. As aircraft
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opt for a ‘shortest-way-out’ conflict resolution, the current state projection must also be
used in conflict detection, so the aircraft can prepare in advance for situations where
intruders ‘miss’ trajectory changes points and instead remain close to their current state
for conflict resolution. However, a disadvantage of using both intent and state information
simultaneously is that the solution space becomes saturated faster, especially as the traffic
density increases.

Moreover, the cost of implementing intent information must be carefully considered.
Delays in data transmission and processing can delay the reaction to state changes
in neighbouring aircraft. Second, the effect on safety is directly associated with the
number of aircraft that can share and analyse intent information. To achieve the desired
improvement, the majority of aircraft in the airspace would require this capability.

9.1.3. CONFLICT RESOLUTION WITH RL (Answer to RQ4)
Regarding the usage of RL methods to improve conflict resolution, we make the distinc-
tion between two different approaches. The first are model-free approaches, where the RL
method is fully responsible for defining resolution manoeuvres to be taken by all aircraft
to safe keep a minimum distance from each other. Second, we also define ‘hybrid ap-
proaches’ that combine RL approaches and existing CR algorithms. The former are used
to improve the efficacy of the latter. Rather than depend on hard-code rules, laboriously
designed by domain experts, RL methods can be used to set values by detecting complex
patterns on the data. In this work, we define ‘hybrid approaches’ where RL methods are
used dynamically defining the parameters that it uses to calculate resolution manoeuvres.

Chapters 6 and 7 explored the previous two options. We argue that at the current
state-of-the-art, reinforcement learning cannot outperform known conflict resolution
geometric methods. These employ geometrically calculated shortest-way manoeuvres
that guarantee implicit coordination with minimum deviation. The RL methods devel-
oped in this thesis did not achieve this level of efficiency and coordination. However,
conflict resolution algorithms often have predefined simple rules (e.g., one predefined
look-ahead time, one predefined manoeuvre type). Reinforcement learning can instead
create a much larger set of rules, adapted to a multitude of different conflict situations.

Moreover, reinforcement learning methods can be used to improve the behaviour in
situations for which researchers do not have a clear guideline (e.g., return to the nominal
path after conflict resolution, prioritisation of intruders, or deconflicting manoeuvres).
Chapter 6 presents an RL method which was able to further reduce LoSs at a low traffic
density, when compared to an CR geometrical method, by defending in advance against
non-conflicting nearby aircraft, and initiating early resolution manoeuvres for head-
on conflicts. Moreover, research resulting from this thesis showed that pre-emptive
subliminal modifications to the ownship’s state, before it enters into conflict with other
aircraft, can decrease the severity of a conflict situation [239]. These actions should not
replicate the behaviour of the conflict resolution method; these should be subliminal
changes that do not lead to conflict chain reactions. For instance, the ownship may change
its speed/heading slightly so that fewer intruders are included in a future conflict situation.
It is not yet clear how to better perform these preventive actions, but reinforcement
learning can be a useful tool to research an answer to this question.
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REWARD FORMULATION FOR CONFLICT RESOLUTION

With conflict resolution, the objective is to have decisions that increase safety. Safety
must then be quantified into absolute values. In this thesis, the method was primarily
rewarded on the basis of the number of LoSs. Nevertheless, other forms of reward are
worthy of study, especially when the scarcity of LoSs leads to a slow evolving method. For
example, the number of conflicts is often also used in the reward formulation. However,
these should have a considerably smaller weight than LoSs. Additionally, penalising
conflicts may also reduce the potential benefits of conflicts. For example, with MVP, it has
been shown that secondary conflicts can be beneficial, as they cause a redistribution of
the traffic. This creates space for new resolution manoeuvres, which were not apparent
before [15]. LoS severity may also be considered to put emphasis into preventing severe
LoSs, or even avoiding state changes by suffering non-severe LoSs with a negligible risk.

Furthermore, on the subject of scarcity of LoSs, using global rewards (i.e., LoSs suffered
by all aircraft in a given amount of time, not just the ones suffered by the ownship who
performed the action), can help provide more information to the method. A global LoS
reward can additionally favour coordinated actions that contribute to global safety.

9.1.4. IMPACT OF AIRSPACE STRUCTURE ON SAFETY (Answer to RQ3)
The simulated airspace was divided according to the layered airspace concept, as re-
searched by the Metropolis project [13]. Optimal segmentation of aircraft per the available
space helps increase the distance between cruising aircraft. Additionally, aircraft are lim-
ited to speed and altitude variation for conflict resolution, to avoid crossing the barriers
of the surrounding urban infrastructure. In Chapter 4, an RL method is responsible for
layer change decision making, selecting which layer an aircraft should move into based
on current traffic in each layer, and the aircraft’s distance to the next turn. The results
show that aircraft should be distributed per layer per distance to the next turn. Aircraft
closer to a turn are placed on an outward layer, already closer to their next layer.

In Chapter 5, reinforcement learning is used to find the optimal heading ranges per
vertical layer, given the expected traffic scenario. Optimal segmentation of aircraft through
the airspace helps reduce the number and severity of conflicts. The likelihood of aircraft
meeting in conflict can only be reduced when aircraft are fully dispersed per the airspace.
Expecting a uniform heading distribution and setting the airspace structure in accordance
will not result in any meaningful segmentation when all aircraft predominantly adopt one
direction.

Additionally, given the differences in the topology of different constrained environ-
ments, travelling in one specific direction may potentially result in more conflicts than
travelling in other directions. Having humans create navigation rules for every different
operational environment is impracticable time wise. However, a reinforcement learning
method can be trained in each environment where operations are expected to be set,
shaping its policy according to the requirements.

AUXILIARY VERTICAL LAYERS

The results show that the use of the auxiliary layers allows for a more complex segmen-
tation of aircraft, which can improve airspace safety. Chapters 3 to 5 resort to ‘auxiliar’
vertical layers to decrease speed heterogeneity. Having the aircraft slowing down to re-
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spect the maximum turn radius, at the same altitude that other aircraft are cruising in,
would cause back-end conflicts with aircraft following the ownship suddenly slowing
in order collision. Second, vertical space was reserved to allow vertical manoeuvres for
conflict resolution.

Naturally, the introduction of intermediate layers is conditioned by the amount of
vertical space that aircraft are allowed to operate in. In the event that only very few vertical
layers are possible in the available airspace, priority should be given to allow for more
traffic layers so as to improve the segmentation and alignment of traffic. However, in a
less limited airspace where several layers are possible, having intermediate layers reduces
the number of conflicts and intrusions.

9.1.5. ADDITIONAL CONSIDERATIONS

SIMULATED TRAFFIC SCENARIOS

In this thesis, commonly used aircraft models were used with their respective performance
limits. The work presented herein was not extended to other models with considerably
different speeds/acceleration limits. However, all designs/models are capable of being
executed with different performance values. Due to their generic nature, all airspace
designs and safety methods discussed in this thesis can be generalised beyond the specific
conditions that have been considered here.

Furthermore, it was assumed that all aircraft applied the same conflict detection
and resolution algorithm. When aircraft do not act towards defending again others (e.g.,
because they do not have the technology to sense and avoid other aircraft), different
safety levels can be expected when compared to the results herein presented. Additionally,
different speed/acceleration limits will naturally affect the efficiency and success of
resolution manoeuvres.

DECENTRALISED VS CENTRALISED AIRSPACE

The advantages and disadvantages of both control methods (decentralised and cen-
tralised), and which one should be implemented, is still an on-going discussion. This
thesis is not meant as a direct argument pro the implementation of one control method
versus the other. From existing research, it is clear that both methods have disadvantages
and advantages and should be adopted based on the operational environment. For a
review of these advantages/disadvantages, the reader should refer to Chapter 2.

However, this thesis focused on how safety values can be improved in decentralised
control, due to the reduced research in this area compared to centralised control. Addi-
tionally, this type of control becomes even more worthy of research when considering that
it may enable the high traffic densities expected for future operations, where the number
of agents would lead to a slow centralised environment. However, there are some doubts
on whether the same level of coordination/safety of centralised control can be achieved,
due to lower coordination and increased uncertainty regarding intruders’ movements.
The main takeaway from this thesis on this matter should be that these disadvantages
can be considerably reduced through airspace design/procedures, and conflict detection
and resolution methods that reduce conflict probability/rate.
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EXTENSION TO OTHER OPERATIONAL ENVIRONMENTS

Due to the empirical nature of the results, the conclusions drawn in this thesis are, to
some degree, sensitive to the parameter settings of the simulated airspace. However,
the same methods can be adapted to different environments. First, the detection and
resolution algorithms employed are independent of the environment; the only limitation
is the number of degrees of freedom the aircraft is allowed to use to avoid conflicts (e.g.,
in some operational environments, heading changes might not be possible). Second,
the reinforcement learning methods used can be trained in most environments and will
adapt to its characteristics. Even applying the same methods to a centralised control
environment would not require significant changes: the RL method could be set in the
centralised system, receiving and transmitting information to all aircraft.

9.2. RECOMMENDATIONS FOR FUTURE WORK
This section describes opportunities for future research. The expected social impact of
this work is discussed briefly.

9.2.1. REINFORCEMENT LEARNING APPROACHES IN AVIATION
Whether and how to use RL in aviation is an ongoing debate. Although there may be
consensus that it can push the boundaries of human knowledge and applications, is it also
considered that current measures and human policies should not be directly replaced by
fully computational methods. This is due both to the possible risks of this implementation
(i.e., there can be harmful decisions taken by this method in new situations), and the need
for more research that can be compared and analysed. The decision on which areas of
aviation can benefit from the introduction of this new tool is still at an early stage.

The experimental results developed in this thesis showed that reinforcement learning
is optimal when offering solutions to humans in terms of expanding on a current set
of rules or providing feedback on the best actions in a multi-agent environment. This
thesis aimed to assist the introduction of reinforcement learning into conflict detection
and resolution. However, there are still many applications to explore. For example,
reinforcement learning can be used to reduce uncertainties resulting from weather factors
on conflict detection, to improve upon the prioritisation of intruders when resolving
conflicts, or to aid conflict prevention behaviour before a conflict situation.

Finally, no reinforcement learning application can be blindly implemented in the real
world. Not only must it be further tested with different traffic densities and trajectories,
improving its ability to generalise, but also examination is necessary into the choices
made by the method. Additionally, safeguards must be implemented for potential bad
decisions when applied to traffic densities and trajectories not previously seen.

CERTIFICATION REINFORCEMENT LEARNING METHODS

In the future RL methods will move from a research focus to a commercial application
focus. This thesis proposes placing these methods at the heart of the most important
task in aviation: ensuring safety. There are many challenges related to the trust and
certification of these safety-critical systems. How certification can be achieved will be the
focus of several upcoming studies. However, at this point, we can already establish the
main focus points: robustness, uncertainty, explainable, verification [272].
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First, RL methods must be proven resilient against unexpected or corner cases sit-
uations. Such requires extensive testing, where other machine learning methods can
potentially be used to enlarge the number of training cases to which the method is ex-
posed. Second, uncertainty analysis must be part of the testing process, as it evaluates
the ability of a method to detect unknown situations that are outside its normal range of
operation. Finally, safeguards should also be implemented. These can be an application
on top of the method that looks for potentially harmful actions.

Reinforcement learning applications are often a ‘black-box’; however, this setting
does not inspire confidence. Their behaviour must be interpretable and traceable if
they are to be certified. Several works have tried to do so by performing, for example,
feature importance [273]. However, research is still far from having guidelines on how
explanability can be achieved; focus should be put on this task in the future.

9.2.2. SAFETY DEFINITION
This thesis focused on the number of conflicts and losses of minimum separation as a
basis for safety. However, this is not the only definition, as it depends on the objectives
of the operational environment. Military applications, for example, may have a more
complex or altogether different definition of safety. Intrusion severity may be prioritised
over the number of intrusions. In a real-world scenario, factors such as proximity to
restricted areas or battery usage may be given preference.

Given the generic nature of the RL methods used, these can be extended to different
safety formulations. Elements can be added to the reward given to the method, guiding
its actions towards optimisation of other factors as well. Nevertheless, it should be
taken into account that joining elements together in one reward formulation can be
counter productive. First, a decision must be made about their weight, which defines
their priority. Second, improving one element may result in weakening the other. For
example, favouring elements such as flight time/path can have a negative impact on
safety, as aircraft opt for limiting their deconflicting manoeuvres. In some cases, entering
a conflict or loss of minimum separation situation may be more cost-efficient than a
sizeable change in trajectory. Therefore, the combination of several elements in a safety
formulation requires careful adjustment.

9.2.3. DYNAMIC AIRSPACE STRUCTURING
When the traffic scenario is not static over time, airspace structures should also not
remain static over time. To maximise the efficiency with which the available airspace is
used, the constraints imposed by the airspace design should match the changes in the
traffic demand pattern that occur throughout the day. Nevertheless, a natural follow-up
question is how the safety of operations can be guaranteed during configuration changes,
and when and what configurations should be selected. This research is already being
conducted at TUDelft.

9.2.4. INFLUENCE OF WEATHER ON SAFETY
This thesis only considered ideal weather conditions (e.g., no wind, rain, no performance
deterioration resulting from extreme temperature levels). Although weather effects were
not included in the results, it must be noted that these can affect operations in the real
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word. The effect of weather on traffic flows is a complex topic, and it is the subject
of many ongoing studies. Bad weather, and strong winds in particular, can severely
reduce aircraft manoeuvrability, and decrease the set of possible manoeuvres for conflict
resolution, affecting the safety of the airspace. Additionally, extreme weather conditions
may also limit data communication/transfer. An analysis of these consequences, per
type and intensity of the weather conditions, is valuable when evaluating the operational
constraints affecting decentralised control.

9.2.5. IMPACT ON SOCIAL ACCEPTANCE OF URBAN AIR MOBILITY
Drones raise high economic expectations due to their capabilities and commercial appli-
cations. However, their social acceptance is the key to the complete development of their
technological potential. Social acceptance can be considered to be based on the balance
between the benefits and inconveniences resulting from the usage of such technology.
In aviation, this balance is also conditioned by the safety policies and regulations of the
airspace and current airspace users [274, 275]. These policies and regulations ensure that
safety is within acceptable levels. This thesis focused on finding new tools/designs that
help improve safety up to these levels.

Recent publications by SESAR [197] have highlighted the need for strategic and tac-
tical conflict resolution. It is agreed that high traffic densities and/or heterogeneous
aircraft types may require aircraft to be equipped with conflict detection and resolution
technologies. Moreover, special attention is given to the development of reinforcement
learning techniques capable of aiding the monitoring of trajectory deviation, and tactical
conflict detection and response. Future work should focus on these areas to increase
compliance with safety limits and improve trust in urban air mobility.

9.2.6. IMPACT ON THE ENVIRONMENT
A gap in this thesis is the lack of research on the environmental impact of the selected
approaches. This is in itself a field of study, taking into account not only the capabilities
of multiple drone models, but also the large differences between deployment scenarios.
Regarding the specific scenarios explored in this thesis, future work should explore energy
consumption, and resulting environmental impact of climbing, descending, and allo-
cating aircraft to sub-optimal altitudes. Fortunately, drones are (mostly) a fully electric
transportation technology, and thus these manoeuvres are not as impacting as when
compared to manned aviation.

There are also important questions regarding the noise and impact on wild life that
arise from the introduction of drones, which should be compared with the impact of the
modes of transportation that drones are replacing. Furthermore, U-Space management is
essential for safety control and reduction of the effects of drone traffic on the population
and the environment. A sustainability assessment of supplementary infrastructures (e.g.,
charging, storage, and control stations) must also be compared with potential reductions
in traffic congestion and savings in road infrastructure.

9.2.7. OPEN-SOURCE SOFTWARE
Fast-time simulations have been used in all technical chapters of this thesis. The conclu-
sions drawn using this approach are, to some extent, dependent on the traffic scenarios
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considered. However, despite the popularity of fast-time simulations, methods for gen-
erating standardised traffic scenarios have not yet been researched. This makes it very
difficult to compare the results of similar studies that have used fast-time simulations.

To overcome this issue, it is recommended to develop a library of reference traffic
scenarios, which contains a multitude of scenarios for different use cases. By making this
library open-source, these scenarios can be continuously updated as the needs of the
research community change, for example, when new aircraft types are introduced or new
airspace structures developed. Reference traffic scenarios would also help to make the
results of simulation studies more transparent and accessible.
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Based on the results presented in the preceding chapters, the following final conclusions
are drawn:

ON CONFLICT DETECTION & RESOLUTION METHODS:
• Geometric conflict resolution methods that opt for the ‘shortest-way-out’ result in

the fewest LoSs. At high traffic densities, larger resolution manoeuvres that require
aircraft to occupy a larger portion of the airspace are more likely to result in conflict
chain reactions.

• Attempting to resolve all conflicts simultaneously, although resulting in less time in
conflict, has the disadvantage of the solution space becoming easily saturated in
conflicts with multiple agents.

REDUCING CONFLICT RATE AND SEVERITY ON A LAYERED AIRSPACE:
• Speed control reduces the likelihood of aircraft meeting in conflict. Setting velocity

speed limits in areas where aircraft vertical deviate between traffic layers, helps
increase distance between the merging and cruising aircraft in the target layer.

• Delaying a merging manoeuvre until a safe distance gap exits between the merging,
and the leader and follower aircraft, can reduce LoS severity. However, it may also
delay the dispersion of the local traffic density. The latter facilitates future merging
manoeuvres.

ON MERGING CONFLICTS:
• Aircraft should be distributed per layer according to their distance to the next turn.

Aircraft closer to a turn should be placed on an outward layer, already closer to their
next target layer.

223
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• A merging action cannot be evaluated solely on the basis of the conflicts suffered
by the merging aircraft. It may create a succession of aircraft reducing their speed
to avoid getting too close to the leader aircraft, leading to a conflict chain reaction.

ON AIRSPACE STRUCTURE:
• For aircraft to be truly fully segmented per the available airspace, the airspace

structure must set in respect to the expected traffic scenario, the operational envi-
ronment, and applied conflict and detection method.

• In constrained environments, auxiliary vertical layers should be used to reduce
speed heterogeneity between cruising aircraft and aircraft decelerating before a
turn. Aircraft can then slow down and turn outside of the main cruising layer.

ON REINFORCEMENT LEARNING TECHNIQUES:
• The best usage for reinforcement learning (RL) is ‘hybrid approaches’, where RL is

used to enhance the behaviour of conflict detection and resolution algorithms. The
latter often have a predefined simple set of rules. RL can create a much larger set of
rules adapted to a multitude of conflict situations and geometries.

• Reinforcement learning can also be used to improve the behaviour in situations for
which researchers do not have a clear guideline (e.g., return to the nominal path
after conflict resolution, prioritisation of intruders, or deconflicting manoeuvres).
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