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Abstract: The International Energy Agency (IEA) emphasizes that using real building energy use
data (RBEUD) to reflect the actual condition of buildings and inform policy-making is the most
effective way to reduce buildings’ carbon emissions. However, based on IEA’s evaluation, regional
and national building stock data are limited and lacking. Especially for China, the lack of RBEUD
in buildings has limited our ability to address the energy performance gap (EPG). In this research,
EPG refers to the difference between regulated energy consumption by design standards and actual
energy usage. EPG makes it difficult to develop buildings that are energy-efficient. Therefore, this
study aims to gather and analyze RBEUD in order to understand the role of occupants’ behavior
in explaining the EPG of energy-efficient residential buildings in China. The results suggest that
the actual consumption of residential buildings is less than 1/5–1/3 of the theoretical limits. The
heat pump and air conditioner’s actual schedules and setpoint settings are the significant drivers
that explain the EPG. In addition, the presentation of a database of 1128 households provides
actual usage behavior parameters for policy-makers to improve the accuracy of building energy
forecasting models.

Keywords: real building energy use data; energy performance gap; energy-efficient residential
buildings; occupants’ behavior

1. Introduction

The building represents the last mile sector in the global carbon neutrality transi-
tion [1]. It is considered to have the most substantial decarbonization potential using
current strategies and technologies. Emissions from the building sector need to be reduced
by approximately 40% between 2020 and 2050 to achieve global net-zero emissions by
2050 [2]. The International Energy Agency (IEA) predicts that more than 85% of global
buildings need to meet zero-carbon-ready building energy codes by 2050 [2]. It also indi-
cates that more and more energy-efficient buildings (e.g., green, low-carbon, sustainable,
net-zero buildings) will emerge worldwide to reduce energy use and achieve global net-
zero emissions. However, many studies have revealed a large gap between the designed
and the actual energy consumption in energy-efficient buildings [3,4]. This gap is known as
the ‘energy performance gap’ (EPG). The EPG would erode the credibility of the building
and construction industry’s policy-makers, designers, and engineers, and would also lead
to general public skepticism of the new energy-efficient building concept [5]. The extensive
literature on the EPG shows that attention should be paid to the role of occupant behavior
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in shaping building energy consumption [6–8]. Therefore, collecting real building energy
use data (RBEUD) of the building’s operations to provide designers with valuable feedback
on its actual performance is necessary to address EPG. IEA defines the dataset that could
reflect the characteristics of buildings after they are in use as RBEUD [9]. The RBEUD
includes energy use data, building features (such as floor area, year built, etc.), building
morphology, household characteristics (such as the number of residents, household in-
come, etc.), information on occupants’ behavior (such as space heating, space cooling,
window opening behaviors, etc.), and characteristics of household appliances (such as the
energy-efficiency rating of appliances, etc.).

However, the lack of rich RBEUD in the building stock sector is the main barrier to
reducing EPG worldwide [9]. Especially for China, the lack of RBEUD has limited our
ability to address the EPG [1]. This makes it difficult to learn lessons to develop buildings
that are more energy-efficient. The EPG has been highlighted in developed countries using
RBEUD in recent years. For instance, in the UK, Menezes et al. [4] found that uncertain
parameter assumption about occupancy behavior in building energy prediction models
is the causal factor influencing EPG in buildings. Gill et al. [10] displayed that occupants
opened windows more frequently than model assumptions. Thus, the low-energy design
must address issues with factors of occupants’ behavior more adequately. Gupta et al. [11]
found that occupant factors associated with higher demand temperatures, frequent window
openings in winter, and the over-use of heating systems were responsible for the EPG
between modeled and actual energy use. In Demark, Carpino et al. [12] suggested that
standard occupancy schedules indicate high heat gains, which lead to an underestimation
of energy use for space heating or cooling. The cause for the EPG in Ireland is higher actual
indoor temperatures than those assumed in the model [13], Dutch dwellings [14], and
Swiss dwellings [15]. In Canada, Rouleau et al. [16] suggested that the two key variables
that justify the EPG are the set point temperature and the control of windows in energy-
efficient social housing buildings. In Germany, Galvin [17,18] emphasized that incorrect
assumptions (both standardized occupancy and technical factors) could be linked to the
EPG. In China, Liang et al. [19] suggested that a lack of sub-metering for air conditioners
and longer operating hours cause the EPG in green commercial buildings. Wu et al. [20]
provided design factors referring to values from local standard authorities that led to
the overdesign of green office buildings. However, few studies have focused on issues
regarding the EPG of energy-efficient residential building sectors in China. In addition,
updated information about the energy-efficient residential buildings in use is still necessary
for improving the accuracy of building energy consumption models which can support
policy making. Therefore, to fill the gap in the literature, the goals of this study include:

1© gathering and analyzing RBEUD at the household level to identify and quantify the
EPG in the residential sector; 2© quantifying the reasons behind the EPG by comparing the
occupant behaviors between design consumption and operation conditions. This research
not only focuses on quantifying the gap, but also identifies the factors influencing the
difference in energy consumption at high, medium, and low consumption levels. This can
improve our understanding of the energy-efficient residential buildings currently in use in
order to help reduce the EPG in residential buildings in the future.

This research makes several contributions to the literature. 1© It enriches the residen-
tial building stock database in China. Rich datasets, including actual energy usage and
household behavior data, are used to measure the EPG at the household scale, avoiding
single buildings with limited heterogeneity. 2© It provides a significant empirical contribu-
tion to the literature by using occupants’ behavior pattern data to explain the EPG in the
residential building sector in China. 3© Based on empirical evidence, this study demon-
strates that underconsumption (actual consumption less than theoretical) situations could
explain the prebound effect (actual savings less than theoretical) in residential buildings.
The above results contribute to a better understanding of the current state of residential
energy consumption, provide input parameters for building codes and standards, and offer
some policy suggestions for building energy efficiency.
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This research is structured as follows. Section 2 summarizes the literature review.
Section 3 presents the method. Section 4 evaluates the building energy performance.
Section 5 discusses and quantifies the EPG. Section 6 concludes the paper and offers some
policy suggestions.

2. Literature Review

According to the literature on the EPG, the difference between predicted and ac-
tual building energy consumption can be explained by three categories: design-related,
construction-related, and operational-related factors. It is noted that unrealistic predictions
in the design stage are one of the most critical factors causing the EPG [4,5,21–23]. Predicted
energy consumption is based on the input data of the building energy model. For exam-
ple, the assumed building operation indicators mainly include the air conditioning/space
heating schedule, ventilation rates, setpoint settings, appliance energy efficiency levels, etc.
Thus, with limited RBEUD, it is difficult for a designer to accurately predict the operation
consumption [21,24,25]. Currently, data regarding the actual energy performance of exist-
ing building stock worldwide are significantly limited and lacking [1]. According to IEA, if
sufficient data can be collected during the operation phase, the design will be more precise.
Otherwise, a persistent lack of such data will likely result in an increasing gap between
theory and practice, which will lead to a failure to achieve the net-zero emissions goals.

In the construction stage, the quality of the onsite construction may cause the EPG.
Some common examples which may lead to a gap between the design and the actual
building include: 1© insulation gaps and thermal bridging are rarely considered in the
building energy simulations [21]; 2© a contractor with limited experience and knowledge
may not fully understand the designer, which may result in a gap between the design and
the as-built result [26]; 3© in China, occupants renovate 51% of residential buildings. How-
ever, approximately 87% of the occupants do not have enough knowledge about building
envelope performance, which may destroy external thermal insulation systems [27].

In the operation stage, occupants’ behaviors significantly impact buildings’ actual
energy consumption [28]. As a result, assumptions about occupant patterns and behavior,
which are inherently unpredictable and highly uncertain, inevitably lead to significant
uncertainty in energy forecasting [29]. In reality, over-consumption or under-consumption
phenomena exist due to occupants’ behaviors. For example, Cozza et al. [30] and Guerra-
Santin and Itard [31] confirmed the phenomenon of overconsumption in energy-efficient
buildings. They found that the energy demand for residential buildings was mostly
influenced by occupants’ behaviors, and that occupant behaviors could explain 3.2–9.4%
of the change in energy consumption. Majcen [32] found results regarding behavior that
were able to explain 9.1% of the variance in energy consumption. On the other hand,
Galvin and Sunikka-Blank [33] demonstrated that restriction behaviors could lead to
under-consumption phenomena in energy-efficient buildings. The actual consumption was
calculated as 30% below the calculated consumption based on German datasets [33,34].
Loga et al. [35] found that the actual consumption was 31% lower than the calculated
energy performance. Similar results were also obtained in the latest studies [30,36].

In summary, many studies have analyzed reasons for the EPG from various aspects.
However, limited empirical evidence explains the EPG. Thus, this research aims to con-
tribute to the literature on the EPG by using occupants’ behavior pattern data to explain it
in the residential building sector in China.

3. Methodology
3.1. Overall Research Approach

To understand and capture the actual household energy consumption and energy us-
age behavior of energy-efficient residential buildings in a holistic way, the general research
approach is given in Figure 1. 1© A questionnaire survey was conducted in Chongqing,
China. Residential buildings are complex systems, and various factors influence actual
building energy performance. For instance, building-related characteristics, residents’ oc-
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cupancy information, and real energy use data were collected through a survey. 2© This
research uses three methods for data analysis: the Lorenz curve and Gini coefficient, the
chi-square test, and gap analysis. The Lorenz curve and Gini coefficient was applied to
capture characteristics of electricity use across households. The chi-square test was used to
test the statistical differences in the distribution of the lowest, the average, and the highest
energy-consuming groups for the household’s occupant behavior characteristics. The gap
analysis was used to analyze the root cause of the EPG in residential buildings.
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mission of Urban-Rural Development.

3.2. Survey Description

The household survey adopted the model of cooperation between the government
(Chongqing Municipal Commission of Urban-Rural Development, CMCURD), utilities
(the State Grid Chongqing Electric Power Company: Chongqing, China, SGCEPC), and
colleges and universities (Chongqing University). The data collection process consisted
of three stages (see Figure 1). 1© The investigators of Chongqing University conducted a
door-to-door survey in the sampled region. They explained the purpose and the content
of the questionnaires to the respondents, accompanied by the employees of the property
management company. The respondents filled in the questionnaires and returned them
on-site. Families participating in the survey needed to meet the following criteria. First:
the household could provide electricity consumption billing or the smart meter number.
Second, the household’s electricity consumption was mainly for living rather than the
business. Third, the family must have lived in the residence for more than 12 months before
2016. 2© We received information about the buildings’ characteristics (including the level
of building energy efficiency standards (BEES) used for building construction and the year
of construction) from CMCURD. 3© We collected data from SGCEPC using the smart meter
numbers or electricity billing numbers.

This household-level database covered five modules: building characteristics, house-
holds, appliances, occupant behavior characteristics, and electricity data. Building samples
were distributed in all nine districts of Chongqing city (See Figure 2). Eventually, after
removing outliers from the database, this dataset contained 43 communities and 1128 house-
holds in the Chongqing urban area. Of those communities, 70% were ordinary housing
estates, 14% were upscale residential districts; 7% were eco-districts, and 9% were indemni-
fication housing (see Figure A1). Collecting samples from these different property forms
of the communities can represent different income groups. The total floor space of these
43 communities covers 10.88 million m2, and this guaranteed the representativeness of the
respondent sample.
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To represent the level of building performance, the database divided the buildings into
three categories: 1© Buildings were built based on the ‘Design Standard for energy efficiency
50% of residential buildings JGJ134-2001’ (hereafter, 50%-BEES). 2© Buildings were built
based on the ‘Design Standard for energy efficiency 65% of residential buildings JGJ134-
2010’ (hereafter, 65%-BEES). 3© Buildings were built without energy-efficiency measures
(hereafter, IBs). We defined residential buildings built with 65%-BEES and 50%-BEES as
energy-efficient residential buildings. All of the energy-efficient residential buildings were
constructed between 2002 and 2014, while the IBs were built before 2002. This database
contained 508 residential buildings built with 65%-BEES and 338 residential buildings built
with 50%-BEES. The number of IBs was 282. The average floor area of all investigated
households in Chongqing was 92 m per household (m2/household). In addition, 67% of
households were situated in residential buildings with floor areas between 60 and 120 m2

(see Figure A2). The floor area per capita was 30.23 m2.
The average household size of the surveyed residents was 3.44 people, which was

higher than the municipal average household size of 3.13 people as well as the nation’s
statistical household size of 3.11 people in 2016 (See Figure A3). This is because our survey
excluded non-family households, such as army barracks and college dorms. In total, 76%
of the households consisted of three and more people, as shown in Figure A4. With the
second-child policy, the family structure showed a preference to extend families to consist
of two adults living with their children and parents.

The database divided people into five income classes. The annual household income
structure in the survey is presented in Figure A5. Of the respondents, 14% were from low-
income households (less than CNY 30,000). The lower-middle income (CNY 30,000–60,000)
and middle-income (CNY 60,000–120,000) households accounted for 29% and 38% of the
total surveyed households, respectively. Of those 15%, had upper-middle income levels
(CNY 60,000–120,000), and 4% were high-income households (more than CNY 200,000).
Different income levels represented different levels of energy consumption, to some extent.

The ownership of major household appliances in our dataset compared to the national
and municipal information is shown in Figure A6. The ownership rate of split heat pump
air conditioners (ACs) in our survey data was 302 sets per 100 households, higher than the
national and municipal levels. There are two main reasons for this: first, Chongqing has
hot summers and a humid climate, and split heat pump ACs are the main equipment for
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cooling and heating. Second, the survey area is the most developed region of Chongqing.
The residents are relatively wealthy and have high requirements for indoor comfort.

4. Measurement of the Actual Buildings’ Energy Performance

In this section, residential buildings’ energy consumption is analyzed based on the
actual consumption data, with a focus on space heating and cooling.

4.1. Actual Building Energy Consumption

Figure 3 shows the distribution of the survey samples’ annual household electricity
consumption in 2016. The annual household electricity use varied from 238 kWh/household
to 12,942 kWh/household. The average household use was 2573 kWh/household. There
was a significant difference between the lowest and the highest energy consumption. There-
fore, we needed to conduct further studies on the highest and lowest groups. This study
employed the Lorenz curve and Gini coefficient to demonstrate the characteristics of elec-
tricity consumption across households. The traditional Lorenz curve and Gini coefficient
are the most commonly used methods in economics for analyzing income inequality. Fol-
lowing [37], we used them to analyze inequality in energy consumption. The energy Gini
coefficient is defined as:

Gini = 1 −
∣∣∣∣∣ N

∑
i=1

(Xi+1 − Xi) (Yi+1 − Yi)

∣∣∣∣∣
where X refers to the cumulative proportion of the household, calculated by the number of
households in population group i divided by total households. Y refers to the cumulative
proportion of electricity consumption. Yi equals the electricity consumption of the ith
household divided by the total electricity consumption, which is ordered from lowest
to highest.
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Figure 3. Distribution of electricity consumption per household. Notes: The horizontal axis refers to
the annual household electricity consumption in 2016, expressed in kWh. The vertical axis refers to
the density.

Figure 4 shows the Lorenz curve of electricity consumption across households. The
Gini coefficient of 0.284 means that the top 10% of surveyed urban residential households
were responsible for more than 20% of electricity consumption. According to the Lorenz
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curve, household electricity consumption may be divided into three groups: the lowest
10%, the average 80%, and the highest 10% electricity-consuming groups. A more detailed
comparison was made to better understand the reasons by comparing the occupants’
behavioral characteristics in the three groups. The chi-square was used to test for statistical
differences between the three groups.
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The annual household income levels of the highest 10%, the average 80%, and the
lowest 10% electricity-consuming groups were compared. The distribution of annual
income was different among each group (Pearson chi2(8) = 43, p = 0.000) (see Figure 5).
This finding was consistent with the research results by Zhou et al. [38] and Chen et al. [39],
who showed that income had a positive effect on building energy use using household
survey data. Lower-income (less than CNY 30,000) families were found more frequently in
the lowest energy consumption group. At the same time, higher-income households were
more likely to belong to the highest energy-consuming group. This finding implies that
urban residential electricity demand increases with income growth.
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The chi-square test revealed a significant variation in the distribution of the four
floor space categories among the three electricity-consuming groups: highest, lowest, and
average (Pearson chi2(6) = 62, p = 0.000) (see Figure 6). Large floor spaces tended to
be found in the highest electricity-consuming group. This finding is consistent with the
previous studies [40,41].
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Many previous studies have identified that the number of household members is an
essential factor influencing electricity use [29,42]. In agreement with them, extended fami-
lies were found more frequently in the high electricity-consuming group. The distribution
differences between groups were significant (Pearson chi2(8) = 50, p = 0.000) (see Figure 7).
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Figure 7. The distribution of occupants for the lowest 10%, average 80%, and highest 10% electricity-
consuming groups.

Another discrepancy in electricity use between the lowest 10%, average 80%, and
highest 10% electricity-consuming groups was the method of space heating and cooling
(Figures 8 and 9). Obviously, central ACs contribute to high electricity use in the summer-
time. Households using under-floor heating in the highest 10% of electricity consumers
were higher than those in the lowest 10% electricity-consuming group.
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Figure 9. The distribution of heating methods for the lowest 10%, average 80%, and highest 10%
electricity-consuming groups.

In conclusion, residential building electricity use varies between households and with
occupant behavior characteristics. The common features of the lowest electricity-consuming
households were lower income, smaller floor area, single or couple residents, and a lack of
central air conditioning and underfloor heating. The common characteristics of the highest
electricity-consuming group were higher income, larger floor area, and extended families
living in the household. They also showed full-time and full-place usage patterns of heat
pump ACs. The high electricity-consuming group is a good illustration of a full-time
and full-place lifestyle. However, in China, most people’s lifestyles currently consist of
part-time and part-place usage of heat pump ACs [43].

Figure 10 demonstrates annual household electricity usage by different levels of BEES. In
2016, annual electricity consumption in 65%-BEES households varied from 238 kWh/household
to 9125 kWh/household, and the average value was 2249 kWh/household. Yearly electricity
consumption in 50%-BEES households varied from 245 kWh/household to 8060 kWh/household,
and the average value was 2132 kWh/household. For IBs, the annual household electricity
usage ranged from 352 kWh/household to 12,942 kWh/household, and the average value
was 3018 kWh/household.
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Figure 10. Total energy consumption in the three types of buildings.

Figure 11 shows total annual household electricity usage intensity (EUI, kWh/m2/year)
by different levels of building energy efficiency standards. In 2016, the EUI in 65%-
BEES varied from 3.72 kWh/m2/year to 104.33 kWh/m2/year, and the average value
was 26.01 kWh/m2/year. The EUI in 50%-BEES varied from 3.82 kWh/m2/year to
115.14 kWh/m2/year, and the average value was 28.53 kWh/m2/year. In IBs, the EUI
ranged from 4.77 kWh/m2/year to 102.78 kWh/m2/year, and the average value was
28.08 kWh/m2/year.
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Figure 11. Energy intensity in the three types of buildings.

4.2. Actual Building Heating and Cooling Consumption

This section describes the statistics regarding space heating and cooling electricity
consumption in energy-efficient buildings and IBs (See Table 1). The actual consumption of
space heating and cooling was estimated according to the monthly electricity consumption
obtained by the smart meter. We used an approximating method, as was introduced in the
previous research [27].
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Table 1. The statistics of space heating and cooling energy consumption in the three types of buildings.

IBs 50%-BEES 65%-BEES

Mean
Max Min

Mean
Max Min

Mean
Max Min

(Std. Dev.) (Std. Dev.) (Std. Dev.)

Electricity consumption for space cooling
(kWh/household)

891
3833 18

559
2986 4

602
3399 4595.24 464.76 458.17

Electricity intensity for space cooling (kWh/m2)
8.28

33.44 1.08
7.33

30.18 1.06
6.72

29.8 1.055.67 5.74 4.79

Electricity consumption for space heating
(kWh/household)

232
3813 0

151
2002 0

164
3463 0379.05 256.63 289.23

Electricity intensity for space heating (kWh/m2)
1.95

38.48 0
1.91

20.43 0
1.93

15.42 02.63 2.99 3.41

The percentage of space cooling accounting for
total buildings’ electricity consumption (%) 30% 26% 26%

The percentage of space heating accounting for
total buildings’ electricity consumption (%) 8% 7% 7%

The percentage of space cooling and heating
accounting for total buildings’ electricity
consumption (%)

37% 33% 33%

4.2.1. Electricity Consumption for Space Cooling

The average annual household electricity consumption for space cooling was
662 kWh/household, accounting for 27% of the total annual household electricity con-
sumption. The average annual household electricity consumption for space cooling
for IBs was 891 kWh/household, with a standard deviation of 595.24 kWh/household.
The average annual household space cooling electricity consumption for 50%-BEES was
559 kWh/household, with a standard deviation of 464.76 kWh/household, while 65%-BEES
buildings consumed 602 kWh/household, with a standard deviation of 458.17 kWh/household.
The average cooling electricity intensity for IBs was 8.28 kWh/m2/year, with a standard de-
viation of 5.67 kWh/m2/year. The average cooling electricity intensities for 50%-BEES and
65%-BEES buildings were 7.33 kWh/m2/a (with a standard deviation of 5.74 kWh/m2/a)
and 6.72 kWh/m2/a (with a standard deviation of 4.79 kWh/m2/year), respectively.
The share of cooling electricity usage out of the total electricity usage for 65%-BEES and
50%-BEES buildings was 26%, and 30% for IBs.

4.2.2. Electricity Consumption for Space Heating

The annual average household heating consumption was 177 kWh, accounting for
7% of the total annual household electricity. The average annual household space heat-
ing electricity consumption for IBs was 232 kWh/household, with a standard deviation
of 379.05 kWh/household. The average annual household space heating electricity con-
sumption rates for 50%-BEES and 65%-BEES buildings were 151 kWh/household (with a
standard deviation of 256.63 kWh/household) and 164 kWh/household (with a standard
deviation of 289.23 kWh/household), respectively. The heating consumption varied greatly
among households due to different living styles and heating habits. Households using
central heating had a power consumption rate of 38.48 kWh/m2, which is about 20 times
the city’s average.

5. Discussion
5.1. Energy Performance Gap Analysis

Figures 12 and 13 provide overall pictures of the average annual household electricity
use and average electricity use intensity (EUI) of energy-efficient buildings and IBs in 2016.
In Figure 12, the horizontal line represents the constraint value of energy use demonstrated
in the ‘Standard for Energy Consumption of Buildings (GB/T51161-2016)’, which is the first
standard for buildings’ energy consumption in China. Two horizontal lines in Figure 13
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represent two design values of EUI: (1) the EUI defined by the ‘Design standard for energy
efficiency 50% of a residential building of Chongqing, DB50/5024-2002’ (50%-BEES); (2) the
EUI defined by the ‘Design standard for energy efficiency 65% of a residential building of
Chongqing, DBJ50-071-2007’ (65%-BEES).
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Figure 13. Actual cooling and heating electricity consumption and regulation limit values.

The average household electricity use of IBs was 3018 kWh/household in 2016. The
average household electricity use of 50%-BEES was 2132 kWh/household in 2016. Finally,
the average household electricity use of 65%-BEES was 2249 kWh/household in 2016. All
were lower than the GB/T51161-2016 energy target of 3100 kWh/household. This means
that most of the buildings met the constraint values.

The actual average heating and cooling EUI of energy-efficient buildings and IBs were
much lower than the regulation limit values defined in DB50/5024-2002 and DBJ50-071-2007
(see Figure 13). The regulation limit value of 65%-BEES was 32.9 kWh/m2, while the ac-
tual average heating and cooling EUI in buildings with 65%-BEES was 8.65 kWh/m2,
less than 1/3 of the regulation limit value. The regulation limit value of 50%-BEES
was 42.4 kWh/m2, while the actual average heating and cooling EUI in buildings with
50%-BEES was 9.25 kWh/m2, less than 1/5 of the regulation limit value. It can be seen that
the benchmark value of energy-efficient buildings is far greater than its actual electricity
consumption value. This phenomenon is identified as the ‘prebound effect’ [34]. The pre-
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bound effect is the opposite phenomenon of the rebound effect. The rebound effect tends
to occur in low-energy dwellings, where occupants consume more than the theoretical
amount of energy. Contributions from ‘prebound’ and rebound effects are likely to swallow
up a significant portion of the calculated energy saving (see Figure 14). The prebound
effect phenomenon has been recognized in recent Dutch [44], Belgian [45], French [46],
and UK studies [40]. In China, little research has paid attention to the prebound effect of
building energy efficiency policies [47]. The prebound effect will increase with the increase
in the regulation limit values assumed by the building energy-efficiency standard [34]. This
implies that using the design energy rating of energy-efficient buildings to predict energy
savings tends to overestimate savings. The potential energy savings through non-technical
measures such as occupant behavior may well be far larger than is generally assumed
in policies; thus, policy-makers need a better understanding of what drives or inhibits
occupants’ decisions.
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5.2. Reason behind EPG

The statistical results above suggest that a large EPG exists between the actual and
designed total electricity consumption of energy-efficient buildings in Chongqing. The EPG
is a difficult puzzle for policy-makers. Researchers and practitioners have attempted to
propose strategies to reduce the EPG [18,29,48,49]. Based on the RBEUD for energy-efficient
buildings, this section discusses the root cause of the EPG with varying occupant behaviors
between design consumption and operation conditions.

Table 2 summarizes the difference in parameters between the theoretical lifestyle
assumed in the BEES for energy-efficient buildings and the schedules of most residents
from the survey. 1© The assumed lifestyle in the standard can be described as ‘Full-time and
Full-place’ use and application of electricity [50]. ‘Full-time’ represents heating and cooling
systems operating all the time during cooling (June 1–September 30) and heating (from
December 1 to February 28) seasons [51]. However, compared to this design condition, the
actual schedules of heat pumps and air conditioners are very different according to the
survey data. In Figure 15, 90% of the surveyed residents used their heating for a duration
of fewer than 2 months in the wintertime, among which 47% of the families used their
heating for a duration of fewer than 15 days, and only 9% of the families used their heating
for a duration of 2–3 months. In terms of the average daily heating hours (See Figure 16),
83% of the households used heating time for fewer than 3 h per day. Turning to space
cooling, 67% of the surveyed households used their cooling for fewer than 3 months, and
33% used their cooling for 4 months or more (See Figure 17). Of the surveyed households,
61% used ACs for cooling for more than 9 h a day, with a maximum time of 12 h (see
Figure 18). ‘Full-place’ signifies cooling and heating systems operating in all areas of
residential buildings. Nearly 93% of the surveyed households indicated that when they
use ACs, they either limit the use to one bedroom or use ACs when somebody is in the
room in the summertime. In the wintertime, 98% of families indicated that when they use
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ACs, they limit the use to one bedroom. Above all, it can be inferred that at least 90% of
the residents of Chongqing have adopted the ‘part-time and part-space’ lifestyle, and the
proportion of residents who live according to the theoretical lifestyle assumed in the BEES
accounts for less than 10% of the surveyed residents in this region. 2© The ventilation rate
defined in the BEES is 1 time/hour, whereas the ventilation rate is random in reality. People
who live in Chongqing prefer to open windows. This behavior has resulted in a significant
discrepancy between the predicted and the actual thermal insulation performance. As
suggested in Figure 19, 32% of occupants open either windows or doors when they use
AC. 3© The regulated AC temperature setpoint is 26 ◦C in the summertime and 18 ◦C in the
wintertime according to the BEES. The actual temperature setpoint in summer is shown in
Figure 20. Only 41% of households turn on the AC at 26 ◦C in summer. Less than 10% of
households turn on the AC at 18 ◦C in winter. 4© The design condition energy efficiency
labels (EELs) of heat pump ACs and the actual situation are different. According to Table 2,
the standards show that the design condition assumption of energy efficiency ratio of ACs
ranges from 2.2 to 2.8, while the EEL of the heating system ranges from 1.0 to 2.8 [51–54].
However, the actual EEL of heat pump AC equipment can be improved quickly; more than
half of the surveyed households have heat pump ACs with EELs of grade 1.

Table 2. The design parameter regulations in BEES and the real conditions surveyed.

Building Operation Schedule (Lifestyle) ACs and Heating
System Features

Conditioned
Space Conditioned Period Ventilation

Rate
Temperature Setting EEL
Summer Winter ACs/Heating

Design
Condition

IBs (Baseline)

All space

ACs:
From 1 June to 30 September
Heating:
From 1 December to 28 Febuary
the next year

1 time/h 26 ◦C 18 ◦C

2.2/1.0

50%-BEES 2.3/1.9

65%-BEES 2.8/2.8

Actual
Condition

IBs

Part-space Part-time Arbitrary Diversified Diversified At least Grades 350%-BEES

65%-BEES
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6. Conclusions

This study provides empirical evidence to quantify the EPG between theoretical
and actual consumption of energy-efficient residential buildings. We accomplished this
using household-level data collected from 1128 households in 2016 in the HSCW zone
in China. The average actual electricity consumption was found to be less than 1/5–1/3
of the regulation limit values. The heat pump air conditioners’ actual schedules and
setpoint settings, the energy efficiency labels of ACs, and the ventilation rates were found
to be significant factors explaining the differences between theoretical and actual energy
consumption.

Beyond identifying the EPG, our research also identified low and high consumers
of electricity, which can help us to better understand the electricity consumption spec-
trum. The average annual household electricity consumption in 65%-BEES buildings was
2249 kWh/household. The yearly household electricity consumption in 50%-BEES build-
ings was 2132 kWh/household. In IBs, the average annual household electricity usage was
3018 kWh/household. The electricity Gini coefficient was 0.284. The lowest electricity-
consuming households had common features, including are lower incomes, smaller floor
areas, single or couple residents, and a lack of central air conditioning and electrical un-
derfloor heating. Similarly, the common characteristics for the highest-consuming groups
were higher incomes, larger floor areas, and extended families living in the households.

Our findings have important policy implications. First, the prebound effect exists in
energy-efficient residential buildings in the hot summer and in the cold regions of China.
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We should be concerned that a significant fraction of our national climate strategy rests
on the types of policies that have not delivered on past promises. Second, our results
can help policy-makers to understand that the benchmark for the assumption of building
energy consumption values in building energy efficiency standards is a huge deviation
from the actual situation. Therefore, the design values of building energy consumption
regulated by the energy efficiency standards should be lower than the current values. The
other important suggestion given to policy-makers is the energy consumption value regu-
lation outlined in the ‘Standard for energy consumption of building’ (GB/T 51161-2016).
Currently, the limitation value of electricity consumption for residential buildings in the
HSCW zone is 3100 kWh/household. However, according to our survey, the maximum
average electricity consumption was 2573 kWh/household. Therefore, in the future, when
policy-makers revise this standard, the results of this research can offer them a foundation
of benchmarking data for reference.

Although this study fills the gap in the literature by using actual household-level
data to quantify the EPG between theoretical and actual consumption of energy-efficient
residential buildings in China’s HSCW climate zone, some limitations still exist. Due to
individuals’ unique energy use behavior and the sample size limit, the actual average energy
consumption analyzed in this paper may not represent the actual energy consumption level
in the HSCW climate zone in China. In future research, we will collect more detailed RBEUD
to develop an energy consumption baseline for energy-efficient residential buildings. In
addition, continuous data tracking can provide more accurate input parameters (closer to
real-life energy use) for the purpose of building energy models, which will improve the
accuracy of building energy prediction and narrow the EPG of energy-efficient residential
buildings.
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25. Motuzienė, V.; Lapinskienė, V.; Rynkun, G.; Bielskus, J. Energy Performance Gap Analysis in Energy Efficient Residential
Buildings in Lithuania. Environ. Clim. Technol. 2021, 25, 610–620. [CrossRef]

26. Bell, M.; Wingfield, J.; Miles-Shenton, D.; Seavers, J. Low Carbon Housing: Lessons from Elm Tree Mews; Joseph Rowntree Foundation:
York, UK, 2010; pp. 1–118. ISBN 978-1-85935-766-8.

27. Wang, X.; Feng, W.; Cai, W.; Ren, H.; Ding, C.; Zhou, N. Do Residential Building Energy Efficiency Standards Reduce Energy
Consumption in China?—A Data-Driven Method to Validate the Actual Performance of Building Energy Efficiency Standards.
Energy Policy 2019, 131, 82–98. [CrossRef]

https://wedocs.unep.org/20.500.11822/41133
https://www.iea.org/reports/net-zero-by-2050
https://www.iea.org/reports/net-zero-by-2050
http://doi.org/10.1080/09613218.2018.1469285
http://doi.org/10.1016/j.apenergy.2011.11.075
http://doi.org/10.1016/j.jclepro.2020.125623
http://doi.org/10.1016/j.eneco.2021.105611
http://doi.org/10.1257/jep.26.1.3
http://doi.org/10.1016/j.enpol.2021.112480
https://energyepidemiology.org/
http://doi.org/10.1080/09613218.2010.505371
http://doi.org/10.1016/j.enbuild.2018.06.057
http://doi.org/10.1080/09613218.2019.1707639
http://doi.org/10.1016/j.egypro.2017.03.020
http://doi.org/10.1016/j.enpol.2013.06.018
http://doi.org/10.1016/j.enbuild.2004.01.028
http://doi.org/10.1016/j.energy.2017.12.107
http://doi.org/10.1016/j.enpol.2012.11.044
http://doi.org/10.1016/j.enbuild.2013.11.004
http://doi.org/10.1016/j.resconrec.2018.10.021
http://doi.org/10.1016/j.buildenv.2020.106819
http://doi.org/10.1016/j.enbuild.2018.08.040
http://doi.org/10.1016/j.jclepro.2020.122650
http://doi.org/10.1016/j.enbuild.2019.03.013
http://doi.org/10.2478/rtuect-2021-0045
http://doi.org/10.1016/j.enpol.2019.04.022


Sustainability 2023, 15, 1575 21 of 22

28. Demanuele, C.; Tweddell, T.; Davies, M. Bridging the Gap between Predicted and Actual Energy Performance in Schools. In
Proceedings of the World Renewable Energy Congress XI, Abu Dhabi, United Arab Emirates, 25–30 September 2010.

29. van den Brom, P.; Meijer, A.; Visscher, H. Performance Gaps in Energy Consumption: Household Groups and Building
Characteristics. Build. Res. Inf. 2018, 46, 54–70. [CrossRef]

30. Cozza, S.; Chambers, J.; Patel, M.K. Measuring the Thermal Energy Performance Gap of Labelled Residential Buildings in
Switzerland. Energy Policy 2020, 137, 111085. [CrossRef]

31. Guerra-Santin, O.; Itard, L. Occupants’ Behaviour: Determinants and Effects on Residential Heating Consumption. Build. Res. Inf.
2010, 38, 318–338. [CrossRef]

32. Majcen, D. Predicting Energy Consumption and Savings in the Housing Stock. A Performance Gap Analysis in the Netherlands; Delft
University of Technology, A+BE Architecture and the Built Environment, OTB: Delft, The Netherlands, 2016.

33. Galvin, R.; Sunikka-Blank, M. Quantification of (p)Rebound Effects in Retrofit Policies—Why Does It Matter? Energy 2016,
95, 415–424. [CrossRef]

34. Sunikka-Blank, M.; Galvin, R. Introducing the Prebound Effect: The Gap between Performance and Actual Energy Consumption.
Build. Res. Inf. 2012, 40, 260–273. [CrossRef]

35. Loga, T.; Diefenbach, N.; Born, R. Deutsche Gebäudetypologie: Beispielhafte Maßnahmen Zur Verbesserung Der Energieeffizienz von
Typischen Wohngebäuden; 2nd expanded ed.; Institut Wohnen und Umwelt: Darmstadt, Germany, 2015; ISBN 978-3-941140-47-9.

36. Cozza, S.; Chambers, J.; Deb, C.; Scartezzini, J.-L.; Schlüter, A.; Patel, M.K. Do Energy Performance Certificates Allow Reliable
Predictions of Actual Energy Consumption and Savings? Learning from the Swiss National Database. Energy Build. 2020,
224, 110235. [CrossRef]

37. Wu, S.; Zheng, X.; Wei, C. Measurement of Inequality Using Household Energy Consumption Data in Rural China. Nat. Energy
2017, 2, 795–803. [CrossRef]

38. Zhou, S.; Teng, F. Estimation of Urban Residential Electricity Demand in China Using Household Survey Data. Energy Policy 2013,
61, 394–402. [CrossRef]

39. Chen, J.; Wang, X.; Steemers, K. A Statistical Analysis of a Residential Energy Consumption Survey Study in Hangzhou, China.
Energy Build. 2013, 66, 193–202. [CrossRef]

40. Kelly, S. Do Homes That Are More Energy Efficient Consume Less Energy? A Structural Equation Model of the English Residential
Sector. Energy 2011, 36, 5610–5620. [CrossRef]

41. Rafsanjani, H.N. Factors Influencing the Energy Consumption of Residential Buildings: A Review. In Proceedings of the
Construction Research Congress 2016: Old and New Construction Technologies Converge in Historic San Juan, CRC 2016,
Construction Engineering and Management, Durham School of Architectural Engineering and Construction, University of
Nebraska-Lincoln, Lincoln, NE, USA, 31 May–2 June 2016; pp. 1133–1142.

42. Hu, S.; Yan, D.; Dong, B.; Fu, J. Exploring Key Factors Impacting Cooling Usage Patterns of Chinese Urban Household Based on a
Large-Scale Questionnaire Survey. Energy Build. 2020, 214, 109885. [CrossRef]

43. Yan, D.; Hong, T.; Li, C.; Zhang, Q.; An, J.; Hu, S. A Thorough Assessment of China’ s Standard for Energy Consumption of
Buildings. Energy Build. 2017, 143, 114–128. [CrossRef]

44. Tigchelaar, C.; Daniëls, B.; Menkveld, M. Obligations in the Existing Housing Stock: Who Pays the Bill? ECN: Petten, The Netherlands,
2011; pp. 353–363.

45. Hens, H.; Parijs, W.; Deurinck, M. Energy Consumption for Heating and Rebound Effects. Energy Build. 2010, 42, 105–110.
[CrossRef]

46. Cayre, E.; Allibe, B.; Laurent, M.-H.; Osso, D. There are people in the house! How the results of purely technical analysis
of residential energy consumption are misleading for energy policies. In Proceedings of the ECEEE 2011 Summer Study on
Energy Efficiency: Energy Efficiency First: The Foundation of a Low-Carbon Society, Niagara Falls, NY, USA, 26–29 July 2011;
pp. 1675–1683.

47. Phadke, A.; Shah, N.; Lin, J.; Park, W.Y.; Zhang, Y.; Zaelke, D.; Ding, C.; Karali, N. Chinese Policy Leadership Would Cool Global
Air Conditioning Impacts: Looking East. Energy Res. Soc. Sci. 2020, 66, 101570. [CrossRef]

48. Herrando, M.; Cambra, D.; Navarro, M.; de la Cruz, L.; Millán, G.; Zabalza, I. Energy Performance Certification of Faculty
Buildings in Spain: The Gap between Estimated and Real Energy Consumption. Energy Convers. Manag. 2016, 125, 141–153.
[CrossRef]

49. Lawrence, R.; Keime, C. Bridging the Gap between Energy and Comfort: Post-Occupancy Evaluation of Two Higher-Education
Buildings in Sheffield. Energy Build. 2016, 130, 651–666. [CrossRef]

50. Hu, S.; Yan, D.; Guo, S.; Cui, Y.; Dong, B. A Survey on Energy Consumption and Energy Usage Behavior of Households and
Residential Building in Urban China. Energy Build. 2017, 148, 366–378. [CrossRef]

51. CMCURD. Design Standard of Residential Buildings for Energy Efficiency in Chongqing (DB50/5024-2002); Chongqing University
Publication: Chongqing, China, 2002.

52. CMCURD. Design Standard for Energy Efficiency 65% of Residential Building (DBJ50-071-2007); Chongqing University Publication:
Chongqing, China, 2007.

http://doi.org/10.1080/09613218.2017.1312897
http://doi.org/10.1016/j.enpol.2019.111085
http://doi.org/10.1080/09613211003661074
http://doi.org/10.1016/j.energy.2015.12.034
http://doi.org/10.1080/09613218.2012.690952
http://doi.org/10.1016/j.enbuild.2020.110235
http://doi.org/10.1038/s41560-017-0003-1
http://doi.org/10.1016/j.enpol.2013.06.092
http://doi.org/10.1016/j.enbuild.2013.07.045
http://doi.org/10.1016/j.energy.2011.07.009
http://doi.org/10.1016/j.enbuild.2020.109885
http://doi.org/10.1016/j.enbuild.2017.03.019
http://doi.org/10.1016/j.enbuild.2009.07.017
http://doi.org/10.1016/j.erss.2020.101570
http://doi.org/10.1016/j.enconman.2016.04.037
http://doi.org/10.1016/j.enbuild.2016.09.001
http://doi.org/10.1016/j.enbuild.2017.03.064


Sustainability 2023, 15, 1575 22 of 22

53. CMCURD. Design Standard for Energy Efficiency 65% of Residential Building (DBJ50-07102010); Chongqing University Publication:
Chongqing, China, 2010.

54. You, K.; Ren, H.; Cai, W.; Huang, R.; Li, Y. Modeling Carbon Emission Trend in China’s Building Sector to Year 2060. Resour.
Conserv. Recycl. 2023, 188, 106679. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.resconrec.2022.106679

	Introduction 
	Literature Review 
	Methodology 
	Overall Research Approach 
	Survey Description 

	Measurement of the Actual Buildings’ Energy Performance 
	Actual Building Energy Consumption 
	Actual Building Heating and Cooling Consumption 
	Electricity Consumption for Space Cooling 
	Electricity Consumption for Space Heating 


	Discussion 
	Energy Performance Gap Analysis 
	Reason behind EPG 

	Conclusions 
	Appendix A
	References

