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Qualification of distributed optical
fiber sensors using probability of
detection curves for delamination in
composite laminates

Francesco Falcetelli1,2 , Demetrio Cristiani2,3 , Nan Yue2,4, Claudio
Sbarufatti3, Enrico Troiani1, Raffaella Di Sante1 and Dimitrios
Zarouchas2,4

Abstract
Despite the promising application of Distributed Optical Fiber Sensors (DOFS) in monitoring damage in composite
structures, their implementation outside academia is still unsatisfactory due to the lack of a systematic approach to
assessing their damage detection performance. The existing tool developed for non-destructive evaluation, Probability
of Detection (POD) curves, needs to be adapted for structural health monitoring applications to account for spatial and
temporal dependency. Damage detection performance with DOFS is deeply related to the inherent variability sources
of the system, the strain transfer properties of the optical fiber, and the loading conditions, which determine the
damage-induced strain on the structure. This paper establishes a systematic approach based on the Length at Detection
(LaD) method to qualify DOFS for damage detection in composites under different scenarios. Specifically, this study con-
siders two DOFS with different strain transfer properties for monitoring delamination in carbon fiber reinforced poly-
mers double-cantilever beam specimens under mode I quasi-static and fatigue loading. The POD curves derived from
the LaD method confirm that this methodology can quantify the change in the detection performance due to the DOFS
type and the loading conditions. The study also proposes a practical solution to compare POD curves obtained with dif-
ferent sample sizes, by introducing the concept of virtual specimens to simulate the lower confidence bound
convergence.

Keywords
Probability of detection, distributed optical fiber sensors, carbon fiber reinforced polymers, delamination, double-cantile-
ver beam specimens, reliability, structural health monitoring

Introduction

Over the last decades, composite laminates have
become the predominant structural material in various
engineering applications. Nowadays, the quest to
develop safer and lighter structures still fosters the sci-
entific community to investigate different damage
mechanisms in composite materials and their reciprocal
interaction. However, despite the impressive amount of
research, open questions are still present, and the
understanding of the physics behind failure modes in
composites is limited.1 Moreover, composite structures
are particularly susceptible to flaws arising from the
manufacturing process and service and exhibit complex
failure modes as opposed to metals. Among them, dela-
mination constitutes one of the most common damage

mechanisms and can also occur in adhesive bonds.2

Using large safety factors mitigates the risks of
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catastrophic structural failure but leads to heavier
designs and might not be deemed sufficient to guaran-
tee safety.

Consequently, delamination growth represents a
severe threat to structural integrity in carbon fiber rein-
forced polymer (CFRP) structures, and it becomes nec-
essary to implement Structural Health Monitoring
(SHM) strategies. SHM can provide essential informa-
tion about delamination existence, location, and size.
Moreover, it can also deepen the understanding of
other correlated damage mechanisms and thus promote
the introduction of innovative composite materials and
structures.3 SHM offers a wide range of techniques,
each with its strengths and weaknesses depending on
the application.

Among them, Optical Fiber Sensors (OFS) provide
numerous advantages over traditional strain sensing
techniques. For example, they are intrinsically immune
to electromagnetic interference; they have large band-
width, which enables multiplexing solutions; and can
survive harsh environmental conditions if protected
with appropriate coatings and cable sheaths. Alj et al.
provide further details about the durability of OFS.4

Moreover, their lightweight and small size allow them
to be embedded in composites5 as well as 3D printed
structures,6 and they have recently been shown to be a
viable alternative to accelerometers for modal analysis.7

Recent advances in optical fiber technology fostered
the use of Distributed Optical Fiber Sensors (DOFS)
based on Raman, Brillouin,8 and Rayleigh backscatter-
ing. DOFS based on Rayleigh backscattering are par-
ticularly promising for monitoring damage, such as
delamination growth, in composites since they provide
millimeter resolution along the fiber length within sev-
eral meters of range.9

However, assessing the damage detection perfor-
mance of optical fibers is not a straightforward process.
The optical fiber datasheet specifies the geometrical,
mechanical, and optical properties. On the other hand,
the interrogator datasheet provides the resolution,
wavelength range, wavelength stability, maximum sen-
sor length, measurement uncertainty, and sampling
rate. Nevertheless, these metrics do not directly assess
strain-based damage detection performance since dam-
age is not a physical quantity that can be directly mea-
sured. Indeed, Axiom IVa of SHM states that sensors
cannot measure damage and that a feature extraction
process is needed to obtain damage-related informa-
tion.10 For example, considering delamination moni-
toring, the detection performance is expected to change
depending on the loading conditions because they
affect the damage-induced strain in the structure. In
addition, depending on the strain transfer occurring
from the structure to the fiber core,11 DOFS may exhi-
bit different detection performances. The current

literature lacks well-established methodologies for cer-
tification and performance evaluation for damage
detection, preventing the adoption of this technology
in many applications.

The performance of Non-Destructive Evaluation
(NDE) methods, widely accepted in many industries
(aerospace, automotive, oil and gas, medical, and
marine, to name a few), is evaluated following the
guidelines provided in the MIL-HKBK-1823A.12 First,
damage detection performance is quantified using
Probability of Detection (POD) curves and Probability
of False Alarm (PFA). Furthermore, varying the
threshold value makes it possible to evaluate the POD
against the PFA and obtain the so-called Receiver
Operating Characteristic curve.13,14

It is legitimate to ask whether these NDE reliability
metrics can be applied to SHM. The naive application
of POD curves in SHM would lead to inconsistent
results. One of the most critical differences between
NDE and SHM is their variability sources. The human
factor represents the highest variability contribution in
NDE, whereas SHM is affected by both temporal and
spatial sources of variability. Moreover, SHM is typi-
cally characterized by repeated measurements over
time, implying that the independent measurement
assumption used in NDE does not hold.15

Meeker et al.12 reviewed and proposed statistical
methods for SHM,16 extending the theory described in
the MIL-HKBK-1823A. The authors demonstrate that
the Length at Detection (LaD),17 and the Repeated
Measures Random Effects Model (REM2),18 are valid
statistical methods to handle SHM data. However, in
both cases, the lack of data often hinders their applica-
tions since it is challenging to manufacture and test
many structures equipped with identical sensing sys-
tems. Model-Assisted POD (MAPOD) curves can
reduce the amount of requested experimental data.
They allow the modeling of many types of variability
sources, but the computational cost can be prohibitive
due to the curse of dimensionality. Surrogate modeling
can mitigate this problem and is already available in
software such as CIVA.19,20

A systematic literature review by the authors21

shows that in SHM, POD curves were mainly applied
to Guided Waves14,15,22–29 and occasionally to other
techniques such as Comparative Vacuum
Monitoring,17,30 Acoustic Emissions,31,32 and Carbon
Nanotubes.18 Supplemental Table A1, in the Appendix
of Falcetelli et al.,21 highlights that only a few POD
studies on OFS are present, and no POD studies on
DOFS are available. Grooteman developed a numeri-
cal model of a three-stringer thermoplastic composite
panel installed with Fiber Bragg Gratings (FBGs) and
computed the frequency shift in the eigenmodes. Then,
using the modal strain energy as a damage indicator,
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they generated a POD curve using the hit/miss
approach.33 Sbarufatti and Giglio34 developed POD
curves to quantify the performance of FBGs bonded
onto an aluminum stiffened panel in terms of mini-
mum detectable crack length. In this work, the authors
compared the confidence interval for a population pro-
portion method35 with the one-sided tolerance interval
(OSTI) for a normal distribution.36

To the best of the authors’ knowledge, no study pre-
sents a rigorous methodology for qualifying DOFS in dif-
ferent scenarios using POD curves. A first attempt at
generating POD curves for DOFS was explored by
Falcetelli et al.37 This study profoundly extends the pre-
liminary research activity by establishing a systematic
methodology based on the LaD method to qualify the
damage detection performance of DOFS. The method is
validated considering the use of DOFS for monitoring
delamination in composite structures as a case study.
Specifically, Single-Mode (SM) DOFS with
ORMOCER� coating and Graded-Index Multimode
(GIM) DOFS with a dual acrylate coating are surface
mounted onto CFRP double cantilever beam (DCB) spe-
cimens under Mode I quasi-static and fatigue loading.

POD curves developed with the LaD method are
used to evaluate the performance of the monitoring sys-
tem of the two DOFS types in the two loading condi-
tions. The results confirm that both strain transfer and
loading conditions affect POD curves and prove that
the proposed methodology can quantify the damage
detection performance of DOFS in different scenarios.

Moreover, the authors introduce a practical
approach to evaluating the required number of speci-
mens based on the expected level of uncertainty. This
method is two-fold since it can also serve for comparing

POD curves generated from different sample sizes
introducing the concept of virtual specimens. This dual
functionality might be of great help in real applications
where it is rare having homogeneous datasets.

The final aim of this article is not to promote the
use of specific DOFS for delamination detection, rather
is to develop a comprehensive methodology to assess
the performance of DOSF and show the implications
of making a POD study in SHM using DOFS. The
proposed methodology aims to provide the SHM com-
munity with a reference procedure required to deploy
DOFS in composite aircraft structures.

The article is organized as follows: Section
‘‘Materials and methods’’ presents the methodologies
of this work, including the basic notions about POD in
SHM, the method to estimate the required number of
specimens and to compare POD curves produced from
various sample sizes, the working principle of DOFS
with Rayleigh backscattering, and the experimental
methodology employed in the study; Section ‘‘Results’’
presents the results of the research; Section
‘‘Discussion’’ discusses the results and highlights their
implications; Section ‘‘Conclusions’’ retraces the main
stages of the article and suggests potential future
research activities.

Materials and methods

POD for SHM: LaD method

The MIL-HKBK-1823A12 describes how to derive
POD curves using the famous â versus a method. As
an example, Figure 1 shows the output of this metho-
dology using synthetic data.

Figure 1. Example of the â versus a method (a), and the corresponding POD curve (b). (adapted from Falcetelli et al.21).
POD: Probability of Detection.

Falcetelli et al. 3



The critical a90 value represents the crack length
whose POD equals 90%. On the other hand, a90=95 rep-
resents the same concept but is referred to as the POD
lower bound. Hence, it can be thought of as the crack
length which is detected with 95% confidence with a
POD of 90%. The difference between a90=95 and a90

reflects the uncertainty associated with the experiments.
Different from NDE, where all the observations can

be considered independent, in SHM, engineers may
have to deal with repeated measurements. In this case,
the hypothesis of statistical independence of the obser-
vations does not hold anymore, making it impossible
to apply the standard linear regression model used for
POD in NDE studies.21

The LaD method avoids the issue of dealing with
repeated measurements by considering only one obser-
vation among the time series of data. Similar to the
standard method proposed in the MIL-HKBK-
1823A,12 detection is positive if a certain measurement
is above a certain threshold. However, only the mea-
surements at which damage (delamination in this
study) is detected for the first time are considered. The
crack lengths at detection lay on the threshold, poten-
tially following different statistical distributions.
Assuming that the population is normally distributed,
the POD curve can be determined as a function of the
crack length using Equation (1):

POD(a) =Pr(X\a) = Fnorm
a � �x

s

� �
ð1Þ

The symbol Fnorm denotes the standard normal cumu-
lative distribution function; �x and s represent the sam-
ple mean and variance, respectively, which differ from
the true mean and the true variance, both of which are
unknown. One of the available statistical methods to
produce confidence intervals is the OSTI approach.17

The tolerance bound T for a certain quantile of a nor-
mally distributed population can be obtained by
exploiting Equation (2):

T = �x + k(n, g,a) � s ð2Þ

The tolerance factor, k, is the key term in Equation (2)
and depends on three parameters: n, g, and a. The first
parameter n represents the number of samples. In this
study, as outlined in Section ‘‘Experimental setup,’’ the
number of samples is equivalent to the total number of
DOFS segments bonded in the specimens. It can be
demonstrated that k decreases as n increases.38 The sec-
ond parameter g controls the desired confidence level
and is set to 95% in most cases. Finally, the third para-
meter a is used to define the coverage level. In POD
studies, the value of a is usually equal to 90%.

It should be noted that the LaD is not the only
method to derive POD curves. For instance, the REM2

method16,18 is a valid alternative that allows more
efficient data use. Nevertheless, when less than ten
observations are available, issues arise to fit a five-
parameters model such as the REM2.21,39 In these
kinds of studies, where testing many specimens or even
real structures becomes costly and time-consuming, the
LaD approach seems more appropriate.

Required number of specimens

Here the authors propose a practical scheme to assess
the required number of samples, n, required for the
experimental campaign. The strategy is to perform first
a pilot study with few samples required to compute �x
and s. Then, D = a90/952a90 is iteratively computed,
leveraging the properties of the non-central t-distribu-
tion,40 and increasing the number of samples, n, in each
cycle. Once D exceeds the imposed tolerance value, the
algorithm exits the while loop and returns the required
number of samples. The corresponding pseudo-code is
represented in Table 1:

Where tn�1, g, d is the inverse of the g percentile of the
non-central t distribution with n-1 degrees of freedom
and non-centrality parameter d.

Simulating the effect of virtual specimens on the
lower bound

As the a90/95 value reduces with n, in principle it would
only be possible to compare the POD curves obtained
from equal sample sizes. This aspect can be a limiting
factor when acquiring data is particularly expensive
and time-consuming. Therefore, in real applications,
there is the need to consistently compare POD curves
generated from a different number of test structures.
The problem can be tackled by virtually augmenting
the number of samples to a common value.

Table 1. Pseudo-code for estimated sample size.

1 n = ni Define the number of samples used
n the pilot test study

2 g = 0:95 Confidence level on the lower bound
of the POD

3 While D . tol Imposing Guard Condition, start
while loop

4 d = z90

ffiffiffi
n
p

Non-centrality parameter of the
non-central t distribution

5 n = n + 1 Increase the number of specimens by 1
6 k = tn�1, g, d=

ffiffiffi
n
p

Computation of the tolerance factor k
7 a90=95 = �x + k � s Updating a90/95

8 D = a90=95 � a90 Updating D
9 End End of the While Loop
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The first step is to use the LaD method to compute
the value of �x and s. Then, assuming that the tested
specimens properly captured the main variability
sources affecting the experimental setup, it is possible
to simulate the effect of an increasing number of speci-
mens. Using the same equations described in Table 1,
one can define the tolerance factor k at different n val-
ues but keeping the values of �x and s fixed. Introducing
these virtual specimens shrinks the lower bound
toward the POD curve, potentially allowing for com-
parison of POD obtained from small datasets with oth-
ers obtained from greater sample sizes. The results of
the proposed simulation must be taken cautiously, and
based on the user expertise and the available previous
knowledge, one can judge if the initial hypothesis that
the original specimens properly capture the inherent
variability of the experimental setup holds to be true.

Specimens manufacturing

The DCB coupons were produced following the guide-
lines described in the ASTM D5528 standard.41 The
AS4 HexPly 8552� unidirectional carbon prepreg42

was employed to fabricate a 300 mm square panel with
[024] stacking sequence by hand layup. A 12 mm
TeflonTM film was placed during lamination at the
panel mid-plane. This non-adhesive insert served as an
initiation site for the delamination, providing an initial
crack length of 50 mm. The specimens were cut from
the panel utilizing an automated Proth� cutting
machine such that 25 mm strips were obtained. Ad hoc
loading bocks were machined, matching the specimens
width of 25 mm. Before bonding, the loading block
surface was sandblasted, whereas the bonding surface
of the specimens was slightly scrubbed with traditional
sandpaper. Impurities were removed with an alcoholic
solution, and the 3M� Scotch-Weld� EC-9323 struc-
tural epoxy adhesive43 was used for bonding.

Optical fiber sensors

Two types of DOFS were used in this study: SM OFSs
with ORMOCER�44 coating, produced by FBGS
Technologies GmbH (Jena, Germany), and GIM
DOFS, produced by Plasma Optical Fibre (Eindhoven,
The Netherlands). These were connected via LC/APC
connectors to an ODiSI-B,45 developed by LUNA
Innovations Inc. (Roanoke, VA, USA). The interroga-
tor uses swept-wavelength coherent interferometry to
measure Rayleigh backscattering,9,46,47 which origi-
nates as a result of non-propagating material-density
fluctuations.48 The scattered light exhibits a repeatable
profile that is sensitive to longitudinal strain, e, and
temperature variation, DT . By correlating the scattered
light profile before (baseline) and after (testing) a

certain perturbation, it is possible to compute the spec-
tral shift, Dn, or the variation in the resonance wave-
length, Dl, of the scattered light according to Equation
(3):

Dl

l
=

Dn

n
= KT DT + Kee ð3Þ

Where KT and Ke are the temperature and strain cali-
bration constants. Equation (3) resembles the response
of an FBG sensor. However, in this case, strain and
temperature changes can be computed as a function of
the fiber length with a certain spatial resolution, Dx,
rather than just at the grating location. In this study,
the interrogator was set up with a sampling frequency
of 23.8 Hz and Dx equal to 0.65 mm.

Experimental setup

There are a large number of studies proposing analyti-
cal solutions for DCB specimens. The simplest analyti-
cal solution considers the DCB arms as cantilever
beams clamped at the crack tip.49 Both the Euler–
Bernoulli beam theory and the Timoshenko beam the-
ory can be used, with the latter providing more accu-
rate results (Euler–Bernoulli-based solutions are a
special case of Timoshenko-based solutions if the shear
stiffness becomes infinite).50

The plot in Figure 2(a) shows a qualitative represen-
tation of the theoretical (Euler–Bernoulli solution) and
expected measured experimental strain profiles along
the longitudinal direction (x-axis) of the DCB speci-
men. The scheme shown in Figure 2(b) illustrates the
specimen dimensions and the positioning of the DOFS
along the top surface. The labels Seg. #1, Seg. #2, and

Figure 2. DCB specimen geometry and the optical fiber layout.
DCB: double cantilever beam.

Falcetelli et al. 5



Seg. #3, denote the three bonded segments present in
each specimen. The configuration was chosen to mini-
mize the bending radii of the DOFS.

Figure 3 shows an example of a DCB specimen
used in the fatigue test and the DOFS positioned
above its top surface. The bonding of the DOFS was
achieved using ThreeBond 1742� cyanoacrylate
adhesive.51

Before testing, one side of the DCB coupons was
coated with a thin layer of white spray paint. After
drying, 1 mm spaced vertical lines were used as a refer-
ence for visually estimating the crack length from the
camera. An extra vertical mark is placed at the crack
tip after the pre-cracking procedure explained in the
D5528 standard.41 Figure 4 shows a picture captured
from a 9-Megapixel camera positioned in front of the
specimen.

The true crack length is estimated by exploiting its
relationship with the compliance C, which can be
defined as the ratio between the load point displace-
ment d and the applied load in the DCB specimen P.
As explained in the D5528 standard,41 and shown in
Sans et al.,52 there is a linear relationship between the
cube root of C and the crack length a:

ffiffiffiffi
C

3
p

=
ffiffiffiffiffiffiffiffi
d=P3

p
= c1a + c2 ð4Þ

Where c1 and c2 are the fitting parameters of the linear
model. Therefore, once a sufficient number of observa-
tions is available, the linear model can be fitted, allow-
ing the assessment of future crack length estimations
from the C values (available at each time step) without
visualizing hundreds of images. For example, Figure 5
shows the linear regression performed on specimen
number 4, along with confidence and prediction inter-
vals. As shown in the zoomed view, data fall inside the
prediction intervals.

Data structure

Acquired strain data during static and fatigue tests of
the i-th DOFS segment and j-th specimen are organized
in a matrix S

j
i as follows:

S
j
i =

ex = 0
t = 0 � � � ex = n

t = 0

..

. . .
. ..

.

ex = 0
t = T � � � ex = n

t = T

2
64

3
75 ð5Þ

Where t and x represent the time at which the measure-
ment was taken and the location along the x-coordi-
nate, respectively. The columns of S

j
i can be interpreted

as the time history, t, of a single sensing element,
whereas each row shows the strain profile along the
fiber segment at a certain moment.

Similarly, the crack length is organized in a vector
aj

c, where the lower script c indicates that the crack has
been estimated with Equation (3) leveraging on the
compliance value:

aj
c =

ac, t = 0

..

.

ac, t = T

2
64

3
75 ð6Þ

Static tests

A Zwick—20 kN tensile test machine was used for sta-
tic testing, as shown in Figure 6.

Figure 3. Specimen example used in the fatigue test.
Figure 4. Crack length estimation in the DCB specimen.
DCB: double cantilever beam.

Figure 5. Compliance calibration.
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The Zwick software was set up to synchronize the
LUNA system and the camera. The tensile load is
applied at a displacement rate of 1 mm/min. A sam-
pling frequency of 0.5 Hz was used to collect data. The
first experimental campaign used a total of five DCB
specimens equipped with SM OFSs with
ORMOCER� coating. Since three optical fiber seg-
ments are bonded onto each specimen, the number of
linear regressions used to build POD curves can be
multiplied by three.

The same methodology was applied in a second
experimental campaign, where six specimens equipped
with GIM DOFS were tested. Preliminary results
revealed that GIM optical fibers are more sensitive to
small bending radii. As a result of the repeated bending
of the optical fiber, the configuration shown in Figure 2
would have resulted in an unsatisfactory signal-to-noise
ratio. Therefore, in this case, only one central optical
fiber segment was bonded in the specimen.

Fatigue test

An experimental fatigue test campaign was carried out
on three specimens, where SM DOFS with
ORMOCER� coating were surface bonded using the

scheme previously shown in Figure 2. The DCB speci-
mens were mounted in an MTS—10 kN Elastomer
hydraulic test machine equipped with a 10 kN load cell.
The whole experimental setup is shown in Figure 7.

The fatigue tests were performed in load control.
Figure 8 shows a schematic overview of how the
cycling loading was applied to the DCB specimens.
Preliminary fatigue tests using DCB specimens manu-
factured from the same CFRP laminate were per-
formed to assess the optimal load level to be used
during fatigue testing. This preliminary study found
that 80% of the pre-cracking load was the optimum
load level for delamination growth. Lower loads would
have led to very slow delamination growth, whereas
higher loads would have resulted in an unstable dela-
mination growth, which is not suitable for developing
POD curves.

The MTS software was programmed to reach 80%
of the pre-cracking load, P, with a ramp. Then, after
every 500 cycles at 5 Hz with a loading ratio, R, equal
to 0.1, the test is paused, and a trigger signal is sent to
both the camera and the LUNA system to allow syn-
chronized DOFS measurement and crack length esti-
mation, respectively. This scheme was necessary

Figure 6. DCB specimen installed in the Zwick—20 kN
tensile test machine.
DCB: double cantilever beam.

Figure 7. Fatigue test setup.

Figure 8. Fatigue test loading and measurement scheme.

Falcetelli et al. 7



because the DOFS signal-to-noise ratio degrades with
vibrations, and acquiring clean data without interrupt-
ing the test is difficult. Moreover, this acquisition con-
figuration guarantees that DOFS measurements are
acquired under the same applied load on the specimens
during the fatigue test, which is desirable since the
damage index (defined in the next Section ‘‘Fatigue
test’’) is load-dependent. Even if this choice brings
some difficulties because the crack propagation may
become unstable, the damage index will depend only
on the crack propagation and not on the applied load.

Damage index definition

The first step in developing POD curves is to identify a
proper damage-sensitive feature. From theory, it is pos-
sible to predict that the stress field reaches its maximum
compressive value at the crack tip. Therefore, the strain
value at the crack tip is a potential damage-sensitive
feature. For a generic delamination value, and thus a
generic time value t, it is possible to define a damage
index DIt as:

DIt = min ex = 0
t , . . . , ex = n

t

� ��� �� ð7Þ

Figure 9 shows an example of the strain profiles
obtained using DOFS at different times in the static
test profile. The black stars, placed in correspondence
with the lower peak of each strain profile, highlight the
crack tip position and its relative propagation as dela-
mination grows. Due to the non-linear strain transfer
occurring between the specimen and the optical fiber,11

and the distortion in the measured strain due to the
interrogator resolution, the strain does not decrease
linearly with the delamination length. The linearity is
restored by applying a logarithmic transformation to

the damage index. The new definition of the damage
index at generic time value, t, is given as:

DIt = ln min ex = 0
t , . . . , ex = n

t

� ��� �� ð8Þ

Then, it is possible to define a damage index vector DI
j
i

denoting the evolution over time of the damage index
related to the i-th DOFS segment and j-th specimen:

DI
j
i = ln

min ex = 0
t = 0 , . . . , ex = n

t = 0

� ��� ��
..
.

min ex = 0
t = T , . . . , ex = n

t = T

� ��� ��

2
64

3
75=

DIt = 0

..

.

DIt = T

2
64

3
75 ð9Þ

Results

Static test

SM optical fibers. Figure 10 shows the application of the
LaD method to SM DOFS with ORMOCER� coat-
ing. The abovementioned damage index behaves line-
arly with respect to the crack length, and linear
regression is performed for every damage index vector
DI

j
i. Since every regression line has its own intercept

and slope, the between-segment and between-specimen
variability is considered in the model.

In Figure 10 the abscissa assumes zero value at the
onset of the bonding length of each DOFS segment.

Figure 9. Strain profiles generated from DOFS analysis.

Figure 10. LaD method applied to SM DOFS data for crack
detection.
LaD: Length at Detection; SM: Single-Mode.
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The threshold was chosen by quantifying the noise
level in preliminary experiments. Precisely, three stan-
dard deviations related to noise data were summed to
the highest intercept of the regression lines. This proce-
dure avoids negative lengths at detection, which would
be the equivalent of saying that the crack was detected
before it reached the bonded region of the DOFS,
which should not be possible in principle.

The normality assumption of the lengths at detec-
tion can be verified using the Anderson Darling test
(Figure 11). The null hypothesis, H0, states that the
data follow a normal distribution. The null hypothesis
can be rejected if, for a certain significance level, a, the
Anderson Darling statistics, A2, is greater than the criti-
cal value. In the present case, considering a significance
level a = 0:05, and with a sample size N = 13, the criti-
cal value is equal to 0.679. The Anderson Darling sta-
tistics resulted to be A2 = 0:298\0:679. Hence, H0

cannot be rejected, and the normality assumption
holds.

Under the assumption that the crack lengths at
detection, denoted as black squares in Figure 10, fol-
low a normal distribution, it is possible to build a POD
and its relative lower bound by applying Equations (1)
and (2), respectively. Figure 12 shows the POD that
was obtained using this methodology.

The identified values for a90 and a90/95 in Figure 12
were 4.93 and 5.56 mm, respectively. The symbol D

denotes their difference.

GIM fibers. The same methodology used for SM DOFS
in Section ‘‘SM Optical Fibers’’ is now applied to the
static test data obtained with GIM DOFS. The LaD
results are shown in Figure 13. Although it is difficult
to verify the normality assumption using the
Anderson–Darling due to the low number of samples,
the collected data are enough to show how a different
strain transfer performance affects the resulting POD
curve. The GIM DOFS has a dual acrylate coating
whose stiffness is lower than the ORMOCER� coating
of SM DOFS. This results in a lower strain transfer
performance and a higher discrepancy between the real
strain (the one present on the specimen surface) and
the measured strain (strain present in the fiber core).

Figure 11. Darling–Anderson test.

Figure 12. POD and its lower 95% confidence bound of SM
DOFS.
POD: Probability of Detection; SM: Single-Mode.

Figure 13. LaD method applied to GIM DOFS data for crack
detection.
LaD: Length at Detection; GIM: Graded-Index Multimode.
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Figure 14 displays the corresponding POD curve
with a90 and a90/95 equal to 13.03 and 18.56 mm,
respectively. The poor performance in terms of strain
transfer is reflected in a90 and a90/95 whose values are
significantly higher than the previous static case.

Applying the method proposed in Section
‘‘Required number of specimens,’’ it is possible to show
the convergence of the lower bound as the number of
specimens increases (Figure 15). For example, when
the number of specimens is equal to 97, the a90/95 value
reaches 14.02 mm. This procedure is useful for com-
paring experimental data collected from different sam-
ples. As will be shown in Section ‘‘Discussion,’’ to
compare the a90/95 values of different experimental set-
ups, the number of samples is virtually augmented to
30 in all cases.

Fatigue test

Figure 16 shows that the LaD method was applied to
fatigue test data. The variability within segments of the
same specimens and between different specimens is
more pronounced than for the static case, even if the

same type of SM DOFS was used (with ORMOCER�
coating).

The corresponding POD curve is shown in Figure 17,
with a90 and a90/95 equal to 5.88 and 7.82 mm,
respectively.

The data highlight that both variability sources due
to between-specimens and within-specimen heterogene-
ity are present. The first two specimens (black and blue
color in Figure 16) have more data points with respect
to the static case because of the large number of sam-
ples acquired every 500 cycles. On the other hand, the
third specimen (magenta color in Figure 16) has few
data points because the crack propagated beyond the
bonded region of the DOFS right after the application

Figure 14. POD and its lower 95% confidence bound of GIM
DOFS.
POD: Probability of Detection; GIM: Graded-Index Multimode.

Figure 15. Lower bound convergence as the number of
specimens increases.

Figure 16. LaD method applied to SM DOFS data in fatigue
loading conditions for crack detection.
LaD: Length at Detection; SM: Single-Mode.

Figure 17. POD and its lower 95% confidence bound of SM
DOFS in fatigue loading conditions.
POD: Probability of Detection; SM: Single-Mode.
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of the pre-cracking load and propagated faster than in
the previous two cases.

Compared to the static case, the measured strain is
lower because the specimens were fatigue loaded at
80% of the pre-cracking load, P. This translates into a
lower signal-to-noise ratio and consequently lower DI
values, producing higher a90 and a90/95.

Discussion

Comparison of POD curves

Table 2 summarizes the results in terms of a90 and a90/95
for the different case studies.

Different optical fibers in the same loading config-
uration exhibit different a90 values, as shown in Table 2.
GIM DOFS with the dual acrylate coating have
lower strain transfer performance than SM fibers with
ORMOCER� coating, which is reflected in the higher
a90 value. Note that even the load plays a significant role
in these metrics even if the fiber is the same. This is
outlined in Table 2, comparing the first and the third
columns. In fatigue loading, the POD curves are worse
than the static case with higher values of a90.

Comparison of POD lower bounds with virtual
samples

The difference between a90 and a90/95, D, can be consid-
ered a measure of the variability sources involved in

the experiments. Indeed, as shown in Equation (2), the
position of the lower confidence bound is a function of
the standard deviation, s, of the lengths at detection.

In this study, the number of DOFS segments (sam-
ples) in each case is different. This situation is likely to
occur in real applications due to the availability of dif-
ferent DOFS or, for example, a limited amount of time
to perform fatigue tests compared to static tests.

As described in Section ‘‘Required number of speci-
mens,’’ since the tolerance factor k decreases as n
increases, a higher number of samples, n, shrinks the
difference between the POD curve and its lower bound,
decreasing a90/95 and correspondingly D. For example,
Figure 15 shows how the sample size affects the a90/95
value. The result was obtained using the pseudo-code
developed in Table 1 (Section ‘‘Required number of
specimens’’). However, performing long and expensive
experimental activities is not always possible. In such a
case, the only solution to lower a90/95 is redesigning the
experimental setup and diminishing the associated
variability sources to achieve a lower sample standard
deviation.

Nevertheless, it would be interesting to compare the
results obtained in this research by having the same
number of samples for each case study. Referring to
the procedure outlined in Section ‘‘Simulating the effect
of virtual specimens on the lower bound,’’ the authors
virtually augmented the number of samples of the dif-
ferent case studies to 30 units. Under the assumption
that the experimental data correctly captured the

Table 2. Summary of a90 and a90/95 values for the different case studies.

Static testing Fatigue testing

Optical fiber Step Index SM Graded Index Multi-Mode Step Index SM
Coating ORMOCER� Dual acrylate ORMOCER�
Number of samples (n) 13 6 9
a90 4.93 mm 13.03 mm 5.88 mm
a90/95 5.56 mm 18.56 mm 7.82 mm
D = a90/952a90 0.63 mm 5.53 mm 1.94 mm

SM: Single-Mode.

Table 3. Comparison of a90 and a90/95 values for the different case studies after the application of the pseudo-code given in Table 1
(number of virtual samples equal to 30).

Static testing Fatigue testing

Optical fiber Step Index SM Graded Index Multi-Mode Step Index SM
Coating ORMOCER� Dual acrylate ORMOCER�
Number of virtual samples (n) 30 30 30
a90; n = 30 4.93 mm 13.03 mm 5.88 mm
a90/95; n = 30 5.29 mm 14.62 mm 6.70 mm
Dn = 30 0.35 mm 1.59 mm 0.82 mm

SM: Single-Mode.
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variability sources involved in the experimental setup,
this methodology allows a fair comparison between the
different cases, eliminating a potential bias error due to
the different sample sizes. Applying this procedure to
Table 2, one obtains the results in Table 3.

The results confirm what is already seen in Table 2,
even if the differences within the case studies are less
accentuated.

Interpretation and implications of the results

The DOFS type proved to be a determinant factor in
the POD analysis, which can be directly correlated to
different strain transfer properties. On the other hand,
the loading type is also shown to be a key variable.
This is not surprising since DOSFs are sensitive to
strain which depends on the applied load. The higher
scattering in the fatigue data can be attributed to a
lower signal-to-noise ratio. First, the test itself involves
a higher amount of noise due to vibrations. Second, the
crack propagates at a lower load, thus further reducing
the signal-to-noise ratio. Moreover, the mechanisms
involved in delamination growth are different in fatigue
loading compared to quasi-static loading.2 For exam-
ple, a different amount of fiber bridging can affect the
strain field in the process zone,53 thus affecting the
damage index and the POD parameters.

This result suggests that also the loading mode could
potentially lead to different POD curves. Indeed, differ-
ent mode mixites of Mode I and Mode II would affect
the process zone and the strain profile, thus affecting
the damage index. In such a case, a novel and more
appropriate damage index should be developed because
the strain at the crack tip may no longer be the best
damage-sensitive feature.

Temperature variations are not considered in this
study but are expected to be determinant in the POD
analysis due to the relation between DT and Dl given
in Equation (3). More in general, variation of
Environmental and Operational Conditions (EOCs),
damage morphology, sensor drift due to degradation
(sensor and coupling), and additional variability
sources dependent on the specific application will cer-
tainly affect POD curves. Therefore, it is essential to
raise awareness about the limitations of the results and
perform sensitivity studies to address the influence of
the most determinant parameters.

Upscaling POD curves

In real applications, it could be inconceivable to test a
sufficiently high number of structures to perform a sta-
tistically consistent POD study for DOFS. Indeed, one
should be able to produce and replicate a large number
of identical complex structures, each equipped with an

identical DOFS setup. Even though the proposed
methodology was developed considering DOFS in
laboratory case studies, it offers a framework for asses-
sing POD curves in real applications in two different
ways.

First, it is possible to use the same methodology as a
basis to derive MAPOD for DOFS. This could be
achieved by simulating the outcome of the LaD method
given the noise level, the loading conditions, and the
strain transfer properties of the DOFS-structure
mechanical system. The variability sources can be mod-
eled assigning a certain probability distribution to the
most critical parameters.

Second, POD curves obtained at a coupon level
could be transferred at a structure level to monitor a
specific damage type. The objective is to use the pro-
posed methodology and build an experimental setup
that mimics the local perturbation caused by damage
in the strain field of a real structure. For example, in a
hot spot monitoring scenario, where the structure is
expected to fail due to mode-I delamination, the POD
curves obtained from equivalent DCB specimens can
provide an acceptable estimate of the damage detection
performance of the system in the real application.

Conclusions

To the best of the authors’ knowledge, this is the first
time an experimental POD study has been performed
for DOFS based on the Rayleigh backscattering. The
study proposed a methodology to develop POD curves
using the LaD method focusing on delamination,
which is one of the major causes of failure for compo-
sites. Mode I static and fatigue loading experiments
were performed on DCB specimens with two types of
DOFS (SM fibers with ORMOCER� coating and
GIM fibers with dual acrylate coating).

Probably, better POD curves could be obtained by
using stiffer adhesives, redesigning the experimental
setup to have lower noise, or using DOFS with higher
strain transfer properties. However, the case studies
that have been shown only serve as examples to show
the implications of performing a POD study in SHM
using DOFS. The goal is to develop an easily reprodu-
cible methodology to assess the performance of DOSF
and to bring the attention of the SHM community to
this topic which is often underestimated.

The following bullet points summarize the main
finding of this research:

� Both loading conditions and DOFS type affect the
performance in delamination detection

� POD curves for DOFS can also be sensitive to dif-
ferent loading modes, damage types, and laminate
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stacking sequences, dramatically increasing the
problem complexity compared to classical NDE
applications.

� The LaD model proved effective in producing POD
curves for DOFS, but the normality assumption is
difficult to verify as the sample size decreases.

� Other POD models, such as the REM, do not
require any normality assumption but are difficult
to fit with small sample sizes.

� In many cases, the only feasible solution is to derive
a MAPOD. The proposed framework, combined
with preliminary knowledge regarding the most fre-
quent damage modes in the structure, could be used
to develop MAPOD for DOFS.

� The study provides a practical approach to estimat-
ing the required number of samples for the POD
study.

� The same approach can be used to simulate the
lower bound convergence, imposing a certain num-
ber of virtual samples to compare POD curves
obtained from different sample sizes. Caution must
be taken in interpreting the results since the under-
lying assumption is that the available samples prop-
erly captured the variability.

� The presence of unexpected variability sources,
which are not captured in the experiments, such as
varying EOCs, leads to unconservative results.

Based on the finding of this work, further research is
needed and should be devoted to the following aspects:

� development of multi-dimensional POD curves
varying the mode mixites between Mode I and
Mode II for delamination;

� development of a MAPOD framework for DOFS;
� link the concepts of strain transfer and POD

curves;
� development of compensation strategies for varying

EOCs, sensor drift, and other variability sources
potentially affecting POD curves.

� analysis of upscaling potentialities and limitations
of such methodology, from both structural com-
plexity and loading complexity aspects;

The final aim of this work is to spark a constructive
debate in the SHM community about developing the
most appropriate methodologies to certify DOFS for
damage detection using POD curves.
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50. Škec L, Alfano G and Jelenić G. Complete analytical
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