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Partial molar properties from single molecular dynamics simulations
Thijs J. H. Vlugt

Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft, The Netherlands

ABSTRACT
In this manuscript, we show how to compute partial molar properties (e.g. partial molar volumes,
energies, and enthalpies) of fluid mixtures from single Molecular Dynamics simulations in the
microcanonical or canonical ensemble, using only relatively simple post-processing of trajectories. The
method uses least squares linear regression of local fluctuations of particle numbers and energies in
combination with the Small System Method, and is in principle valid for any number of components
and for any type of intermolecular interactions. For multicomponent systems, only a single simulation
is needed for a given composition of the mixture. Simulations of a binary WCA mixture are used to
illustrate the method, and to investigate the effect of system size.
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1. Introduction

Partial molar quantities are important thermodynamic proper-
ties of fluid mixtures that are of industrial relevance e.g. for the
design and operation of separation processes [1]. The partial
molar property xi of an extensive property X is defined as its
derivative with respect to the number of molecules of com-
ponent i (Ni), while keeping the pressure p, the temperature
T, and the number of molecules of all other components
(Nj=i) constant,

xi = ∂X
∂Ni

( )
T,p,Nj=i

(1)

Computing partial molar properties such as partial molar
volumes, energies, and enthalpies from molecular simulation
is not straightforward as there are no simple expressions to
relate these properties directly to particle positions. Several
techniques have been developed for computing partial molar
properties from molecular simulation, each of which with
specific advantages and disadvantages: (1) From directly com-
puting the derivative of Equation (1) [2] (the so-called direct
method). The disadvantages are that multiple simulations are
needed and that a numerical derivative has to be calculated,
which may be inaccurate; (2) From differentiating the exten-
sive quantity X with respect to the mole fraction of component
i [2]. This also requires multiple simulations and a numerical
differentiation; (3) From a variation of Widom’s test particle
method or identity changes of components [3, 4]. The disad-
vantage is that this method fails at high fluid densities, or
when different components vary significantly in size or inter-
molecular interactions; (4) From staged insertions e.g. using
the Continuous Fractional Component Monte Carlo technique
[5–9]. This approach is based on the fact that partial molar
volumes and enthalpies can also be written as partial deriva-
tives of the chemical potential. As this is very similar to free

energy calculations via thermodynamic integration [10, 11],
it can be computationally costly; (5) From the Small System
Method [12–14]. This method uses Kirkwood-Buff integrals
[15–17], which require relatively large systems and often
have a difficult convergence. Also, a complex matrix inversion
is needed to transform thermodynamic properties between
different ensembles; (6) From linear regression of simulation
data in open ensembles [18]. This requires simulations of
open ensembles (e.g. the grand-canonical or osmotic ensemble
[10, 11]) in which the number of molecules of each component
is fluctuating and controlled by imposed chemical potentials.
The method can also be applied to a single simulation box of
the Gibbs ensemble [10, 11]. Due to low acceptance probabil-
ities of insertions and deletions at high fluid densities, simu-
lations of open ensembles often require special techniques
e.g. Configurational bias Monte Carlo [10, 19, 20] or its var-
iants [21–24], or Continuous Fractional Component Monte
Carlo [7–9]. In this method, the running energies, enthalpies,
or volumes of the simulation box are fitted to linear functions
of the number of molecules of each component, and partial
molar properties follow directly from the regression coeffi-
cients [18]. A detailed overview of methods to compute partial
molar properties from molecular simulation can be found in
Refs. [5, 25].

Here, a conceptually simple method is presented to com-
pute partial molar volumes, energies, and enthalpies from
Molecular Dynamics simulations in the NVE (microcanonical)
or NVT (canonical) ensemble, in which the number of mol-
ecules is constant. In principle one could also use Monte
Carlo simulations in the canonical ensemble. The method
only requires the post-processing of trajectories or it can be
applied on the fly. The method can be considered as a combi-
nation of techniques (5) and (6) listed above. Linear regression
of particle numbers, volume, and energies is performed on
small subvolumes inside a large simulation box, and the
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corresponding small system properties are extrapolated to the
thermodynamic limit. The method is in principle valid for any
number of components and any type of intermolecular inter-
actions. For multicomponent systems, only a single simulation
is needed. Simulations of a binary WCA fluid are used to illus-
trate the method. It is shown that identical results are obtained
from directly performing the differentiation of Equation (1).

The manuscript is organised as follows. In Section 2, the
algorithm is described in detail. Simulation details of the
numerical validation are presented in Section 3. In Section 4,
a detailed comparison is made between the new method and
the direct method using the differentiation of Equation (1).
A finite-size analysis is also presented. Our findings are sum-
marised in Section 5.

2. Methodology

Consider the simulation of a single-component system in the
grand-canonical ensemble i.e. an ensemble in which the
volume, temperature, and imposed chemical potential are con-
stant, and the number of molecules fluctuates. The partial
derivative of the ensemble average energy 〈U〉 with respect
to the average number of molecules 〈N〉 equals [26, 27]

∂ U〈 〉
∂ N〈 〉

( )
T,V

=
∂ U〈 〉
∂m

( )
T,V

∂ N〈 〉
∂m

( )
T,V

= N × U〈 〉 − N〈 〉 N〈 〉
N2〈 〉 − N〈 〉 N〈 〉 (2)

in which the notation 〈· · ·〉 is used to denote ensemble
averages, which are dropped from now on for convenience.
For multicomponent systems with n components, expressions
for (∂U/∂Ni)T,V ,Nj=i

are much more complex, as both U and Ni

depend on the chemical potentials mi of all components [26]. It
is important to note that the result of Equation (2) can also be
obtained by least squares linear regression of the simulation
data, i.e. all values of U and N are recorded for each system
state during the simulation, and these data are fitted to
U = a0 + a1∗N. From least squares linear regression of this
equation it follows immediately that

a1 = N × U〈 〉 − N〈 〉 N〈 〉
N2〈 〉 − N〈 〉 N〈 〉 (3)

which is identical to Equation (2). This is an important result,
as apparently linear regression of the running simulation data
leads to the same value of (∂U/∂N)T,V ,m as Equation (2). In Ref.
[25], it is analytically shown that this holds also for arbitrary
multicomponent systems, and also for open systems where
the pressure is constant rather than the volume (e.g. the
NPT version of the Gibbs ensemble, or the osmotic ensemble
[10, 11]). Note that for the regression at constant volume, the
parameter a0 must be included and cannot be set to zero as
(∂U/∂N)T,V = U/N [25]. The advantage of least squares lin-
ear regression is that it is available in many different program-
ming languages as a part of a library or plugin, therefore often
requiring only a single line of computer code.

The central idea of the method presented here is to apply
least squares linear regression to the running simulation data
for different subvolumes V inside a large simulation box
with constant volume Vbox, and use scaling relations to obtain

partial molar properties in the thermodynamic limit, see
Figure 1. The simulation box itself has a constant number of
particles of each component, a constant total energy or a con-
stant temperature, and a constant volume Vbox, so that the sys-
tem is in the microcanonical or canonical ensemble. Inside the
large simulation box, we consider many (randomly placed)
cubic subvolumes, each with a different size, which needs to
be smaller than the simulation box. We record the number
of particles of each component (Ni) as well as the total energy
U of all particles inside the subvolume V. For pairwise inter-
molecular interactions, the energy of the subvolume can be
calculated by evenly splitting the pair interaction energy over
the interacting particles. Recording of Ni, U, and V for all sub-
volume sizes is repeated for different configurations of the sys-
tem (system states), and for different (random) placements of
the subvolume inside the simulation box. In the next step, all
recorded values for Ni, U, and V (for a given subvolume
size) are fitted using least squares linear regression

U = a0 + a1∗N1 + a2∗N2 + · · · (4)

and

V = b0 + b1∗N1 + b2∗N2 + · · · (5)

in which ai is the partial energy of subvolume V:

ai = ∂U
∂Ni

( )
T,V ,Nj=i

(6)

To allow for the sampling of the covariance between V and Ni,
one has to ensure that the fit of Equation (5) is performed for a
range of values of V, and not for just a single value. It is impor-
tant to note that ai and bi still depend on the size of the sub-
volume. According to the Small System Method [13, 14],
thermodynamic properties of subvolumes embedded in a lar-
ger simulation box scale as the inverse of the linear length of
the subvolume i.e. ai and bi scale as 1/L = 1/V1/3, which is
area over volume. The reason for this scaling is that unlike
the whole simulation box, the subvolumes do not have peri-
odic boundary conditions and are therefore further away
from the thermodynamic limit. Hence, one has to consider
the effective surface area of the subvolume [13, 14]. By per-
forming linear regression of the running simulation data
U(N1, N2, . . . ) for each subvolume size V and extrapolating
the calculated values of ai to the thermodynamic limit (i.e.
plotting ai as a function of 1/L and recording the limit
L � 0 from the linear regime, or alternatively, plotting
L× ai as a function of L and recording the slope at large L
[28]), we obtain ( ∂U

∂Ni
)T,V ,Nj=i

. Similarly, by least squares linear
regression of the running simulation data V(N1, N2, . . . ) for
various subvolumes V, and scaling of bi to the thermodynamic
limit, we obtain ( ∂V

∂Ni
)T,Nj=i

. This derivative of the volume is in
an ensemble at constant chemical potential rather than an
ensemble at constant pressure, but we will show later that in
practice we can safely assume that bi = vi = ( ∂V

∂Ni
)T,P,Nj=i

. To
obtain partial molar energies ui = ( ∂U

∂Ni
)T,p,Nj=i

(constant p)
from the partial energies ( ∂U

∂Ni
)T,V ,Nj=i

(constant V ), we need
to transform the derivatives at constant V to derivatives at
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constant p. This transformation can be performed according to

ui = ∂U
∂Ni

( )
T,p,Nj=i

= ∂U
∂Ni

( )
T,V ,Nj=i

+vi
∂U
∂V

( )
T,Nj

(7)

Following Simon and co-workers [12], for a system with n
components we can write the potential energy as a function
of T, V, and Ni, so

dU =
∑n
i=1

∂U
∂Ni

( )
T,V ,Nj=i

dNi + ∂U
∂T

( )
V ,Nj

dT

+ ∂U
∂V

( )
T,Nj

dV (8)

As U is an extensive function, this equation can be integrated
to

U = V
∂U
∂V

( )
T,Nj

+
∑n
i=1

Ni
∂U
∂Ni

( )
T,V ,Nj=i

(9)

By substituting the first term on the right-hand side of this
equation into Equation (7), we finally obtain

ui = ∂U
∂Ni

( )
T,p,Nj=i

= ∂U
∂Ni

( )
T,V ,Nj=i

+vi
U
V
−

∑n
i=1

Ni

V
∂U
∂Ni

( )
T,V ,Nj=i

[ ]
(10)

For a single-component system, this equation reduces to the
expected result

u = ∂U
∂N

( )
T,P

= U
N

(11)

For multicomponent systems, only a single simulation is needed
as all regression coefficients ai and bi follow from this simu-
lation. The partial molar enthalpies hi = ( ∂H

∂Ni
)T,p,Nj=i

simply
follow from hi = ui + p× vi.

It is important to point out the differences between the new
method described here, and the earlier approaches (5) and (6)
as described in Section 1. In approach (6) by Siepmann,
Josephson, and co-workers [18], simulations of an open
ensemble are required, so one needs to have insertions and del-
etions of molecules to and from the system. As mentioned ear-
lier, this may be difficult at high fluid densities. In the method
described here, by a combination of diffusion and random pla-
cements of the subvolumes, these particle number fluctuations
are automatically realised so that the number of particles in the
whole simulation box can be constant. The part of the simu-
lation box that does not belong to the subvolume can be con-
sidered as a grand-canonical reservoir to the subvolume. The
disadvantages are that a much larger number of particles is
needed compared to grand-canonical simulations [13, 14],
and that one has to store particle positions and their energies
(in total 4 floats per particle per system configuration). In
approach (5) by Simon and co-workers [12], Hill’s formulation

Figure 1. (Colour online) Schematicillustration of the method to compute partial molar properties from fluctuations of energy and number of molecules inside sub-
volumes. A binary system is considered here (colors indicate the different components). During the simulations, subvolumes V of various sizes (indicated by the dashed
boxes) are placed randomly in the simulation box, and the energy U of the subvolume and the number of molecules of each component inside the subvolume are
recorded. For each subvolume size, all simulation data on V and U are fitted as a linear functions of the number of molecules of each component (Equations (4), (5)). The
subvolume-dependent regression coefficients ai (Equation (4)) and bi (Equation (5)) are extrapolated to the thermodynamic limit. These scale as the area to volume
ratio (A/V = 1/L) of the subvolume [13, 14].
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of small system thermodynamics [29, 30] is used to compute
the derivative of the small-system enthalpy Ĥ (which is differ-
ent from the macroscopic enthalpy H ) with respect to the
number of molecules inside a subvolume V. This small-system
enthalpy is extrapolated to the thermodynamic limit, in which
a rather complex transformation (from an ensemble at con-
stant mi to an ensemble at constant Nj=i) is used to obtain par-
tial molar enthalpies. This approach also requires the explicit
computation of Kirkwood-Buff integrals [15–17, 31, 32],
which require large systems to properly converge. Although
the idea of considering fluctuations of particle numbers inside
subvolumes is similar, the method presented here is concep-
tually simpler and easier to implement, as least squares linear
regression is a standard numerical tool. The method described
here directly provides partial molar volumes without the need
of computing Kirkwood-Buff integrals.

The method described here can easily be extended to mol-
ecular systems and systems with multibody interactions. The
crucial requirement is that the subvolumes must have well-
defined values for the internal energy U and number of par-
ticles/molecules Ni. As all properties of the subvolume are
scaled to the thermodynamic limit (i.e. by considering large
L, and an even larger simulation box), computed subvolume
properties in the thermodynamic limit will be independent
on the precise details of how U and Ni are assigned to a sub-
volume, as the contribution of the surface of the subvolume
will eventually disappear for large L. For example, consider a
system with pairwise interactions. One may assign the subvo-
lume energyU to a subvolume in two different ways: (1) evenly
split the pairwise interaction energy over all interacting par-
ticles inside the simulation box, andU is the sum of all energies
of all particles inside the subvolume; (2) record all particles
inside the subvolume, and only count interaction energies
when both interacting particles are inside the subvolume.
Due to the surface to volume scaling of the subvolumes, the
functions L× ai and L× bi versus L will be different in these
two cases, but for large L their slopes (which correspond to
the thermodynamic property (∂U/∂N)T,V) will be identical,
and so will U/V. For molecules with more than a single inter-
action site, a natural way would be to choose the centre of mass
of a molecule as the position of a molecule, and to split the
interaction energy of molecules evenly over the interacting
molecules (also for multibody interactions, or long-range
interactions), but other choices can also be valid.

3. Simulation details

Following Ref. [12], we consider simulations of a symmetric
binary WCA fluid, in which particles interact via a Lennard-
Jones pair potential with the attractive tail cut off, so
u(r) = e+ 4e[( sr )

12 − ( sr )
6] for 0 , r , 21/6s and u(r) = 0

for r . 21/6s. In this equation, r is the distance between par-
ticles. The Lennard-Jones parameters e and σ are taken as
units of energy and length, respectively. The size σ of all par-
ticles is the same (s = 1), and the interactions between com-
ponents 1 and 2 are such that e11 = e22 = 5 and
e12 = e21 = 0.1. The reduced temperature T equals 2, and
the density of the systems corresponds to a reduced pressure
of p = 6.5. The resulting reduced densities vary between

r = 0.600 (pure system of component 1 or 2) and r = 0.725
(an equimolar system).

To illustrate the new method, Molecular Dynamics simu-
lations in the microcanonical (NVE) ensemble [10, 11] were
performed with 50, 000WCA particles (unless indicated other-
wise). In principle, one could also perform Monte Carlo simu-
lations in the canonical ensemble, however, for large systems
MD may be more efficient due to collective displacements
and the easy use of a linked cellist method [11]. The compo-
sition of the binary system varied between mole fraction
x1 = 0.1 to x1 = 0.9 in steps of 0.1. Periodic boundary con-
ditions were applied in all three directions. The equations of
motion were integrated using the velocity-Verlet algorithm
with a timestep of 10−3 in reduced units. During equilibration,
the velocities were scaled such that the average temperature
equals T = 2. The initial density was adjusted such that the
average pressure of the system equals p = 6.5. After equili-
bration, the simulation was performed for ca. 5× 106 time-
steps. Every 10 timesteps, 20 cubic subvolumes inside the
simulations were taken with a linear size between L = 0 and
half of the length of the simulation box, in steps of 0.5 (in
reduced units), so subvolume j has a linear length
L = 0.5× j. The subvolumes were all placed at randomly cho-
sen positions inside the simulation box, taking into account the
periodic boundary conditions of the simulation box. For each
subvolume of size j, the energy U and the number of particles
of each component (Ni) were recorded. All recorded values of
Ni, U, and V for this subvolume j (taken for the whole MD tra-
jectory) were fitted to Equations (4) and (5). The resulting coeffi-
cients ai were recorded for each subvolume j and the results were
extrapolated to the thermodynamic limit by plotting L∗ai as a
function of L and recording the slope at large L [13, 14, 28].
For the sampling of bi (partial molar volumes), the linear length
of each subvolume j was set to L = 0.5× (j+ ran), in which
ran is a uniformly distributed random number between 0
and 1. Having a small range of V is required to sample the
covariance of V and Ni. The sampling frequency (here, every
10 timesteps) and the number of sampled subvolumes per sys-
tem state (here, 20) could in principle be optimised.

As a reference, partial molar energies, volumes, and enthal-
pies were recorded for the same system using Monte Carlo
simulations in the isothermal-isobaric (NPT) ensemble [10,
11] at T = 2 and p = 6.5. The system consists of 500 particles,
which is sufficient as finite size effects were found to be very
small. Trial moves (in total ca. 5× 109 for each system) include
particle displacements (99%) and volume changes (1%). The
maximum particle and volume displacements were set such
that ca. 50% of all trial moves were accepted. Partial molar
volumes and energies were computed by adding 0, 1, 2, 3, 5,
and 10 particles to the system (at constant imposed pressure)
and computing the derivative of Equation (1) numerically.
We found that error bars in computed thermodynamic prop-
erties were smaller than 2% (calculated as the standard devi-
ation from 5 independent simulations).

4. Results and discussion

We first discuss the results of the MD simulations and the scal-
ing of the fluctuations in the energy and number of particles.
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In Figure 2 (top figures), the calculated linear regression
coefficients ai (Equation (4)) and bi (Equation (5)) multiplied
by the linear size of the subvolume L are plotted as functions of
L, for the system where the mole fraction of component 1
equals 0.1. Clearly, for large L, the functions L× ai and
L× bi scale linearly with L, thereby confirming the predicted
scaling by the Small System Method [13, 14]. The regime for
L>10 (in reduced units) was used for the linear fit, as indicated
by the dashed lines. The energy density of the subvolume,U/V,
is almost independent of the size of the subvolume (here:
U/V ≈ 0.50). We found that the scaling of the regression
coefficients as well as U/V for other mole fractions is similar.
The bottom figures of Figure 2 show the scaling of ai and bi
as a function of 1/L. The values of ai and bi in the thermodyn-
amic limit can be obtained by extrapolating the linear regime
to L � 0, but as shown in Ref. [28], it is more convenient to
plot the product of ai and bi with L and record the slope at
large L.

In Figure 3, partial molar volumes (vi = (∂V/∂Ni)T,p,Nj=i
) of

both components obtained from MC simulations (direct
method, Equation (1)) are plotted as a function of the mole
fraction of component 1. These values are compared to the
fitted linear regression coefficients bi obtained from the MD
simulations. It can be observed that the agreement between
the two method and simulation techniques is very good.
Differences between MC and MD are in all cases less then

2%. As the fluid mixture used in the simulations is symmetric,
the computed partial molar volumes should be symmetric
around a mole fraction of 0.5, and this is clearly the case.
We verified that in all cases deviations of this symmetry are
less than 2%. We also found that for both methods,
V = N1 × v1 + N2 × v2, again with differences less than 2%.
The results clearly show that the new method described here
using fluctuations inside subvolumes produce the correct
results. Strictly speaking, the obtained regression coefficients
bi are in an ensemble with constant chemical potentials of
the components, but the results show that in practice this is
nearly identical to an ensemble at constant pressure.

Partial molar energies (ui = (∂U/∂Ni)T,p,Nj=i
) are plotted as

a function of composition in Figure 4. Clearly, the differences
between the direct method Equation (1) and the new method
based on linear regression (in combination with Equation
(10)) are very small and nearly identical results are obtained.
We verified that differences in partial molar energies are less
than 2%, and that U = N1 × u1 + N2 × u2. It turns out that
for this system, the quantity (∂U/∂V)T,Nj

(appearing in the
transformation of Equation (7)) is of the order of −1 (in
reduced units), which is the same order of magnitude as ui
(except for the minus sign). The negative sign of
(∂U/∂V)T,Nj

is due to the fact that there are only repulsive
interaction in this system, so for an increasing volume the sys-
tem will have less repulsive interactions and hence a lower

Figure 2. (Colour online) Top figures: Scaling of the computed regression coefficients ai Equation (4) and bi Equation (5) multiplied by L as a function of the linear size
of the subvolume L. The mole fraction of component 1 equals 0.1 so N1 = 5000 and N2 = 45000 (boxsize ca. 42.92 in reduced units). The dotted lines show linear fits
for L>10. The energy density of the subvolume, U/V, is also shown (left), which is independent of L. Bottom figures: corresponding scaling of ai and bi as functions of 1/
L. Scaling the linear regime of these plots yields the slopes of the top figures.
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energy U. From this it follows that the values of the partial
properties (∂U/∂Nj)T,V ,Nj=i

and the partial molar properties
(∂U/∂Nj)T,p,Nj=i

are quite different.
As partial molar enthalpies (hi = (∂H/∂Ni)T,p,Nj=i

) follow
directly from hi = ui + p× vi, it is is obvious that for the
new method values obtained for hi are in excellent agreement
with the direct method.

It is instructive to investigate the number of particles that is
required for a successful application of the method. For this,
we considered MD simulations for a smaller total number of
particles, at constant composition and total number density.

Simulations with in total 10, 000, 25, 000, and 50, 000 particles
were carried out for N1 = 1, 000, N1 = 2, 500, and
N1 = 5, 000, respectively. In Figure 5, the scaling of the coeffi-
cients L× ai and L× bi is plotted as a function of L. For all sys-
tem sizes, a linear regime is obtained for L>10, but the slopes
for the smallest system (10, 000 particles) for ai are somewhat
lower than for the larger systems. The differences between the
values of ai and bi extrapolated to the thermodynamic limit are
rather small (ca. 5%), so one could argue that here a total sys-
tem size of 10, 000 particles would already be sufficient. For
this reason, it is recommended not to use less than 10, 000

Figure 3. (Colour online) Partial molar volumes of both components (vi = (∂V/∂Ni)T ,p,N j=i ) as a function of composition computed from MC simulations (500 particles),
using the direct method of Equation (1), compared with the results from MD simulations (50, 000 particles) using the linear regression of Equation (5), so vi = bi .

Figure 4. (Colour online) Partial molar energies (ui = (∂U/∂Ni)T ,p,N j=i ) as a function of composition computed from MC simulations (500 particles), using the direct
method of Equation (1), compared with the results from MD simulations (50, 000 particles) using the linear regression of Equation (4) in combination with Equation
(10).
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particles. Similar results were found for the other mole frac-
tions. The scaling of the coefficients L× bi with L (needed
for computing partial molar volumes) have a smaller finite-
size effect compared to ai. We found that the energy density
of the subvolume U/V is almost independent of the total num-
ber of particles and the subvolume size (except for very small
subvolumes corresponding to ca. 5 particles).

5. Conclusions

In summary, we have presented a new method to compute
partial molar properties (partial molar volumes, energies,
and enthalpies) from local particle number and energy fluctu-
ations inside subvolumes that are embedded in a larger
simulation box. The method leads to identical result as the
direct method i.e. computing the partial molar derivative

xi = (∂X/∂Ni)T,p,Nj=i
numerically using multiple simulations.

Advantages of the method are: (1) implementation is rather
straightforward; (2) partial molar properties of multicompo-
nent systems can be obtained from a single simulation (at
each composition); (3) one does not have to rely on inser-
tions or deletions of molecules or the computation of Kirk-
wood-Buff integrals. A sufficient number of particles is
needed so that the regression coefficients multiplied by the
linear size of the subvolume (L) scale as L. It is rec-
ommended to use at least 10, 000 particles. It would be inter-
esting to apply the method to molecular systems with more
complex interactions.
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Figure 5. (Colour online) Finite-size effects of the regression coefficients ai and bi multiplied by L plotted as a function of the size of the subvolume (L). MD simulations
of in total 10, 000, 25, 000, and 50, 000 particles were used, all at the same total number density (r = 0.63234) corresponding to p = 6.5.
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