

Delft University of Technology

Distributed Model Predictive Contouring Control for Real-Time Multi-Robot Motion
Planning

Xin, Jianbin; Qu, Yaoguang ; Zhang, Fangfang ; Negenborn, R.R.

DOI
10.23919/CSMS.2022.0017
Publication date
2022
Document Version
Final published version
Published in
Complex System Modeling and Simulation

Citation (APA)
Xin, J., Qu, Y., Zhang, F., & Negenborn, R. R. (2022). Distributed Model Predictive Contouring Control for
Real-Time Multi-Robot Motion Planning. Complex System Modeling and Simulation , 2(4), 273-287.
https://doi.org/10.23919/CSMS.2022.0017

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.23919/CSMS.2022.0017
https://doi.org/10.23919/CSMS.2022.0017

Distributed Model Predictive Contouring Control for
Real-Time Multi-Robot Motion Planning

Jianbin Xin, Yaoguang Qu, Fangfang Zhang*, and Rudy Negenborn

Abstract: Existing motion planning algorithms for multi-robot systems must be improved to address poor

coordination and increase low real-time performance. This paper proposes a new distributed real-time motion

planning method for a multi-robot system using Model Predictive Contouring Control (MPCC). MPCC allows

separating the tracking accuracy and productivity, to improve productivity better than the traditional Model

Predictive Control (MPC) which follows a time-dependent reference. In the proposed distributed MPCC, each

robot exchanges the predicted paths of the other robots and generates the collision-free motion in a parallel

manner. The proposed distributed MPCC method is tested in industrial operation scenarios in the robot

simulation platform Gazebo. The simulation results show that the proposed distributed MPCC method realizes

real-time multi-robot motion planning and performs better than three commonly-used planning methods

(dynamic window approach, MPC, and prioritized planning).

Key words: multi-robot system; path planning; model predictive contouring control; distributed optimization

1 Introduction

Currently, robots are playing an increasingly important
role in the manufacturing, defense technology, and e-
commerce industries[1, 2]. In the manufacturing industry,
Automated Guided Vehicles (AGVs) have been used as
intelligent robots and multiple AGVs collaborate to
improve operational efficiency when performing the
required tasks[3, 4]. As the robot becomes more intelligent
and autonomous, the AGV is being replaced by the
autonomous mobile robot, which moves in a free-
ranging way rather than the traditional grid roadmap
used for the AGVs[5]. During the execution of these
tasks, multi-robot systems, however, must have safe and
collision-free motions. As a result, multi-robot motion

planning has become a popular research topic in the
areas of manufacturing and logistics[6].

Point-to-point planning is an important branch of
multi-robot motion planning. All robots are distributed
in the same workspace and required to find optimal
paths connecting their respective starting and endpoints
to ensure that there is no collision between each robot
and the environment and no collision between every
two robots at any time[1, 5]. Motion planning for multiple
robots is more complex than that for a single robot.
Each robot needs to consider the behavior of other
robots, and the neighboring robots will become
dynamic obstacles[7].

Local motion planning with dynamic obstacles and
target points has been the focus of multi-robot path
planning. Common local path planning methods
include the artificial potential field method[8], velocity
obstacle method[9], and fuzzy logic control[10]. The
artificial potential field method is convenient for real-
time control at the bottom level, but it easily falls into
the local optimal point. The velocity obstacle method
can deal with obstacles of any shape; however, the
method assumes that the obstacles follow a fixed linear
velocity, ignoring the bias generated by other robots

 • Jianbin Xin, Yaoguang Qu, and Fangfang Zhang are with the

School of Electrical and Information Engineering, Zhengzhou
University, Zhengzhou 450001, China. E-mail: j.xin@zzu.
edu.cn; yaoguang.qu@qq.com; zhangfangfang@zzu.edu.cn.

 • Rudy Negenborn is with the Department of Marine and
Transport Technology, Delft University of Technology, Delft,
CD2628, the Netherlands. E-mail: r.r.negenborn@tudelft.nl.

 * To whom correspondence should be addressed.
 Manuscript received: 2022-05-26; revised: 2022-08-12;

accepted: 2022-08-29

COMPLEX SYSTEM MODELING AND SIMULATION
ISSN 2096-9929 01/06 pp 273−287
Volume 2, Number 4, December 2022
DOI: 10 .23919 /CSMS.2022 .0017

© The author(s) 2022. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

that may make the same collision avoidance behavior.
Fuzzy logic control overcomes the potential field
method’s tendency to produce local optima, but the
increased number of inputs can lead to problems in
constructing inference rules and a dramatic expansion
of the fuzzy table. These methods can quickly plan
collision-free motions for the multi-robot system. Still,
the robot’s motion process cannot be accurately
described, resulting in the inability to optimize the task
performance index of multiple moving robots.

Kinematic model based multi-robot motion planning
methods, which can accurately and effectively design
dynamic collision avoidance strategies for obstacles
and improve the performance index of the system for
completing operational tasks, are currently available,
such as the dynamic window method[11] and model
predictive control[12, 13]. The dynamic window method
is a fast planning method based on the combination of
linear and angular velocities. Nevertheless, this method
can only deal with static obstacles within a time
window, and dynamic obstacles cannot react in
advance. Model Predictive Control (MPC) is a rolling
optimization method that can integrate constraints such
as dynamic obstacles to effectively collaborate with
collision avoidance relationships among multiple robots
and handle the cooperation among multiple robots by
prioritized rules[14, 15] or coordinated controllers[12, 13].

When planning motions using the MPC methods
(e.g., Ref. [12]), the computational burden is large. To
reduce the computation burden, distributed MPC has
been investigated for coordinating the multiple-
vessels[16], the multiple quadrotors[17], and formulation
control of multi-agent systems[18]. However, we
observe that the above distributed MPC methods are
still not computationally efficient for real-time
planning in a complex manufacturing or logistics
working environment, in which static and dynamical
obstacles must be considered together. For instance, in
Ref. [17], a distributed MPC offline planning algorithm
was developed to reduce the computation burden by
detecting and resolving only the first collision during
the planning horizon. Ferranti et al. proposed a
distributed MPC algorithm based on the Alternating
Direction Method of Multipliers (ADMM) to
coordinate multiple vessels in Ref. [16]. The
computation time relying on multiple iterations for
vessel negotiations takes considerably longer than the
sampling time, which is not applicable for real-time
planning.

To address these limitations, this paper proposes a
distributed motion planning method that combines the
kinematic constraints of robots, static environment
constraints, and the predicted behaviors of neighboring
robots to achieve collaborative motion planning for
multiple robots while ensuring real-time performance.
The distributed method is based on Model Predictive
Contouring Control (MPCC), which is proposed for
real-time motion planning of a single mobile robot[19, 20].
The MPCC allows separating the tracking accuracy and
productivity to reach a good trade-off between these
two objectives. Using MPCC, the followed path is not
time-dependent, and the productivity can be improved,
compared with the existing MPC methods which track
a time-dependent path[21]. To achieve the real-time
planning, we implement a fast algorithm based on a
real-time iterative scheme and automatic C-code
generation. In the developed distributed MPCC, each
robot exchanges its respective predicted trajectories
with each other to achieve multi-robot collision-free
motion planning. The developed distributed MPCC is
tested in the Robot Operating System (ROS) and
compared with the three commonly used planning
methods (dynamic window, MPC, and prioritized
planning).

The remainder of the paper is organized as follows.
Section 2 introduces the multi-robot motion planning
problem and the workspace used in this paper. Section
3 describes the designed distributed MPCC for real-
time collision-free motion planning of multiple robots.
In Section 4, simulation tests are performed by
implementing the developed distributed MPCC in the
ROS environment. The conclusion and future research
directions are given in Section 5.

2 Problem Definition and Model Description

This section defines the multi-robot motion planning
problem to be studied and then mathematically
describes the robot kinematic model and related static
obstacles, dynamic obstacles, and reference paths.

2.1 Problem definition

For the studied multi-robot motion planning problem,
each robot moves a shared workspace. Each robot is
assigned a task to move in the shortest possible time
from its origin to its destination to ensure efficiency.
The robots must not collide with the static environment
and each other in the process of performing the task to
ensure coordination between the robots.

 274 Complex System Modeling and Simulation, December 2022, 2(4): 273−287

The important assumptions are described as follows:
● Each robot can obtain its position information

through the positioning system in the workplace;
● Each robot has an independent controller to

execute the control algorithm;
● Each robot can exchange the information with the

surrounding robots;
● Perturbation information and malfunctions do not

occur during communication;
● All robots start the tasks simultaneously, and each

robot is assigned a fixed starting and ending point.

2.2 Description of robot workspace

W
W = R2

The robot’s workspace is a two-dimensional plane,
i.e., . The robot can move in any direction. For
the research problem of robot motion planning, grid
maps are widely used for environment modeling due to
their simplicity and ease of implementation[22, 23]. The
grid map environment is useful for motion planning;
we use the occupancy grid map to model the
workspace.

The core idea of the grid map is to divide the
working space into several grids of the same size. All
robots of the multi-robot system share the same map.
Each robot occupies multiple grids and can move freely
in any direction on the grid map. Each grid can be
represented by three states: occupied area, free area,
and unknown area. A grayscale image is used to denote
the status of the grid map. Each pixel of the image
represents a grid on the map. As shown in Fig. 1, the
black area represents the occupied area, the white area
represents the free area, and the gray area represents
the unknown area.

Before introducing the detailed mathematical
formulation of the robot kinematic model and the
designed MPCC controller, we list all the symbols used
in this paper and the related descriptions in Table 1.

Table 1 List of variables and parameters for model
predictive contouring control.

Symbol Definition

Variable

zi(k) i kState of the robot at moment
ui(k) i kInput of robot at moment

xi(k) i x
k

Coordinate of robot in the -axis direction at
 moment

yi(k) i y
k

Coordinate of robot in the -axis direction at
 moment

ϕi(k) i kHeading angle of the robot at moment
vi(k) i kForward speed of robot at moment
wi(k) i kSteering speed of robot at moment

θi(k) i
k

Distance traveled by the robot on the
reference path at moment

Parameter

V Total number of robots
i iRobot
j jRobot
τ Single time step
N Total number of predicted steps
W Robot workspace
Z Set of all feasible states
U Set of all feasible inputs

Bi(z) i zSpace occupied by robot in state

RW
i (z)

i
Rotation matrix obtained from the pose of the

robot
c

cThe -th circle of the space occupied by the
robot

pi
i

z
Position of robot does not consider the

coordinates of the -axis
pi

c c
i

Coordinates of the center of the -th circle in
the body coordinate system of the robot

nc The total number of circles in the space
occupied by the robot

qi
0:N iOptimal trajectory of robot
qi

n
n

i
The -th point of the optimal trajectory of

robot

a
Long semi-axis of the ellipse representing the

dynamic obstacle

b Short semi-axis of the ellipse representing the
dynamic obstacle

R(ψ) Rotation matrix representing the ellipse of
dynamic obstacles

△xc
i, j

j
c i x

Distance between the ellipse denoting and
the -th circle denoting in the -axis

direction

△yc
i, j

j
c i y

Distance between the ellipse denoting and
the -th circle denoting in the -axis

direction
Pi iGlobal reference path for robot

pr
i,m m

i
The -th coordinate point of the reference

path of robot
vref iReference speed of the robot

ei(k) i kError vector of robot at moment
zi

1:N i NRobot ’s states on the predict trajectory
ui

0:N−1 i NRobot ’s inputs on the predict trajectory
zi

init iInitial state of robot
zi

goal iTarget state of robot

Free area

Occupied area

Unknown area

Fig. 1 Illustration of the occupancy grid map for the
workspace.

 Jianbin Xin et al.: Distributed Model Predictive Contouring Control for Real-Time Multi-Robot Motion Planning 275

2.3 Robot kinematic model

To represent the kinematic model of each robot, for the
sake of simplicity, we use the unicycle motion model.
The unicycle model is used to address the displacement
and velocity of two wheels of a differential drive robot,
which is a common type of mobile robot[24]. To
simplify the description, all robots use the same
kinematic model. The kinematic model is
mathematically described as follows:
 ẋẏ

ϕ̇

 =
cos ϕ
sin ϕ

0

v+
001
w (1)

x y i
y ϕ

v
w

where and are the coordinates of robot in the
x-axis and -axis directions, respectively. is the
heading angle of the robot. is the forward speed and

 is the steering speed.

|w| ⩽ wmax

|v| ⩽ vmax

wmax vmax

Due to the practical capability of the robot, we
constrain the steering speed and the forward
speed with the vehicle performance, where

 is the maximum steering speed, and is the
maximum forward velocity.

iThe above kinematic model of robot can be
discretized using the multiple direct hitting method[25]

as follows:

zi(k+1) = zi(k)+τ

vi(k)cos(ϕi(k))
vi(k)sin(ϕi(k))

ωi(k)

 , i ∈ IV (2)

τ

zi(k+1) = fi(zi(k), ui(k))
zi(k) = [xi(k),yi(k),ϕi(k)]T ∈ Z zi(k) xi(k) yi(k)
ϕi(k)

i k
Z

ui(k) = [vi(k),ωi(k)]T ∈ U ui(k) vi(k) ωi(k)
i
k U

IV := {1,2, ...,V}

where denotes a single time step (in seconds). We
express Eq. (2) as , where

, , , , and
 denote the state, longitudinal position, lateral

position, and heading angle of robot at moment ,
respectively. denotes the set of all feasible states.

. , , and denote
robot ’s input, forward velocity, and steering velocity
at the -th moment, respectively. denotes the set of
all feasible inputs, .

i z
Bi(z) nc

Bi(z) ⊆∪c∈{1, 2, ..., nc} B
i
c(z) ⊂W

pi+RW
i (z)pi

c

pi = [xi,yi]
z RW

i (z)
pi

c

The space occupied by robot in state is denoted as
. As shown in the blue circular region in Fig. 2,

circles are used in this paper for an approximate
representation, i.e., . The
center coordinates of each circle are expressed in the
inertial coordinate system as , where

 denotes the robot coordinates without
considering the -axis, denotes the rotation
matrix obtained from the pose of the robot, and
denotes the center coordinates of each circle in the
body coordinate system.

X

pr
i, 1

pr
i, 2

pr
i, 3

Y

Static obstacles

Safe area

Reference path
Predicted

trajectory

Fig. 2 Safety zones for robots in static environments.

2.4 Related constraints

This part provides the related static and dynamic
obstacles and the reference path, and these contents are
necessary when planning the collision-free motions
based on the kinematic model.
2.4.1 Static obstacle constraints

Ostatic ⊂W
The space occupied by the static obstacles is denoted as

. By establishing a static map of the
environment, according to the location of each robot,
we can use the predicted trajectory of the last moment
to calculate a set of convex quadrilaterals in the free
area as a safe area for the robot, as shown in the orange
box in Fig. 2.

k
k−1

qi
0:N = [pi∗

1:N |k−1, q
i
N]

k pi∗
1:N |k−1 = [pi∗

1|k−1, p
i∗
2|k−1, ..., p

i∗
N |k−1]

qi
N

qi
N = 2pi∗

N|k−1− pi∗
N−1|k−1 qi

n(n = 1,2, ...,N)

cstatic
n (pi

n) =
∪4

l=1 cstatic,l
n (pi

n)
qi

n

To obtain the convex region at moment , we first
define the optimal trajectory at moment , which is

. It is the latest predicted trajectory
at moment , where ,

 is the extrapolation of the last two points, i.e.,
. For each point ,

a convex region without touch is computed, denoted by
four linear constraints ,
which makes away from the surrounding static
obstacles.

i k zi(k)
c

l

The representation of the static obstacle constraint is
the same for each robot in the multi-robot system. The
state of robot at moment is , corresponding to
the constraint representation of the -th circle that
represents the space occupied by the robot and edge
of the polygon as

cstatic,l,c
i (zi(k)) = hl− nl · (pi−RW

i (z)pi
c) > 0 (3)

hl nlwhere and denote the edges of the polygon.
2.4.2 Dynamic obstacle restraints
For the multi-robot motion planning, mutual collision
avoidances need to be considered. For a particular
robot, neighboring robots can be regarded as dynamic
obstacles.

We use three robots, Robot 1, Robot 2, and Robot 3,
to illustrate a general case, as shown in Fig. 3. Robot 2
and Robot 3 will be considered dynamic obstacles from

 276 Complex System Modeling and Simulation, December 2022, 2(4): 273−287

a b
R(ψ)

the perspective of Robot 1, represented by an ellipse
with long semiaxis , short semiaxis , and a rotation
matrix . At the same moment, from Robot 2’s
perspective, Robot 1 and Robot 3 will then be seen as
dynamic obstacles. We use an ellipse to describe
dynamic obstacles because the ellipse’s long and short
axis can be adjusted. Compared with the circle, there
will not be too many redundant areas. It can better
represent the moving obstacles and conform to the
robot’s longitudinal movement, dominating lateral
movement characteristics. Moreover, the ellipse is
continuous and does not produce noncontinuous
derivatives at the four corners, such as a rectangle[26].

x y

k k

i

To ensure that the distance between the robots in the
-axis direction and the -axis direction is greater than

the sum of the radius of the circle indicating the space
occupied by the robot and the axis length of the ellipse,
at moment , we omit the symbol to simplify the
description and express the collision avoidance
constraint between the -th robot and the other robots as
follows:

cobst, c
i, j (zi) =

[△xc
i, j

△yc
i, j

]T
R(ψ j)T

[1
a2+r2 0

0 1
b2+r2

]
R(ψ j)

[△xc
i, j

△yc
i, j

]
> 1

(4)

c
j x y

△xc
i, j △yc

i, j
c

i
j

where the distances between the -th circle and the
dynamic obstacle in the -axis direction and the -
axis direction are denoted by and ,
respectively. r denotes the radius of the -th circle.
Taking the three robots in Fig. 3 as an example,
represents Robot 1, while represents Robot 2 and
Robot 3.
2.4.3 Reference path

Pi i

Connecting the starting and ending points of the robot
gives the simplest global reference path, which can also
be given by the global path planner. As shown in Fig. 2,
we assume that the global reference path of robot

pr
i,m = [xr

i,m,y
r
i,m] ∈W

m ∈ M := {1,2, ...,M}
ζi

m(θi) θi

i

consists of a series of line segments obtained by
connecting M coordinate points ,
where . We smooth each line
segment using a cubic polynomial, where
approximates the distance traveled by robot along the
reference path.

η

Lr
i

We connect segments of the reference path into a
differentiable local reference path for trajectory
tracking.

Lr
i (θi(k)) =

m+η∑
h=m

σh,+(θi(k))σh,−(θi(k))ζi
m(θi(k)) (5)

σh,−(θi(k)) = 1/(1+ e(θi−
∑h

j=m sh)/ϵ) σh,+(θi(k)) =
1/(1+ e(−θi+

∑h−1
j=m sh)/ϵ)

ϵ

where and
 are two sigmoid functions for each

reference path. The function is continuous, smooth, and
strictly monotonic. is a small design constant. This
representation ensures that the local reference paths
required to compute the solver gradient are continuous.

3 Distributed MPCC

In this section, a distributed model predictive
contouring control method is developed. Model
predictive contouring control is based on model
predictive control[27], a control methodology to obtain
control actions by minimizing an objective over a finite
receding horizon based on a dynamical model.
Recently, to address disturbance rejection when
planning the robot motion, model predictive contouring
control has been especially proposed[19, 20, 28] . The
MPCC follows the desired path and adjusts the local
robot motion of the complex environment in real-time,
and the productivity can be improved based on the
reference path. We use the foundation of the MPCC for
planning the motion of a single robot[20] and further
propose a distributed MPCC controller for the multi-
robot planning problem. First, we introduce the
mathematical formulation of the MPCC controller for
each robot and then give the detailed procedures for
implementing the MPCC controller for real-time
planning.

3.1 Performance metrics

Ji(zi(k),ui(k), θi(k))
Ji(zi(N), θi(k))

N

The performance metrics of the model prediction
contour control problem in this paper are divided into

 during the system state change and
 for the system end state. The goal of the

model is to compute a trajectory for the robot that will
not collide in the next time steps while minimizing
the cost function.

The performance metrics during the system state

Robot 1

a

b

b
a ψj

Δy1
i, j

Δx1
i, j

Δy2
i, j

Δx2
i, j

X

Robot 3

Robot 2

r

Y

Fig. 3 Multi-robot movement schematic (from the
perspective of Robot 1, dynamic obstacles are Robot 2 and
Robot 3).

 Jianbin Xin et al.: Distributed Model Predictive Contouring Control for Real-Time Multi-Robot Motion Planning 277

change are expressed as

Ji(zi(k),ui(k), θi(k)) = Ji
tracking(zi(k), θi(k))+

Ji
speed(zi(k),ui(k))+ Ji

repulsive(zi(k))+
Ji

input(ui(k))
(6)

Ji
tracking(zi(k),θi(k)) Ji

speed(zi(k),ui(k)) Ji
repulsive(zi(k))

Ji
input(ui(k))

where , , ,
and represent the tracking cost, velocity
cost, collision-free cost, and input cost, respectively, to
constitute the total performance metrics of the MPCC
controller for each robot, as suggested in Ref. [20].

Since the speed of the robot in the final state of the
system is zero, there is no need to consider the
constraints on velocity and input, so the performance
metrics of the system end state are expressed as

Ji(zi(N), θi(N)) = Ji
tracking(zi(N), θi(N))+

Ji
repulsive(zi(N))

(7)

3.1.1 Tracking cost

ei(k) = pi(k)− pr
i (θ(k))

ei(k)

Contour and lag errors are used to track the reference
path, and we define , then, the
error vector is denoted as

ei(k) =
[

sinϕ(θi(k)) −cosϕ(θi(k))
−cosϕ(θi(k)) −sinϕ(θi(k))

]
ei(k) (8)

ϕ(θi(k)) = arctan(∂yr
i (θi(k))/ ∂xr

i (θi(k)))where represents
the direction of the motion.

The tracking cost of model predictive contouring
control is expressed as

Ji
tracking(zi(k), θi(k)) = ei(k)TQϵei(k) (9)

Qϵwhere is a design parameter. The solution for
minimizing the quadratic tracking cost defined in Eq. (9)
drives the robot toward the reference path.
3.1.2 Velocity cost

i vi(k) k
vref

We introduce a velocity cost term to penalize the
deviation of robot ’s velocity at moment from
the reference velocity , denoted as

Ji
speed(zi(k),ui(k)) = Qv(vref − vi(k))2 (10)

Qv

vref

where is a design parameter, the reference velocity
 can be obtained by upper-level planning, and

different reference velocities can be chosen for
different local reference paths.
3.1.3 Collision-free cost
We also add a cost term similar to the potential
function to increase the safe distance between the
robots, denoted as

Ji
repulsive zi(k)) = QR

n∑
j=1

1
(△xi, j(k))2+ (△yi, j(k))2+γ

(11)

QR n
△xi, j(k) △yi, j(k)

x y
γ ⩾ 0

where is a design parameter, denotes the number
of dynamic obstacles, and represent the
distances between the robot and the dynamic obstacles
in the -axis direction and the -axis direction,
respectively, is to ensure numerical stability, and
Eq. (11) also increases the robustness of the method to
localization uncertainty by increasing the distance
relative to the obstacles.
3.1.4 Input cost
In the end, the input cost also needs to be included as
follows:

Ji
input(zi(k), θi(k)) = ui(k)TQuui(k) (12)

Quwhere is a design parameter.

3.2 Overall formulation

After providing the performance metrics of the MPCC
controller for each robot, we give the overall
mathematical formulation of the distributed MPCC
control problem, which is as follows:

J∗i = min
zi
0:N′u

i
0:N−1′ θ

i
0:N

N−1∑
t=0

Ji(zi(k+ t),ui(k+ t), θi(k+ t))+

Ji(zi(k+N), θi(k+N))
(13)

s.t.

zi(k+1) = f (zi(k),ui(k)) (14)

θi(k+1) = θi(k)+ vi(k)τ (15)

ui(k) ∈ U, zi(k) ∈ Z, zi(0), θi(0) given (16)

cstatic,l,c
i (zi(k)) > 0,∀c ∈ {1,2, ...,nc}, l ∈ {1,2, ...,4} (17)

cobst,c
i, j (zi(k)) > 1,∀c ∈ {1,2, ...,nc},∀ j (18)

vi(k) i τ

U Z
zi

1:N ui
0:N−1

N
θi(k)

k

[ui(k)∗]N−1
k=0

where denotes the forward velocity of robot ,
denotes the time step, and and denote the allowed
inputs and states, respectively. and denote
the states and control inputs on the predictive
horizon, respectively. denotes the predicted travel
distance of the -th moment along the reference path.
By solving this optimization problem, the locally
optimal control command that guides the
robot along the reference path without collisions is
obtained.
3.2.1 Distributed architecture
Compared with a single controller to centrally plan the
motions of all robots, this paper proposed a distributed
control mechanism of sending and receiving other

 278 Complex System Modeling and Simulation, December 2022, 2(4): 273−287

robots’ predicted trajectory between robots to ensure
that each robot can solve its optimization problems in
parallel through independent controllers.

k

(k−1)

V

The distributed network architecture of the multi-
robot system is shown in Fig. 4. At the -th moment,
each robot simultaneously solves its own model
predictive contouring control problem in parallel based
on the predicted trajectory information of the
neighboring robots at the -th moment and
exchanges the recalculated predicted trajectory with the
neighboring robots at the current moment until it
reaches its respective target point. Note that the
communication between two robots may be limited in
the industrial workplace. The dashed line indicates
Robots 1 and can communicate only within a limited
area when they are close to each other.

The procedures of the developed MPCC method are
described in Algorithm 1. Each robot uses its planner to
solve the optimization problem in a parallel manner.

i
i

vref = 0

i

First, each robot calculates the static constraint based
on the reference path and static environment
information (Step 6). The predictive trajectory of robot
 is illustrated in Fig. 5, and the predictive region (area

of circles) is occupied only by robot to prevent the
collisions from the other robots. If no feasible solution
is detected, we let to stop the robot, as shown in
Fig. 6. The robots then exchange information about
each other’s predicted trajectories (Step 7).
Neighboring robots are considered dynamic obstacles
added to the dynamic collision avoidance constraint
(Step 8). The optimal trajectory for robot can be
obtained by solving an individual problem (Step 9).
Finally, the new information is sent to the surrounding
robots, while the first step of the control inputs is
executed (Steps 10 and 11).
3.2.2 Real-time implementation

10−4

We use an open-source Automatic Control and
Dynamic Optimization (ACADO)[29] code generation
toolkit to implement the proposed distributed MPCC
controller. The toolkit generates an optimized and
independent C-code that restricts the relevant
computations to the most basic steps. The generated
C-code is based on a multiple direct hitting method and
a Gauss-Legerdale 4th-order integrator implementation
with a sampling time of 100 ms. The toolkit uses
sequential quadratic programming to solve the
nonlinear model predictive control problem of Eq. (13),
qpOASES[30] is used to solve the corresponding
quadratic programming problem and KKT is set to

. The maximum number of iterations is 10.

4 Results and Discussions

To verify the effectiveness of the proposed control

Robot 1

Robot V
uV

0:N−1 (k−1)

u1
0:N−

1 (k
−1)

u i
0:N−1 (k−1)

ui
0:N−1

 (k−1)

MPCC i

Robot i

Sender

Receiver

Fig. 4 Multi-robot system architecture.

Reference path

Predicted trajectory
pr

i, 1

pr
i, 2

pr
i, 3

X

Y

Fig. 5 Predicted trajectory based on MPCC.

Reference path

Predicted trajectory
pr

i, 1

pr
i, 2

pr
i, 3

X

Y

Fig. 6 Predicted trajectory if no feasible solution is detected
(we let vref = 0).

Algorithm 1　Proposed distributed MPCC algorithm for
multi-robot motion planning

z1
init,z

2
init, ...,z

V
init

z1
goal,z

2
goal, ...,z

V
goal N

1:Initializing parameters of all robots: ,
 and predicted steps

k = 0, t,2t, ...2: for do
i i ∈ V3: for all Robot , do in parallel

θi(0) i4: Estimate the distance that robot is currently
traveling on the reference path

pr
i (θi(k)),k = 1,2, ...,N

5: The given reference path is serialized to obtain
, according to Eq. (5)

cstatic,l,c
i (zi(k))

6: Calculate the static obstacle avoidance constraint
, according to Eq. (3)

k−17: Receive the trajectory of the surrounding robots at
moment

cobst, c
i, j (zi)

8: Add the trajectory of the surrounding robots to dynamic
collision avoidance constraint , according to Eq. (4)
9: Solve the optimization problem of Eq. (13)
10: Send the predicted trajectory of the current moment to
other robots

u∗i (0)11: Apply to move forward
12: end for
13: end for

 Jianbin Xin et al.: Distributed Model Predictive Contouring Control for Real-Time Multi-Robot Motion Planning 279

methodology, in this section, we design two sets of
scenarios while considering the method of handling
collision avoidance among robots. We simulate and
compare the proposed MPCC with the classical
dynamic window method[11] and prioritized planning
method[14, 15].

4.1 Simulation settings

wmax =

1 rad/s vmax = 2 m/s amin = 0 amax = 2.5 m/s2

We use Gazebo to build the physical simulation
environment. The simulation experiment uses a
computer with a 2.60 GHz main frequency and
12.0 GB memory. The robots in the experiments use
the same URDF model to describe the robot’s shape,
size, and physical properties, all of which are jackal
robots from ClearPath robotics. We choose

, , , and .
The individual functional modules of the robot were

written in the C++ programming language and placed
in their own separate ROS packages depending on their
functions. Robot localization is implemented with the
help of the amcl package, which implements the
adaptive Monte Carlo localization method[31]. The
method is based on real-time data obtained from radar
and uses particle filters to track the pose of the robot
based on the known map information. In addition, a
map server node is used to provide the robot with map
information of its surroundings, and the RViz
visualization tool is used to monitor the operational
state of the whole multi-robot system.

The proposed MPCC method is compared with three
commonly-used methods:

● Dynamical Window Approach (DWA), which is an
effective online collision-free local planner for mobile
robots[11]. DWA calculates the search space from a set
of velocities that produce a safe trajectory, then selects
the optimal velocity and heading to maximize the
robot’s clearance.

● Prioritized planning method, in which the motion
of each robot is planned sequentially following
different priorities[9]. In this paper, the prioritized
planning strategy is integrated with the MPCC
(referred to as P-MPCC) for re-planning at each sample
instant.

● Model predictive control method, which uses a
nonlinear predictive control for online motion planning
with a time-dependent reference[21]. Here, the MPC
method is also implemented in the same distributed
way (D-MPC) as the proposed D-MPCC method.

The reference paths of these four methods are

identical. The reference path is determined by the
global planning algorithm, such as Dijkstra.

16 m×
6 m

16 m×11 m

We designed a single-channel scenario of size
, using two robots for testing. The second scenario

is a complex working scenario[32] of size ,
tested with six robots simultaneously. For each
scenario, ten simulations have been conducted.

4.2 Single channel scenario

vref ∈ {0.8 m/s,
1.0 m/s,1.2 m/s}
N ∈ {10,20,30,40,50} THorizon ∈ {1 s,2 s,3 s,4 s,5 s}

To evaluate the multi-robot distributed MPCC method
proposed in this paper, we conducted ten sets of test
experiments in a single-channel scenario, as shown in
Fig. 7, for different reference velocities

 and different predictive horizons
 (),

respectively. In this scenario, the coordinates of the
starting position and the coordinates of the ending
position of the two robots are given in Table 2.

vref N

We evaluate the total time and distance traveled by
each robot to complete their tasks, and these indices are
used for comparative analysis to select the proper
reference velocity and prediction horizon of the
MPCC controller. The total travel time, the total travel
distance, and the maximum computation time under
different parameter configurations are presented in
Figs. 8, 9, and 10, respectively.

N vref

N = 20
THorizon = 2 s

vref = 1.2 m/s N = 20

Figure 8 shows that the total travel time for the
robots to complete their tasks fluctuates when varying

 for the same reference velocity . The minimum of
the total travel time is obtained when
() for each reference velocity. The
configuration that and achieves
the shortest travel time. When the predictive horizon is
too short, the robot cannot accurately calculate the
surrounding collision-free area based on the

Robot 0 Robot 1

Fig. 7 Single channel scenario built with Gazebo.

Table 2 Start point and end point coordinates of the robot.

Robot Starting point End point
Robot 0 (−5.0, 0.0) (5.0, 0.0)
Robot 1 (5.0, 0.0) (−5.0, 0.0)

 280 Complex System Modeling and Simulation, December 2022, 2(4): 273−287

information of the surrounding static environment,
which limits the robot’s speed. When a long prediction
horizon is considered, the predicted collision-free area
occupied by each robot becomes large. Because each
robot uses the predicted trajectories of other robots in
the previous moment to perform collision avoidance,

the robots may have to decelerate or wait unnecessarily
for avoiding collision in advance, leading to an
increase in the total travel time.

vref N

N
N

Figure 9 compares the total travel distance of the
robots considering different and . It is observed
that the travel distance decreases and levels off when
the prediction horizon increases. The travel distance
fluctuates slightly when grows from 20 to 50.

N

N

Figure 10 records the maximum computation time
under different reference velocities and the prediction
horizons. Figure 10 indicates that the computation time
grows when the prediction horizon increases because
the size of the optimization problem rises. For real-time
planning, is suggested to be selected at a small value
of prediction horizons.

vref = 1.2 m/s N = 20

N

N = 20

Based on the results above, in the following
simulations, we choose the configuration of

 and , since this combination
provides the minimal travel time at a short
computational time. For MPCC, if is selected
sufficiently long, the stability and feasibility can be
ensured, as discussed in Ref. [33]. However, we focus
on real-time planning, the computation burden must be
reduced and a sufficiently long prediction horizon
cannot be selected. The prediction horizon is
carefully selected, such that the travel distance is close
to the one when a long planning horizon is considered.

4.3 Complex operation scenario

The second scenario is a complex industrial
environment (see Fig. 11) containing both multiple
static obstacles in the environment and dynamic
obstacles represented by the moving robots, as
proposed in Ref. [32]. We use this scenario to test the
scalability of the proposed D-MPCC and the real-time

0 10 20 30 40 50 60
Prediction horizon

15
20
25
30
35
40
45
50
55
60
65

To
ta

l t
ra

ve
l t

im
e

(s
)

vref = 0.8 m/s
vref = 1.0 m/s
vref = 1.2 m/s

Fig. 8 Comparison of the total travel time under different
vref and N.

0 10 20 30 40 50 60
Prediction horizon

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

22.0

To
ta

l t
ra

ve
l d

is
ta

nc
e

(m
)

vref = 0.8 m/s
vref = 1.0 m/s
vref = 1.2 m/s

Fig. 9 Comparison of the total travel distance under
different vref and N.

0 10 20 30 40 50 60
Prediction horizon

0
100
200
300
400
500
600
700
800
900

1000
1100
1200

M
ax

im
um

 c
om

pu
ta

tio
n

tim
e

(m
s) vref = 0.8 m/s

vref = 1.0 m/s
vref = 1.2 m/s

Fig. 10 Maximal computation time under different vref and
N.

Robot 0

Robot 1

Robot 2 Robot 3

Robot 4

Robot 5

Fig. 11 Complex working scenarios built with Gazebo.

 Jianbin Xin et al.: Distributed Model Predictive Contouring Control for Real-Time Multi-Robot Motion Planning 281

planning capability in such a complex environment. In
this scenario, six mobile robots move from their pickup
points to their target points. We establish the
coordinate system with the center point of this scenario
as the coordinate origin; each robot’s starting and
ending coordinates are shown in Table 3.
4.3.1 General performance
Table 4 compares the travel time and distance of each
robot to complete their transport tasks of the four
methods (DWA, D-MPC, P-MPCC, and D-MPCC). In
the manufacturing and logistics environment,
completion time is more crucial than the distance for
the operator, because completion time is directly
related to productivity. It can be seen from Table 4 that
the proposed D-MPCC method achieves the shortest
travel time for each robot, and in total their tasks are all
completed as soon as possible (67.624 s). The
performances of D-MPC and P-MPCC are quite close
to each other. For each robot, D-MPC and P-MPCC
both obtain a shorter travel time than the DWA
method. Because the MPCC planner includes the
reference velocity cost in the objective function while
the DWA method does evaluate the reference velocity
explicitly, the MPCC methods have higher productivity
than the DWA method.

It can be seen from Table 4 that the proposed D-
MPCC method is competitive among the four methods
concerning the total travel distance. Although the D-

MPCC method does not have the shortest travel
distance in total, the gap is very small between the D-
MPCC method (75.941 m) and the DWA method
which owns the shortest total travel distance (75.248 m).
Regarding the travel distance for each robot, none of
these methods dominates the others.
4.3.2 Trajectory analysis
In this part, we further analyze the robot trajectories
determined by the proposed D-MPCC method, in
comparison to DWA, D-MPC, and P-MPCC. The robot
trajectories in the simulation are presented in
Figs. 12–15. Their velocity evolutions for each robot
are given in Figs. 16–19. In all the simulation tests, no
collisions take place using these three methods.

Figures 12 and 13 give the robot trajectories
computed by DWA and D-MPC, respectively.
Compared to the MPCC methods in Figs. 14 and 15,
the trajectory dots of DWA and D-MPC are less
intensive because the DWA method may compute the
trajectory in a longer computation time. As the result,
the trajectories of these robots cannot be adjusted at a
high frequency to possibly increase the travel time.
Since the DWA methods cannot incorporate the
reference velocity into the trajectory evaluation, all the
robots accelerate and decelerate several times, resulting
in a long travel time for each robot. The D-MPC
method tracks a time-dependent reference for each
robot, and the robot trajectories of D-MPC are not as
smooth as the MPCC methods.

Figure 14 presents the motion process of the six
robots obtained by the P-MPCC method. Note that
priority increases from Robot 0 to Robot 5. When two
robots meet, the high-priority robot plans its motion
without considering the low-priority robot. Then the
low-priority robot unilaterally avoids the high-priority
robot taking its planned motion into account. This
explains why Robot 5’s motion is smoother than
Robot 0’s when the two robots meet, and this also

Table 3 Coordinates of the start and end points of each
robot.

Robot Start point End point
Robot 0 (−6.0, 4.5) (5.0, −3.5)
Robot 1 (−6.0, 0.0) (5.0, 4.5)
Robot 2 (−6.0, −3.5) (5.0, 0.0)
Robot 3 (6.0, −3.5) (−5.0, −3.5)
Robot 4 (6.0, 0.0) (−5.0, 0.0)
Robot 5 (6.0, 4.5) (−5.0, 4.5)

Table 4 Comparison of travel time and distance using different methods.

Robot
DWA D-MPC P-MPCC Proposed D-MPCC

Travel
time (s)

Travel
distance (m)

Travel
time (s)

Travel
distance (m)

Travel
time (s)

Travel distance
(m)

Travel
time (s)

Travel distance
(m)

Robot 0 36.205±0.375 13.870±0.092 15.712±0.098 15.972±0.101 16.135±0.030 15.431±0.257 13.097±0.111 15.389±0.026
Robot 1 22.309±0.091 12.646±0.229 11.828±0.067 13.258±0.023 11.887±0.252 14.007±0.155 11.332±0.034 13.195±0.079
Robot 2 23.203±0.127 11.898±0.025 11.800±0.048 12.081±0.019 11.782±0.083 13.391±0.043 11.441±0.071 12.351±0.034
Robot 3 17.611±0.221 10.697±0.048 10.513±0.015 11.878±0.092 10.291±0.078 11.209±0.067 10.251±0.026 11.227±0.053
Robot 4 54.101±0.075 15.356±0.257 12.608±0.071 12.632±0.065 11.789±0.011 12.390±0.046 11.752±0.151 12.483±0.037
Robot 5 17.501±0.014 10.781±0.093 10.405±0.087 11.881±0.031 10.372±0.037 11.109±0.035 9.751±0.173 11.296±0.083

Sum 170.930±0.05175.248±0.078 72.866±0.053 77.702±0.028 72.256±0.049 77.537±0.201 67.624±0.027 75.941±0.045

 282 Complex System Modeling and Simulation, December 2022, 2(4): 273−287

applies to the other robot comparisons. When the high-
priority robots move faster, the low-priority robots may
not escape in time and cause a collision.

Figure 15 records the trajectories of the six robots
determined by the proposed D-MPCC method. It can
be seen that all the robots show cooperative behavior
when meeting each other in a constrained environment.

Considering the predicted trajectory of the other robot,
each robot avoids collision with the other robot
mutually. As a result, the trajectory curvatures are
shared by the two robots to reduce their total travel
time. The robot could reduce the numbers of
accelerations/decelerations to achieve a shorter travel
time, as illustrated in Fig. 19.

Robot 0
Robot 1
Robot 2
Robot 3
Robot 4
Robot 5

Fig. 12 Planned robot trajectories obtained using the DWA
method.

Robot 0
Robot 1
Robot 2
Robot 3
Robot 4
Robot 5

Fig. 13 Planned robot trajectories obtained using the D-
MPC method.

Robot 0
Robot 1
Robot 2
Robot 3
Robot 4
Robot 5

Fig. 14 Planned robot trajectories obtained using the P-
MPCC method.

Robot 0
Robot 1
Robot 2
Robot 3
Robot 4
Robot 5

Fig. 15 Planned robot trajectories obtained using the
proposed D-MPCC method.

0 10 20 5030
t (s)

v
(m

·s
−1

)

40 60

0

0.5

1.0 Robot 0
Robot 1
Robot 2
Robot 3
Robot 4
Robot 5

Fig. 16 Velocity evolution by using the DWA method.

 Jianbin Xin et al.: Distributed Model Predictive Contouring Control for Real-Time Multi-Robot Motion Planning 283

Comparing the velocity evolutions of the four
methods given in Figs. 16–19, the velocity of the DWA
method for each robot requires more multiple
adjustments than the MPCC methods in the constrained
environment. This explains in general the DWA
method has a longer travel time than the MPCC
methods which explicitly track the reference velocity
when determining the robot trajectory.

Figures 16–19 also show that the proposed D-MPCC
method results in a more averaged travel time for each
robot than the DWA, D-MPC, and P-MPCC methods.
The gap in the travel time between all the robots is
smaller than the other methods. These results indicate

the cooperative behaviors resulting from the distributed
MPCC method have a positive influence on improving
the productivity of the entire robot group.

5 Conclusion and Future Research

This paper proposes a distributed Model Predictive
Contour Control (MPCC) methodology for planning
collision-free motions of multiple mobile robots to
improve coordination and real-time performance. With
the help of constraint optimization, the MPCC method
fully considers the robot’s kinematics constraints, static
environmental constraints, and dynamic obstacle

v
(m

·s
−1

)

0

0 2 4 6 8 10 12 14 16

0.5

1.0

Robot 0
Robot 1
Robot 2
Robot 3
Robot 4
Robot 5

t (s)
Fig. 17 Velocity evolution by using the D-MPC method.

Robot 0
Robot 1
Robot 2
Robot 3
Robot 4
Robot 5

v
(m

·s
−1

)

0

0.5

1.0

0 4 6 8 1210 142
t (s)

Fig. 18 Velocity evolution by using the P-MPCC method.

v
(m

·s
−1

)

0
0 2 4 6 8 10 12 14

0.5

1.0

Robot 0
Robot 1
Robot 2
Robot 3
Robot 4
Robot 5

t (s)
Fig. 19 Velocity evolution by using the proposed D-MPCC method.

 284 Complex System Modeling and Simulation, December 2022, 2(4): 273−287

avoidance constraints. The proposed distributed MPCC
method follows the desired path and adjusts the local
motion of the complex environment in real-time to
improve productivity when completing the assigned
tasks. Real-time coordination among robots is achieved
by passing their predicted trajectories from the last
moment to the surrounding robots in parallel and
incorporating the predicted trajectory of the
surrounding robots into the collision avoidance
constraints for handling dynamic obstacles. The
distributed structure improves the real-time
performance of each robot to quickly solve its motion
planning and ensures the scalability of the entire
system.

The method proposed in this paper is validated in the
complex industrial environment of the robot simulation
software Gazebo. Compared with the methods of
DWA, MPC, and prioritized planning, the proposed
MPCC adopts a distributed structure where the
predicted path information of the previous moment is
exchanged between robots and added to the respective
dynamic obstacle avoidance constraints. The initiative
of each robot to complete the collision-avoidance
action can better deal with the collision avoidance
problem between multiple robots and reduce the
working time and distance. The predicted trajectory is
reserved for each robot to avoid the collision. If the
predictive horizon is too small, the safe area of the
robot will expand in a small area, limiting the robot’s
behavior. If the predictive horizon is too large, the
robot will take unnecessary obstacle avoidance actions
in advance.

When implementing the proposed MPCC method,
the maximum number of robots is limited to 10, due to
the limited number of channels to synchronize when
using the message filters package in ROS. In future
research, we will investigate a more scalable method to
implement the MPCC method. Future research will
also consider validation in real application scenarios
and the inclusion of functions such as task assignment
and global path planning.

Acknowledgment

This work was supported by the National Natural
Science Foundation of China (Nos. 62173311,
61703372, and 61603345), and in part by the College
Youth Backbone Teacher Project of Henan Province
(No. 2021GGJS001), Henan Scientific and

Technological Research Project (Nos. 222102220123
and 212102310050), the Training Project of
Zhengzhou University (No. JC21640030), and the
China Postdoctoral Science Foundation (No.
2020M682346).

References

 B. Xin, J. Zhang, J. Chen, Q. Wang, and Y. Qu, Overview
of research on transformation of multi-AUV formations,
Complex System Modeling and Simulation, vol. 1, no. 1,
pp. 1–14, 2021.

[1]

 N. Zhao, G. Lodewijks, Z. Fu, Y. Sun, and Y. Sun,
Trajectory predictions with details in a robotic twin-crane
system, Complex System Modeling and Simulation, vol. 2,
no. 1, pp. 1–17, 2022.

[2]

 T. Nishi, S. Akiyama, T. Higashi, and K. Kumagai, Cell-
based local search heuristics for guide path design of
automated guided vehicle systems with dynamic
multicommodity flow, IEEE Transactions on Automation
Science and Engineering, vol. 17, no. 2, pp. 966–980,
2019.

[3]

 J. Xin, L. Wei, D. Wang, and H. Xuan, Receding horizon
path planning of automated guided vehicles using a time-
space network model, Optimal Control Applications and
Methods, vol. 41, no. 6, pp. 1889–1903, 2020.

[4]

 M. D. Ryck, M. Versteyhe, and F. Debrouwere,
Automated guided vehicle systems, state-of-the-art control
algorithms and techniques, Journal of Manufacturing
Systems, vol. 54, pp. 152–173, 2020.

[5]

 D. Wang, H. Wang, and L. Liu, Unknown environment
exploration of multi-robot system with the FORDPSO,
Swarm and Evolutionary Computation, vol. 26,
pp. 157–174, 2016.

[6]

 W. Schwarting, J. Alonso-Mora, and D. Rus, Planning and
decision-making for autonomous vehicles, Annual Review
of Control, Robotics, and Autonomous Systems, vol. 1, pp.
187–210, 2018.

[7]

 N. Malone, H. T. Chiang, K. Lesser, M. Oishi, and L.
Tapia, Hybrid dynamic moving obstacle avoidance using a
stochastic reachable set-based potential field, IEEE
Transactions on Robotics, vol. 33, no. 5, pp. 1124–1138,
2017.

[8]

 J. V. D. Berg, M. Lin, and D. Manocha, Reciprocal
velocity obstacles for real-time multi-agent navigation, in
Proc. 2008 IEEE International Conference on Robotics
and Automation, Pasadena, CA, USA, 2008, pp.
1928–1935.

[9]

 O. Castillo, H. Neyoy, J. Soria, P. Melin, and F. Valdez, A
new approach for dynamic fuzzy logic parameter tuning in
ant colony optimization and its application in fuzzy control
of a mobile robot, Applied Soft Computing, vol. 28,
pp. 150–159, 2015.

[10]

 D. Fox, W. Burgard, and S. Thrun, The dynamic window
approach to collision avoidance, IEEE Robotics &
Automation Magazine, vol. 4, no. 1, pp. 23–33, 1997.

[11]

 Y. Kuwata and J. P. How, Cooperative distributed robust
trajectory optimization using receding horizon MILP,

[12]

 Jianbin Xin et al.: Distributed Model Predictive Contouring Control for Real-Time Multi-Robot Motion Planning 285

IEEE Transactions on Control Systems Technology,
vol. 19, no. 2, pp. 423–431, 2010.
 H. Zheng, R. R. Negenborn, and G. Lodewijks, Fast
ADMM for distributed model predictive control of
cooperative waterborne AGVs, IEEE Transactions on
Control Systems Technology, vol. 25, no. 4,
pp. 1406–1413, 2016.

[13]

 M. Čáp, P. Novák, A. Kleiner, and M. Selecký, Prioritized
planning algorithms for trajectory coordination of multiple
mobile robots, IEEE Transactions on Automation Science
and Engineering, vol. 12, no. 3, pp. 835–849, 2015.

[14]

 G. Demesure, M. Defoort, A. Bekrar, D. Trentesaux, and
M. Djemai, Decentralized motion planning and scheduling
of AGVs in an FMS, IEEE Transactions on Industrial
Informatics, vol. 14, no. 4, pp. 1744–1752, 2017.

[15]

 L. Ferranti, R. R. Negenborn, T. Keviczky, and J. Alonso-
Mora, Coordination of multiple vessels via distributed
nonlinear model predictive control, in Proc. 2018
European Control Conference (ECC), Limassol, Cyprus,
2018, pp. 2523–2528.

[16]

 C. E. Luis and A. P. Schoellig, Trajectory generation for
multiagent point-to-point transitions via distributed model
predictive control, IEEE Robotics and Automation Letters,
vol. 4, no. 2, pp. 375–382, 2019.

[17]

 Y. Wang, Y. Yang, Y. Pu, and C. Manzie, Path following
by formations of agents with collision avoidance
guarantees using distributed model predictive control, in
Proc. 2021 American Control Conference (ACC), New
Orleans, LA, USA, 2021, pp. 3352–3357.

[18]

 D. Lam, C. Manzie, and M. C. Good, Model predictive
contouring control for biaxial systems, IEEE Transactions
on Control Systems Technology, vol. 21, no. 2,
pp. 552–559, 2012.

[19]

 B. Brito, B. Floor, L. Ferranti, and J. Alonso-Mora, Model
predictive contouring control for collision avoidance in
unstructured dynamic environments, IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 4459–4466, 2019.

[20]

 C. Rösmann, A. Makarow, and T. Bertram, Online motion
planning based on nonlinear model predictive control with
non-Euclidean rotation groups, in Proc. 2021 European
Control Conference (ECC), Delft, the Netherlands, 2021,
pp. 1583–1590.

[21]

 E. G. Tsardoulias, A. Iliakopoulou, A. Kargakos, and L.
Petrou, A review of global path planning methods for

[22]

occupancy grid maps regardless of obstacle density,
Journal of Intelligent & Robotic Systems, vol. 84, no. 1,
pp. 829–858, 2016.
 H. Lu, S. Yang, M. Zhao, and S. Cheng, Multi-robot
indoor environment map building based on multi-stage
optimization method, Complex System Modeling and
Simulation, vol. 1, no. 2, pp. 145–161, 2021.

[23]

 J. Choi, G. Lee, and C. Lee, Reinforcement learning-based
dynamic obstacle avoidance and integration of path
planning, Intelligent Service Robotics, vol. 14, no. 5,
pp. 663–677, 2021.

[24]

 H. G. Bock and K. J. Plitt, A multiple shooting algorithm
for direct solution of optimal control problems, IFAC
Proceedings Volumes, vol. 17, no. 2, pp. 1603–1608,
1984.

[25]

 J. Chen, W. Zhan, and M. Tomizuka, Constrained iterative
LQR for on-road autonomous driving motion planning, in
Proc. 2017 IEEE 20th International Conference on
Intelligent Transportation Systems (ITSC), Yokohama,
Japan, 2017, pp. 1–7.

[26]

 E. F. Camacho and C. B. Alba, Model Predictive Control.
London, UK: Springer, 2013.

[27]

 A. Liniger, A. Domahidi, and M. Morari, Optimization-
based autonomous racing of 1: 43 scale RC cars, Optimal
Control Applications and Methods, vol. 36, no. 5,
pp. 628–647, 2015.

[28]

 B. Houska, H. J. Ferreau, and M. Diehl, ACADO
toolkit—An open-source framework for automatic control
and dynamic optimization, Optimal Control Applications
and Methods, vol. 32, no. 3, pp. 298–312, 2011.

[29]

 H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M.
Diehl, QpOASES: A parametric active-set algorithm for
quadratic programming, Mathematical Programming
Computation, vol. 6, no. 4, pp. 327–363, 2014.

[30]

 S. Thrun, Probabilistic robotics, Communications of the
ACM, vol. 45, no. 3, pp. 52–57, 2002.

[31]

 I. Draganjac, T. Petrović, D. Miklić, Z. Kovačić, and J.
Oršulić, Highly-scalable traffic management of autonomous
industrial transportation systems, Robotics and Computer-
Integrated Manufacturing, vol. 63, p. 101915, 2020.

[32]

 D. Lam, C. Manzie, and M. C. Good, Model predictive
contouring control, in Proc. 49th IEEE Conference on
Decision and Control (CDC), Atlanta, GA, USA, 2010,
pp. 6137–6142.

[33]

Jianbin Xin received the BSc degree in
electrical engineering from Xidian
University in 2007 and the MSc degree in
control science and engineering from
Xi’an Jiaotong University in 2010 in
China. In 2015, he received the PhD
degree from Delft University of
Technology, the Netherlands. Currently, he

is an associate professor in the School of Electrical and
Information Engineering at Zhengzhou University, China. His
research interests include planning and control of smart logistics
systems and cooperative robots.

Yaoguang Qu received the bachelor
degree in automation from Henan
University of Technology, Zhengzhou,
China in 2019. Then he received the MSc
degree in control engineering from
Zhengzhou University, Zhengzhou, China.
His research interest focuses on path
planning of multiple robots for

manufacturing.

 286 Complex System Modeling and Simulation, December 2022, 2(4): 273−287

Fangfang Zhang received the BSc degree
in applied mathematics, the MSc degree in
applied mathematics, and the PhD degree
in control science and engineering from
Shandong University, Jinan, China in
2008, 2011, and 2015, respectively. From
2018 to 2019, he was a visiting scholar
with Chinese University of Hong Kong,

Hong Kong, China. Currently, he is an associate professor in the
School of Electrical and Information Engineering at Zhengzhou
University, Zhengzhou, China. His research interests include
optimal control of multiagent systems, multirobot formation, and
machine vision.

Rudy Negenborn received the MSc
degree in computer science from Utrecht
University in 2003, and the PhD degree
from Delft University of Technology in
2007, both in the Netherlands. He is now a
full professor in the Department of Marine
and Transport Technology and the head of
the Section “ Transport Engineering &

Logistics” at Delft University of Technology. His fundamental
research interests are in the areas of distributed control, multi-
agent systems, model predictive control, and optimization.

 Jianbin Xin et al.: Distributed Model Predictive Contouring Control for Real-Time Multi-Robot Motion Planning 287

