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Distributed Model Predictive Contouring Control for
Real-Time Multi-Robot Motion Planning

Jianbin Xin, Yaoguang Qu, Fangfang Zhang*, and Rudy Negenborn

Abstract: Existing  motion  planning  algorithms  for  multi-robot  systems  must  be  improved  to  address  poor

coordination and increase low real-time performance. This paper proposes a new distributed real-time motion

planning  method  for  a  multi-robot  system  using  Model  Predictive  Contouring  Control  (MPCC).  MPCC  allows

separating  the  tracking  accuracy  and  productivity,  to  improve  productivity  better  than  the  traditional  Model

Predictive Control  (MPC) which follows a time-dependent reference. In the proposed distributed MPCC, each

robot  exchanges the  predicted paths  of  the  other  robots  and generates  the  collision-free  motion  in  a  parallel

manner.  The  proposed  distributed  MPCC  method  is  tested  in  industrial  operation  scenarios  in  the  robot

simulation platform Gazebo. The simulation results show that the proposed distributed MPCC method realizes

real-time  multi-robot  motion  planning  and  performs  better  than  three  commonly-used  planning  methods

(dynamic window approach, MPC, and prioritized planning).

Key words: multi-robot system; path planning; model predictive contouring control; distributed optimization

1    Introduction

Currently, robots are playing an increasingly important
role  in  the  manufacturing,  defense  technology,  and  e-
commerce industries[1, 2]. In the manufacturing industry,
Automated Guided Vehicles (AGVs) have been used as
intelligent  robots  and  multiple  AGVs  collaborate  to
improve  operational  efficiency  when  performing  the
required tasks[3, 4]. As the robot becomes more intelligent
and  autonomous,  the  AGV  is  being  replaced  by  the
autonomous  mobile  robot,  which  moves  in  a  free-
ranging  way  rather  than  the  traditional  grid  roadmap
used  for  the  AGVs[5].  During  the  execution  of  these
tasks, multi-robot systems, however, must have safe and
collision-free  motions.  As a  result,  multi-robot  motion

planning  has  become  a  popular  research  topic  in  the
areas of manufacturing and logistics[6].

Point-to-point  planning  is  an  important  branch  of
multi-robot motion planning. All robots are distributed
in  the  same  workspace  and  required  to  find  optimal
paths connecting their respective starting and endpoints
to ensure that  there is  no collision between each robot
and  the  environment  and  no  collision  between  every
two robots at any time[1, 5]. Motion planning for multiple
robots  is  more  complex  than  that  for  a  single  robot.
Each  robot  needs  to  consider  the  behavior  of  other
robots,  and  the  neighboring  robots  will  become
dynamic obstacles[7].

Local  motion  planning  with  dynamic  obstacles  and
target  points  has  been  the  focus  of  multi-robot  path
planning.  Common  local  path  planning  methods
include  the  artificial  potential  field  method[8],  velocity
obstacle  method[9],  and  fuzzy  logic  control[10].  The
artificial  potential  field  method  is  convenient  for  real-
time control at the bottom level, but it  easily falls into
the  local  optimal  point.  The  velocity  obstacle  method
can  deal  with  obstacles  of  any  shape;  however,  the
method assumes that the obstacles follow a fixed linear
velocity,  ignoring  the  bias  generated  by  other  robots
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that  may make the same collision avoidance behavior.
Fuzzy  logic  control  overcomes  the  potential  field
method’s  tendency  to  produce  local  optima,  but  the
increased  number  of  inputs  can  lead  to  problems  in
constructing  inference  rules  and  a  dramatic  expansion
of  the  fuzzy  table.  These  methods  can  quickly  plan
collision-free motions for the multi-robot system. Still,
the  robot’s  motion  process  cannot  be  accurately
described, resulting in the inability to optimize the task
performance index of multiple moving robots.

Kinematic model based multi-robot motion planning
methods,  which  can  accurately  and  effectively  design
dynamic  collision  avoidance  strategies  for  obstacles
and  improve  the  performance  index  of  the  system  for
completing  operational  tasks,  are  currently  available,
such  as  the  dynamic  window  method[11] and  model
predictive control[12, 13].  The dynamic window method
is a fast planning method based on the combination of
linear and angular velocities. Nevertheless, this method
can  only  deal  with  static  obstacles  within  a  time
window,  and  dynamic  obstacles  cannot  react  in
advance.  Model  Predictive  Control  (MPC)  is  a  rolling
optimization method that can integrate constraints such
as  dynamic  obstacles  to  effectively  collaborate  with
collision avoidance relationships among multiple robots
and  handle  the  cooperation  among  multiple  robots  by
prioritized rules[14, 15] or coordinated controllers[12, 13].

When  planning  motions  using  the  MPC  methods
(e.g., Ref. [12]), the computational burden is large. To
reduce  the  computation  burden,  distributed  MPC  has
been  investigated  for  coordinating  the  multiple-
vessels[16],  the multiple quadrotors[17],  and formulation
control  of  multi-agent  systems[18].  However,  we
observe  that  the  above  distributed  MPC  methods  are
still  not  computationally  efficient  for  real-time
planning  in  a  complex  manufacturing  or  logistics
working  environment,  in  which  static  and  dynamical
obstacles must be considered together. For instance, in
Ref. [17], a distributed MPC offline planning algorithm
was  developed  to  reduce  the  computation  burden  by
detecting  and  resolving  only  the  first  collision  during
the  planning  horizon.  Ferranti  et  al.  proposed  a
distributed  MPC  algorithm  based  on  the  Alternating
Direction  Method  of  Multipliers  (ADMM)  to
coordinate  multiple  vessels  in  Ref.  [16].  The
computation  time  relying  on  multiple  iterations  for
vessel  negotiations  takes  considerably  longer  than  the
sampling  time,  which  is  not  applicable  for  real-time
planning.

To  address  these  limitations,  this  paper  proposes  a
distributed  motion  planning  method  that  combines  the
kinematic  constraints  of  robots,  static  environment
constraints, and the predicted behaviors of neighboring
robots  to  achieve  collaborative  motion  planning  for
multiple  robots  while  ensuring  real-time  performance.
The  distributed  method  is  based  on  Model  Predictive
Contouring  Control  (MPCC),  which  is  proposed  for
real-time motion planning of a single mobile robot[19, 20].
The MPCC allows separating the tracking accuracy and
productivity  to  reach  a  good  trade-off  between  these
two objectives. Using MPCC, the followed path is not
time-dependent, and the productivity can be improved,
compared with the existing MPC methods which track
a  time-dependent  path[21].  To  achieve  the  real-time
planning,  we  implement  a  fast  algorithm  based  on  a
real-time  iterative  scheme  and  automatic  C-code
generation.  In  the  developed  distributed  MPCC,  each
robot  exchanges  its  respective  predicted  trajectories
with  each  other  to  achieve  multi-robot  collision-free
motion  planning.  The  developed  distributed  MPCC  is
tested  in  the  Robot  Operating  System  (ROS)  and
compared  with  the  three  commonly  used  planning
methods  (dynamic  window,  MPC,  and  prioritized
planning).

The  remainder  of  the  paper  is  organized  as  follows.
Section  2  introduces  the  multi-robot  motion  planning
problem and the workspace used in this paper. Section
3  describes  the  designed  distributed  MPCC  for  real-
time collision-free motion planning of multiple robots.
In  Section  4,  simulation  tests  are  performed  by
implementing  the  developed  distributed  MPCC  in  the
ROS environment.  The conclusion and future research
directions are given in Section 5.

2    Problem Definition and Model Description

This  section  defines  the  multi-robot  motion  planning
problem  to  be  studied  and  then  mathematically
describes  the  robot  kinematic  model  and  related  static
obstacles, dynamic obstacles, and reference paths.

2.1    Problem definition

For  the  studied  multi-robot  motion  planning  problem,
each  robot  moves  a  shared  workspace.  Each  robot  is
assigned  a  task  to  move  in  the  shortest  possible  time
from  its  origin  to  its  destination  to  ensure  efficiency.
The robots must not collide with the static environment
and each other in the process of performing the task to
ensure coordination between the robots.
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The important assumptions are described as follows:
●  Each  robot  can  obtain  its  position  information

through the positioning system in the workplace;
●  Each  robot  has  an  independent  controller  to

execute the control algorithm;
● Each robot can exchange the information with the

surrounding robots;
●  Perturbation  information  and  malfunctions  do  not

occur during communication;
● All robots start the tasks simultaneously, and each

robot is assigned a fixed starting and ending point.

2.2    Description of robot workspace

W
W = R2

The robot’s workspace  is a two-dimensional plane,
i.e., . The robot can move in any direction. For
the  research  problem  of  robot  motion  planning,  grid
maps are widely used for environment modeling due to
their  simplicity  and ease  of  implementation[22, 23].  The
grid  map  environment  is  useful  for  motion  planning;
we  use  the  occupancy  grid  map  to  model  the
workspace.

The  core  idea  of  the  grid  map  is  to  divide  the
working space  into  several  grids  of  the  same size.  All
robots  of  the  multi-robot  system  share  the  same  map.
Each robot occupies multiple grids and can move freely
in  any  direction  on  the  grid  map.  Each  grid  can  be
represented  by  three  states:  occupied  area,  free  area,
and unknown area. A grayscale image is used to denote
the  status  of  the  grid  map.  Each  pixel  of  the  image
represents  a  grid  on  the  map.  As  shown in Fig.  1,  the
black area represents the occupied area, the white area
represents  the  free  area,  and  the  gray  area  represents
the unknown area.

Before  introducing  the  detailed  mathematical
formulation  of  the  robot  kinematic  model  and  the
designed MPCC controller, we list all the symbols used
in this paper and the related descriptions in Table 1.

 

Table  1    List  of  variables  and  parameters  for  model
predictive contouring control.

Symbol Definition

Variable

zi(k) i kState of the robot  at  moment
ui(k) i kInput of robot  at  moment

xi(k) i x
k

Coordinate of robot  in the -axis direction at
 moment

yi(k) i y
k

Coordinate of robot  in the -axis direction at
 moment

ϕi(k) i kHeading angle of the robot  at  moment
vi(k) i kForward speed of robot  at  moment
wi(k) i kSteering speed of robot  at  moment

θi(k) i
k

Distance traveled by the robot  on the
reference path at  moment

Parameter

V Total number of robots
i iRobot 
j jRobot 
τ Single time step
N Total number of predicted steps
W Robot workspace
Z Set of all feasible states
U Set of all feasible inputs

Bi(z) i zSpace occupied by robot  in state 

RW
i (z)

i
Rotation matrix obtained from the pose of the

robot 
c

cThe -th circle of the space occupied by the
robot

pi
i

z
Position of robot  does not consider the

coordinates of the -axis
pi

c c
i

Coordinates of the center of the -th circle in
the body coordinate system of the robot 

nc The total number of circles in the space
occupied by the robot

qi
0:N iOptimal trajectory of robot 
qi

n
n

i
The -th point of the optimal trajectory of

robot 

a
Long semi-axis of the ellipse representing the

dynamic obstacle

b Short semi-axis of the ellipse representing the
dynamic obstacle

R(ψ) Rotation matrix representing the ellipse of
dynamic obstacles

△xc
i, j

j
c i x

Distance between the ellipse denoting  and
the -th circle denoting  in the -axis

direction

△yc
i, j

j
c i y

Distance between the ellipse denoting  and
the -th circle denoting  in the -axis

direction
Pi iGlobal reference path for robot 

pr
i,m m

i
The -th coordinate point of the reference

path of robot 
vref iReference speed of the robot 

ei(k) i kError vector of robot  at  moment
zi

1:N i NRobot ’s  states on the predict trajectory
ui

0:N−1 i NRobot ’s  inputs on the predict trajectory
zi

init iInitial state of robot 
zi

goal iTarget state of robot 
 

 

Free area

Occupied area

Unknown area

 
Fig. 1    Illustration  of  the  occupancy  grid  map  for  the
workspace.
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2.3    Robot kinematic model

To represent the kinematic model of each robot, for the
sake of  simplicity,  we use the unicycle  motion model.
The unicycle model is used to address the displacement
and velocity of two wheels of a differential drive robot,
which  is  a  common  type  of  mobile  robot[24].  To
simplify  the  description,  all  robots  use  the  same
kinematic  model.  The  kinematic  model  is
mathematically described as follows:
  ẋẏ

ϕ̇

 =
cos ϕ
sin ϕ

0

v+
001
w (1)

x y i
y ϕ

v
w

where  and   are  the  coordinates  of  robot  in  the
x-axis  and -axis  directions,  respectively.  is  the
heading angle of the robot.  is the forward speed and

 is the steering speed.

|w| ⩽ wmax

|v| ⩽ vmax

wmax vmax

Due  to  the  practical  capability  of  the  robot,  we
constrain the steering speed  and the forward
speed  with  the  vehicle  performance,  where

 is  the  maximum  steering  speed,  and  is  the
maximum forward velocity.

iThe  above  kinematic  model  of  robot  can  be
discretized  using  the  multiple  direct  hitting  method[25]

as follows:
 

zi(k+1) = zi(k)+τ

vi(k)cos(ϕi(k))
vi(k)sin(ϕi(k))

ωi(k)

 , i ∈ IV (2)

τ

zi(k+1) = fi(zi(k), ui(k))
zi(k) = [xi(k),yi(k),ϕi(k)]T ∈ Z zi(k) xi(k) yi(k)
ϕi(k)

i k
Z

ui(k) = [vi(k),ωi(k)]T ∈ U ui(k) vi(k) ωi(k)
i
k U

IV := {1,2, ...,V}

where  denotes  a  single  time  step  (in  seconds).  We
express  Eq.  (2)  as ,  where

, , , ,  and
 denote  the  state,  longitudinal  position,  lateral

position,  and  heading  angle  of  robot  at  moment ,
respectively.  denotes  the  set  of  all  feasible  states.

. , ,  and  denote
robot ’s  input,  forward velocity,  and steering velocity
at the -th moment,  respectively.  denotes the set of
all feasible inputs, .

i z
Bi(z) nc

Bi(z) ⊆∪c∈{1, 2, ..., nc} B
i
c(z) ⊂W

pi+RW
i (z)pi

c

pi = [xi,yi]
z RW

i (z)
pi

c

The space occupied by robot  in state  is denoted as
. As shown in the blue circular region in Fig. 2, 

circles  are  used  in  this  paper  for  an  approximate
representation, i.e., . The
center  coordinates  of  each  circle  are  expressed  in  the
inertial  coordinate  system  as ,  where

 denotes  the  robot  coordinates  without
considering  the -axis,  denotes  the  rotation
matrix  obtained  from  the  pose  of  the  robot,  and 
denotes  the  center  coordinates  of  each  circle  in  the
body coordinate system. 

X

pr
i, 1

pr
i, 2

pr
i, 3

Y

Static obstacles

Safe area

Reference path
Predicted 

trajectory

 
Fig. 2    Safety zones for robots in static environments.

 

2.4    Related constraints

This  part  provides  the  related  static  and  dynamic
obstacles and the reference path, and these contents are
necessary  when  planning  the  collision-free  motions
based on the kinematic model.
2.4.1    Static obstacle constraints

Ostatic ⊂W
The space occupied by the static obstacles is denoted as

.  By  establishing  a  static  map  of  the
environment,  according  to  the  location  of  each  robot,
we can use the predicted trajectory of the last moment
to  calculate  a  set  of  convex  quadrilaterals  in  the  free
area as a safe area for the robot, as shown in the orange
box in Fig. 2.

k
k−1

qi
0:N = [pi∗

1:N |k−1, q
i
N]

k pi∗
1:N |k−1 = [pi∗

1|k−1, p
i∗
2|k−1, ..., p

i∗
N |k−1]

qi
N

qi
N = 2pi∗

N|k−1− pi∗
N−1|k−1 qi

n(n = 1,2, ...,N)

cstatic
n (pi

n) =
∪4

l=1 cstatic,l
n (pi

n)
qi

n

To  obtain  the  convex  region  at  moment ,  we  first
define the optimal trajectory at moment ,  which is

.  It  is  the  latest  predicted  trajectory
at  moment ,  where ,

 is  the  extrapolation  of  the  last  two  points,  i.e.,
. For each point ,

a convex region without touch is computed, denoted by
four  linear  constraints ,
which  makes  away  from  the  surrounding  static
obstacles.

i k zi(k)
c

l

The representation of the static obstacle constraint is
the same for each robot in the multi-robot system. The
state  of  robot  at  moment  is  ,  corresponding  to
the  constraint  representation  of  the -th  circle  that
represents  the  space  occupied  by  the  robot  and  edge 
of the polygon as
 

cstatic,l,c
i (zi(k)) = hl− nl · (pi−RW

i (z)pi
c) > 0 (3)

hl nlwhere  and  denote the edges of the polygon.
2.4.2    Dynamic obstacle restraints
For  the  multi-robot  motion  planning,  mutual  collision
avoidances  need  to  be  considered.  For  a  particular
robot,  neighboring  robots  can  be  regarded  as  dynamic
obstacles.

We use three robots, Robot 1, Robot 2, and Robot 3,
to illustrate a general case, as shown in Fig. 3. Robot 2
and Robot 3 will be considered dynamic obstacles from
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a b
R(ψ)

the  perspective  of  Robot  1,  represented  by  an  ellipse
with  long  semiaxis ,  short  semiaxis ,  and  a  rotation
matrix .  At  the  same  moment,  from  Robot  2’s
perspective, Robot 1 and Robot 3 will  then be seen as
dynamic  obstacles.  We  use  an  ellipse  to  describe
dynamic obstacles because the ellipse’s long and short
axis  can  be  adjusted.  Compared  with  the  circle,  there
will  not  be  too  many  redundant  areas.  It  can  better
represent  the  moving  obstacles  and  conform  to  the
robot’s  longitudinal  movement,  dominating  lateral
movement  characteristics.  Moreover,  the  ellipse  is
continuous  and  does  not  produce  noncontinuous
derivatives at the four corners, such as a rectangle[26].

x y

k k

i

To ensure that the distance between the robots in the
-axis direction and the -axis direction is greater than

the sum of the radius of the circle indicating the space
occupied by the robot and the axis length of the ellipse,
at  moment ,  we  omit  the  symbol  to  simplify  the
description  and  express  the  collision  avoidance
constraint between the -th robot and the other robots as
follows:
 

cobst, c
i, j (zi) =

[△xc
i, j

△yc
i, j

]T
R(ψ j)T

[ 1
a2+r2 0

0 1
b2+r2

]
R(ψ j)

[△xc
i, j

△yc
i, j

]
> 1

(4)

c
j x y

△xc
i, j △yc

i, j
c

i
j

where  the  distances  between  the -th  circle  and  the
dynamic  obstacle  in  the -axis  direction  and  the -
axis  direction  are  denoted  by  and  ,
respectively. r  denotes  the  radius  of  the -th  circle.
Taking  the  three  robots  in Fig.  3 as  an  example, 
represents  Robot  1,  while  represents  Robot  2  and
Robot 3.
2.4.3    Reference path

Pi i

Connecting the starting and ending points of the robot
gives the simplest global reference path, which can also
be given by the global path planner. As shown in Fig. 2,
we assume that  the global  reference path  of  robot 

pr
i,m = [xr

i,m,y
r
i,m] ∈W

m ∈ M := {1,2, ...,M}
ζi

m(θi) θi

i

consists  of  a  series  of  line  segments  obtained  by
connecting M  coordinate  points ,
where .  We  smooth  each  line
segment  using  a  cubic  polynomial,  where 
approximates the distance traveled by robot  along the
reference path.

η

Lr
i

We connect  segments  of  the  reference  path  into  a
differentiable  local  reference  path  for  trajectory
tracking.
 

Lr
i (θi(k)) =

m+η∑
h=m

σh,+(θi(k))σh,−(θi(k))ζi
m(θi(k)) (5)

σh,−(θi(k)) = 1/(1+ e(θi−
∑h

j=m sh)/ϵ) σh,+(θi(k)) =
1/(1+ e(−θi+

∑h−1
j=m sh)/ϵ)

ϵ

where  and 
 are two sigmoid functions for each

reference path. The function is continuous, smooth, and
strictly  monotonic.  is  a  small  design  constant.  This
representation  ensures  that  the  local  reference  paths
required to compute the solver gradient are continuous.

3    Distributed MPCC

In  this  section,  a  distributed  model  predictive
contouring  control  method  is  developed.  Model
predictive  contouring  control  is  based  on  model
predictive  control[27],  a  control  methodology  to  obtain
control actions by minimizing an objective over a finite
receding  horizon  based  on  a  dynamical  model.
Recently,  to  address  disturbance  rejection  when
planning the robot motion, model predictive contouring
control  has  been  especially  proposed[19, 20,  28] .  The
MPCC  follows  the  desired  path  and  adjusts  the  local
robot motion of the complex environment in real-time,
and  the  productivity  can  be  improved  based  on  the
reference path. We use the foundation of the MPCC for
planning  the  motion  of  a  single  robot[20] and  further
propose  a  distributed  MPCC  controller  for  the  multi-
robot  planning  problem.  First,  we  introduce  the
mathematical  formulation  of  the  MPCC  controller  for
each  robot  and  then  give  the  detailed  procedures  for
implementing  the  MPCC  controller  for  real-time
planning.

3.1    Performance metrics

Ji(zi(k),ui(k), θi(k))
Ji(zi(N), θi(k))

N

The  performance  metrics  of  the  model  prediction
contour  control  problem in  this  paper  are  divided  into

 during  the  system state  change  and
 for the system end state. The goal of the

model is to compute a trajectory for the robot that will
not  collide  in  the  next  time  steps  while  minimizing
the cost function.

The  performance  metrics  during  the  system  state

 

Robot 1

a

b

b
a ψj

Δy1
i, j

Δx1
i, j

Δy2
i, j

Δx2
i, j

X

Robot 3

Robot 2

r

Y

 
Fig. 3    Multi-robot  movement  schematic  (from  the
perspective  of  Robot  1,  dynamic  obstacles  are  Robot  2  and
Robot 3).
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change are expressed as
 

Ji(zi(k),ui(k), θi(k)) = Ji
tracking(zi(k), θi(k))+

Ji
speed(zi(k),ui(k))+ Ji

repulsive(zi(k))+
Ji

input(ui(k))
(6)

Ji
tracking(zi(k),θi(k)) Ji

speed(zi(k),ui(k)) Ji
repulsive(zi(k))

Ji
input(ui(k))

where , , ,
and  represent  the  tracking  cost,  velocity
cost, collision-free cost, and input cost, respectively, to
constitute  the  total  performance  metrics  of  the  MPCC
controller for each robot, as suggested in Ref. [20].

Since  the  speed of  the  robot  in  the  final  state  of  the
system  is  zero,  there  is  no  need  to  consider  the
constraints  on  velocity  and  input,  so  the  performance
metrics of the system end state are expressed as
 

Ji(zi(N), θi(N)) = Ji
tracking(zi(N), θi(N))+

Ji
repulsive(zi(N))

(7)

3.1.1    Tracking cost

ei(k) = pi(k)− pr
i (θ(k))

ei(k)

Contour  and  lag  errors  are  used  to  track  the  reference
path,  and  we  define ,  then,  the
error vector  is denoted as
 

ei(k) =
[

sinϕ(θi(k)) −cosϕ(θi(k))
−cosϕ(θi(k)) −sinϕ(θi(k))

]
ei(k) (8)

ϕ(θi(k)) = arctan( ∂yr
i (θi(k))/ ∂xr

i (θi(k)))where  represents
the direction of the motion.

The  tracking  cost  of  model  predictive  contouring
control is expressed as
 

Ji
tracking(zi(k), θi(k)) = ei(k)TQϵei(k) (9)

Qϵwhere  is  a  design  parameter.  The  solution  for
minimizing the quadratic tracking cost defined in Eq. (9)
drives the robot toward the reference path.
3.1.2    Velocity cost

i vi(k) k
vref

We  introduce  a  velocity  cost  term  to  penalize  the
deviation  of  robot ’s  velocity  at  moment  from
the reference velocity , denoted as
 

Ji
speed(zi(k),ui(k)) = Qv(vref − vi(k))2 (10)

Qv

vref

where  is  a design parameter,  the reference velocity
 can  be  obtained  by  upper-level  planning,  and

different  reference  velocities  can  be  chosen  for
different local reference paths.
3.1.3    Collision-free cost
We  also  add  a  cost  term  similar  to  the  potential
function  to  increase  the  safe  distance  between  the
robots, denoted as
 

Ji
repulsive zi(k)) = QR

n∑
j=1

1
(△xi, j(k))2+ (△yi, j(k))2+γ

(11)

QR n
△xi, j(k) △yi, j(k)

x y
γ ⩾ 0

where  is a design parameter,  denotes the number
of dynamic obstacles,  and  represent the
distances between the robot and the dynamic obstacles
in  the -axis  direction  and  the -axis  direction,
respectively,  is to ensure numerical stability, and
Eq. (11) also increases the robustness of the method to
localization  uncertainty  by  increasing  the  distance
relative to the obstacles.
3.1.4    Input cost
In the end,  the input  cost  also needs to be included as
follows:
 

Ji
input(zi(k), θi(k)) = ui(k)TQuui(k) (12)

Quwhere  is a design parameter.

3.2    Overall formulation

After providing the performance metrics of the MPCC
controller  for  each  robot,  we  give  the  overall
mathematical  formulation  of  the  distributed  MPCC
control problem, which is as follows:
 

J∗i = min
zi
0:N′u

i
0:N−1′ θ

i
0:N

N−1∑
t=0

Ji(zi(k+ t),ui(k+ t), θi(k+ t))+

Ji(zi(k+N), θi(k+N))
(13)

s.t.
 

zi(k+1) = f (zi(k),ui(k)) (14)
 

θi(k+1) = θi(k)+ vi(k)τ (15)
 

ui(k) ∈ U, zi(k) ∈ Z, zi(0), θi(0) given (16)
 

cstatic,l,c
i (zi(k)) > 0,∀c ∈ {1,2, ...,nc}, l ∈ {1,2, ...,4} (17)

 

cobst,c
i, j (zi(k)) > 1,∀c ∈ {1,2, ...,nc},∀ j (18)

vi(k) i τ

U Z
zi

1:N ui
0:N−1

N
θi(k)

k

[ui(k)∗]N−1
k=0

where  denotes  the  forward  velocity  of  robot , 
denotes the time step, and  and  denote the allowed
inputs  and  states,  respectively.  and   denote
the  states  and  control  inputs  on  the  predictive
horizon, respectively.  denotes the predicted travel
distance  of  the -th  moment  along  the  reference  path.
By  solving  this  optimization  problem,  the  locally
optimal  control  command  that  guides  the
robot  along  the  reference  path  without  collisions  is
obtained.
3.2.1    Distributed architecture
Compared with a single controller to centrally plan the
motions of all robots, this paper proposed a distributed
control  mechanism  of  sending  and  receiving  other
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robots’ predicted  trajectory  between  robots  to  ensure
that  each  robot  can  solve  its  optimization  problems  in
parallel through independent controllers.

k

(k−1)

V

The  distributed  network  architecture  of  the  multi-
robot  system is  shown  in Fig.  4.  At  the -th  moment,
each  robot  simultaneously  solves  its  own  model
predictive contouring control problem in parallel based
on  the  predicted  trajectory  information  of  the
neighboring  robots  at  the -th  moment  and
exchanges the recalculated predicted trajectory with the
neighboring  robots  at  the  current  moment  until  it
reaches  its  respective  target  point.  Note  that  the
communication  between two robots  may be  limited  in
the  industrial  workplace.  The  dashed  line  indicates
Robots 1 and  can communicate only within a limited
area when they are close to each other.

The procedures of the developed MPCC method are
described in Algorithm 1. Each robot uses its planner to
solve  the  optimization  problem  in  a  parallel  manner.

i
i

vref = 0

i

First,  each  robot  calculates  the  static  constraint  based
on  the  reference  path  and  static  environment
information (Step 6). The predictive trajectory of robot
 is illustrated in Fig. 5, and the predictive region (area

of  circles)  is  occupied  only  by  robot  to  prevent  the
collisions from the other robots. If no feasible solution
is detected, we let  to stop the robot, as shown in
Fig.  6.  The  robots  then  exchange  information  about
each  other’s  predicted  trajectories  (Step  7).
Neighboring  robots  are  considered  dynamic  obstacles
added  to  the  dynamic  collision  avoidance  constraint
(Step  8).  The  optimal  trajectory  for  robot  can  be
obtained  by  solving  an  individual  problem  (Step  9).
Finally, the new information is sent to the surrounding
robots,  while  the  first  step  of  the  control  inputs  is
executed (Steps 10 and 11).
3.2.2    Real-time implementation

10−4

We  use  an  open-source  Automatic  Control  and
Dynamic  Optimization  (ACADO)[29] code  generation
toolkit  to  implement  the  proposed  distributed  MPCC
controller.  The  toolkit  generates  an  optimized  and
independent  C-code  that  restricts  the  relevant
computations  to  the  most  basic  steps.  The  generated
C-code is based on a multiple direct hitting method and
a Gauss-Legerdale 4th-order integrator implementation
with  a  sampling  time  of  100  ms.  The  toolkit  uses
sequential  quadratic  programming  to  solve  the
nonlinear model predictive control problem of Eq. (13),
qpOASES[30] is  used  to  solve  the  corresponding
quadratic  programming  problem  and  KKT  is  set  to

. The maximum number of iterations is 10.

4    Results and Discussions

To  verify  the  effectiveness  of  the  proposed  control
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Fig. 4    Multi-robot system architecture.
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Fig. 5    Predicted trajectory based on MPCC.
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Fig. 6    Predicted trajectory if no feasible solution is detected
(we let vref = 0).
 

 

Algorithm 1　Proposed distributed MPCC algorithm for
multi-robot motion planning

z1
init,z

2
init, ...,z

V
init

z1
goal,z

2
goal, ...,z

V
goal N

1:Initializing parameters of all robots: ,
 and predicted steps 

k = 0, t,2t, ...2:   for  do
i i ∈ V3:     for all Robot ,  do in parallel

θi(0) i4:       Estimate the distance  that robot  is currently
traveling on the reference path

pr
i (θi(k)),k = 1,2, ...,N

5:       The given reference path is serialized to obtain
, according to Eq. (5)

cstatic,l,c
i (zi(k))

6:       Calculate the static obstacle avoidance constraint
, according to Eq. (3)

k−17:       Receive the trajectory of the surrounding robots at 
moment

cobst, c
i, j (zi)

8:       Add the trajectory of the surrounding robots to dynamic
collision avoidance constraint , according to Eq. (4)
9:       Solve the optimization problem of Eq. (13)
10:       Send the predicted trajectory of the current moment to
other robots

u∗i (0)11:       Apply  to move forward
12:     end for
13:   end for
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methodology,  in  this  section,  we  design  two  sets  of
scenarios  while  considering  the  method  of  handling
collision  avoidance  among  robots.  We  simulate  and
compare  the  proposed  MPCC  with  the  classical
dynamic  window  method[11] and  prioritized  planning
method[14, 15].

4.1    Simulation settings

wmax =

1 rad/s vmax = 2 m/s amin = 0 amax = 2.5 m/s2

We  use  Gazebo  to  build  the  physical  simulation
environment.  The  simulation  experiment  uses  a
computer  with  a  2.60  GHz  main  frequency  and
12.0  GB  memory.  The  robots  in  the  experiments  use
the  same  URDF  model  to  describe  the  robot’s  shape,
size,  and  physical  properties,  all  of  which  are  jackal
robots  from  ClearPath  robotics.  We  choose 

, , , and .
The individual functional modules of the robot were

written  in  the  C++  programming  language  and  placed
in their own separate ROS packages depending on their
functions.  Robot  localization  is  implemented  with  the
help  of  the  amcl  package,  which  implements  the
adaptive  Monte  Carlo  localization  method[31].  The
method is based on real-time data obtained from radar
and  uses  particle  filters  to  track  the  pose  of  the  robot
based  on  the  known  map  information.  In  addition,  a
map server node is used to provide the robot with map
information  of  its  surroundings,  and  the  RViz
visualization  tool  is  used  to  monitor  the  operational
state of the whole multi-robot system.

The proposed MPCC method is compared with three
commonly-used methods:

● Dynamical Window Approach (DWA), which is an
effective  online  collision-free  local  planner  for  mobile
robots[11].  DWA calculates the search space from a set
of velocities that produce a safe trajectory, then selects
the  optimal  velocity  and  heading  to  maximize  the
robot’s clearance.

●  Prioritized  planning  method,  in  which  the  motion
of  each  robot  is  planned  sequentially  following
different  priorities[9].  In  this  paper,  the  prioritized
planning  strategy  is  integrated  with  the  MPCC
(referred to as P-MPCC) for re-planning at each sample
instant.

●  Model  predictive  control  method,  which  uses  a
nonlinear predictive control for online motion planning
with  a  time-dependent  reference[21].  Here,  the  MPC
method  is  also  implemented  in  the  same  distributed
way (D-MPC) as the proposed D-MPCC method.

The  reference  paths  of  these  four  methods  are

identical.  The  reference  path  is  determined  by  the
global planning algorithm, such as Dijkstra.

16 m×
6 m

16 m×11 m

We designed a single-channel scenario of size 
,  using two robots for  testing.  The second scenario

is  a  complex  working  scenario[32] of  size ,
tested  with  six  robots  simultaneously.  For  each
scenario, ten simulations have been conducted.

4.2    Single channel scenario

vref ∈ {0.8 m/s,
1.0 m/s,1.2 m/s}
N ∈ {10,20,30,40,50} THorizon ∈ {1 s,2 s,3 s,4 s,5 s}

To evaluate the multi-robot  distributed MPCC method
proposed  in  this  paper,  we  conducted  ten  sets  of  test
experiments  in  a  single-channel  scenario,  as  shown  in
Fig.  7,  for  different  reference  velocities 

 and  different  predictive  horizons
 ( ),

respectively.  In  this  scenario,  the  coordinates  of  the
starting  position  and  the  coordinates  of  the  ending
position of the two robots are given in Table 2.

vref N

We  evaluate  the  total  time  and  distance  traveled  by
each robot to complete their tasks, and these indices are
used  for  comparative  analysis  to  select  the  proper
reference velocity  and prediction horizon  of  the
MPCC controller. The total travel time, the total travel
distance,  and  the  maximum  computation  time  under
different  parameter  configurations  are  presented  in
Figs. 8, 9, and 10, respectively.

N vref

N = 20
THorizon = 2 s

vref = 1.2 m/s N = 20

Figure  8 shows  that  the  total  travel  time  for  the
robots  to  complete  their  tasks  fluctuates  when varying

 for the same reference velocity . The minimum of
the  total  travel  time  is  obtained  when 
( )  for  each  reference  velocity.  The
configuration  that  and   achieves
the shortest travel time. When the predictive horizon is
too  short,  the  robot  cannot  accurately  calculate  the
surrounding  collision-free  area  based  on  the
 

Robot 0 Robot 1

 
Fig. 7    Single channel scenario built with Gazebo.

 

 

Table 2    Start point and end point coordinates of the robot.

Robot Starting point End point
Robot 0 (−5.0, 0.0) (5.0, 0.0)
Robot 1 (5.0, 0.0) (−5.0, 0.0)
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information  of  the  surrounding  static  environment,
which limits the robot’s speed. When a long prediction
horizon is  considered,  the  predicted collision-free  area
occupied  by  each  robot  becomes  large.  Because  each
robot  uses  the  predicted  trajectories  of  other  robots  in
the  previous  moment  to  perform  collision  avoidance,

the robots may have to decelerate or wait unnecessarily
for  avoiding  collision  in  advance,  leading  to  an
increase in the total travel time.

vref N

N
N

Figure  9 compares  the  total  travel  distance  of  the
robots  considering  different  and  .  It  is  observed
that  the  travel  distance  decreases  and  levels  off  when
the prediction horizon  increases. The travel distance
fluctuates slightly when  grows from 20 to 50.

N

N

Figure  10 records  the  maximum  computation  time
under  different  reference  velocities  and  the  prediction
horizons. Figure 10 indicates that the computation time
grows when the prediction horizon  increases because
the size of the optimization problem rises. For real-time
planning,  is suggested to be selected at a small value
of prediction horizons.

vref = 1.2 m/s N = 20

N

N = 20

Based  on  the  results  above,  in  the  following
simulations,  we  choose  the  configuration  of

 and  ,  since  this  combination
provides  the  minimal  travel  time  at  a  short
computational  time.  For  MPCC,  if  is  selected
sufficiently  long,  the  stability  and  feasibility  can  be
ensured, as discussed in Ref. [33]. However, we focus
on real-time planning, the computation burden must be
reduced  and  a  sufficiently  long  prediction  horizon
cannot  be  selected.  The  prediction  horizon  is
carefully selected, such that the travel distance is close
to the one when a long planning horizon is considered.

4.3    Complex operation scenario

The  second  scenario  is  a  complex  industrial
environment  (see Fig.  11)  containing  both  multiple
static  obstacles  in  the  environment  and  dynamic
obstacles  represented  by  the  moving  robots,  as
proposed in Ref.  [32].  We use this scenario to test  the
scalability of  the proposed D-MPCC and the real-time
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Fig. 8    Comparison  of  the  total  travel  time  under  different
vref and N.
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Fig. 9    Comparison  of  the  total  travel  distance  under
different vref and N.
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Fig. 10    Maximal computation time under different vref and
N.
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Fig. 11    Complex working scenarios built with Gazebo.
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planning capability in such a complex environment. In
this scenario, six mobile robots move from their pickup
points  to  their  target  points.  We  establish  the
coordinate system with the center point of this scenario
as  the  coordinate  origin;  each  robot’s  starting  and
ending coordinates are shown in Table 3.
4.3.1    General performance
Table 4 compares the travel  time and distance of each
robot  to  complete  their  transport  tasks  of  the  four
methods (DWA, D-MPC, P-MPCC, and D-MPCC). In
the  manufacturing  and  logistics  environment,
completion  time  is  more  crucial  than  the  distance  for
the  operator,  because  completion  time  is  directly
related to productivity. It can be seen from Table 4 that
the  proposed  D-MPCC  method  achieves  the  shortest
travel time for each robot, and in total their tasks are all
completed  as  soon  as  possible  (67.624  s).  The
performances  of  D-MPC and P-MPCC are  quite  close
to  each  other.  For  each  robot,  D-MPC  and  P-MPCC
both  obtain  a  shorter  travel  time  than  the  DWA
method.  Because  the  MPCC  planner  includes  the
reference  velocity  cost  in  the  objective  function  while
the DWA method does evaluate the reference velocity
explicitly, the MPCC methods have higher productivity
than the DWA method.

It  can  be  seen  from Table  4 that  the  proposed  D-
MPCC method is competitive among the four methods
concerning  the  total  travel  distance.  Although  the  D-

MPCC  method  does  not  have  the  shortest  travel
distance in total,  the gap is very small  between the D-
MPCC  method  (75.941  m)  and  the  DWA  method
which owns the shortest total travel distance (75.248 m).
Regarding  the  travel  distance  for  each  robot,  none  of
these methods dominates the others.
4.3.2    Trajectory analysis
In  this  part,  we  further  analyze  the  robot  trajectories
determined  by  the  proposed  D-MPCC  method,  in
comparison to DWA, D-MPC, and P-MPCC. The robot
trajectories  in  the  simulation  are  presented  in
Figs.  12–15.  Their  velocity  evolutions  for  each  robot
are given in Figs. 16–19. In all the simulation tests, no
collisions take place using these three methods.

Figures  12 and  13  give  the  robot  trajectories
computed  by  DWA  and  D-MPC,  respectively.
Compared  to  the  MPCC  methods  in Figs.  14 and  15,
the  trajectory  dots  of  DWA  and  D-MPC  are  less
intensive  because  the  DWA method  may  compute  the
trajectory  in  a  longer  computation  time.  As  the  result,
the  trajectories  of  these  robots  cannot  be  adjusted at  a
high  frequency  to  possibly  increase  the  travel  time.
Since  the  DWA  methods  cannot  incorporate  the
reference velocity into the trajectory evaluation, all the
robots accelerate and decelerate several times, resulting
in  a  long  travel  time  for  each  robot.  The  D-MPC
method  tracks  a  time-dependent  reference  for  each
robot,  and  the  robot  trajectories  of  D-MPC  are  not  as
smooth as the MPCC methods.

Figure  14 presents  the  motion  process  of  the  six
robots  obtained  by  the  P-MPCC  method.  Note  that
priority increases from Robot 0 to Robot 5. When two
robots  meet,  the  high-priority  robot  plans  its  motion
without  considering  the  low-priority  robot.  Then  the
low-priority  robot  unilaterally  avoids  the  high-priority
robot  taking  its  planned  motion  into  account.  This
explains  why  Robot  5’s  motion  is  smoother  than
Robot  0’s  when  the  two  robots  meet,  and  this  also

 

Table  3    Coordinates  of  the  start  and  end  points  of  each
robot.

Robot Start point End point
Robot 0 (−6.0, 4.5) (5.0, −3.5)
Robot 1 (−6.0, 0.0) (5.0, 4.5)
Robot 2 (−6.0, −3.5) (5.0, 0.0)
Robot 3 (6.0, −3.5) (−5.0, −3.5)
Robot 4 (6.0, 0.0) (−5.0, 0.0)
Robot 5 (6.0, 4.5) (−5.0, 4.5)

 

 

Table 4    Comparison of travel time and distance using different methods.

Robot
DWA D-MPC P-MPCC Proposed D-MPCC

Travel
time (s)

Travel
distance (m)

Travel
time (s)

Travel
distance (m)

Travel
time (s)

Travel distance
(m)

Travel
time (s)

Travel distance
(m)

Robot 0 36.205±0.375 13.870±0.092 15.712±0.098 15.972±0.101 16.135±0.030 15.431±0.257 13.097±0.111 15.389±0.026
Robot 1 22.309±0.091 12.646±0.229 11.828±0.067 13.258±0.023 11.887±0.252 14.007±0.155 11.332±0.034 13.195±0.079
Robot 2 23.203±0.127 11.898±0.025 11.800±0.048 12.081±0.019 11.782±0.083 13.391±0.043 11.441±0.071 12.351±0.034
Robot 3 17.611±0.221 10.697±0.048 10.513±0.015 11.878±0.092 10.291±0.078 11.209±0.067 10.251±0.026 11.227±0.053
Robot 4 54.101±0.075 15.356±0.257 12.608±0.071 12.632±0.065 11.789±0.011 12.390±0.046 11.752±0.151 12.483±0.037
Robot 5 17.501±0.014 10.781±0.093 10.405±0.087 11.881±0.031 10.372±0.037 11.109±0.035 9.751±0.173 11.296±0.083

Sum 170.930±0.05175.248±0.078 72.866±0.053 77.702±0.028 72.256±0.049 77.537±0.201 67.624±0.027 75.941±0.045
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applies to the other robot comparisons. When the high-
priority robots move faster, the low-priority robots may
not escape in time and cause a collision.

Figure  15 records  the  trajectories  of  the  six  robots
determined  by  the  proposed  D-MPCC  method.  It  can
be  seen  that  all  the  robots  show  cooperative  behavior
when meeting each other in a constrained environment.

Considering the predicted trajectory of the other robot,
each  robot  avoids  collision  with  the  other  robot
mutually.  As  a  result,  the  trajectory  curvatures  are
shared  by  the  two  robots  to  reduce  their  total  travel
time.  The  robot  could  reduce  the  numbers  of
accelerations/decelerations  to  achieve  a  shorter  travel
time, as illustrated in Fig. 19.
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Fig. 12    Planned robot trajectories obtained using the DWA
method.
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Fig. 13    Planned  robot  trajectories  obtained  using  the  D-
MPC method.
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Fig. 14    Planned  robot  trajectories  obtained  using  the  P-
MPCC method.
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Fig. 15    Planned  robot  trajectories  obtained  using  the
proposed D-MPCC method.
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Fig. 16    Velocity evolution by using the DWA method.
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Comparing  the  velocity  evolutions  of  the  four
methods given in Figs. 16–19, the velocity of the DWA
method  for  each  robot  requires  more  multiple
adjustments than the MPCC methods in the constrained
environment.  This  explains  in  general  the  DWA
method  has  a  longer  travel  time  than  the  MPCC
methods  which  explicitly  track  the  reference  velocity
when determining the robot trajectory.

Figures 16–19 also show that the proposed D-MPCC
method results in a more averaged travel time for each
robot  than the  DWA, D-MPC, and P-MPCC methods.
The  gap  in  the  travel  time  between  all  the  robots  is
smaller  than  the  other  methods.  These  results  indicate

the cooperative behaviors resulting from the distributed
MPCC method have a positive influence on improving
the productivity of the entire robot group.

5    Conclusion and Future Research

This  paper  proposes  a  distributed  Model  Predictive
Contour  Control  (MPCC)  methodology  for  planning
collision-free  motions  of  multiple  mobile  robots  to
improve coordination and real-time performance. With
the help of constraint optimization, the MPCC method
fully considers the robot’s kinematics constraints, static
environmental  constraints,  and  dynamic  obstacle
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Fig. 17    Velocity evolution by using the D-MPC method.
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Fig. 18    Velocity evolution by using the P-MPCC method.
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Fig. 19    Velocity evolution by using the proposed D-MPCC method.
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avoidance constraints. The proposed distributed MPCC
method  follows  the  desired  path  and  adjusts  the  local
motion  of  the  complex  environment  in  real-time  to
improve  productivity  when  completing  the  assigned
tasks. Real-time coordination among robots is achieved
by  passing  their  predicted  trajectories  from  the  last
moment  to  the  surrounding  robots  in  parallel  and
incorporating  the  predicted  trajectory  of  the
surrounding  robots  into  the  collision  avoidance
constraints  for  handling  dynamic  obstacles.  The
distributed  structure  improves  the  real-time
performance of  each robot  to  quickly  solve  its  motion
planning  and  ensures  the  scalability  of  the  entire
system.

The method proposed in this paper is validated in the
complex industrial environment of the robot simulation
software  Gazebo.  Compared  with  the  methods  of
DWA,  MPC,  and  prioritized  planning,  the  proposed
MPCC  adopts  a  distributed  structure  where  the
predicted  path  information  of  the  previous  moment  is
exchanged between robots and added to the respective
dynamic  obstacle  avoidance  constraints.  The  initiative
of  each  robot  to  complete  the  collision-avoidance
action  can  better  deal  with  the  collision  avoidance
problem  between  multiple  robots  and  reduce  the
working time and distance.  The predicted  trajectory  is
reserved  for  each  robot  to  avoid  the  collision.  If  the
predictive  horizon  is  too  small,  the  safe  area  of  the
robot  will  expand  in  a  small  area,  limiting  the  robot’s
behavior.  If  the  predictive  horizon  is  too  large,  the
robot will take unnecessary obstacle avoidance actions
in advance.

When  implementing  the  proposed  MPCC  method,
the maximum number of robots is limited to 10, due to
the  limited  number  of  channels  to  synchronize  when
using  the  message  filters  package  in  ROS.  In  future
research, we will investigate a more scalable method to
implement  the  MPCC  method.  Future  research  will
also  consider  validation  in  real  application  scenarios
and the inclusion of functions such as task assignment
and global path planning.
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