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Safety Certification for Stochastic Systems
via Neural Barrier Functions

Frederik Baymler Mathiesen , Simeon C. Calvert , Member, IEEE, and Luca Laurenti

Abstract—Providing non-trivial certificates of safety
for non-linear stochastic systems is an important open
problem. One promising solution to address this problem is
the use of barrier functions. Barrier functions are functions
whose composition with the system forms a Martingale
and enable the computation of the probability that the
system stays within a safe set over a finite time horizon.
However, existing approaches to find barrier functions gen-
erally restrict the search to a small class of functions, often
leading to conservatism. To address this problem, in this
letter, we parameterize barrier functions as neural networks
and show that bound propagation techniques and linear
programming can be successfully employed to find Neural
Barrier Functions. Further, we develop a branch-and-bound
scheme based on linear relaxations that improves the scal-
ability of the proposed framework. On several case studies
we show that our approach scales to neural networks
of hundreds of neurons and multiple hidden layers and
often produces certificates of safety that are tighter than
state-of-the-art methods.

Index Terms—Neural networks, system verification,
stochastic systems, linear programming.

I. INTRODUCTION

MODERN autonomous systems are inherently non-
linear, incorporate complex feedback controllers, and

are subject to uncertainty. Regardless of these complexities,
autonomous systems are commonly employed for safety-
critical applications, such as autonomous cars, where a failure
can have catastrophic consequences. For these applications,
formal quantification of probabilistic safety, defined as the
probability that the system does not enter an unsafe region
of the state space, is of paramount importance [1]. Despite
the recent efforts [2], [3], guaranteeing probabilistic safety for
non-linear stochastic systems still remains a particularly chal-
lenging problem. A promising approach is to use Stochastic
Barrier Functions (SBFs), which allows one to verify temporal
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properties of a stochastic system without the need to explicitly
evolve it over time [4]. Specifically, when composed with the
system, a SBF forms a c-martingale [4]; consequently, martin-
gale inequalities can be employed to compute (a lower bound
on) probabilistic safety [5]. The main challenge with SBFs is
to find a function that satisfies the conditions to be a SBF and
that is expressive enough to return a non-vacuous lower bound
on probabilistic safety. Existing approaches generally formu-
late the search for a barrier function as a convex optimization
problem by restricting the barrier to a limited class of func-
tions, generally exponential [6] or low-degree Sum-of-Squares
(SoS) polynomials [7], which leads to conservative results.
In this context, Neural Networks (NNs) hold great potential
due to their universal approximation power and their training
flexibility, yet no work has explored NNs to provide safety
certificates for stochastic systems.

In this letter, we consider non-linear stochastic systems and
propose a framework to train and certify NNs as SBFs; also
called Neural Barrier Functions (NBFs). By relying on linear
relaxation techniques for NNs [8], [9], we show that certifying
that a NN is a barrier function can be reduced to the solution
of a set of linear programs. Specifically, we partition the state
space and leverage linear bound propagation [8] to find lin-
ear bounds to prove satisfaction of the barrier conditions. We
propose a branch-and-bound method to reduce conservativ-
ity of our approach by adaptively refining the partition of the
state space. Fig. 1(b) visualizes the relationship between the
dynamics, a NBF, and the gap in linear relaxations to drive
the branch-and-bound scheme. We experimentally investigate
the efficacy of our framework on various examples includ-
ing a non-linear vehicle dynamics model [10]. We find that
our approach consistently outperforms state-of-the-art based
on SoS optimization [7]. For instance, experiments on the
vehicle dynamics model show that while the SoS approach
returns a lower bound of safety of 0% or fails due to com-
putational constraints, our method can certify a lower bound
of 87%. In summary, this letter makes the following contri-
butions: (i) introduce a novel framework to train NBFs for
a given non-linear stochastic system, (ii) present a branch-
and-bound scheme to compute a lower bound on the safety
probability via NBFs based on the solution of linear programs,
and (iii) on multiple benchmarks show that our framework can
train and certify NBFs with multiple hidden layers of hun-
dreds of neurons and substantially outperform state-of-the-art
methods.
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Fig. 1. Polynomial system with additive Gaussian noise adapted from [10] and corresponding NBF analyzed using bound propagation. (a) Plot
of the nominal system, i.e., of the vector field without noise, and of initial set and unsafe region. (b) Neural Barrier Function (NBF) as synthesized
by our framework relative to initial and unsafe sets. The composition of the NBF with the system forms a c−martingale, which allows us to use
martingale inequalities to compute the probability that starting from the initial set, the system will avoid the unsafe set. (c) Linear relaxation of a NN
for a single hyperrectangular region using CROWN [8]. We will rely on linear relaxations to prove that a NN is a NBF. (d, e) Bounds of the neural
network computed partitioning the state space in a 320 × 320 grid and using CROWN in each partition. (f) The gap between the upper and lower
bounds.

Related work: Safety guarantees for stochastic systems can
generally be obtained with either abstraction-based methods
based on model checking [2], [3], or barrier function-based
methods based on energy-like functions, which avoid analyz-
ing the flow of the system hence potentially improving scala-
bility [4], [7]. SoS optimization is the state-of-the-art method
for finding polynomial SBFs for discrete time [7], continuous
time [7], and stochastic hybrid systems [4]. Furthermore, [6]
has employed SoS to find exponential SBFs under the assump-
tion that the safe set is an ellipsoid.

NNs for representing barrier or Lyapunov functions are col-
lectively called neural certificates [11]. A major challenge is
verifying that a neural network is a valid certificate. Existing
methods are generally based on Satisfiability Modulo Theory
(SMT) [10], Mixed-Integer Linear Programming (MILP) [11],
and Lipschitz constants [12]. SMT and MILP-based certifi-
cation are generally limited to very few neurons (< 20) in
at most two hidden layers. On the other hand, the Lipschitz
method is more scalable, but generally conservative [13].
To the best of our knowledge, [12], [14] are the only
works that focus on neural certificates for stochastic systems.
Different to this letter, they only consider asymptotic stability.
Furthermore, to certify that a NN is a valid Lyapunov function,
they either employ SMT, which leads to lack of scalability, or
require the computation of the Lipschitz constant of both the
underlying system and the NN, which leads to conservatism.
In contrast, our approach does not require the computation
of any Lipschitz constant and can scale to larger networks of
hundreds of neurons and multiple hidden layers as we will
show in Section IV. A novel approach to neural certification

of systems is Neural System Level Synthesis where a closed
loop system is synthesized to guarantee stability [15].

II. PROBLEM FORMULATION

We consider a discrete-time stochastic system described by
the following stochastic difference equation:

x[k + 1] = F(x[k], v[k]) (1)

where x[k] ∈ R
n is the state of the system at time k, and v[k]

is an independent random variable distributed according to a
distribution p(v) over an uncertainty space V ⊆ R

n. We use
bold for random variables and italic for vectors, e.g., x vs
x. The function F : Rn × V → R

n is a continuous function
representing the one-step dynamics of System (1). System (1)
represents a general model of non-linear stochastic system,
which also includes non-linear systems in closed loop with
feedback controllers synthesized with standard control theory
methods (e.g., LQR) as well as NNs.

Given an initial condition x0, x[k] is a Markov process with
a well-defined probability measure P [16, Proposition 7.45]
generated by the noise distribution p(v) such that for sets
X0, Xk+1 ⊆ X it holds that

P(x[0] ∈ X0) = 1X0(x0)

P(x[k + 1] ∈ Xk+1 | x[k] = xk) = T(Xk+1 | xk), (2)

where T is the stochastic kernel for the dynamical system,
i.e., T(Xk+1 | xk) := ∫

V 1Xk+1(F(xk, v))p(v)dv and 1Xk(xk) ={
1 if xk ∈ Xk

0 otherwise
is the indicator function for set Xk. In this

Authorized licensed use limited to: TU Delft Library. Downloaded on January 16,2023 at 13:42:40 UTC from IEEE Xplore.  Restrictions apply. 



MATHIESEN et al.: SAFETY CERTIFICATION FOR STOCHASTIC SYSTEMS VIA NBFs 975

letter, we focus on verifying the safety of System (1) defined as
the probability that for a given finite time horizon H ∈ N, x[k]
remains within a (measurable and bounded) safe set Xs ⊂ R

n.
Problem 1 (Probabilistic Safety): Given a safe set Xs ⊂

R
n, a finite time horizon K = {0, 1, . . . , H}, and an initial

set of states X0 ⊆ Xs, compute probabilistic safety defined as

Ps(Xs, X0, H) = inf
x0∈X0

P(∀k ∈ K, x[k] ∈ Xs | x[0] = x0).

Note that the assumption of a finite time horizon is often
not limiting. In fact, if v[k] is additive with unbounded sup-
port, the probability of entering any unsafe region over an
unbounded horizon is trivially 1. Furthermore, we stress that
the distribution of x[k] is often analytically intractable, because
x[k] is the result of iterative predictions over a non-linear
function F, which is generally analytically intractable even
in the case of Gaussian noise. Consequently, the computa-
tion of Ps(Xs, X0, H) generally requires approximations. Our
approach is to rely on barrier functions parameterized as neural
networks to compute a lower bound of Ps.

III. PROBABILISTIC SAFETY VIA NEURAL

BARRIER FUNCTIONS

Our framework to compute probabilistic safety for
System (1) is based on Stochastic Barrier Functions (SBFs),
which we parameterize as neural networks. Since this let-
ter only focuses on SBFs, we sometimes refer to them as
just barrier functions. In what follows, we first introduce
SBFs (Section III-A) and then show in Section III-B how
to verify that a neural network is a SBF for System (1)
using the linear relaxation methods. Section III-B1 introduces
a branch-and-bound scheme to refine the verification result,
while controlling the required computational cost. Finally,
in Section III-C we show how techniques commonly used
for robust training of NNs can be used to train NBFs for
System (1).

A. Stochastic Barrier Functions

SBFs rely on the theory of c-martingales1 to show that a
stochastic process does not exit a given safe set with high
probability.

Definition 1 (Stochastic Barrier Function): Let Xs ⊂ R
n,

X0 ⊆ Xs and Xu = R
n \ Xs be respectively safe set, set of

initial states, and unsafe set. Then, we say that a non-negative
continuous almost everywhere function B : Rn → [0, 1] is a
stochastic barrier function for x[k] if there exists β ≥ 0 and
γ ∈ [0, 1) such that

B(x) ≥ 0 ∀x ∈ R
n (3a)

B(x) ≥ 1 ∀x ∈ Xu (3b)

B(x) ≤ γ ∀x ∈ X0 (3c)

E[B(F(x, v))] ≤ B(x) + β ∀x ∈ Xs. (3d)

A barrier function is considered a valid certificate if
Cond. (3a)-(3b) are satisfied. Fig. 2 illustrates Cond. (3a)-(3d).

1For the rest of the letter we will use β instead of c as is custom for
stochastic barrier functions.

Fig. 2. A barrier function B is a non-negative function that is greater than
1 in the unsafe region Xu. β ∈ R≥0 is an upper bound on the expected
increase in value after one time step of System (1) in the safe set Xs =
R

n\Xu. γ is an upper bound of B(x) for x ∈ X0. Proposition 1 guarantees
that for a finite horizon H it holds that Ps(Xs, X0, H) ≥ 1 − (γ + β · H).

Intuitively, as shown in Fig. 1(a), these conditions guarantee
that the expectation of the composition of B with the dynam-
ics of x does not grow by more than β in Xs. This allows us
to bound Ps(Xs, X0, H) [5].

Proposition 1 [6]: Let B be a barrier function for x[k] and
H ∈ N be a time horizon. Then, for ε = γ + β · H it holds
that Ps(Xs, X0, H) ≥ 1 − ε.

Note that Cond. (3a)-(3d) allow for a SBF to return α and
β such that ε ≥ 1. However, in this case we obtain a trivial
certificate Ps(Xs, X0, H) ≥ 0.

B. Neural Stochastic Barrier Functions

In this letter, we parametrize SBFs as Neural Networks
(NNs), which we call Neural Barrier Functions (NBFs). How
to train a NN to be a NBF will be the object of Section III-C.
First, in what follows, we show how to check that a given
NN Bθ with continuous activation functions, where θ repre-
sents the parameters (weights and biases), is a valid SBF for
System (1), i.e., it satisfies Cond. (3a)-(3d). Our verification
approach is based on building piece-wise linear functions that
under- and over-approximate Bθ .

Definition 2 (Linear Relaxation): Linear relaxations of a
continuous function f : R

n → R
1 over a set X ⊆ R

n are
two linear functions Ax + b and Āx + b̄ with A, Ā ∈ R

1×n and
b, b̄ ∈ R

1 such that Ax + b ≤ f (x) ≤ Āx + b̄, ∀x ∈ X.

To find linear relaxations of a NN, given a region of the
input, we employ CROWN [8]. In CROWN, non-linearities are
sequentially relaxed by analytical expressions through input
bounds to each non-linearity. Linear relaxations are propagated
backwards through the NN, both for local input bounds to
relax non-linearities and for the final relaxation. Together, this
yields a complexity of O(cw) where c is the number of non-
linearities in the computation graph and w is the complexity
of a forward pass. If a NN is composed with a continuous
function, then CROWN-like techniques can still be applied on
the composite computation graph to derive linear relaxations of
the composed function. In particular, the continuous function
can be treated as the first layer of neural network and perform
backwards bound propagation [9].

Turning our attention back to the verification of Bθ , we
start by assuming Bθ (x) ≥ 0 for all x ∈ R

n, that is Cond. (3a),

Authorized licensed use limited to: TU Delft Library. Downloaded on January 16,2023 at 13:42:40 UTC from IEEE Xplore.  Restrictions apply. 
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which can be encoded by taking ReLU of or squaring the out-
put. Similarly, Cond. (3b) can be trivially satisfied by assuming
Bθ (x) = 1 for all x ∈ Xu. Note that this is possible under the
general assumption that the boundary of Xs has measure zero
because of the requirement of Bθ to be continuous almost
everywhere.

For verifying Cond. (3c), (3d), we start by partitioning Xs

into a finite set of regions Q = {q1, . . . , q|Q|} and, using linear
relaxation techniques, for each q ∈ Q we can find matrices
Aq, Āq ∈ R

1×n and bq, b̄q ∈ R such that

Aqx + bq ≤ Bθ (x) ≤ Āqx + b̄q, ∀x ∈ q.

Then, the following lemma follows trivially
Lemma 1: Let QX0 ⊆ Q be sets of regions such that X0 ⊆

∪q∈QX0
q. Choose

γ = max
q∈QX0

max
x∈q

Āqx + b̄q.

Then, Cond. (3c) is satisfied.
Note that under the assumption that q is a convex poly-

tope, which can always be enforced by the partition strat-
egy, then Lemma 1 reduces to the solution of a set of
linear programs. We now turn our attention to β, and con-
sequently to the computation of the martingale condition,
Cond. (3d). Unfortunately, due to the non-linearity of the
functions involved, computing E[Bθ (F(x, v))] is analytically
intractable. As a consequence, we again rely on computing
local under- and over-approximations. In particular, consider
finite partitions Q and QV respectively of the safe set Xs and
of the uncertainty space V , and let Q̃ = Q × Qv. Then, as
discussed above for each q ∈ Q and q̃ = (q, qv) ∈ Q̃ we can
find row vectors Aq, Āq, Āqv ∈ R

1×n and scalars bq, b̄q̃ ∈ R

such that

∀x ∈ q, Aqx + bq ≤ Bθ (x) (4)

∀(x, v) ∈ q̃, Bθ (F(x, v)) ≤ Āqx + Āqvv + b̄q̃. (5)

To explicitly encode Cond. 3b, we assume Āq = Āqv = 0 and
b̄q̃ = 1 if {F(x, v) | (x, v) ∈ q̃} ∩ Xu �= ∅. The following
theorem uses the above relaxations to bound E[B(F(x, v))]
and consequently find a lower bound on β.

Theorem 1: Let Q and QV respectively be partitions of Xs

and V . For q̃ = (qx, qv) ∈ Q × QV define

Aq = −Aq +
∑

qv∈QV

Āq

∫

qv

p(v)dv,

bq = −bq +
∑

qv∈QV

b̄q̃

∫

qv

p(v)dv + Āqv

∫

qv

vp(v)dv,

and choose β ≥ max
q∈Q

max
x∈q

(Aqx + bq). Then, for any x ∈ Xs it

holds E[Bθ (F(x, v))] − Bθ (x) ≤ β.

Proof: For x ∈ q it holds that

E[Bθ (F(x, v)) | x] =
∑

qv∈QV

∫

qv

Bθ (F(x, v))p(v)dv

≤
∑

qv∈QV

∫

qv

(
Āqx + Āqvv + b̄q̃

)
p(v) dv.

(6)

Rearranging the above bound and combining with Aqx + bq,
we get an upper bound Aqx + bq for E[Bθ (F(x) + v)] − Bθ (x)
for all x ∈ q. It then follows that

max
x∈Xs

(E[Bθ (F(x) + v)] − Bθ (x))

≤ max
q∈QXs

max
x∈q

(
Aqx + bq

) ≤ β. (7)

The computation of Aq and bq in Theorem 1 requires the
evaluation of integrals

∫
qv

p(v) dv and
∫

qv
vp(v) dv. For vari-

ous classes of distributions, such as Gaussian with diagonal
covariance matrix or uniform distributions, these integrals can
be computed in closed forms. Otherwise, numerical approx-
imations may be required. Another challenge is if p(v) has
unbounded support then some qv ∈ QV are infinite in size and
linear relaxations for these regions may not exist. However,
we can use the fact that by construction Bθ (x) ≤ 1 for
all x ∈ R

n. Consequently, for any x ∈ R
n it holds that∫

qv
Bθ (F(x, v))p(v) dv ≤ ∫

qv
p(v) dv for any x ∈ R

n.
1) A Branch and Bound Scheme for Verification: To improve

the scalability of our verification framework, we adapt the
branch-and-bound partitioning scheme of [17] to our setting. In
particular, starting from a coarse partitioning of X, the method
gradually refines it by splitting regions and pruning those that
already satisfy the barrier conditions. For convenience, we
assume that all regions q are hyperrectangles. We perform the
branch-and-bound independently for Cond. (3c)-(3d). In what
follows, we explain the partitioning scheme for Cond. (3c),
Cond. (3d) follows analogously.

We start with a coarse initial partition QX0 of X0. Then,
as shown in Lemma 1, Cond. (3c) reduces to the computa-
tion max

q∈QX0

min
x∈q

Aqx + bq. As we start with a coarse partition

initially our bounds may be very conservative. Consequently,
we gradually refine QX0 . At each iteration we split all regions
in QX0 and prune a region q if q does not influence the sat-
isfaction of Cond. 3c and can be discarded. Specifically, we
may prune q if either q ∩ X0 = ∅ or the maximum value of
B in q is less than the smallest lower bound in another region
q′ ∈ QX0 . One iteration of splitting and pruning is shown in
Fig. 3. Finally, we stop the partitioning when the gap between
upper and lower bound for max

x∈X0
Bθ (x) is less than a threshold

tgap > 0, that is if

max
q∈QX0

max
x∈q

Āqx + b̄q − max
q∈QX0

min
x∈q

Aqx + bq < tgap.

Note that while the branch-and-bound scheme improves
scalability in practice, its theoretical complexity is still expo-
nential in the dimension of the state space.

C. Training Stochastic Neural Barrier Functions

We now describe the neural network training procedure,
which is key to obtain a valid stochastic barrier function Bθ .
As Cond. (3a)-(3d) need to hold over regions in the state space,
the rationale behind our approach is to adapt certified adversar-
ial training of NNs [18] to our setting. Our training procedure
starts by sampling independently m training points from each

Authorized licensed use limited to: TU Delft Library. Downloaded on January 16,2023 at 13:42:40 UTC from IEEE Xplore.  Restrictions apply. 



MATHIESEN et al.: SAFETY CERTIFICATION FOR STOCHASTIC SYSTEMS VIA NBFs 977

Fig. 3. One iteration of the automatic partitioning scheme with splitting and pruning for Cond. (3c). The set X0 is shown as a black blob, and
hyperrectangles q ∈ QX0

are split and pruned. LLB = max
q∈QXu

min
x∈q

Aqx + bq denotes the largest lower bound.

set X, Xu, X0, and Xs. We denote the resulting data set respec-
tively as Q(m)

X , Q(m)
Xu

, Q(m)
X0

, Q(m)
Xs

. Furthermore, l noise vectors
v1, . . . , vl are independently sampled from p(v). Then, the loss
function L is defined as follows:

L = (1 − κ)Lv + κ(γ (m) + β(m) · H)

Lv =
∑

x∈Q(m)
X

R(−Bθ (x), ε)

m
+

∑

x∈Q(m)
Xu

R(1 − Bθ (x), ε)

m

γ (m) = max
x∈Q(m)

X0

R(Bθ (x), ε)

β(m) = max
x∈Q(m)

Xs

R
⎛

⎝1

l

l∑

j=1

Bθ (F(x, vj)) − Bθ (x), ε

⎞

⎠.

where κ ∈ [0, 1] weighs between a valid stochastic bar-
rier function and tight probability bounds. For a function
f : R

n → R, R(f (x), ε) = max
x′:‖x−x′‖∞≤ε

max(f (x′), 0) is an

upper bounds of f (x) over an ε-hyperrectangle input set, which
we employ to enforce the satisfaction of Cond. (3a)–(3d)
on regions of the input space around the training points. To
find a certified upper bound for R(f (x), ε) we can employ
CROWN [8]. Note that the analytical nature of CROWN
allows employing standard auto-diff tools for taking the gra-
dient of L wrt. θ . Intuitively, large values of ε will facilitate
the task of finding a valid barrier function, while small ε

may lead to tighter bounds due to the conservatism intro-
duced by CROWN. With training progressing, we gradually
reduce κ ∈ [0, 1] to shift from minimizing γ (m) + β(m) · H
to minimizing Lv with the goal of first finding regions of the
parameter space with tight probability bounds and then anneal
the neural network to a valid barrier. Notice also that if Bθ is
a stochastic barrier function, then Lv = 0. However, L will in
general not be zero even in this case. This is because of term
κ(γ (m) + β(m) · H), which aims to minimize γ (m) + β(m) · H,
an upper bound on the probability of reaching the unsafe set.

IV. EXPERIMENTAL EVALUATION

The framework is evaluated on three benchmarks: a 2-D
linear system from [7], the 2-D polynomial system shown in
Figure 1(b) from [4], and a 3-D, discrete-time, non-polynomial

TABLE I
CERTIFIED LOWER BOUND FOR Ps. HIGHER IS BETTER, AND THE

BEST RESULT FOR EACH SYSTEM IS HIGHLIGHTED IN BOLD. CELLS
WITH “−” DENOTES THAT SOS FAILED TO COMPUTE A BARRIER. BAB

ABBREVIATES BRANCH-AND-BOUND

Dubin’s car model [10]. To show the flexibility of our frame-
work, for all systems we consider the same NBF architecture:
a feed-forward neural network with 3 hidden layers with 128
neurons per layer and ReLU activation. Experiments are con-
ducted on a computer with a Intel i7-6700k CPU, 16GB DDR4
RAM, Nvidia GTX 1060 GPU.2 The optimization is done
using ADAM with a learning rate of 1e−4, with training set
batches of m = 50. We train the NBF for 60000 iterations.

To illustrate the efficacy of our framework, in Table I we
compare the lower bound of Ps obtained with our model
with a sum-of-squares optimization based approach [7], which
arguably is the state-of-the-art for finding barrier functions for
stochastic systems, a Lipschitz-method adapted from [12], and
NBF with a grid-based partitioning (the grid considered for
both the linear and polynomial system is 320x320, and for
Dubin’s car it is 40 × 40 × 60). For all the benchmarks we
consider SoS polynomials of order up to 15. For all our bench-
marks it is possible to observe that our approach based on
NBFs outperforms both SoS optimization and Lipschitz certi-
fication in terms of the tightness of the bounds. For instance,
for the Dubin’s car model, arguably the hardest example we
consider due to its non-polynomial nature, SoS fails due to
excessive memory requirements and Lipschitz only finds a
trivial certificate of 0, while our framework obtains a lower
bound of 0.87. In contrast, for the linear system, both SoS and

2Code for NBF, Lipschitz certification and SoS is available at
https://github.com/DAI-Lab-HERALD/neural-barrier-functions.
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Fig. 4. Levelset for (a) a SoS SBF and (b, c, d) NBFs with varying val-
ues of ε, all for the 2-D polynomial system. The NBFs are more flexible to
capture complex shapes of the unsafe set and less sharply increasing in
value compared to the SoS SBF. (b, c, d) show that larger ε results in a
flatter surface, yielding a smaller β at the expense of a larger γ . (a) 8-deg
SoS (b) NBF ε = 0.00001 (c) NBF ε = 0.0001 (d) NBF ε = 0.001

our approach obtain a similar certified level of safety, but SoS
is substantially faster (orders of minutes for the linear system),
as our framework still requires to first train a neural network
and then certify it (orders of few hours for all benchmarks as
we used the same neural network architecture).

To understand the difference in certified safety, in Fig. 4 we
study contour plots of the barrier functions for the 2-D poly-
nomial example obtained with SoS and with NBF for different
values of ε, where ε is the training parameter introduced in
Section III-C. Note that the certified lower bound for Ps via
Proposition 1 can be non-zero only in regions where B(x) < 1.
Interestingly, we observe this region is significantly smaller
for SoS compared to NBF for all ε, which is attributed to
the reduced expressivity of the small-degree SoS polynomial.
The differences in region sizes and the distances to the ini-
tial sets explain the result in Table I. Furthermore, we should
stress that ε = 0.00001 is the smaller value of ε for which our
approach could find a valid barrier, illustrating the importance
of this parameters in balancing between finding a valid barrier
and obtaining high lower bounds of safety.

V. CONCLUSION

We propose an approach based on Neural Barrier Function
(NBF) to compute probabilistic safety for stochastic systems.
Novel algorithms to train NBFs are presented and it is shown

that the problem of certifying a NBF for a given stochastic
system reduces to the solution of a set of linear programs.
The scalability of our framework is improved by a branch-
and-bound approach. The method is evaluated on linear,
polynomial, and non-polynomial systems, beating state-of-the-
art methods on all systems, certifying previously intractable
non-linear systems. Hence, this letter takes an important step
towards the adoption of autonomous systems in safety-critical
settings.
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