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Abstract. Attribution of sea-level change to its different
drivers is typically done using a sea-level budget approach.
While the global mean sea-level budget is considered closed,
closing the budget on a finer spatial scale is more compli-
cated due to, for instance, limitations in our observational
system and the spatial processes contributing to regional sea-
level change. Consequently, the regional budget has been
mainly analysed on a basin-wide scale. Here we investigate
the sea-level budget at sub-basin scales, using two machine
learning techniques to extract domains of coherent sea-level
variability: a neural network approach (self-organizing map,
SOM) and a network detection approach (δ-MAPS). The ex-
tracted domains provide more spatial detail within the ocean
basins and indicate how sea-level variability is connected
among different regions. Using these domains we can close,
within 1σ uncertainty, the sub-basin regional sea-level bud-
get from 1993–2016 in 100 % and 76 % of the SOM and δ-
MAPS regions, respectively. Steric variations dominate the
temporal sea-level variability and determine a significant part
of the total regional change. Sea-level change due to mass
exchange between ocean and land has a relatively homoge-
neous contribution to all regions. In highly dynamic regions
(e.g. the Gulf Stream region) the dynamic mass redistribu-
tion is significant. Regions where the budget cannot be closed
highlight processes that are affecting sea level but are not
well captured by the observations, such as the influence of
western boundary currents. The use of the budget approach in

combination with machine learning techniques leads to new
insights into regional sea-level variability and its drivers.

1 The sea-level budget

Sea-level change will be one of the major challenges of the
coming centuries for coastal communities worldwide (Fox-
Kemper et al., 2021). Global mean sea-level change has been
rising at a rate of 1.6 mm yr−1 since 1900 and 3.3 mm yr−1

since 1993 (Frederikse et al., 2020). However, sea level does
not change uniformly: it displays strong spatial and temporal
variations (Hamlington et al., 2020). Ocean dynamics, land
ice mass changes and associated gravitational effects, ver-
tical land movement, and the inverse barometer effect are
some of the processes responsible for these regional differ-
ences (e.g. Stammer et al., 2013; Slangen et al., 2017). Un-
derstanding the regional variability of the processes driving
sea-level change is critical for improving our understanding
of its causes, constraining sea-level projections, and better
preparing for the impacts of climate change.

The attribution of sea-level change to its different drivers
is typically done using a sea-level budget approach (Cham-
bers et al., 2017; WCRP Global Sea Level Budget Group,
2018). For 1993–2018, about one-third of the observed rate
of global mean change can be attributed to thermal expan-
sion of the oceans, while the rest is due to the effect of water
and ice mass exchanges between land and ocean (Frederikse
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et al., 2020). Since the observed rate of sea-level change
matches, within uncertainties, with the sum of the contri-
butions of the various sources, the global mean sea-level
budget for the period 1993–2018 is considered to be closed
(WCRP Global Sea Level Budget Group, 2018; Frederikse
et al., 2020; Chen et al., 2020; Barnoud et al., 2021). How-
ever, locally attributing the drivers of sea-level change for
this same period still leads to large differences between the
total measured change and the sum of the contributions (e.g.
Slangen et al., 2014; Royston et al., 2020). This is partly due
to the spatial resolution of the current observational systems
of the sea-level budget components and of the processes in
question, which still limits the closure of the budget on a
local spatial scale, for instance on a 1◦ resolution (Roys-
ton et al., 2020). Consequently, the regional sea-level budget
has mainly been analysed on a basin-wide scale (e.g. Purkey
et al., 2014; Frederikse et al., 2018, 2020; Royston et al.,
2020) and has not been closed on sub-basin scales consis-
tently for the entire world. The sea-level budget has also been
analysed for individual coastline stretches characterized by
coherent variability (Rietbroek et al., 2016; Frederikse et al.,
2016, 2017; Dangendorf et al., 2021) and at individual tide
gauges (Wang et al., 2021).

The basin-scale sea-level features extracted by Thomp-
son and Merrifield (2014) have been frequently used in re-
gional sea-level budget studies (Purkey et al., 2014; Fred-
erikse et al., 2018, 2020; Royston et al., 2020). Although
these publications have made significant advances in under-
standing the regional sea-level change, the basin scale is still
too large to really understand the causes of local variations.
In this paper, we argue that understanding the spatial struc-
ture of contemporary sea-level change is a key point to move
towards a budget with finer spatial resolution. By identi-
fying smaller physically coherent regions, some of the ef-
fects of small-scale variability can be removed, allowing for
closure of the budget at a sub-basin scale. Machine learn-
ing techniques, such as complex and neural networks, can
be used to identify such spatial structures, determining the
ideal resolution and regions of common sea-level variability
and change. While machine learning methods have widely
been used in oceanography (e.g. Richardson et al., 2003;
Liu et al., 2006; Hernández-Carrasco and Orfila, 2018; Son-
newald et al., 2019; Falasca et al., 2019, 2020; Novi et al.,
2021), only a few examples analysing sea-surface height
can be found (e.g. Liu et al., 2016; Ma et al., 2016; Son-
newald et al., 2018). Here, we apply two unsupervised ma-
chine learning techniques – self-organizing map (SOM) and
δ-MAPS – to extract coherent spatial features (domains) in
sea-level change observations.

In this study we use the extracted domains to analyse the
sea-level budget on a sub-basin scale during the satellite al-
timetry period (1993–2016) by using state-of-the-art esti-
mates of sea-level change and its components. We limit our
analysis to 2016 because of the temporal span of the hydro-
logical models used to obtain the land water storage contribu-

tion to sea-level change. Additionally, instrumental problems
(e.g. in Argo salinity data and satellite drifts) have raised
questions about the performance and closure of the global
mean sea-level budget after 2016 (Chen et al., 2020; Barnoud
et al., 2021; Cazenave and Moreira, 2022). We hypothesize
that by investigating the budget in covariant and physically
coherent regions, we can resolve the discrepancies (i.e. close
the budget) that appear in an increased-resolution sea-level
budget (e.g. 1× 1◦).

2 Data and methods

In this section we introduce the data sets used for each of
the different components of the sea-level budget (Sect. 2.1).
We also describe the trend and budget analysis (Sect. 2.2)
and introduce the machine learning techniques used to ex-
tract coherent regions (domains) of sea-level variability and
change (Sect. 2.3).

2.1 The components of the regional sea-level budget

For the budget, we compare the total observed sea-level
change ηtotal to the sum of the drivers of sea-level change
ηdrivers:

ηtotal =
∑

ηdrivers, (1)

where η stands for the rate of sea-level change.
Total sea-level change (ηtotal) can be measured by tide

gauges and satellite altimeters. Satellite altimeters measure
geocentric or absolute change (ηgeo(sat)), that is, the sea sur-
face height in relation to the reference ellipsoid (Gregory
et al., 2019). On the other hand, tide gauges measure sea sur-
face height in reference to a terrestrial landmark (ηrel(TG)),
registering the relative sea-level change. The latter is affected
by vertical land motion (VLM) due to, for instance, land
subsidence and tectonics (Wöppelmann and Marcos, 2015),
while geocentric sea level cannot differentiate if the change
is from the solid Earth or the ocean. The relationship between
geocentric and relative sea-level change is

ηtotal = ηgeo(sat) = ηrel(TG)+VLM. (2)

From here onward, when we use ηtotal, we are referring to
the geocentric sea-level change derived from satellite altime-
try (Fig. 1a). We use multi-mission gridded level-4 data from
four distribution centres: CMEMS (CMEMS, 2022), JPL
MEaSUREs (Zlotnicki et al., 2019), SLcci (SLcci, 2022),
and CSIRO (CSIRO, 2022). All of these products use the
same reference ellipsoid model (GRS80/WGS) and have a
monthly temporal resolution, except for JPL MEaSUREs
time series, which provides sea surface height data every 5 d
and was averaged into monthly means. All data are regridded
to a 1× 1◦ map, selected within 66◦ S to 66◦ N latitude, and
combined into an ensemble mean to avoid systematic errors.
We apply a glacial isostatic adjustment (GIA) correction to
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the altimetry data from ICE-6G VM5a (Argus et al., 2014;
Peltier et al., 2015) by removing the rate of change of the
geoid (i.e. Drad+Dsea) from the trends.

Sea-level change expresses changes in the volume of the
ocean. These can be caused by changes in the ocean den-
sity, mass, or area. Density-driven changes, known as steric
sea-level changes, are caused by variations in the ocean tem-
perature and salinity (Gill and Niller, 1973; MacIntosh et al.,
2017). All sea-level variations not driven by density changes
are known as manometric sea-level change (Gregory et al.,
2019). Thus, Eq. (1) can be rewritten to

ηtotal =
∑

ηdrivers = ηSSL+ ηMAN, (3)

where ηSSL and ηMAN refer to steric and manometric sea-
level change, respectively.

For steric sea-level change (ηSSL, Fig. 1c), we use the esti-
mates of Camargo et al. (2020), which are based on 15 differ-
ent ocean temperature and salinity data sets down to 2000 m
depth, using Argo floats (Roemmich and Gilson, 2009; Gail-
lard et al., 2016; Li et al., 2017; Lu et al., 2019), multiple
in-situ observations (Ishii and Kimoto, 2009; Guinehut et al.,
2012; Cabanes et al., 2013; Good et al., 2013; Gaillard et al.,
2016; Ishii et al., 2017; Cheng et al., 2019; Szekely et al.,
2019), and ocean reanalyses (Blockley et al., 2014; Maclach-
lan et al., 2015; Storto and Masina, 2016; Garric and Parent,
2017; Carton et al., 2018; Zuo et al., 2019). We complement
these data with the deep-ocean steric estimate of Purkey et al.
(2019, updated from Purkey and Johnson, 2010).

Manometric sea-level change (ηMAN), also referred to as
the bottom pressure term (Gregory et al., 2019), can be fur-
ther divided into (i) ηGRD, i.e. sea-level change due to the
gravitational, rotational, and viscoelastic deformation (GRD)
response of the Earth to water and ice mass exchanges be-
tween land and ocean, and (ii) ηDSL, i.e. the dynamic redis-
tribution of ocean mass due to ocean circulation, atmosphere,
and ocean bottom pressure changes as a result of the steric
change of the oceans (Landerer et al., 2007) as follows:

ηMAN = ηGRD+ ηDSL. (4)

The GRD component (ηGRD, Fig. 1d) reflects how the
mass loss of continental ice stored in glaciers and ice sheets
and variations in land water storage affect sea level. The
GRD effect can be split between responses due to contempo-
rary changes and due to the response of the Earth to the last
ice age, known as the post-glacial rebound or GIA. The in-
tegrated response of the GRD effect over the oceans, i.e. the
global mean, is known as barystatic sea-level change (ηBSL,
Gregory et al., 2019). For the GRD component, we use the
estimates from Camargo et al. (2022a), which includes the
geocentric sea level response to changes in the Antarctic and
Greenland ice sheets, glaciers, and terrestrial water storage.
These are based on a suite of different estimates of land mass
change and computed solving the sea-level equation follow-
ing Farrell and Clark (1976) and Slangen et al. (2014).

The dynamic component (ηDSL, Fig. 1e) refers to mass
changes driven by bottom pressure changes, that is, the re-
distribution of mass that was already in the oceans. Note that,
by our definition, the dynamic sea-level change (ηDSL) is part
of the ocean dynamic change (1ζ , Gregory et al., 2019),
the latter also including the effect of local steric anomalies
(η′SSL). That is, the dynamic term here is the residual of the
sterodynamic sea-level change with the steric contribution
removed (Gregory et al., 2019). ηDSL is computed from the
sea-surface height of five ocean reanalyses (Table 1) by first
removing the time-varying global mean from the sea-surface
height and then by removing the local steric anomaly. This
procedure is done in each ocean reanalysis individually, and
we then combine the five estimates into an ensemble. We ac-
knowledge that this method introduces some circularity to
the budget analysis: the reanalysis, used to obtain ηDSL, as-
similates satellite sea-surface height, and in the budget analy-
sis we compare this estimate with satellite sea-surface height
(ηtotal). Compared with the ηDSL estimated from Gravity
Recovery and Climate Experiment Satellite (GRACE, Tap-
ley et al., 2004), ηDSL sea-level trends from 2005 to 2015
agree on large-scale patterns and the magnitude of dynamic
changes (Fig. A1 in the Appendix). Note that our budget
components do not incorporate GRACE mass changes over
the oceans, hence it is an independent estimate for validation.
More detail on the estimation and validation of ηDSL is given
in Appendix A.

Finally, Eq. (3) can be rewritten as follows:

ηtotal = ηSSL+ ηGRD+ ηDSL, (5)

such that the total observed sea-level change (Fig. 1a) can be
compared with the sum of the components (Fig. 1b). The en-
semble mean of each term of Eq. (5), used throughout this
paper for the sea-level budget analysis, is shown in Fig. 1,
where ηtotal is the geocentric sea-level change from satel-
lite altimetry corrected for the inverted barometer and GIA
(ηGIA) effects; ηSSL is the full-depth steric sea-level change;
ηGRD is the contemporary ocean mass redistribution due to
the land–ocean mass exchange already corrected for ηGIA ef-
fects; and ηDSL is the mass redistribution due to purely ocean
dynamics. A summary of the budget components and data
set sources is given in Table 1. Note that all of the used data
sets have been homogenized to a monthly temporal resolu-
tion and a 1◦× 1◦ spatial resolution.

2.2 Computing trends and uncertainties

Our sea-level budget includes the comparison of sea-level
time series, trends, and associated uncertainties. We assume
that sea-level trends are the sum of a deterministic model
(including annual and semi-annual signals) and stochastic
noise (temporal uncertainty). We use the software Hector
(Bos et al., 2013) to compute the trends and the associ-
ated 1σ uncertainty for each of the budget components. Fol-
lowing Bos et al. (2014), Royston et al. (2018), and Ca-
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Table 1. Summary of the sea-level budget components and data sources used in this paper.

Symbol Name Description Reference

ηtotal Observed
change

Total sea-level change from satellite altimetry Ensemble of CMEMS (CMEMS, 2022),
JPL MEaSUREs (Zlotnicki et al., 2019),
SLcci (SLcci, 2022),
and CSIRO (CSIRO, 2022)

ηSSL Steric
expansion

Full depth density-driven sea-level change due
to ocean temperature and salinity variations

Camargo et al. (2020)
and Purkey and Johnson (2010)

ηGRD Mass
change

Contemporary ocean mass redistribution due
to the land–ocean mass exchange

Camargo et al. (2022a)

ηDSL Dynamic
change

Mass redistribution due to purely ocean
dynamics

Ensemble of SODA (Carton et al., 2018),
C-GLORS (Storto and Masina, 2016),
GLORYS (Garric and Parent, 2017),
FOAM-GloSea (Blockley et al., 2014),
(Maclachlan et al., 2015), and ORAS
(Zuo et al., 2019)

margo et al. (2020, 2022a), we test eight different noise
models to describe the auto-correlation between the resid-
uals of the regression. Using the Akaike and Bayesian in-
formation criteria (Akaike, 1974; Schwarz, 1978), we select
the best-performing noise model at each grid cell. More in-
formation on the noise-model analysis can be found in Ca-
margo et al. (2020, 2022a). For the GRD component, in ad-
dition to the temporal uncertainties, we also consider the spa-
tial, structural, and intrinsic uncertainties (Camargo et al.,
2022a). Note that, unlike for the identification of the domains
(Sec. 2.3), the time series used to estimate trends and uncer-
tainties include seasonality and global mean trends.

We assume independence of the terms and sum the trends
linearly and uncertainties in quadrature. For each sea-level
domain we take the area-weighted spatial average of the
time series, trend, and uncertainties. Performance of the sea-
level budget is evaluated by (i) the magnitude of the residual,
(ii) the Pearson’s correlation coefficient (r) between the al-
timetry time series and the budget components, and (iii) the
normalized root-mean-squared error (nRMSE). The nRMSE
measures the distance between the true value, in this case al-
timetry, and the modelled value, in this case the sum of the
budget components. Contrary to r , nRMSE closer to 0 indi-
cates better performance.

2.3 Clustering techniques

To answer our research questions, we must first identify re-
gions with similar sea-level variability. To do so, we use two
different machine learning pattern detection algorithms, one
based on an neural network approach, self-organizing map
(SOM), and one based on a deep network detection method,
δ-MAPS. The methodological differences in these two tech-
niques leads to different patterns of sea-level change in terms
of geographical location, region size, and ocean coverage.

Hence, by using both methods, we can (i) find prevailing sea-
level modes, (ii) compare the patterns and sea-level budget
for the different methods, and (iii) balance out the advantages
and disadvantages of using a single method. Both methods
are used to reduce the dimensionality of the data, transform-
ing high-dimensional input data into low-dimensional fea-
tures (Liu et al., 2006; Falasca et al., 2020). For both clus-
tering techniques we use 1◦× 1◦ monthly satellite altimetry
time series (CMEMS, 2022) from 1993–2019 as input. Note
we use a longer time series than the ones for the budget anal-
ysis, as longer time series can resolve the temporal variability
better. However, additional tests (not shown) showed that the
clustering is not strongly affected by the extra 3 years of data.
We pre-process the input data by removing the global mean
trend and seasonality and by applying a spatial Gaussian fil-
ter of 300 km half-width to remove small-scale variability.
Note that after the domain identification for the budget anal-
ysis, global mean trend, seasonality, and small-scale variabil-
ity are included in the time series. Smaller seas, such as the
Mediterranean, Baltic, Black, and Caspian seas have been re-
moved from the data prior to the clustering.

2.3.1 Self-organizing map (SOM)

SOM (Kohonen, 1982) is a feature extraction and classifica-
tion method based on an unsupervised neural network (Liu
et al., 2006), which was demonstrated to be more powerful
than conventional feature extraction methods (e.g. Liu and
Weisberg, 2005). The ability of SOM to extract patterns of
sea level variability from satellite altimetry data has been
shown in previous works (e.g. Hardman-Mountford et al.,
2003; Liu et al., 2008, 2016; Iskandar, 2009; Weisberg and
Liu, 2017; Nickerson et al., 2022). To analyse sea level data,
SOM can be applied either in the spatial domain, focusing
on the characteristic spatial patterns, or in the time domain,
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Figure 1. Regional sea-level trends for 1993–2016 (mm yr−1) for (a) altimetry, (b) sum of sea-level components, (c) full-depth steric,
(d) GRD effect, and (e) dynamic sea-level change. The black contour line indicates global mean sea-level change.

focusing on the characteristic time series (Liu et al., 2016).
The latter results in regionalizing the sea-level variability and
is pursued here to analyse global sea level data. We use the
MATLAB SOM toolbox (Vesanto et al., 2000) and follow
Liu et al. (2006) and Hernández-Carrasco and Orfila (2018)
to choose the parameters. We apply the SOM algorithm in
the time domain in order to extract the spatial patterns, herein
referred to as domains, based on coherent temporal sea-level
variability. Before initializing the SOM, the 3D input data
(time, lat, long) is concatenated to 2D (time, lat times long;
Richardson et al., 2003; Liu et al., 2016) and normalized to
have unit variance. The network is initialized linearly, based
on the first two principal components of the time series, and
trained in a batch mode; that is, at each step of the training
process, all input data vectors are simultaneously used to up-
date the network. Training is performed over 10 iterations,
which is necessary to stabilize and converge the network,
while avoiding overfitting of the SOM (Liu et al., 2006). We
use the “Epanechikov function” as a neighbourhood func-
tion, which returns the most accurate SOM patterns, a hexag-
onal lattice, and a neighbourhood radius (determining the ra-
dius of cells that are updated during the training process) of
two cells at the beginning, decreasing linearly to 1 during the
training process. We tested different SOM parameters and

verified that this combination gave the smallest quantification
errors by computing the averaged Eulerian distance between
each data input vector and the best matching unit (BMU).
SOM domains do not need to be geographically contiguous,
that is, different non-connected regions can be assigned to
a single domain. Initially, the strong sea-level variability of
the equatorial Pacific Ocean dominated the clustering, hin-
dering pattern identification in the Atlantic Ocean (Fig. A8).
To overcome this issue we perform the clustering analysis on
the Atlantic Ocean and Indo-Pacific Ocean basins separately.
We select a map size of 3× 3 neurons (i.e. neural network
nodes) in each basin, leading to a total of 18 domains. Us-
ing different map sizes (e.g. Fig. A8) led to more “patchy”
results, hence we used a map size of 3×3 neurons as a com-
promise between the amount of detail and the interpretability
of the domains.

2.3.2 δ-MAPS

δ-MAPS (Fountalis et al., 2018) is a complex network
methodology that reduces the spatiotemporal dimensional-
ity of a field by identifying regions (domains) with similar
dynamics and their connectivity (Bracco et al., 2018; Falasca
et al., 2020). Here we focus only on the domains identifi-
cation (dimensionality reduction) function of the δ-MAPS
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method. δ-MAPS domains are spatially continuous (i.e. grid
cells need to be physically connected to be clustered in the
same domain) and are potentially overlapping regions that
have a highly correlated temporal activity (Falasca et al.,
2019). Formally, each input grid cell is associated with a
time series, including theK nearest neighbours, based on the
haversine distance (angular distance between two points on a
sphere). The local homogeneity, defined as the average Pear-
son cross-correlation between a grid cell and its K neigh-
bours, is computed and tested against a threshold value δ. If
the local homogeneity is greater than δ, with a statistical sig-
nificance level of 0.1, then the grid cell is considered a core,
which then is expanded to identity domains (Fountalis et al.,
2018; Falasca et al., 2019; Novi et al., 2021). Each domain
expands to adjacent cells as long as the local homogeneity
continues to be higher than δ. To choose the optimal neigh-
bourhood size K , we follow a heuristic approach, testing K
values from 4 to 25 following Falasca et al. (2019). As in δ-
MAPS not every grid point needs to belong to a domain (in
contrast to SOM), we then choose theK value taking into ac-
count the amount of unclustered cells (i.e. the one with most
of the ocean belonging to domains). We also use the normal-
ized mutual information (NMI) matrix (Falasca et al., 2019)
to identify the K value with high NMI for it and its neigh-
bouring K values, meaning that the results are less sensitive
to the chosen K value. These parameters led to the use of
K = 5.

3 Identifying domains of sea-level variability

Both clustering methods successfully reduce the dimension-
ality of the input data, despite the higher number of domains
identified by δ-MAPS (Fig. 2). SOM identified 18 coherent
domains, with a domain area varying from 3.84 to 34.51 mil-
lion square kilometres, and an average and total size of 17.61
and 316.90 million square kilometres, respectively. δ-MAPS
identified 92 coherent domains, with a domain area varying
from 0.03 to 24.15 million square kilometres, with average
and total size of 2.53 and 242.01 million square kilometres,
respectively. Despite the methodological differences, we find
that prominent sea-level features are clustered in a similar
way by SOM and δ-MAPS (Fig. 2). Some of the patterns
identified can be linked with known oceanic patterns, as we
will discuss below. However, we note that covariability does
not imply a common forcing and that some patterns may
be statistically separated or grouped without a clear physical
reason. It is also important to note that these clustering meth-
ods do not account for auto-correlation in time, meaning the
time lag in the progression of a signal across the ocean basin.
Since we use monthly data, signals that propagate faster than
a month (typically barotropic) will be more clearly correlated
in our clustering. On the other hand, slower propagating sig-
nals, such as the first baroclinic mode, will lose correlation in
space and will not be represented in the identified domains.

The central Pacific domain, where the variability is domi-
nated by El Niño–Southern Oscillation (ENSO) events, cov-
ers a similar region in both methods. The “ENSO tongue”,
starting from the coast of Peru and Ecuador and spreading
west until the central Pacific, is identified by both meth-
ods (SOM domain 12 (pink) and δ-MAPS domain 45 (light
green)). The western tropical Pacific Ocean (WTPO), influ-
enced by ENSO and the Pacific decadal oscillation (PDO), is
also identified as a single domain by both methods (SOM do-
main 16 (light green) and δ-MAPS domain 89 (light brown)).
The WTPO domains matches with the region of signifi-
cant spatial correlation between steric and coastal sea level
found by (Dangendorf et al., 2021) for western Australia.
In the SOM clustering, the WTPO domain incorporates the
Leeuwin Current (western Australia, Pattiaratchi and Siji,
2020) in the Indian Ocean, which is affected by waves trav-
elling through the tropical Australasian seas (Feng et al.,
2004). While this connection is not captured by δ-MAPS,
the coherence along the western coast of Australia is fea-
tured in a single domain (δ-MAPS domain 92, light pink).
The Kuroshio Extension region is also identified in both
methods (SOM domain 10 (brown) and δ-MAPS domain
88 (brown)), reflecting how strong boundary currents influ-
ence the sea-level variability. Another example is the North
Atlantic, which has similar clustering in both methods, es-
pecially in the domain south of Greenland (SOM domain
9 (light purple) and δ-MAPS domain 33 (purple)), which
is marked by decadal-scale sea-level change reflecting the
strength and shape of the wind-driven subpolar gyre and
the Atlantic meridional overturning circulation (Chafik et al.,
2019). Within these domains, density anomalies are known
to flow southward from the Labrador Sea into the subpo-
lar gyre through coastally trapped waves (Dangendorf et al.,
2021). Another region identified in both methods is the north-
western European Shelf (SOM domain 8 (purple) and δ-
MAPS domain 66 (grey)), which is part of a domain that
extends along the whole western European coast, continuing
down to the Canary islands and well into the Atlantic. This
connection could be related to the hypothesis that coastally
trapped waves and longshore winds cause a coherent region
of sea-level variability from around the latitude of the Ca-
nary Islands up to the Norwegian Sea (Calafat et al., 2012;
Chafik et al., 2019; Hughes et al., 2019; Hermans et al., 2020;
Dangendorf et al., 2021). These features are in a separate
δ-MAPS domain (53, green) to the northwestern European
Shelf. It is important to note that coherent features smaller
than 300 km are not captured in the domains because of the
spatial filtering applied before the clustering analysis.

As SOM domains do not need to be contiguous, possi-
ble pseudo-teleconnections between different ocean regions
(within the Atlantic Ocean and Indo-Pacific Ocean basins)
come out of the analysis. For example, areas adjacent to the
ENSO tongue domain (both to north and south) are clus-
tered together in domain 18 (light blue) or in domain 15
(moss green), indicating how the ENSO signal is propagated
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through the Pacific, possibly through coastally trapped waves
(Hughes et al., 2019) in the coastal domains (15) or via atmo-
spheric teleconnections. However, not every region classified
into the same SOM domain results from a clear connection.
For example, SOM domain 17 (blue) groups the ocean ad-
jacent to South Africa, the region below the Kuroshio Ex-
tension (offshore of Taiwan) and a region south of Aus-
tralia and New Zealand. Another example is SOM domain 7
(salmon-pink), which implies a connection between the At-
lantic Caribbean Sea and the western part of the South At-
lantic Gyre (capturing parts of the Brazil Current). These re-
gions have been classified together because they have a sim-
ilar behaviour in terms of sea-level variability but probably
different forcing. Further investigation, with ocean currents,
ocean–atmospheric oscillations, and ocean waves are neces-
sary to explore and quantify the physical connection behind
these patterns.

Unlike SOM, every δ-MAPS domain is assigned a unique
number and not every pixel needs to be clustered (Fig. 2a,
white regions). Consequently, this method yields a larger
number of domains with smaller size while avoiding pseudo-
teleconnections. The dominant sea-level modes are clear on
δ-MAPS clustering, reflecting the influence, for example, of
ENSO and western boundary currents on sea level. For ex-
ample, the entire Caribbean (domain 87, brown) and Gulf of
Mexico (domain 82, red) is in a single domain, highlighting
the similarity in that region. The same goes for the Equato-
rial Atlantic (domain 86, light purple), the ENSO region (do-
mains 45, 89, and 62, shown as light green, light brown and
light brown, respectively), and the Kuroshio current (domain
88, brown).

As shown in Royston et al. (2020), the components of the
sea-level budget have a similar spectral power to the total ob-
served sea-surface height of altimetry between wavelengths
of approximately 3000 and 10 000 km. The clustering tech-
niques applied here not only reduce the dimensionality of the
data but also average out sea-level variability in regions of
coherent variability, being ideal for a regional budget analy-
sis (next section).

4 The regional sea-level budget on different spatial
scales

4.1 Sea-level trend budget closure

We investigate the trends of the sea-level budget on differ-
ent spatial scales, from a finer (1× 1◦) to coarser scale (δ-
MAPS and SOM domains; Fig. 3). The residuals (i.e. the
difference between the total sea-level change and the sum
of the components) decrease towards a coarser spatial scale:
for 1◦, they range from −8.2 to 21.1 mm yr−1, while for δ-
MAPS they range from −1.2 to 3.8 mm yr−1 and for SOM
from 0.1 to 0.7 mm yr−1. This shows an improvement in the
budget closure (i.e. total and sum of components agree within

Figure 2. Domains of coherent sea-level variability: (a) δ-MAPS
method (92 domains) and (b) self-organizing map (SOM) method
(18 domains). Numbers indicate the domain code, and domain
names are given in the main text and in Table A1 in the Appendix.
δ-MAPS domains with codes in magenta indicate selected domains
for Fig. 4. For visibility, small domains have not been labelled.
Given the large number of domains, δ-MAPS has a repeating colour
pallet, but since δ-MAPS domains need to be continuous, repeated
colours do not indicate the same domain. White regions in δ-MAPS
indicate incoherent regions, which were not incorporated in any do-
main.

uncertainties) by using the pattern detection algorithms. The
budget closes in all 18 SOM domains (100 % of SOM ocean
area), in 70 out of 92 of the δ-MAPS domains (94 % of δ-
MAPS ocean area, 229.9 million square kilometres), and in
72 % of the grid cells in the 1◦ budget (75 % of the ocean
area) (Fig. 3). There is a clear relation between spatial scale
of the region considered for the trend, and the residuals of the
budget (see also Fig. A6). The good closure in the 1◦ budget
is likely an artefact of the large uncertainties of the obser-
vations, which on a local scale can be up to 18.9 mm yr−1

(see Fig. A3). This is in line with Royston et al. (2020), who
found that local biases of steric estimates combined with the
resolution limitation of GRACE observations over the oceans
hinder the budget closure at 1◦ resolution. When the regional
domains based on SOM and δ-MAPS are considered, the un-
certainties show a 5-fold reduction compared to the 1◦ res-
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olution, reaching up to 3.6 mm yr−1 and an average value of
1.6 mm yr−1 (Fig. A3), while the budget still closes.

Consequently, there is a better match between the total ob-
served rate of sea-level change with the sum of the compo-
nents for the clustered regions (scatter points in Fig. 3, right
column), with a reduction in the spread of the scatter points
and a move closer to the 1 : 1 line (dashed black line) for
the coarser resolutions. The dashed pink lines in Fig. 3 in-
dicate the half-width of the 95 % confidence interval of the
uncertainty of the residuals, showing a slightly larger width
for 1◦ and a smaller one for SOM and δ-MAPS. Even when
the component uncertainties (grey error bars) are considered,
the scattered values are mostly within the width of the 95 %
confidence interval for the SOM domains, confirming the im-
provement of the budget for this case. There is a strong linear
correlation between the total and the sum of the drivers, with
Pearson’s r varying from 0.81 for the 1◦ budget and δ-MAPS
to 0.98 for SOM. The RMSE also decreases for the coarser
scales, from 1.01 mm yr−1 for the 1◦ budget to 0.47 mm yr−1

for the SOM domains.
The altimetry trends are generally larger than the sum

of the sea-level change drivers, as indicated by the positive
residuals and scatter points above the 1 : 1 line on Fig. 3. This
is true for more than half of the δ-MAPS domains and for all
SOM domains except one: SOM domain 9 (south of Green-
land) is marked by a negative residual, that is, the sum of the
drivers is larger than the observed altimetry trend. Several δ-
MAPS domains, such as southwest of Australia (domains 92
and 67), the southeastern Pacific (domains 37 and 54), the
Gulf Current (domain 82), and the Brazil–Falklands conflu-
ence zone (domains 80 and 69), also have a negative residual.
This might indicate a larger temporal variability or regime
shifts in this region or could be due to the ocean dynamics
contribution, such as the effect of the subpolar gyre around
the south of Greenland (Chafik et al., 2019), as we will see
in the next section (Sect. 4.2).

4.2 Explaining the sea-level budget contributions

In this section, we investigate which components dominate
the trend and temporal variability in each of the different do-
mains. For comparison and discussion purposes, we choose
18 δ-MAPS domains (magenta numbers, Fig. 2b) located
close to the 18 SOM domains. Trends for all δ-MAPS do-
mains are available online as an interactive map (see the cap-
tion of Fig. 4).

As shown previously, we find a good match between to-
tal observed sea-level change and the sum of components
(Fig. 4a, b, green stars and purple triangles, respectively) for
all SOM and δ-MAPS domains. The largest budget uncer-
tainties, considering both altimetry and the sum of compo-
nents, is seen in the WTPO domain (SOM 16, δ-MAPS 89).
These uncertainties may be related to (i) poor performance of
standard altimetry products in these shallow regions, (ii) poor
Argo float coverage in the region (Kleinherenbrink et al.,

2017), influencing both the steric and dynamic components,
and (iii) large internal variability due to ENSO events in this
region, which may contribute to large temporal uncertain-
ties in the steric and altimetry components (Kleinherenbrink
et al., 2017; Wagner and Böning, 2021). This region is also
within the Indian-south Pacific basin (Thompson and Merri-
field, 2014), which was the only basin in which the regional
budget from 2005–2015 could not be closed (Royston et al.,
2020).

The GRD component (Fig. 4, blue) has a relatively
comparable contribution to all regions, contributing about
1.5 mm yr−1 of sea-level rise. The dynamic and steric com-
ponents, however, show a strong regionally varying contribu-
tion (Fig. 4, red and yellow, respectively). For example, for
SOM (δ-MAPS) domains 10 (88), 13 (92), 14 (67), and 16
(89), more than 50 % of the total trend is due to steric varia-
tions. On the other hand, for SOM domains 1 and 18 and δ-
MAPS domains 39, 45, and 62, the steric trend explains less
than 20 %. The dynamic component shows a small contribu-
tion for most of SOM domains, and in some domains even
shows a negative trend (e.g. SOM domains 11, 12, and 14).
An exception is the Gulf Stream domain (SOM 1, δ-MAPS
82), where almost half of the total trend is explained by the
dynamic component. This dominance of the dynamic com-
ponent reflects the influence of the strong western boundary
current on sea level in this region. The south of Greenland
domain (SOM 9, δ-MAPS 33) also includes a relatively large
dynamic contribution, with a trend of 0.49± 0.21 mm yr−1,
reflecting the influence of the subpolar gyre in this region.
The dynamic component also has a significant contribution
to other δ-MAPS domains, such as domains 24, 69, 39, 66,
and 67. Domain 67, located southwest of Australia, shows
a large negative dynamic trend, which can be related to the
influence of the West Australian Current.

Regarding the temporal evolution (Figs. 4c, d and A5),
both the SOM (solid lines) and the δ-MAPS (dashed lines)
time series show a similar behaviour. The steric component
dominates the temporal sea-level variability, with a good
match to the altimetry. The time series of the ENSO tongue
domain (SOM 12 and δ-MAPS 45, Fig. 4d) shows the clear
response of sea level to ENSO, with peaks coinciding with
strong ENSO events, such as the El Niño events of 1997 and
2015. The prominent contribution of the dynamic component
to the total trend in the Gulf Stream domain (SOM 1 and δ-
MAPS 82) is not reflected in the time series (Fig. 4c). Hence,
while the dynamic component has a significant impact on the
overall change, it does not contribute to the seasonal to inter-
annual sea-level variability. This is true for all other domains
(Fig. A5), except for SOM (δ-MAPS) domain 2 (24) and 18
(85), where we find a better match between the dynamic and
altimetry time series.
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Figure 3. Sea-level budget residuals (maps a, c, e) and comparison between total sea-level change (y-axis) and sum of components (x axis)
(scatter plots b, d, f) for 1◦ (a, b), δ-MAPS domains (c, d), and SOM domains (e, f). Grey lines indicate the uncertainties (1σ ) of the
components. In the scatter plots every point indicates one region (grid in case of 1◦), dashed pink lines indicate the half-width of the 95 %
confidence interval of the residuals uncertainty, and grey error bars indicate the component uncertainty. The use of ∗∗ indicates that coefficient
is statistically significant (p value< 0.01).

4.3 Sea-level budget performance

Here, we investigate the closure of the budget considering
(i) the components included in the budget, (ii) the size of
the domains and the clustering method, and (iii) the data sets
used for each component.

To illustrate the performance of the budget considering the
domains used and the components included in the budget,
we show how the Pearson’s correlation coefficient (r) and
the normalized root-mean-squared error (nRMSE) change
when these factors vary (Fig. 5). This figure firstly shows
that the budget closure improves when more components are
included in the budget. While we get a poorer performance
when only considering the dynamic or the GRD component,
the budget with only steric components already performs rel-
atively well. The improved correlation and lower RMSE with
the steric component is not surprising as the seasonal cycle
is predominantly steric.

The budget performance is enhanced by the addition of the
dynamic and GRD components, shown by the narrowing of
the box-and-whiskers plot.

The figure also shows an improvement in the budget clo-
sure for δ-MAPS and SOM domains, in relation to the 1◦

resolution, regardless of the budget combination. There are
two possible reasons why a coarser spatial resolution leads to
decreasing uncertainties and a better budget closure: (i) the
spatial scale of the process itself, as changes in long-term
sea level typically occur on a coarser resolution than 1◦,
and/or (ii) there is a mismatch in the exact location between
the sum of the components and altimetry observations on a
finer spatial scale, resulting from the limited resolution of
the observations compared to a coarser scale when such mis-
matches are partially averaged out. Additionally, the averag-
ing of more samples leads to a smaller standard error. How-
ever, the measurement errors between altimetry and the sum
of components will only compensate each other if they are
uncorrelated in the spatial scale being analysed. The relation-
ship between the spatial scale of the domains and the perfor-
mance of the budget is further confirmed in Fig. A6, which
shows how the residual of the budget decreases when larger
regions are considered. Note, however, that simply upscal-
ing the resolution of the observations – i.e. considering 2×2
or 5× 5◦ blocks – does not have the same effect on bud-
get performance as the domains derived by machine learn-
ing (Fig. A7): there is demonstrated added value of consider-
ing regions that are physically coherent, rather than artificial
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Figure 4. Sea-level budget trends (mm yr−1) for (a) SOM and (b) δ-MAPS domains and (c, d) time series for two example domains,
where solid and dashed lines indicate SOM and δ-MAPS time series, respectively. The location of each domain is shown in Fig. 2 (domain
numbers in magenta for δ-MAPS). For comparison, δ-MAPS domains are matched to the SOM domains, for example SOM domain 12 to
δ-MAPS domain 45. A bar plot for all other δ-MAPS domains can be found in Fig. A4. Error bars indicate the 1σ uncertainty of the trend.
Time series for all SOM domains and for the 18 δ-MAPS domains in (b) are shown in Fig. A5. An interactive budget map is available at
https://carocamargo.github.io/resources/regional-SLB-domains/ (last access: 9 January 2023) for both SOM and δ-MAPS.

blocks, for the budget analysis. That is, spatially averaging
over areas of similar variability reduces the unexplained vari-
ance of the observations.

When it comes to the data sets of the different sea-level
change drivers, sea-level budget studies often use the ensem-
ble mean of several data sets for each component (e.g. WCRP
Global Sea Level Budget Group, 2018) or compute a range of
budget combinations by varying the data set for each compo-

nent to find the combination that returns the best budget clo-
sure (e.g. Gregory et al., 2013). The latter approach can re-
sult in a budget closure for the wrong reasons (Royston et al.,
2020). On the other hand, while the ensemble mean approach
may reduce the systematic biases of using individual data sets
(Storto et al., 2017), it may also hinder the real variability
of the process being analysed (Rougier, 2016). Alternatively,
the budget can be analysed with the data sets closest to the
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Figure 5. The effect on budget closure for different component combinations and spatial resolutions. (a) Pearson’s correlation coefficient
(r) and (b) normalized root-mean-squared error (nRMSE) (in mm yr−1) between total sea-level (altimetry) and the different components
included in the budget (x axis) for the different spatial resolutions (1◦ in green, δ-MAPS in red, and SOM in blue). Boxes represent the
quartiles of the distribution, extending from the lower to upper quartile values of the data, with a line at the median, while the whiskers (not
error bars) show the full distribution.

ensemble means, according to the RMSE analysis, which re-
tains the true variability of an individual data set (Rougier,
2016; Royston et al., 2020).

All the results presented so far were computed using the
ensemble means for each component, considering 15 steric,
5 dynamic, 4 barystatic, and 4 altimetry data sets. Consid-
ering all single data sets plus the ensemble of each com-
ponent we can obtain 2400 possible budget combinations
(16× 6× 5× 5). To illustrate the dependence of the budget
closure on the data set used, we now also discuss the residu-
als of each SOM domain considering all 2400 possible data
set combinations (Fig. 6). The residual value shows a large
spread for the different budget combinations, ranging from
about−2 to 2 mm yr−1, and 33 % of the combinations would
result in non-closure of the budget (i.e. the sum of the com-
ponents does not match with the altimetry values, indicated
in red).

The residuals of the ensemble combinations (used
throughout this study and indicated by the filled blue squares
in Fig. 6) are comparable with the residuals of the combina-
tions using the data sets with the smallest RMSE to the en-
semble mean (indicated with filled purple triangles in Fig. 6).
With the exception of the domains 14 and 16, we see that the
ensemble and the RMSE combination have a similar residual
value. This indicates that the closure of the budget is not an
artefact of the data set choice.

5 Discussion and conclusions

Sea-level budget assessments are important tools for under-
standing the processes driving sea-level change, for detecting
temporal changes in sea-level and its components, for identi-
fying missing contributions to the budget, and for validating
and constraining climate models used in sea-level projections
(Cazenave and Moreira, 2022). In particular, understanding
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Figure 6. Budget residuals (mm yr−1) for all possible data set combinations for every SOM domain (separated by vertical dashed lines). The
ensemble mean combination (used for the main analysis) is indicated with squares. The RMSE combination, that is, the budget combination
that uses the individual data set with smallest RMSE in relation to the ensemble mean for each component, is indicated with triangles.

the processes on a finer spatial scale is essential for local
sea-level projections and coastal management planning. In
this study, we investigated the regional sea-level budget for
1993–2016 on a global scale.

Regional sea-level budget closure tends to be difficult due
to the complex physical processes acting on different spa-
tial scales. To overcome this spatial resolution issue, we ap-
plied a neural network approach, SOM, and a deep-network
detection method, δ-MAPS, to identify domains of coherent
sea-level variability (Fig. 2). Note, however, that the coher-
ent patterns will be different based on whether total sea sur-
face height or the individual components (steric, dynamic,
GRD) are considered. Hence, depending on the purpose of
the study, it is important to first remove the unwanted com-
ponents from total sea-surface height and then perform the
clustering. The identified patterns reflect, among other fac-
tors, the influence of natural internal climate modes (Han
et al., 2017), such as the ENSO, PDO, and North Atlantic os-
cillation. This indicates the potential of using machine learn-
ing and pattern detection algorithms, such as SOM and δ-
MAPS, to isolate the effects of natural climate modes from
anthropogenic forcing on sea-level change. The domains
also suggest how sea-level variability may be transferred be-
tween ocean regions. For example, the northwestern Euro-
pean Shelf SOM domain extends south down to the Strait
of Gibraltar, possibly reflecting how coastally trapped waves
propagate sea-level variability into the North Sea (Calafat
et al., 2013; Dangendorf et al., 2014, 2021; Hughes et al.,
2019; Hermans et al., 2020). Additionally, highly energetic
ocean regions, such as the Kuroshio Current, the Gulf Stream

and the Malvinas Confluence Zone, are also extracted as sin-
gle features, matching the spectrum of sea-level variability in
those zones (Hughes and Williams, 2010).

Compared with the basin regions of Thompson and Mer-
rifield (2014), we have identified more and smaller domains,
especially in the Southern Hemisphere. This means our do-
mains can provide an additional level of spatial detail com-
pared to ocean basins, while remaining large enough to pro-
vide a consistently closing regional sea-level budget. Us-
ing the domains identified with SOM and δ-MAPS, we pre-
sented a regional sea-level budget assessment on an aver-
age scale of about 5× 106 km2, with the largest regions
about 30×106 km2. The performance of the budget improves
from finer (1◦ resolution) to coarser scale (SOM domains),
with a residual spread of 0.6 mm yr−1 for SOM compared
to 29.2 mm yr−1 for 1◦ resolution. We also showed that the
budget closes better when all components (steric, dynamic
and GRD) are included, highlighting the importance of in-
cluding the deep steric and dynamic contributions to regional
sea-level change. Despite the large uncertainties at a regional
scale (compared to the global mean) (Royston et al., 2020),
we were able to identify dominant drivers in most domains.
The δ-MAPS regions where the budget cannot be closed
highlight processes that are affecting sea level but are not
well captured by the observations, such as the influence of
western boundary currents and dynamic processes (e.g. the
Malvinas Confluence zone). They may also be related to the
quality of global data sets in continental shelves and close to
the coast or to instrumental noise.
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The GRD component has a relatively homogeneous contri-
bution, independent of the domain, in agreement with Fred-
erikse et al. (2020). The steric contribution dominates the
seasonal and interannual variability and results in the prevail-
ing sea-level trend in most domains, especially for domains
in the Southern Hemisphere and equatorial regions. The dy-
namic component is important in some regions, particularly
in the Gulf Stream domain. The domains where the dynamic
component plays an important role coincide with the coastal
polygons of Rietbroek et al. (2016) where a large part of the
budget could not be explained solely by the sum of steric
and land–ocean mass exchange. Hence, our analysis sheds
light on the unexplained variance of previous sea-level bud-
get studies. Note that the sea-level analysis in coastal regions
is more challenging (Dangendorf et al., 2021), since some of
the dominant coastal ocean dynamics are not properly repre-
sented in the global data sets (Liu and Weisberg, 2007).

Here we showed that pattern detection techniques based
on machine learning, such as SOM and δ-MAPS, are power-
ful approaches for identifying and understanding features of
global sea-level change and variability. The domains identi-
fied in this research highlight that different ocean regions are
interconnected, revealing how large-scale circulation con-
trols regional sea level. These domains are not only a good
starting point for a regional sea-level budget analysis but also
have the potential to separate natural and anthropogenic forc-
ings of sea-level change in a detection and attribution ap-
proach, building on previous work (e.g. Marcos and Amores,
2014; Slangen et al., 2014, 2016). Future work may include
multiple linear regressions with climate modes to explore this
potential. Additionally, these domains can also be used for
coastal sea-level reconstructions (e.g. as Dangendorf et al.,
2021) and for pattern scaling in sea-level projections (Bilbao
et al., 2015).

Appendix A: Dynamic sea-level change estimation and
validation

The dynamic redistribution of mass due to ocean circulation
and atmospheric redistribution effects is known as dynamic
sea-level change (ηDSL, Landerer et al., 2007; Gregory et al.,
2019). ηDSL refers to mass changes driven by bottom pres-
sure changes, that is, the redistribution of mass that was al-
ready in the oceans and includes mass exchange at any point
by mass redistribution by wind stress and by non-linear in-
teraction due to density changes. Note that, by our definition,
the dynamic sea-level change (ηDSL) is part of the ocean dy-
namic sea-level change (1ζ , Gregory et al., 2019), the lat-
ter also including the effect of local steric anomalies (η′SSL).
When the ocean dynamic component (1ζ ) is considered to-
gether with the global mean steric sea-level change (ηSSL),
then it is known as sterodynamic sea-level change (ηSDSL,
Gregory et al., 2019; Dangendorf et al., 2021; Wang et al.,
2021). By decomposing the steric component in a global

mean (denoted with the overline bar) and local anomaly com-
ponent (denoted by the prime symbol), we can write the
sterodynamic equation as follows:

ηSDSL =1ζ + ηSSL = ηDSL+ η
′

SSL+ ηSSL. (A1)

To obtain 1ζ , we use the sea-surface height of five ocean
reanalysis data sets (SODA (Carton et al., 2018), C-GLORS
(Storto and Masina, 2016), GLORYS (Garric and Parent,
2017), FOAM-GloSea (Blockley et al., 2014; Maclachlan
et al., 2015) and ORAS (Zuo et al., 2019)). As ocean re-
analyses conserve mass (Griffies and Greatbatch, 2012), the
sea-surface height of a reanalysis does not include the GRD
component, but it does include the steric effect. We acknowl-
edge that this method introduces some circularity to the bud-
get analysis: the reanalysis, used to obtain ηDSL, assimi-
lates satellite sea-surface height, and in the budget analysis
we compare this estimate with satellite sea-surface height
(ηtotal). Following Wang et al. (2021), we compute ocean dy-
namic sea-level change by removing the time-varying global
mean from the reanalysis’ sea surface height:

1ζ = ηrea− ηrea. (A2)

Since we are interested purely in the dynamic part of1ζ , that
is, the dynamic sea-level change (ηDSL), we must remove the
steric local anomaly (η′SSL) as follows:

ηDSL =1ζ − η
′

SSL =1ζ − (ηSSL− ηSSL), (A3)

where the steric estimate has been computed with the ocean
temperature and salinity of the respective reanalysis. We then
compute the ensemble mean of the five dynamic estimates.

To validate our estimate of ηDSL, we compare it with
ηDSL estimated from the Gravity Recovery and Climate Ex-
periment Satellite (GRACE, Tapley et al., 2004). GRACE
measures total mass changes, which can be used to derive
estimates of manometric sea-level change over the oceans,
meaning the change in response to both the dynamic ocean
mass redistribution (ηDSL) and to mass redistribution due
to the land–ocean mass exchange (ηGRD) (Chambers et al.,
2004; Royston et al., 2020). We use GRACE mass concen-
trations (mascons) products over the oceans from two dif-
ferent processing centres: RL06 from the Center for Spatial
Research (CSR, Save et al., 2016; Save, 2020) and RL06
v02 from the Jet Propulsion Laboratory (JPL, Watkins et al.,
2015; Wiese et al., 2019). In order to obtain the ηDSL, we then
remove the GRD patterns obtained for the same data sets by
Camargo et al. (2022a). Note that we use GRACE dynamic
sea-level change for validation purposes but not in our budget
analysis, as this data set only starts in 2002.

Qualitatively, ηDSL obtained from GRACE (Fig. A1a) and
from ocean reanalysis (Fig. A1b) agree on large-scale pat-
terns and magnitude of dynamic changes despite local differ-
ences (Fig. A1c). The main differences are in the region sur-
rounding Indonesia and Japan, related to the signature of the
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Figure A1. Dynamic sea-level change (ηDSL) estimated from
(a) GRACE (average of JPL and CSR mascons), (b) an ensemble
of ocean reanalysis, and (c) the difference between GRACE and the
reanalysis.

2004 Sumatra (Indonesia) and 2011 Tohoku (Japan) mega-
thrust earthquakes (Chen et al., 2007; Ghobadi-Far et al.,
2020) on GRACE observations. To a lesser extent, we also
see the effect of the 2010 Maule (Chile) earthquake and
tsunami (Ghobadi-Far et al., 2020). Another strong diver-
gence is seen in the South Atlantic, where the positive trends
of GRACE are not represented in the reanalysis, possibly
suggesting that a source of dynamic sea-level change is not
well parameterized in the reanalysis. Alternatively, this di-
vergence might also be an artefact of the GRACE spherical
harmonic solutions and low-degree corrections.

Table A1. Names of SOM and δ-MAPS domains.

SOM δ-MAPS Domain name

1 82 Gulf Stream
2 24 Southeast Atlantic
3 69 Falklands Current
4 39 Central North Atlantic Gyre
5 34 East Africa Atlantic coast
6 75 East Equatorial Atlantic
7 63 Brazil Current
8 66 Northwest European Shelf
9 33 South of Greenland
10 88 Kuroshio Extension
11 90 Northwestern Indian Ocean
12 45 ENSO tongue
13 92 Southwest Australia, Fremantle

region
14 67 Southeast Indian Ocean
15 62 Southwest Tropical Atlantic Ocean
16 89 West Tropical Pacific Ocean,

Australasian Seas
17 77 Agulhas Current
18 85 Central North Pacific Ocean
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Figure A2. Uncertainties of the regional sea-level trends (Fig. 1) for 1993–2016 (mm yr−1) for (a) altimetry, (b) sum of sea-level components,
(c) full-depth steric, (d) GRD effect, and (f) dynamic sea-level change. The black contour line indicates global mean sea-level change.
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Figure A3. Distribution histograms of the altimetry (a, c, e, green blocks), sum of the components (a, c, e, purple blocks), and residuals
trend (b, d, f, grey) and uncertainty (right columns, pink) for the 1×1◦ budget (a, b), δ-MAPS domains (c, d), and SOM domains (e, f). The
dashed pink lines indicate the 95 % confidence interval of the residuals uncertainty, with the interval width reported in the panel titles, and
was used as a reference for the residuals scatters in Fig. 3.
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Figure A4. Extension of Fig. 4, showing the trend contribution for each of the δ-MAPS domains. An interactive budget map is available at
https://carocamargo.github.io/resources/regional-SLB-domains/ (last access: 9 January 2023).
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Figure A5. Extension of Fig. 4, showing the time series for each of the SOM domains and corresponding δ-MAPS domains.
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Figure A6. Scatter plot of the budget residuals (i.e. altimetry minus sum of components) against the area of each domain for δ-MAPS (red)
and SOM (blue). Stars and circles indicate domains in which the sea-level budget is open and closed, respectively. As the domain area
increases, the residuals converge towards 0. All the SOM residuals are within ±1 mm yr−1, as are 74.2 % of the δ-MAPS domains.

Figure A7. Same as Fig. 5 but including sea-level budget considering blocks of 2× 2 and 5× 5◦. There is no clear improvement from the
1× 1◦ budget to the 2× 2 and 5× 5◦, showing the added value of using the δ-MAPS and SOM domains.
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Figure A8. SOM domains for a neural map of 4×4 (a) and of (b) 9×9, using the entire ocean as input for the clustering. Note that even with
a larger neural map the SOM patterns are still different from the δ-MAPS domains (Fig. 2), proving that the differences between the extracted
patterns are not just a function of the number of SOM neurons but are due to differences between the two methods. It does, however, leads to
fewer regions that are geographically distant being clustered in the same domain.
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Code and data availability. Sea-level trends and
scripts used for the budget analysis are available at
https://doi.org/10.5281/zenodo.7007330 (Camargo et al., 2022a)
and https://doi.org/10.5281/zenodo.7515755 (carocamargo,
2023). Interactive maps of the sea-level budget are available at
https://carocamargo.github.io/resources/regional-SLB-domains/
(last access 9 January 2023, Camargo , 2023).
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