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A B S T R A C T

In fluid dynamics, constitutive models are often used to describe the unresolved turbulence and to close the
Reynolds averaged Navier–Stokes (RANS) equations. Traditional PDE-based constitutive models are usually too
rigid to calibrate with a large set of high-fidelity data. Moreover, commonly used turbulence models are based
on the weak equilibrium assumption, which cannot adequately capture the nonlocal physics of turbulence. In
this work, we propose using a vector-cloud neural network (VCNN) to learn the nonlocal constitutive model,
which maps a regional mean flow field to the local turbulence quantities without solving the transport PDEs.
The network is strictly invariant to coordinate translation, rotation, and uniform motion, as well as ordering of
the input points. The VCNN-based nonlocal constitutive model is trained and evaluated on flows over a family
of parameterized periodic hills. Numerical results demonstrate its predictive capability on target turbulence
quantities of turbulent kinetic energy 𝑘 and dissipation 𝜀. More importantly, we investigate the robustness and
stability of the method by coupling the trained model back to RANS solver. The solver shows good convergence
with the simulated velocity field comparable to that based on 𝑘–𝜀 model when starting from a reasonable initial
condition. This study, as a proof of concept, highlights the feasibility of using a nonlocal, frame-independent,
neural network-based constitutive model to close the RANS equations, paving the way for the further emulation
of the Reynolds stress transport models.
. Introduction

Turbulence is a physical phenomenon that is ubiquitous in natural
nd industrial flows. It is prevalent no matter in internal flows such
s fluid inside pipes and channels or exterior flows like the air sur-
ounding airplanes and vehicles. Turbulent flows are characterized by
heir chaotic nature and the wide range of length and time scales (Pope,
000), which poses a great challenge in understanding and predicting
hem. Modelling turbulent flows has thus been an important research
opic over the past half-century.

The exact description of fluid flows is given by the Navier–Stokes
quations when the continuum assumption applies. However, the com-
utational cost of directly solving the Navier–Stokes equations is pro-
ibitively high as it grows cubically with regard to Reynolds number
𝑅𝑒) (Moin and Mahesh, 1998). Simulating turbulent flows at tractable
osts requires additional modelling efforts. The most commonly used
urbulent flow simulation techniques are Reynolds-averaged Navier–
tokes (RANS) models. The idea is to decompose the turbulent flow
nto the mean flow field described by the RANS equations (primary

∗ Corresponding author.
E-mail address: hengxiao@vt.edu (H. Xiao).

equations) and the fluctuating velocity field whose influence on the
mean flow field is modelled by turbulence closures. However, tradi-
tional turbulence models, such as the 𝑘–𝜀 model, are typically based
on a hybrid of algebraic relations and partial differential equations
(PDEs), which are too rigid to calibrate with a large amount of high-
fidelity data, such as DNS data and experimental data. This inflexibility
results in obvious model errors and imposes restrictions on the simu-
lation of complex fluid flows, particularly those with separation and
large curvature. Recent development in machine learning techniques,
especially deep learning, has opened up new avenues for the long-
standing closure problems (Duraisamy et al., 2019). Thanks to their
high expressive power, it is possible to calibrate the existing closure
models using the data or even learn the closure models from the data.
Meanwhile, prior knowledge of physics still plays an important role
in the modelling and should be taken into account, which has led to
recent development such as physics-informed neural networks (Raissi
et al., 2019). The prior knowledge of physics, including the physical
information, constraints and physical laws, can be embedded in the
vailable online 6 October 2022
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input features (Zhou et al., 2022b; Pescia et al., 2022), the architecture
of the neural networks (Han et al., 2017), or the loss function to be
optimized (Raissi et al., 2019). Specifically, in the context of turbulence
modelling, the fundamental physics of fluid dynamics also plays a
crucial role. For example, the invariant tensor basis is used to predict
the anisotropy Reynolds stress tensor (Ling et al., 2016); the frame-
independence of the network is guaranteed by preprocessing the input
features and by designing the network architecture (Zhou et al., 2022a);
the mass and momentum conservation laws are employed as the loss
function to simulate the incompressible flow field (Raissi et al., 2019).

1.1. Invariances in machine-learned turbulence models

It has been observed that the prediction performance of machine-
learned turbulence models can be significantly improved by embedding
the known physics (Ling et al., 2016; Kaandorp and Dwight, 2020;
Frezat et al., 2021). Most works along this line aim at embedding the
symmetry of the turbulence flows, which refers to as the invariance
properties of the flow under transformations of the coordinate sys-
tem. Specifically, they are invariance under translation, rotation, and
uniform motion (Galilean invariance) of the reference frame. Another
property of turbulence flows that is seldom incorporated in data-driven
turbulence models is their nonlocality. In most data-driven models,
the inputs are only local flow variables (e.g., velocity gradient and
its linear combinations) at the point of interest (Wang et al., 2017;
Tracey et al., 2015; Kaandorp and Dwight, 2020). This simplification
is only reasonable under the assumption that there is a local bal-
ance between the production, redistribution and the dissipation of the
Reynolds stress (Pope, 2000). However, as shown in transport equa-
tions of Reynolds stress and other turbulence quantities, turbulence
quantities at one point are not only determined by the local flow field;
instead, they are greatly influenced by the upstream flow structure and
boundary conditions (Gatski et al., 1996).

A vector-cloud neural network (VCNN) has been recently pro-
posed (Zhou et al., 2022a) to incorporate the nonlocality. The idea of
the VCNN framework is to use the information from a set of locations
surrounding the point of interest as the input. One challenge for using
a set instead of a single point as the input is to guarantee permutation
invariance (Han et al., 2017). This invariance comes from the fact that
the elements in the input set have no intrinsic ordering, and thus the
outputs should depend on the set as a whole but not on the specific
ordering of the elements. The permutation invariance brings another
challenge in addition to the invariance properties required by flow
physics.

In this work, we drew inspirations from the VCNN and developed
the neural network shown in Fig. 1 to emulate the 𝑘–𝜀 turbulence
model, ensuring all the invariance properties are embedded. The net-
work aims to establish a mapping from mean flow properties in the
neighbourhood to turbulence quantities at the point of interest. The net-
work consists of an embedding network and a fitting network, and they
are connected by a linear transformation. In the embedding network,
higher-level representations of the input feature set are extracted by
embedding functions. The linear transformation between two networks
guarantees the invariance properties. Finally, the fitting network takes
in the invariant feature matrix and provides the final predictions of the
targeted variables. Details of the methodology and proof of invariance
properties are provided in Section 2.

The advantages of the proposed framework are its nonlocality, strict
invariance-preserving properties, and good scalability (Zafar et al.,
2021). Most of the current machine-learning-based turbulence models
are local as mentioned above. In comparison, our model takes in
information from the neighbouring region and is designed to capture
more physics in the real flows. Compared to the nonlocal models
obtained with other approaches, such as Convolutional Neural Net-
2

works (CNN) (Guastoni et al., 2020; Lapeyre et al., 2019; Zhou et al.,
2021; Gin et al., 2020), the proposed model strictly ensures invari-
ances. One of the major drawbacks of CNN is the lack of geometric
invariance (Azulay and Weiss, 2018). General practice for reducing
CNN’s deviation of invariance is by augmenting the dataset (Shorten
and Khoshgoftaar, 2019), in which the input data is transformed by
translation and rotation. The enlarged dataset is then fed into the
network such that the network acquires certain robustness towards
variations of the input data under different coordinate systems. How-
ever, as implied by the procedure, there is no guarantee of the exact
invariance properties of the model. Minor violations of the symmetries
may not influence the classification problem of image recognition, for
which CNN was initially developed (Fukushima, 1988). Nevertheless, in
a physics modelling scenario, it may lead to intrinsically wrong results
or even breakdowns of the simulation (E et al., 2021; Zafar et al., 2021).
Considering the stringent requirement of physics modelling, having
solid invariance properties is a major advantage of our framework.
Besides, CNN is rarely employed to deal with data on nonuniform or
non-Cartesian mesh, which are usually used in fluid simulations for
local refinement or adapting complex geometries.

Whilst the previous work on VCNN successfully embedded the non-
locality and frame-independence into the network, there are limitations
on the architecture and the application scenario. One line of devel-
opment is to modify the architecture such that it can be compatible
with tensor-based outputs. This is crucial in eventually using VCNN
to emulate Reynolds stress transport equations. Such adaptation for
equivariant tensor outputs of the network has already been addressed
in a follow-up work (Han et al., 2022). Another line of development
stems from the limitation that the performance of the network was
only evaluated in predicting the transport of passive scalar in a laminar
flow. Its performance in predicting turbulent flow fields is unknown
considering the complexity of turbulent flows compared to laminar
flows. Furthermore, the final goal of a turbulence model is to serve
as a part of the fluid solver and provide stable predictions to the
RANS equation solver. Therefore, the neural network model needs to
be evaluated in a coupled setup with the RANS solver. This paper aims
to address these critical issues.

1.2. Major challenges in coupling neural network model to RANS solvers

Compared to the previous work, the current work of predicting
turbulence quantities in a coupled setup is more challenging, due to
the interaction between the neural network predictions and the RANS
equations. The lack of stability is a common potential problem for
neural network models. When coupled with the RANS equations and
evaluated in the iteration process of the solver, the neural network
model must deal with non-converged flow fields most of the time. Such
inputs of mean fields typically are not present in the training data.
Consequently, the neural network is required to perform extrapolation
tasks during the iterations. The behaviour of the networks in such
circumstances is unpredictable and can be destablizing. When the
predictions provided by the neural network are fed back to the RANS
equations, the instability is conducted to RANS equations. Studies have
shown that the RANS equations can be very sensitive to the Reynolds
stresses (Wu et al., 2019), which poses an additional challenge to
closure modelling. An alternative strategy for improving the robustness
is to incorporate the RANS solver in the training process, but that would
introduce major challenges in the training process by requiring adjoint
solver (Ströfer and Xiao, 2021) or ensemble simulations (Ströfer, 2021).

Apart from the difficulty of extrapolation, the turbulence quantities
are more complicated than the concentration field in terms of flow
physics. The turbulence quantities are described by two partial differen-
tial equations (PDEs) coupled with the source term. In comparison, the
concentration is described by a single convection–diffusion equation.
In terms of their distribution, the range of magnitude of the turbulence
quantities is much larger than that of the concentration field, which

makes them numerically more difficult to deal with. Besides, the mean
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Fig. 1. Diagram of the VCNN framework for turbulence closure. A stencil near the downhill is visualized as an example.
low field is much more complex with a higher Reynolds number. The
xistence of a thinner boundary layer indicates more rapidly varying
elocities spatially, which can also bring challenges to the neural
etwork model.

.3. Contribution of present work

The present work has two major contributions. First, it extends the
revious work on vector-cloud neural networks (Zhou et al., 2022a)
rom laminar flows to turbulent flows. Instead of predicting the hy-
othetical passive concentration field, this work directly emulates the
ransport equations for turbulent kinetic energy (𝑘) and dissipation

rate (𝜀), which are of physical significance in turbulence modelling.
From the perspective of machine learning, the distributions of turbu-
lence quantities are more challenging due to their large range (for
example, in the cases considered in this work, the dissipation rate 𝜀
ranges from 10−4 to 2). Special transformation and normalization of the
output variables were applied to resolve such a problem. Second, we
evaluate the trained neural network model in a coupled setup, which
is rarely studied in previous works. Specifically, we couple the neural
network-emulated turbulence model with the RANS equation solver to
investigate its robustness and stability.

In this work, the neural network-based turbulence model is trained
using the data generated from the 𝑘–𝜀 model (Launder and Spalding,
1983) and is subsequently evaluated against it. Its accuracy and appli-
cability are thus restricted by the training set itself. We emphasize that
the objective here is neither to replace nor to surpass the 𝑘–𝜀 model
with neural networks. Rather, this work serves as a proof of concept
regarding the applicability of the VCNN to turbulence modelling prob-
lems. By combining the present work with the VCNN architecture with
equivariance (Han et al., 2022), the framework can be further extended
to predict Reynolds stress tensor anisotropy. Potential advantages of
the integrated framework over traditional models are, for instance, the
flexibility in incorporating training data, and less burden of modelling
unclosed terms such as the pressure–strain-rate tensor.

The remaining sections of the paper are organized as follows. Sec-
tion 2 describes the problem to be solved and the methodology used,
including the selected input data matrix, the neural network architec-
ture, and the coupling procedure. Section 3 presents the main results
obtained in numerical simulations on two dimensional periodic hill
flow cases with discussions. Section 4 concludes the paper.

2. Problem statement and methodology

2.1. Problem statement

In RANS simulations, the flow field is described by the mean flow
equations and a closure model. For incompressible flows of constant
density 𝜌, the mean flow equation is as follows:

D̄⟨𝑈𝑗⟩

D̄𝑡
= 𝜈∇2

⟨𝑈𝑗⟩ −
𝜕⟨𝑢′𝑖𝑢

′
𝑗⟩

𝜕𝑥𝑖
− 1

𝜌
𝜕⟨𝑝⟩
𝜕𝑥𝑗

, (1)

n which D̄
D̄𝑡 ∶=

𝜕
𝜕𝑡 +⟨𝑼⟩⋅∇ is the mean substantial derivative, ⟨𝑈𝑗⟩ is the

mean velocity, 𝑢′ and 𝑢′ are the fluctuating velocities, ⟨𝑝⟩ is the mean
3

𝑖 𝑗
pressure, and 𝜈 is the kinematic viscosity. The unclosed term in Eq. (1)
⟨𝑢′𝑖𝑢

′
𝑗⟩ (the covariance of fluctuating velocities) is also referred to as

the Reynolds stress tensor. In the 𝑘–𝜀 turbulence model, the unclosed
Reynolds stress tensor follows the Boussinesq hypothesis:

⟨𝑢′𝑖𝑢
′
𝑗⟩ =

2
3
𝑘𝛿𝑖𝑗 − 𝜈𝑇

(

𝜕⟨𝑈𝑖⟩

𝜕𝑥𝑗
+

𝜕⟨𝑈𝑗⟩

𝜕𝑥𝑖

)

, (2)

where 𝛿𝑖𝑗 is the Kronecker delta and 𝜈𝑇 is the eddy viscosity. The eddy
viscosity is computed by

𝜈𝑇 = 𝐶𝐷
𝑘2

𝜀
, (3)

where 𝐶𝐷 = 0.09 is a model constant. The turbulent kinetic energy
𝑘 and turbulent kinetic energy dissipation rate 𝜀 are described by the
transport equations:

D̄𝑘
D̄𝑡

= ∇ ⋅
(

𝜈𝑇
𝜎𝑘

∇𝑘
)

+  − 𝜀, (4)

D̄𝜀
D̄𝑡

= ∇ ⋅
(

𝜈𝑇
𝜎𝜀

∇𝜀
)

+ 𝐶𝜀1
𝜀
𝑘

− 𝐶𝜀2
𝜀2

𝑘
, (5)

in which 𝜎𝑘 = 1.00, 𝜎𝜀 = 1.30, 𝐶𝜀1 = 1.44, 𝐶𝜀2 = 1.92, and  = 2𝜈𝑇𝑆𝑖𝑗𝑆𝑖𝑗
is the production of 𝑘 with 𝑆𝑖𝑗 the strain rate tensor.

In this work, our aim is to develop a nonlocal, neural network-based
turbulence model to predict the local turbulence quantities without
solving the transport equations. The nonlocality in turbulence is usually
caused by the transport of Reynolds stress. However, traditional closure
models, including the 𝑘–𝜀 model used in this work, are generally based
on the weak equilibrium assumption, which ignores the transport of
the anisotropy by assuming that the transport of Reynolds stress is
proportional to that of turbulent kinetic energy. This way, the gener-
ated data are incapable of reflecting the true physics of nonlocality in
the turbulence and so is the learned model. Nevertheless, we can still
demonstrate the predictive capability of the trained network and, more
importantly, test its robustness when coupled back into RANS solver by
using the 𝑘–𝜀 data.

2.2. Data generation and processing

The generation and processing of data follow four steps:

(1) perform simulations using the RANS solver with the 𝑘–𝜀 turbu-
lence model,

(2) determine the neighbourhood on which the central point is
dependent,

(3) calculate and normalize features and labels,
(4) stack stencils for all the sample points for training or testing the

neural network.

They are described in detail in the rest of the section.

2.2.1. Flow simulation
The flow is simulated in a channel with periodically appearing hills

on the bottom (Breuer et al., 2009). A family of such periodic hill
geometries are parameterized by a slope parameter 𝛼 as shown in
Fig. 2 (Xiao et al., 2020). The slope parameter 𝛼 is defined as 𝑤

1.93𝐻 ,
where 𝐻 is the height of the hills and 𝑤 is the width of the hills. It
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Fig. 2. Periodic hill geometries with varying slope parameters 𝛼.
Fig. 3. Representative simulation results. Panels (a) and (b) present the mean velocity contour and the streamline of the flows in the cases of 𝛼 = 1.0 and 𝛼 = 2.0. Panels (c) and
(d) show the eddy viscosity contour of the respective flow cases.
a
s
p

is clear that the smaller the slope parameter, the steeper the bottom
of the hills. 𝐿𝑦 remains the same while 𝐿𝑥 is larger for larger slope
parameters. A fragment starting with a downslope following a flat
region and ending with an upslope is extracted from the periodically
varying geometry as the simulation domain. The inlet and outlet are
considered periodic boundaries and the top and bottom of the channel
are non-slip walls.

The flow domain is discretized into a structured mesh with the
number of cells in 𝑦-direction 𝑁𝑦 = 200 and the number of cells in
𝑥-direction increases as the slope parameter 𝛼 increases. For instance,
the number of cells for case 𝛼 = 1 is 40 000 and that for 𝛼 = 1.5 is
44 000. The flow Reynolds number based on the hill height is kept
at 10 595 by adjusting the pressure gradient for different slopes. The
CFD simulations are performed with the open-source software package
OpenFOAM (Weller et al., 1998). The SIMPLE algorithm (Patankar and
Spalding, 1983) is adopted for solving the momentum and pressure
equations of the incompressible flow. Some of the representative flow
fields are visualized in Fig. 3. The flow case 𝛼 = 1 has a larger velocity
overall. According to the streamline, the recirculation zone of the flow
case 𝛼 = 1 can be identified easily. In comparison, in the flow case
𝛼 = 2.0, the recirculation is barely visible. The recirculations are more
prominent in the geometries with smaller slope parameters. In terms of
the eddy viscosity, the flow case 𝛼 = 1.0 is characterized by a higher
level of eddy viscosity. The distribution patterns of both cases are quite
similar.
4

A group of 11 flow cases with slope parameters 𝛼 between 1 and
2 are selected to construct the training dataset. They are distributed
linearly as 𝛼 = 1.0, 1.1, 1.2,…, and 2.0. The number of mesh points
of each case varies from 40 000 (𝛼 = 1.0) to 48 000 (𝛼 = 2.0). There
re 484 000 mesh points in the whole training set and each has 200
amples in its stencil with 11 features for each sample. Outputs for each
oint are turbulence kinetic energy 𝑘 and turbulence kinetic energy

dissipation rate 𝜀.
The testing dataset comprises 10 extrapolation flow cases and 10

interpolation flow cases. Half of the extrapolation cases have slope pa-
rameters larger than 2 and another half have slope parameters smaller
than 1. The interpolation test cases are between two neighbouring
training cases. The composition of the training and testing set are
summarized in Table 1.

2.2.2. Influence region
According to the nonlocality of the turbulence physics and the

nature of the transport equations for 𝑘 and 𝜀, each point in the flow is
affected by the entire history of the fluid particle, as well as pressure-
coupling with other regions. The VCNN incorporates part of the non-
locality by considering the stencil containing the neighbouring points
of the point of interest. It is presumed that the stencil has the shape
of an ellipse with its center located at the central point and its major
axis aligned to the mean velocity at that point. The idea is that the
diffusion is isotropic whilst the advection is strongest along the local
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Table 1
Datasets for training and testing.
Dataset Slope parameters 𝛼 Number of cases

Training set 1.0, 1.1, 1.2, 1.3, … , 1.8, 1.9, 2.0 11
Interpolation testing set 1.05, 1.15, 1.25, … , 1.85, 1.95 10
Extrapolation testing set 0.5, 0.6, 0.7, 0.8, 0.9, 2.1, 2.2, 2.3, 2.4, 2.5 10
Fig. 4. Shape of the stencils at various locations in the flow domain. The mesh points are sampled for a clearer visualization and are presented in grey dots. The major axis 𝑙1
nd the minor axis 𝑙2 as computed by Eq. (6) are indicated at point (c) in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the
eb version of this article.)
n
l
i

𝐱
r

low velocity direction. The lengths of the semi-major and semi-minor
xes are determined according to the following equations (Zhou et al.,
021):

1 =

|

|

|

|

|

|

|

|

2𝜈𝑙 log 𝜖
√

|𝒖𝑎|2 + 4𝜈𝑙𝜁𝑙 − |𝒖𝑎|

|

|

|

|

|

|

|

|

, 𝑙2 =
|

|

|

|

|

√

𝜈𝑙
𝜁𝑙

log 𝜖
|

|

|

|

|

, (6)

The two constants 𝜈𝑙 = 0.1 and 𝜁𝑙 = 3.0 correspond to the diffusion
and dissipation coefficients in a 1D convection–diffusion–reaction equa-
tion (Zhou et al., 2021), from which the original derivation of Eq. (6) is
made. In this case, there is no clear definition of constant diffusion and
dissipation coefficients and thus it is hard to obtain the exact influence
region analytically. Thus, we took an empirical route and selected
their values by rough estimation. Specifically, the largest value of
turbulence viscosity is about 0.06. The larger the diffusion coefficient,
the larger the influence region. So we rounded it up to 0.1 for a larger
influence region to better incorporate nonlocality. We assume that such
a simplified calculation is sufficient for our calculation, which is later
proved by the parametric study of the influence region size in Section 3.
From Eq. (6), we can see that the influence region of nonlocality is
uniquely determined by the local flow dynamics and irrelevant to the
discretization.

The orientation, shape, and size of the stencil vary according to the
local mean velocity based on Eq. (6). A visualization of the stencils at
various locations for the case 𝛼 = 1 is presented in Fig. 4. Point (d)
ndicates how the stencils are aligned with the local mean velocity.
oint (c) in the main flow has a rather large major axis due to its
arge local velocity. Mesh points in the vicinity of boundaries require
dditional treatments. For points such as (a), a periodic boundary
ondition applies. Flow data of stencil points prior to the inlet can be
ccessed at the outlet region and vice versa. For points whose stencil
nvolves the wall boundaries at the bottom and the top of the channel
point (b) in the figure), the part of the stencil outside the flow domain
s ignored.

Since both the size of the stencil and the mesh density vary from
ocation to location, the number of points in a stencil also varies.
pecifically, stencils in the middle of the channel are larger while the
esh there is sparser. In contrast, stencils near walls are smaller while

he mesh there is denser. By considering the stencil as a set, VCNN has
he flexibility of processing stencils with a varying number of points.

e took advantage of this property and adopted different strategies
5

for training and validation. For the convenience of training, a random
sampling procedure is applied to the training data set, in which 200
points are randomly drawn from the stencil at each mesh point. For
the best prediction performance, we use full stencils for validation,
meaning that all the data points within the stencils are used as the
neural network inputs.

2.2.3. Input features and normalization
In this work, we select 11 features that are relevant to predicting

turbulence quantities to build the feature vector for each data point.
The collection of the feature vectors within the stencils is then used as
the input of the neural network for predicting the turbulence quantities
at the cloud center. Definitions and descriptions of them are listed
in Table 2. The first two features are the relative coordinates to the
cloud center. They are normalized by the distance to the cloud (stencil)
center. Features 3 and 4 are the velocity relative to the cloud center,
guaranteeing Galilean invariance. These four features are vectors as
they will change under the rotation of the reference frame. The re-
maining 7 features are scalar features. The strain rate magnitude 𝑠 and
the velocity magnitude u provide supplementary information on the
mean velocity field. The boundary cell indicator 𝑏 and the wall distance
function 𝜂 provide related geometric information. The cell volume 𝜃
ormalized by the mean is the relative cell size within the stencil. The
ast two features are the proximity to cloud center 𝑟 and the proximity
n local velocity frame 𝑟′. The expression 𝒖⊤𝒙′ for computing 𝑟′ is the

inner product of the velocity and the relative coordinate to the central
point. The choice of feature 𝑟′ is based on the property of the advection
term implying that the upstream will influence the downstream.

All the features are translationally and Galilean invariant. They are
invariant under a translation or a constant velocity of the reference
frame because all the coordinates and velocities are relative to the
cloud center. In terms of rotation, features 1–4 are not rotationally
invariant. The relative coordinates and relative velocity are related to
the orientation of the reference frame. Thus, the first four features
require further operations to achieve rotation invariance. Features 5–
11 are the scalar features, which are already rotationally invariant.
For convenience of the following discussion, the feature vector for
each sampled point in the cloud is denoted by column vector 𝐪 =
[𝑥′, 𝑦′, 𝑢, 𝑣, 𝑠, 𝑏, 𝜃,u, 𝜂, 𝑟, 𝑟′]⊤. For simplicity, we also use column vectors
′ = [𝑥′, 𝑦′]⊤ to denote the relative coordinates, 𝐮 = [𝑢, 𝑣]⊤ to denote the
elative velocity, and 𝐜 = [𝑠, 𝑏, 𝜃,u, 𝜂, 𝑟, 𝑟′]⊤ to denote the scalar features.
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Table 2
Input features. 𝑥0, 𝑦0, 𝒙0 = (𝑥0 , 𝑦0) are the coordinates of the cloud center. 𝒙 = (𝑥, 𝑦)
is the coordinates of the sampled point in the stencil, and 𝒙′ = (𝑥′ , 𝑦′) is the relative
coordinates of the sampled points. 𝜖0(= 10−5) is to avoid divided by zero. 𝑢0, 𝑣0 are
velocities at cloud center, 𝑢𝑎, 𝑣𝑎 are velocities at sampled points, and 𝒖 = (𝑢, 𝑣) is
relative velocity vector. 𝑈0 is the reference velocity and 𝑇0 = 𝐿0∕𝑈0 is the reference
time. 𝜃𝑜 is the raw cell volume, and �̄� is the mean cell volume of all the stencil points.
𝜂𝑜 is the raw wall distance, and 𝑙𝛿 is the prescribed boundary layer thickness scale. 𝐿0
is the reference length. 𝜖𝑟 = 0.01 and 𝜖𝑟′ = |𝒖|∕|𝒙′

| are used to transform the function
into desired range.

Index Features Definition Description

1 𝑥′ 𝑥−𝑥0
|𝒙−𝒙0 |+𝜖0

Relative 𝑥-coordinate to cloud center

2 𝑦′ 𝑦−𝑦0
|𝒙−𝒙0 |+𝜖0

Relative 𝑦-coordinate to cloud center

3 𝑢 (𝑢𝑎 − 𝑢0)∕𝑈0 Relative velocity component in 𝑥 direction
4 𝑣 (𝑣𝑎 − 𝑣0)∕𝑈0 Relative velocity component in 𝑦 direction

5 𝑠 ||𝒔||𝑇0 Magnitude of the strain rate tensor
6 𝑏 1(yes)/0(no) Boundary cell indicator
7 𝜃 𝜃𝑜∕�̄� Cell volume
8 u |𝒖|∕𝑈0 Relative velocity magnitude
9 𝜂 min(𝜂𝑜∕𝑙𝛿 , 1) Wall distance function
10 𝑟 𝜖𝑟

√

𝑥′2+𝑦′2∕𝐿0+𝜖𝑟
Proximity to cloud center

11 𝑟′ 𝜖𝑟′ −
1
𝑇0

𝒖⊤𝒙′

|𝒙′
|

2 Proximity in local velocity frame

The input feature matrix containing feature vectors of all the sam-
led points in the stencil is written as

∈ R𝑛×11 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐪⊤1
𝐪⊤2
⋮

𝐪⊤𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐱′⊤1 𝐮⊤1 𝐜⊤1
𝐱′⊤2 𝐮⊤2 𝐜⊤2
⋮ ⋮ ⋮

𝐱′⊤𝑛 𝐮⊤𝑛 𝐜⊤𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (7)

n which each row represents a sample in the stencil described by
eature vector 𝐪⊤, and 𝑛 is the stencil size (i.e., the number of sampled
oints in the stencil, 𝑛 = 200 for training efficiency). Despite the fact
hat the vector features, 𝐱′ = [𝑥, 𝑦]⊤ and 𝐮′ = [𝑢, 𝑣]⊤, are both in two di-
ensional space, the extension to three dimensions is straightforward.
inor modifications include 𝐱′ = [𝑥, 𝑦, 𝑧]⊤ and 𝐮′ = [𝑢, 𝑣,𝑤]⊤.

It is worth noting that when building the input dataset, we have
lready taken the numerical requirements of neural networks into
onsideration. For instance, 𝜖0, 𝜖𝑟 and 𝜖𝑟′ are introduced such that the
eature value is suitable for neural network training (approximately
ithin the range [0, 1]). However, one of the features (𝑠) and both of the

abels (𝑘 and 𝜀) are not normalized yet. In this work, we additionally
ap the strain rate magnitude to 3 for simplicity. The turbulent kinetic
nergy is normalized by the reference velocity 𝑘 ∝ 𝑘o

(𝑈ref)2
(𝑘o represents

he original turbulent kinetic energy in the flow simulation and 𝑘 is
the normalized value to be predicted by neural networks) and scaled
by turbulence intensity 𝐼𝑡 = 0.2 such that the normalized value falls
roughly between 0 and 1. The normalized 𝑘 follows

𝑘 =
𝑘o

(𝑈ref𝐼𝑡)2
. (8)

The normalization of 𝑘 involves the reference velocity 𝑈ref. In our case,
it can be regarded as the relative velocity with regard to the channel
and thus it is Galilean invariant.

The turbulent kinetic energy dissipation rate is transformed by
taking the logarithm 𝜀 ∝ log10 𝜀o considering its distribution in a broad
range and its positivity:

𝜀 = log10 𝜀o, (9)

in which 𝜀o represents the original turbulence kinetic energy dissipation
rate and 𝜀 is the normalized dissipation rate to be predicted by neural
networks. It is further scaled by a constant of 0.5 to attain the proper
6

range that is suitable for training.
2.3. Neural network architecture and training

The VCNN architecture is composed of two multilayer perceptron
(MLP) sub-networks. An overall schematic of the network architecture
is provided in Fig. 5. The first sub-network is referred to as the embed-
ding network, which aims at extracting higher-level features that are
correlated to the turbulence quantities. The embedding network has a
𝑚-dimensional output and it represents 𝑚 one-dimensional embedding
functions 𝜙1,… , 𝜙𝑚. These embedding functions are evaluated at each
cloud center 𝑖 using the frame-independent scalar features 𝐜𝑖, 𝑖 =
1, 2,… , 𝑛 as inputs and provide 𝐺𝑖𝑗 = 𝜙𝑗 (𝐜𝑖), 𝑗 = 1, 2,… , 𝑚. Through
training, the embedding functions will embody important nonlinear
relationships between features in vector 𝐜𝑖. The embedding functions
evaluated at all the samples in the same stencil are arranged into a
matrix with its 𝑛 rows corresponding to 𝑛 points in the stencil and 𝑚
columns corresponding to 𝑚 embedding functions; see  = (𝐺𝑖𝑗 ) ∈ R𝑛×𝑚

in Eq. (10), appearing in the transposed form.
It is crucial that samples in the stencil are processed independently

and identically in the embedding network. The 𝑚 embedding functions
evaluated at each stencil point are only dependent on the features
of the point itself and they are irrelevant to other stencil points.
This is to guarantee that the final prediction is permutation invariant
with the index of samples. The embedded feature matrix  are frame-
independent since they are derived from frame-independent features
𝐜.

As a nonlocal model, the information contained in the stencil points
needs to be integrated into the features of the entire stencil. This is
achieved through averaging the input features 𝐪𝑖 according to their
embedded weights 𝐺𝑖𝑗 :

 = 1
𝑛
⊤ = 1

𝑛

⎡

⎢

⎢

⎢

⎢

⎣

𝐺11 𝐺21 … 𝐺𝑛1
𝐺12 𝐺22 … 𝐺𝑛2
⋮ ⋮ ⋱ ⋮

𝐺1𝑚 𝐺2𝑚 … 𝐺𝑛𝑚

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝐪⊤1
𝐪⊤2
⋮
𝐪⊤𝑛

⎤

⎥

⎥

⎥

⎥

⎦

= 1
𝑛

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∑𝑛
𝑖=1 𝐺𝑖1𝐪⊤𝑖

∑𝑛
𝑖=1 𝐺𝑖2𝐪⊤𝑖

⋮
∑𝑛

𝑖=1 𝐺𝑖𝑚𝐪⊤𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ R𝑚×11.

(10)

Eq. (10) can be regarded as 𝑚 forms of weighted summation of the
input features. The operation is permutation invariant since the weights
in the 𝑖th row of  are computed from the 𝑖th stencil point only 𝐺𝑖𝑗 =
𝜙𝑗 (𝐜𝑖) as emphasized earlier. Switching orders of any two of the samples
will not influence the results.

Upon introducing 𝐪𝑖 (thus 𝐱′ and 𝐮) into the calculation of , rota-
tion invariance is violated. This can be solved by applying a pairwise
projection:

 = ⊤ = 1
𝑛2

⊤⊤ ∈ R𝑚×𝑚. (11)

he pairwise projection ⊤ means projecting each feature vector to
very other feature vector. In this way, the resultant matrix captures the
orrelation among samples that is independent of any rotation of the
eference frame. As both the averaging based on the embedded weights
nd the pairwise projection are linear transformations, the associative
aw of linear transformation applies. The matrix  is both permutation
nvariant and rotation invariant. As the input of the fitting network, 
lso guarantees the desired invariant properties of the network. In the
itting network, the model’s final outputs, the turbulence quantities 𝑘
nd 𝜀 are predicted.

In our implementation, a submatrix ∗ ∈ R𝑛×𝑚′ of the full embed-
ing matrix  ∈ R𝑛×𝑚 is used in the linear transformation in order to
educe the dimension of  and save computational cost while all the
nvariance properties are still preserved:

= ∗⊤ = 1 ⊤⊤∗ ∈ R𝑚×𝑚′
. (12)
𝑛2
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Fig. 5. Schematics for the vector-cloud neural network. The neural network takes the input feature matrix, , as the inputs and provides predictions on turbulence quantities 𝑘
nd 𝜀. In the first embedding stage, the scalar features from each row of the input feature matrix are fed into the embedding network, in which they are transformed by the
mbedding network into rotation invariant embedding matrix  and its submatrix ∗. In this stage, all the elements in the stencil are treated identically and individually. In the
econd fitting stage, information from each stencil point is integrated permutation invariantly into nonlocal features in  and ∗ through a weighted sum. A pairwise projection
s performed to achieve rotation invariance of the vector features in . The finally obtained invariant feature matrix  is flattened and fed into the fitting network to obtain the
utput of turbulence quantities 𝑘 and 𝜀.
Fig. 6. Hyperparameters of the VCNN.
We choose 𝑚′ = 4 so that ∗ contains the first 4 columns of . The exact
hyperparameters of the network used in this work are shown in Fig. 6.

The loss function used for training the neural network naturally
contains the error of outputs 𝑘 and 𝜀. Besides, the ultimate target
turbulence viscosity 𝜈𝑇 in Eq. (3) is also included as a supplement term
or guiding the network towards better prediction performance. The
omplete loss function then follows

(𝜃) =
𝑁
∑

𝑖=1
[(�̂�𝑖 − 𝑘𝑖𝑛 )

2 + (�̂�𝑖 − 𝜀𝑖𝑛 )
2 + 𝜆(�̂�𝑇𝑖 − 𝜈𝑇𝑖 )

2], (13)

where 𝜆 = 10 is a weighting factor balancing the two normalized error
terms of 𝑘 and 𝜀 with the unnormalized error term of 𝜈 ; �̂�, �̂� and
7

𝑇

𝜈𝑇 represent predictions made by the neural network model. Adam
optimization algorithm (Kingma and Ba, 2014) is used for training
neural network parameters with an initial learning rate 10−3. The
learning rate decreases by a factor of 0.7 for every 600 steps. The
network is trained until the training error reaches the lowest and the
validation error stays at a low level. The number of epochs is 2000. The
construction of the neural network and its training are implemented
using the PyTorch machine learning library (Paszke et al., 2019).

2.4. Coupling with RANS equation solver

The neural network described in the previous section should work

as a usual turbulence model in flow simulation. In this work, the neural
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Fig. 7. Schematics of the coupled solver. Steps in each iteration are: (1) SimpleFOAM solver solves for the primary equation, (2) compute required features, and (3)–(6) neural
network makes a prediction on turbulence quantities.
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network-based turbulence model is coupled with the SimpleFOAM
solver from the OpenFOAM package. The network requests mean flow
solutions (mean velocities 𝒖 and mean strain rate 𝑠), geometry data
(relative coordinates 𝒙′, cell volume 𝜃, boundary and wall distance 𝑏
and 𝜂, proximity to cloud center 𝑟 and 𝑟′) from the OpenFOAM solver
and returns turbulence quantities 𝑘, 𝜀.

The pipeline of data exchange is presented in Fig. 7 and the steps
for a coupled solver are as follows:

(1) The mean flow field and the turbulence quantities are initialized
by the initial condition. The absolute wall distance 𝜂𝑜 of all the
mesh points is computed.

(2) SimpleFOAM solver reads the initial data or results from the last
time step and solves for the mean flow quantities, e.g., flow field,
pressure. Data required by the neural network such as the strain
rate magnitude, cell volume, etc., are also calculated.

(3) The data is read and processed as described in Section 2.2,
including collecting the stencil point, calculating features and
normalization. The processed data is put into the input matrix
 and fed into the trained neural network.

(4) The data is processed first through the embedding network, then
transformed to achieve the permutation invariance and frame-
independence. Finally, the prediction of turbulence quantities
is given by the fitting network and is written into OpenFOAM
format.

(5) Steps 2–4 are repeated until the simulation reaches convergence.

3. Results

3.1. Performance in uncoupled and coupled setup

We tested the performance of the trained neural network model
in both uncoupled and coupled setups. Specifically, in the uncoupled
setup, the neural network model uses the converged mean flow field
obtained from traditional flow simulation to predict the turbulence
quantities, which is similar to how the network is trained. In a coupled
setup, the neural network model is coupled with a traditional RANS
equation solver. The coupled solver starts iteration from a given initial
condition, that is, an unconverged flow field. During the simulation, the
neural network model makes predictions on turbulence quantities in
each iteration. The simulation runs until it reaches convergence. In both
8

l

cases, the neural network prediction is compared with that of the stan-
dard 𝑘–𝜀 turbulence model. It was found that, in the uncoupled setup,
the neural network model performed very well in interpolation flow
cases, but the prediction worsened drastically in extrapolation cases.
In the coupled setup, the network model performance was comparably
good as it was in the uncoupled setup.

3.1.1. Uncoupled results
In the interpolation testing case 𝛼 = 1.45, the prediction of the

neural network is highly consistent with the results of 𝑘–𝜀 model.
lthough the flow case 𝛼 = 1.45 is not included in the training set,

he contour of 𝜈𝑇 with 𝑘–𝜀 (Fig. 8(a)) and that with neural network
odel (Fig. 8(b)) are nearly identical in terms of their pattern and
agnitude. When comparing their cross-section profiles (Fig. 8(c))

long the channel, it is also clear that the two profiles overlapped each
ther. The neural network prediction is only inferior to that of the 𝑘–𝜀
odel in terms of its smoothness.

The neural network model performed less satisfactorily in extrapo-
ation cases. The performance deteriorated rapidly in the testing cases
ith slopes further from the training set. Simulation results in Fig. 9

how the prediction capacity of the neural network model in mild
xtrapolation cases. In the flow cases 𝛼 = 0.9 and 𝛼 = 2.1, the
etwork prediction is close to that of the reference results provided
y the 𝑘–𝜀 model. The overall magnitude of 𝜈𝑇 in the neural network
rediction agrees well with the 𝑘–𝜀 model, although there are more
vident oscillations observed near the inlet and outlet of the channel,
nd there is also disagreement of pattern in the middle section in flow
ase 𝛼 = 2.1.

For a more quantitative analysis of the model performance, an
verall metric of validation (prediction) error rate is introduced:

rror rate =

√

∑𝑁
𝑖=1 |𝜈𝑇𝑖 − �̂�𝑇𝑖 |

2

√

∑𝑁
𝑖=1 |𝜈𝑇𝑖 |

2
, (14)

here 𝜈𝑇 is the neural network prediction, and 𝜈𝑇 refers to the results of
–𝜀 model (regarded as the ground truth). The errors of all mesh points
re summed and the total error is normalized by the sum of squared
round truth results.

The neural network model shows good performance in the inter-
olation regime but in the extrapolation regime, the performance is

ess satisfactory. This finding is clearly shown in Fig. 10, where the
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Fig. 8. Comparison of turbulence viscosity 𝜈𝑇 on flow case 𝛼 = 1.45. Panel (a) and (b) show the contour plot of 𝜈𝑇 provided by the 𝑘–𝜀 model and neural network, respectively.
Panel (c) compares 𝜈𝑇 profiles along 8 cross-sections.

Fig. 9. Comparison of the contour and the cross-section profiles of turbulence viscosity 𝜈𝑇 in the extrapolation cases 𝛼 = 0.9 and 𝛼 = 2.1.
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Fig. 10. Prediction error defined in Eq. (14) over different slope parameters. The shaded (green) background indicates the range of slope parameters covered by the training set
(marked with blue circles). Red triangles represent the testing flow cases, including both interpolation and extrapolation cases.
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prediction error rate is plotted against the slope parameters. Within the
training set range, the prediction error of the neural network model
is as low as the training error (around 3%). The prediction error
rate grows rapidly when the slope parameter is reduced from 1.0 to
0.5. Similarly, the error rate increases when the slope parameter goes
beyond 2.0, although the error rate of the case 𝛼 = 2.5 is slightly lower
than that of the case 𝛼 = 0.5.

3.1.2. Coupled results
In the coupled setup, the neural network model performs compa-

rably well as in the uncoupled setup in terms of model accuracy. The
converged fields in one interpolation and one mild extrapolation flow
case of the coupled solver with the neural network-based turbulence
model and the 𝑘–𝜀 model are presented in Fig. 11. The cross-section
profiles of the eddy viscosity 𝜈𝑇 and the mean velocity in 𝑥 and 𝑦
direction (𝑢 and 𝑣) are shown. We note that the difference between the
neural network-based turbulence model and the baseline 𝑘–𝜀 model is
very small. Especially in terms of the mean flow field (the final results
of the RANS simulation), the difference is barely discernible.

More importantly, the network has good stability and the coupled
solver is capable of reaching a steady state when initialized with an
unconverged flow field at the early stage. The initial condition of the
simulation is shown in grey dashed lines in Fig. 11, and corresponds
to the baseline simulation at the 500th iteration. There is a large dis-
crepancy between the initial condition and the final converged results,
especially in terms of the eddy viscosity. Such an unconverged flow
field is not included in any training cases. Even in an unseen flow field,
the neural network-based turbulence model is capable of providing
reasonable prediction without causing divergence of the primary RANS
equation and brings the simulation to a convergence that is very close
to the 𝑘–𝜀 model.

The starting point of 500th iteration is found through grid search,
i.e., we tested the neural network-coupled RANS solver starting from
the converged flow field all the way down to the 1st iteration. Tests
starting from iterations earlier than the 500th hardly succeeded. This is
because the difference between the mean flow fields in the initial stage
and those in the final stage is too large, and consequently the network is
not capable of giving valid predictions. Receiving incorrect turbulence
quantities, the simulation diverges very soon. How to achieve even
better stability of the neural network-based turbulence models remains
an important question to be further investigated.

3.2. Scale of the influence region

The parametric study on the scale of the influence region shows a
rapidly diminishing marginal benefit of using a large influence region in
our case. In Fig. 12, the validation error is plotted against the coefficient
describing the relative size of the influence region as compared to the
10

2

baseline. This coefficient follows 𝐶𝐼 = 𝑙1
𝑙10

, in which 𝑙1 is the test semi-
major axis of the influence region, and 𝑙10 is the original semi-major
axis of the influence region based on Eq. (6). The sem-minor axis 𝑙2 is
caled by the same constant 𝐶𝐼 . Therefore, the ratio between the area
f the test and the baseline influence region is 𝐼∕𝐼0 = 𝐶2

𝐼 .
The validation error shows an overall declining tendency with

egard to the enlarging influence region. However, there are clearly two
tages that can be observed. The first interval is from 𝐶𝐼 = 0 to around
𝐼 = 0.1, in which the improvement in performance is the most evident.

n the second interval (𝐶𝐼 > 0.1), the performance stays roughly at the
ame level.

As indicated in Fig. 13, when coefficient 𝐶𝐼 reaches 0.1, the stencil
n most parts of the flow domain contains neighbouring points both
long and orthogonal to the streamwise direction. By including these
ritical points, the network performance is greatly enhanced. Influence
egions larger than this can be considered as containing the most
mportant set of information for predicting turbulence quantities. It is
oticed that in the recirculation region, 𝐶𝐼 = 0.2 can also be filed under
he first interval. Because in the near-wall region, only until 𝐶𝐼 = 0.2
re the neighbouring points along the main flow direction included.

In the second interval, by including points in a larger neighbour-
ood, the prediction capacity of the network increases only by a small
mount. There is possibly even a decline of performance in flow case
= 0.5 when the influence region increases from 𝐶𝐼 = 2.0 to 𝐶𝐼 = 3.0.
his may be due to the fact that noise consisting of points too far away

s introduced and undermines the prediction ability.

.3. Model features learned by the neural network

The neural network model has strong boundary dependence as
hown in the visualization of one of the embedding functions. We
et 𝑚′ = 1 for a better interpretation of the network. In this way,
nly the first embedding function is multiplied twice in the linear
ransformation step and it is attached with more importance than
ther embedding functions. The embedded weights 𝐺𝑖1 defined by the
mbedding function 𝜙1 where 𝑖 denotes the index of spatial points is
isualized in Fig. 14. Across stencils at different locations, the contours
f the weights showed a consistent pattern. The gradient of the em-
edded weights is well aligned with the wall-normal direction, which
s especially evident for stencils near the periodic hills. The pattern of
eights agreed well with the flow feature captured by 𝑘–𝜀 model as

ontained in the training data.

. Conclusion

In this work, we apply vector-cloud neural network (Zhou et al.,
021) to address the long-standing turbulence modelling problem. It



International Journal of Heat and Fluid Flow 98 (2022) 109051R. Xu et al.

i

Fig. 11. Comparison of the velocity and eddy viscosity profiles. The initial condition marked in the grey dashed line is the corresponding baseline 𝑘–𝜀 model simulation at 500th
teration (with the first iteration started from uniform flow fields).
Fig. 12. Parametric study on the influence region. 𝑥-axis is the factor with regard to the baseline choice of the major and minor axes of the influence region as provided in
Eq. (6). The simulation is performed on 𝐶𝐼 = 0, 0.05, 0.1, 0.2, 0.5, 1, 1.5, 2.0, 3.0. A value of 0 refers to a local model in which only the mean flow properties of the point of interest
itself are regarded as the inputs of the model. The performance of models in the entire flow domain as well as in the recirculation region with various scales of the influence
region is evaluated on two extrapolation flow cases 𝛼 = 0.5 and 𝛼 = 0.8. The recirculation region is marked in (red) shade in Fig. 13 (lower left panel).
is a network architecture which incorporates the nonlocality of turbu-
lence quantities and guarantees the invariance properties of turbulent
flows. This work is a proof of concept for the application of VCNN to
turbulence modelling in a coupled setting and paves the way for the
framework to predict Reynolds stress tensor anisotropy.

The neural network-based turbulence model was embedded into
the RANS solver and has demonstrated good stability in the coupled
setup. We tested the stability and robustness of the coupled solver by
applying it at different stages (e.g., 500th iteration, 100th iteration)
of the simulation. The neural network coupled solver could bring
the simulation to a convergence (with good accuracy) starting from
an early stage (500th iteration) as shown in our testing cases. The
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stability of neural network models is usually not guaranteed in physical
simulations. Thus, our numerical test results demonstrate the promising
future of VCNN in other application scenarios.

When adapting the network from laminar to turbulent flows, the
wide distribution of turbulence quantities 𝑘 and 𝜀 brings about chal-
lenges for machine learning. We apply a transformation to each of the
inputs and outputs. It is shown in numerical tests that the training
efficiency has largely improved after transformation. Besides, based
on the parametric study on the scale of the influence region, there is
a diminishing marginal utility when increasing the influence region.
Whether this discovery is universal to other flow cases requires further
investigation. Finally, the physics learnt by the network showed a



International Journal of Heat and Fluid Flow 98 (2022) 109051R. Xu et al.
Fig. 13. Visualization of stencils under various sizes of influence region for flow case 𝛼 = 0.5. Four points located at the inlet, the recirculation region, the main stream, and near
the bottom are inspected. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 14. Contour plot of embedded weights 𝐺𝑖1 inside stencils at various locations
indexed by 𝑖. Lighter colours in this figure indicate larger values of the embedded
weights and potentially larger influence. The arrows indicate the direction and the
magnitude of the local velocity. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

strong boundary relevance which was consistent with the expected
flow physics for channel flows. It suggested that the vector-cloud
neural network was able to learn the correct nonlocal physics from the
provided data.

Despite the trained network’s good prediction capabilities on target
turbulence quantities in the interpolation cases and its robustness and
stability when coupled back into the RANS solver, it may not be
applicable in scenarios with extremely varied configurations and initial
conditions. Training the network with additional data that emerge
throughout the convergence process from different initial conditions
is a possible solution for improving the generalizability of the net-
work. A relevant point is that in this work we use 𝑘–𝜀 model as
the ground-truth data, which still processes locality for the strain
rate. It is worthy of further investigation on whether the proposed
methodology can accommodate more complicated turbulence models
or data. Another point we can investigate is the interpretability of the
network. Although we have attempted to understand the function of
the embedding network by compressing and visualizing the embedded
features and providing some physical interpretation, it is still far from
adequate. Utilizing the interpretability tools such as SHapley Additive
exPlanations (SHAP) (Lundberg and Lee, 2017) and Local Interpretable
Model-Agnostic Explanation (LIME) (Ribeiro et al., 2016) may assist us
in gaining a deeper understanding of the network’s operation, which
can be explored in the future.
12
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