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A bstract—The third generation of artificial intelligence (AI) 
introduced by neuromorphic computing is revolutionizing the 
way robots and autonomous systems can sense the world, 
process the information, and interact with their environment. 
Research towards fulfilling the promises of high flexibility, energy 
efficiency, and robustness of neuromorphic systems is widely sup
ported by software tools for simulating spiking neural networks, 
and hardware integration (neuromorphic processors). Yet, while 
efforts have been made on neuromorphic vision (event-based 
cameras), it is worth noting that most of the sensors available 
for robotics remain inherently incompatible with neuromorphic 
computing, where information is encoded into spikes. To facilitate 
the use of traditional sensors, we need to convert the output 
signals into streams of spikes, i.e., a series of events (+ 1 ,-1 )  along 
with their corresponding timestamps. In this paper, we propose a 
review of the coding algorithms from a robotics perspective and 
further supported by a benchmark to assess their performance. 
We also introduce a ROS (Robot Operating System) toolbox 
to encode and decode input signals coming from any type of 
sensor available on a robot. This initiative is meant to stimulate 
and facilitate robotic integration of neuromorphic AI, with the 
opportunity to adapt traditional off-the-shelf sensors to spiking 
neural nets within one of the most powerful robotic tools, ROS.

I. I n t r o d u c t io n

Neuromorphic artificial intelligence (AI) is the so-called 
third generation of AI, and it yields a wide range of in
credible opportunities for solving technical and technological 
challenges, particularly in robotics and autonomous systems. 
The current second generation of AI has been focusing on 
the applications of deep-learning networks to analyse large 
datasets, with outstanding applications to sensing and percep
tion. However, the high performance achieved by the proposed 
solutions come with major flaws for robotics applications. First 
and foremost, the computational needs of these solutions are 
extremely high, especially for vision-based deep networks, 
and this hinders scientific progress, for instance in solving
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online learning tasks. Hardware solutions such as the Kapoho 
Bay [1] have been proposed but they remain often expensive 
and/or beyond the robots’ affordable payload (e.g., micro 
air vehicles). Moreover, as artificial neural networks (ANNs) 
are executed in a fully synchronized manner, most of the 
computation is inherently uselessly done. For instance, a 
visual-based ANN performing object tracking analyses the 
entire image at each timestamp while most of the informa
tion remains unchanged within small time intervals. Another 
consequence of the synchronous execution is that traditional 
ANNs are not optimized to extract the timing information 
between different neurons. In contrast, neuromorphic systems 
are characterized by the asynchronous and independent exe
cution of the neurons within the neural net, therefore enabling 
more flexibility, as well as the ability to learn the timing 
information. In this respect, spiking neural networks (SNNs) 
feature biologically inspired neurons that fire independently 
in time and asynchronously of the others. So far, SNNs have 
been widely studied in simulations, thanks to the booming 
efforts in designing convenient simulation environments like 
the Python-based APIs NORSE [2], Brian [3], or Nengo [4]. 
Unfortunately, the performance of SNNs remains limited for 
robotic applications, the major reason being that SNNs are 
executed on conventional, synchronous hardware.

Over the past few years, intense efforts have been put in 
the design of neuromorphic hardware, such as HICANN [5], 
NeuroGrid [6], TrueNorth [7], SpiNNaker [8], Loihi [1], and 
SPOON [9]. Although these neuromorphic chips remain under 
development, some of them are getting integrated onboard 
robots to push the frontiers of neuromorphic sensing and 
control in robotics [10]—[13]. Early results show outstanding 
performance, i.e. extremely fast execution along with high 
energy efficiency [1], Yet. sensing may represent the ultimate 
bottleneck of neuromorphic AI in robotics. As a matter of 
fact, only a very limited number of neuromorphic sensors 
is available, the vast majority of which being dedicated to 
vision only (i.e., event-based cameras [14]). The current lack 
of technology for neuromorphic sensing in robotics (IMU, 
sonar, radar, Lidar. etc.) can be tackled in a quite efficient way 
by means of spike coding algorithms [15]—[17], which allow 
to convert traditional sensors data into a stream of spikes, that 
is, a series of events determined by their timestamp and their 
polarity (+1 or —1). Although the overall performance will 
be hampered by the sensors’ sampling frequency, it is worth
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noting that spike encoding, and decoding algorithms offer 
the opportunity to investigate novel neuromorphic algorithms 
while benefiting from standard off-the-shelf sensors.

Spike coding algorithms can be divided into three cate
gories. Population coding is the most straight-forward ap
proach. In population coding, a set of distinct neurons is 
defined to encode (or decode) the signal. Each of these neurons 
is characterized by a receptive field that describes the neurons 
response to a certain stimulus. The id or position of the neuron 
that produces a response now describes the encoded value. The 
remaining categories are based on the temporal variations of 
the signal. First, temporal coding algorithms allow to encode 
the information with high timing precision. The core idea of 
temporal coding is that spikes will be emitted whenever the 
variation of the signal gets higher than a threshold. Lastly, 
rate coding is used to encode the information into the spiking 
rate. An alternative to these algorithms is to directly setup 
the encoding and decoding layers in the simulated SNN, and 
then train/evolve the network itself. However, this approach 
is case-specific and may not be supported by neuromorphic 
hardware.

In this paper, we propose an overview of the different 
neuromorphic coding solutions available for applications in 
robotics, with a set of MATLAB scripts and Python codes 
implementing both encoding and decoding algorithms. A 
benchmark is proposed to assess the interests of each of the 
implemented methods, focusing on crucial aspects in field 
robotics like how the information is encoded, but also the 
computational requirements and the coding efficiency (i.e., 
quality of the signal reconstruction, number of spikes gen
erated, etc.). Lastly, we introduce a ROS (Robot Operating 
System) package implementing these algorithms to enhance 
the use of neuromorphic solutions for robotics with traditional 
sensors (see Supplementary Materials).

II. Spike CODING SCHEMES OVERVIEW

A. Population coding schemes

Population coding has been shown to be widely used in the 
brain (sensor, motor) [18], [19], It suggests that neurons (or 
populations of neurons) activity is determined by a distribution 
over the input signal. A typical example of such coding has 
been extensively studied in ganglion cells of the retina [20], 
[21] and studies in the somatosensory cortex, responsible for 
processing somatic sensations, also revealed the existence of 
population coding [22].

In this work, we implemented a two simple models of 
population coding, position-coding and Gaussian Receptive 
Fields, further referred to as GRF.

(i) Position coding is the simplest form of population 
coding. In this encoding method, a group of neurons all 
get assigned a small part of the underlying distribution 
(Algorithm 1). This distribution can be linearly divided 
but also non-linear distributions are possible. While hav
ing a linear distribution allows to encode a signal with 
all neurons representing a similar portion of the input

Data: input, distribution, amountNeurons 
Result: spikes, minVal, maxVal

1 L <— lengthen put)
2 spikes <— zeros(L, amountN eurons)
3 distances <— zeros(amountN eurons)
4 for j  =  1: L do
5 for i = l :  length(distribution) do
6 | distances(i) =  abs((input(j) — distribution^)))
7 spikingN euron = argmin(distances)
8 s pikes (j, spikingNeuron) = 1

Algorithm 1: Position-coding

Algorithm 2: GRF-based population spike encoding
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Data: input, amountN eurons, timesteps 
Result: spikes, minSig, maxSig 
L lengthen put)
[minSig, maxSig] <— [min(input). max(input)] 
spikes <— zeros (L, timesteps, amount Neurons) 
responses <— zeros (amountNeurons) 
for i = l :  amountN eurons do

ju(i) = minSig + (2- (i +1) — 3)/2- (maxSig — 
minSig) /  (amountN eurons — 2)

<7 (i) = (maxSig — minSig) /  (amount Neurons — 2) 
maxProb <— norm(p(0). p(0),sigma(0) 
timingDistribution <— linspace(0, maxProb, n-\-1) 
for j  = 1: L do

for i = l:  amountN eurons do
responses(i) = norm (input(j),p(i),o(i)) 
distances(i) = abs ((res pons es(i) — timingDistribution(i))) 
spikeTime(i) = timesteps — 1 — min(distances(i)) 
if spikeTime(i) < timesteps — 1 then 

| spikes(j,spikeTime(i),i) = 1

space, one could consider implementing a non-linear 
distribution instead to allow more precise representation 
of values at certain parts of the input space, but more 
coarse at others. Such a non-linear distribution might for 
instance be used for a control task, with input being the 
error to a targeted set point (e.g., thrust control based on 
the divergence of the optic flow field in a drone landing 
task [11]). Using a Gaussian distribution for instance 
allows for precise control around the set point, while 
limiting the amount of neurons necessary.

(ii) Inspired by the aforementioned studies, the GRF model 
encodes the signal by means of a set of neurons which 
activity distributions are defined as Gaussian waves 
determined by a centre /i and a variance a 2. In the 
proposed model, all centres /i, of neurons i are regularly 
spaced to cover the maximum amplitude of the input 
signal, while the variances are set equal. The sequence 
between the regular timesteps is now split in a number of 
(sub-)timesteps that allow for a combination of position- 
and temporal encoding. Neurons with a high activation 
will fire at the beginning, and neurons with a lower 
activation later (or not at all if the response is below 
a certain threshold) (Algorithm 2). If a temporal com
ponent is not desirable or possible for the application, it 
can also be chosen to map the neurons activation value 
to a probability of spiking, meaning that neurons closer 
to the encoded value have a larger probability of spiking.

Authorized licensed use limited to: TU Delft Library. Downloaded on September 06,2022 at 10:13:19 UTC from IEEE Xplore.  Restrictions apply. 



Data: input, filte r  
Result: spikes, shift

1 L <— lengthen put)
2 F <— length(filter)
3 spikes <— zeros( 1, L)
4 sh ift <— min(input)
5 input <— input — shift
6 for i = 1 : L do

Algorithm 3: Hough spike encoding (HSA)

7 count ^ 0

8 for / =  1 : F do
9 if i + j+ 1  < L  &  in put (i + j — 1) > filter (j)  then

10 count-\- — 1

11 if count = =  F then
12 spikes(i) =  1

13 for j  =  l : F  do
14 I if i  +  j  + 1 <  L then
15 input ( i+ j  —  1 )  =  input(i + j  — 1 )  — filter(j)

B. Rate coding schemes

According to the rate coding paradigm, the information 
is encoded in the spiking rate instead of the specific spike 
timing. In this paper, we will focus on the following coding 
algorithms:

(i) The Hough Spike Algorithm (HSA): equivalent to a 
threshold-based mode, the HSA makes use of a ’’reverse 
convolution” between the buffered input signal with a 
finite impulse response (FIR) filter to determine the 
spike timings (Algorithm 3) [23], This reverse convo
lution starts with the assumption that the output will be 
decoded using a convolution with a FIR over the output 
spike-train, and tries to invert this convolution to produce 
the correct input.

(ii) The Threshold Hough Spike Algorithm (T-HSA): sim
ilar to the HSA, the T-HSA introduces a threshold to 
compare with the error between the signal and the filter 
(Algorithm 4) [24]. Whenever the error exceeds this 
threshold, a spike is emitted, and the input signal is 
updated by subtracting the filter response. In the T- 
HSA, the threshold depends on the signal and must be 
determined prior to the encoding.

(iii) The Ben’s Spike Algorithm (BSA): as for the previous 
coding schemes, the BSA applies a reverse convolution 
of the signal with a FIR filter. To determine when a 
spike must be generated, the algorithm uses two errors, 
the first one being the sum of differences between the 
signal and the filter, and the second one being the sum of 
the signal values. The algorithm then generates spikes by 
comparing the first error to a fraction of the accumulated 
signal, defined as the product between the second error 
and a predefined threshold (Algorithm 5) [24]. Unlike T- 
HSA, the threshold is filter-dependent, allowing to keep 
the same value for different signals.

While rate coding is considered to be the universal way 
neurons encode the information, many studies highlighted the 
poor performance of rate coding schemes as compared to 
temporal coding algorithms [25], [26].

Algorithm 4: Threshold Hough spike encoding (T- 
HSA)________________________________________

Data: input, filter, threshold 
Result: spikes, shift

1 L <— lengthen put)
2 F 4— length(filter)
3 spikes <— zeros ( 1 ,L)
4 sh ift <— min (input)
5 input input — sh ift
6 for i =  1 : L do
7 error - 0
8 for j = 1 : F  do
9 if i + j  + 1 < L & input(i + j  — 1) > filter(j)  then
10 error-\- = filter (j)  — input(i + j — 1)
11 if error < threshold then
12 spikes(i) = 1
13 for j = \ : F  do
14 1 if i + j  + 1 < L then
15 | input{i + j  -  1) = input(i + j  -  1) -  filter(j)

Algorithm 5: Ben’s spike encoding (BSA)
Data: input, filter, threshold 
Result: spikes, shift

1 L <— lengthen put)
2 F <— length(filter)
3 spikes <— zeros (1,L)
4 shift min(input)
5 input <— input — sh ift
6 for i'= 1 : (L — F) do
7 err 1 , err2 <— 0

8 f o r  j  = 1 : F  d o

9 err 1 =  err 1 -\-abs(input(i-\- j)  — filter  (j))
10 erri =  erri -\-abs(input(i + j  — 1 ) )

11 if err 1 < erri - threshold then
12 s pikes (i) =  1

13 f o r  j  =  1 : F d o

14 I if i +  j  + 1 <  L then
15 input(i + j+  1 )  =  in pu t(i+ j+  1 )  -  filter(j)

C. Temporal coding schemes

Temporal representations, also called pulse coding, provide 
a time-based coding where the information is encoded in 
the exact spike timing. Unlike rate coding, temporal coding 
provides more information capacity [27], and is further sup
ported by neuro-physiological studies showing that auditory 
and visual information are processed with high precision in 
the brain [28].

Several models have been proposed. Assuming that the most 
significant information is carried by the first spikes, the Rank 
Order Coding (ROC) arranges spikes with respect to their 
arrival time [26], [29]. Taking inspiration from the ganglion 
cells, the Latency-Phase Coding (LPC) was introduced to 
combine the exact time spiking provided by temporal coding 
with the phase information (encoding spatial information in 
the ganglion cells) [30], [31]. Phase encoding has also been 
implemented in [32] to investigate on neurons in the human 
auditory cortex. In this paper, we will focus on the following 
coding algorithms:

(i) The Temporal-Based Representation (TBR): also called 
temporal contrast, the TBR algorithm generates spikes 
whenever the difference of the signal between two con-
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Algorithm 6: Temporal-Based Representation(TBR)
Data: input, a  
Result: spikes, threshold 
L <— lengthen put) 
spikes <— zeros( 1 ,L) 
d iff< —zeros(\.L— 1) 
for i=  1 : L- 1 do 

| d i f f { i) = input (i + 1) — input (i) 
threshold <— m ean(diff) + a  • s td (d iff)  
, / ; / / .  >////; 1;. d i f f \

8 for i = 1 : L — 1 do
if d iff( i )  > threshold then 

I spikes(i) = 1
else if d iff( i )  < —threshold then 

| spikes{i) = — 1

Algorithm 7: Step-forward encoding (SF)
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Data: input, threshold 
Result: spikes, init 
L <— length{input) 
spikes <— zeros( 1 ,L) 
init, base <— input (1) 
for i = 2: L do

if input(i) > base + threshold then 
I spikes{i) = 1 
| = ¿rase + threshold

else if input(i) < base — threshold then 
I spikes(i) = — 1

base = base + threshold

secutive timestamps, gets higher than a fixed threshold 
(Algorithm 6) [33]. Event-based cameras such as the 
Dynamic Vision Sensor (DVS) implement this coding 
scheme to generate a stream of events at extremely fast 
speed [33], [34],

(ii) The Step Forward Algorithm (SF): based on the TBR 
coding scheme, the SF uses a baseline signal to compute 
the difference of the input signal (Algorithm 7) [35]. As 
for the TBR model, a spike (+1 or — 1) is emitted when
ever the variation exceeds the threshold. Simultaneously, 
the baseline gets updated by ±  the threshold depending 
on the spike polarity.

(iii) The Moving Window Algorithm (MW): the MW model 
is similar to the SF model, but here the baseline signal 
is defined as the mean of the previous signal intensities 
over a time window (Algorithm 8) [35],

Since SF and MW models feature an adaptive component 
in the calculation of the signal variations by means of the 
baseline, they are known to result in better reconstruction of 
the encoded signal after decoding.

D. Comparison o f the selected schemes
The selected algorithms have been implemented both in 

MATLAB and Python 3 (encoding and decoding algorithms; 
see Supplementary Materials). In this section, we propose to 
investigate their performance by means of a benchmark over 
a set of ID signals (sum of noisy sine waves). An overview 
of the typical outputs provided by each algorithm is shown 
in Fig. l(A-G). Qualitatively, it is worth noting that both the 
quality of the signal reconstruction and the sparsity in spike

Algorithm 8: Moving window encoding (MW)

1
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Data: input, window, threshold 
Result: spikes, init 
L <— lengthen put) 
spikes <— zeros ( 1, L) 
init input (1)
base <— mean (in put ( 1 : (window + 1 ) ) ) 
for z = l :  window + 1 do

if input(i) > base -{-threshold then 
| s pikes (i) = 1

else if input (i) < base — threshold then 
| s pikes (i) = — 1 

for i = window + 2 : L do
base = mean{input{{i — window — 1) : (i — 1))) 
if input (i) > base + threshold then 

| s pikes (i) = 1
else if input (i) < base — threshold then 

| s pikes (i) = — 1

encoding vary from one model to another. In the following, 
we define spiking sparsity as the percentage of timestamps 
without spike emission:

/ spike count \
spiking sparsity =  1 -   ----- -— — --- :------- x 100 (1)

V length o f the signal /
These observations are further investigated by assessing 

the spiking sparsity of each algorithm as well as the root 
mean squared error (RMSE) between the input signal and the 
reconstructed one over a set of N = 1000 samples. The long
term drift, due to cumulative errors in the signal reconstruction, 
are also considered by extending the duration of the signal 
from 5 seconds to 100 seconds. Statistical results are given in 
Tables I (spiking sparsity) and II (RMSE). First, we observe 
that algorithms SF, HSA, and T-HSA result in a high spiking 
sparsity (> 50%). In particular, we note that the SF model is 
not affected by the duration of the signal (stable at 73%), while 
the spiking sparsity of rate coding HSA and T-HSA drops 13 
(HSA) and 7 (T-HSA) points, respectively. In contrast, the 
MW scheme maintains a spiking sparsity of 27%, regardless 
of the signal duration. Lastly, it is interesting to note that the 
standard deviation of the spiking sparsity tends to 0 when 
the signal duration gets bigger. This suggest that for each 
algorithm, and certainly for each type of signal, an optimal 
duration of the signal ensures stable spiking sparsity. Fig 1(H) 
shows an example of the spiking sparsity over the 1000 sample 
tests (case 3).

The quality of the reconstruction is reflected by the RMSE. 
Once again, the SF model demonstrates the best performance, 
showing no significant effect of the signal duration, and with 
an overall RMSE as low as 0.26 ±0.01 (mean ±  standard 
deviation), while the amplitude of the input signal is equal 
to 5.8. Besides, we note that the performance of the rate 
coding (BSA, HSA, and T-HSA) tend to improve as the 
signal duration increases, with a final average RMSE inferior 
to 0.6. As for the spiking sparsity, algorithms SF, BSA, 
HSA, and T-HSA tend to stabilize their mean RMSE with 
increased signal duration, thus reflecting the existence of an 
optimum. However, the temporal coding TBR and MW show
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Fig. 1. Example of the typical outputs of the selected coding schemes on a ID signal. A-C Temporal coding. D-F Rate coding. G Population coding. For 
each coding scheme (A-G). the original (blue) and the reconstructed (orange) signals are displayed (top), as well as the corresponding spikes (bottom). H 
Coding sparsity of the different methods, expressed as a percentage. Yellow: SF. Green: HSA. Cyan: T-HSA. Blue: TBR. Purple: BSA. Orange: MW.

TABLE 1
Av e r a g e  s p ik in g  s p a r s it y  o f  t h e  c o d in g  s c h e m e s

W.R.T. THE SIGNAL DURATION

TBR MW SF BSA HSA T-HSA
Case #1 -  T_max = 1 sec (1 period), nbJests = 1000 
Mean 36.7 29.2 74.6 45.8 74.0 62.4
SD 4.1 3.4 2.0 1.8 1.3 1.1
Case #2 -  T_max = 5 sec (5 periods), nb_tests = 1000 
Mean 36.7 27.5 73.4 33.1 64.5 57.5
SD 1.7 1.5 0.9 1.3 1.0 1.1
Case #3 -  T_max = 15 sec (15 periods), nb Jests  = 1000 
Mean 36.6 27.2 73.2 30.0 62.1 55.8
SD 1.0 0.9 0.5 0.8 0.6 0.6
Case #4 -  T_max = 50 sec (50 periods), nb Jests  = 1000 
Mean 36.7 27.1 73.2 29.3 61.6 55.6
SD 0.6 0.5 0.3 0.4 0.3 0.3
Case #5 -  Tjnax  = 100 sec (100 periods), nb Jests  = 1000 
Mean 36.6 27.1 73.2 29.0 61.4 55.5
SD 0.4 0.3 0.2 0.2 0.2 0.2

TABLE 11
Av e r a g e  RMSE b e t w e e n  t h e  o r ig in a l  a n d  t h e

RECONSTRUCTED SIGNALS W.R.T. THE SIGNAL DURATION

________TBR MW SF BSA HSA T-HSA
Case #7 -  T_max = 1 sec (1 period), nb Jests  = 1000 
Mean 0.80 0.68 0.26 0.84 0.97 0.68
SD 0.39 0.24 0.01 0.04 0.05 0.03
Case #2 -  Tjnax  = 5 sec (5 periods), nb Jests  = 1000 
Mean 1.41 1.11 0.26 0.64 0.62 0.39
SD 0.68 0.54 0.01 0.02 0.03 0.01
Case #3 -  Tjnax  = 15 sec (15 periods), nb Jests  = 1000 
Mean 2.24 1.74 0.26 0.60 0.51 0.30
SD 1.17 0.86 0.00 0.01 0.02 0.06
Case #4 -  Tjnax  = 50 sec (50 periods), nb Jests  = 1000 
Mean 3.90 2.94 0.26 0.58 0.48 0.26
SD 2.00 1.57 0.00 0.00 0.01 0.00
Case #5 -  Tjnax = 100 sec (100 periods), nb Jests  = 1000 
Mean 5.55 4.14 0.26 0.57 0.46 0.25
SD 2.98 2.17 0.00 0.00 0.01 0.00

an increasing RMSE, reaching the amplitude of the input 
signal itself after 100 periods. As shown in Fig. 2, these

-----Original signal -----Reconstruction

0 5 10 15
Time (seconds)

Fig. 2. Typical drift of the reconstructed signals for both the TBR (top) and 
the MW (bottom) temporal coding schemes (N = 1000 samples).

algorithms accumulate errors over time and tend to drift from 
the input, while the wave form of the signal is maintained.

Lastly, the GRF population coding scheme shows accurate 
signal reconstruction for as long as enough encoding neurons 
are available (Fig. 1G). However, since the normal distribution 
has to be evaluated for every neuron at every time step, the 
computational cost grows with the amount of coding neurons, 
and the spiking sparsity is null: a spike is emitted at each 
timestamp, resulting in a loss in the spike sparsity.
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E. Summary

When it comes to robotic applications, it is of high impor
tance to balance the overall performance of the coding schemes 
with the available computational resources and the type of 
information to process. For instance, the GRF population 
coding algorithm allows to precisely encode the value of the 
input signal, while temporal and rate coding schemes will 
rather encode the temporal variations. Rate coding schemes 
can be greedy in the way that they require buffered signals 
to achieve good performance. They also suffer from major 
limitations as they are inefficient (i.e., they produce a great 
number of spikes), and their performance depends on the type 
of filter (which itself depends on the data encoded). On the 
positive side, they are quite robust to disturbances (very low 
RMSE after reconstruction). Each algorithm makes use of 
distinct sets of parameters to be optimized. These parameters 
are mostly case specific and must be determined prior to 
the online robotic application. Optimization can be achieve 
by means of evolutionary algorithms within Python-based 
frameworks like DEAP [36], PyBrain [37] and PyEvolve [38].

III. A ROS PACKAGE PROPOSAL 

A. Description of the package

With the aim of reducing the sensing bottleneck and 
therefore stimulating investigations in neuromorphic AI for 
robotics, we propose a ROS implementation of the afore
mentioned coding schemes {GRF, TBR, MW, SF, BSA, HSA, 
and T-HSA; see Supplementary Materials). Both encoding and 
decoding algorithms are implemented in Python, in the same 
scripts as those described in the previous section. The provided 
ROS tools are organized as follows:

(i) The spykemsgs package introduces two new type of 
ROS messages, i.e. spyke.msg which contains the spike 
(+1, 0, —1), the corresponding timestamp (in seconds), 
and a set of parameters that depend on the signal and the 
coding scheme. The second message, spyke array.msg 
is a copy of the previous one but designed for carrying 
an array of spikes instead.

(ii) The spyke_coding_schemes package contains the encod
ing and decoding functions to be installed in ROS.

(iii) The spykecoding package defines the ROS node to be 
launched to start encoding or decoding an input signal. 
Once active, the ROS node will publish the message and 
record the data in a rosbag located at ~/. ros/. We also 
provide a Python script to process the data.

The ROS node can be launched as usual by running the 
following command: roslaunch spyke coding <launchfile>. 
A set of launch files for each implemented coding 
scheme is available within the spyke_coding package. 
To facilitate the use of the package, the ROS node 
{spyke_coding/src/generate_spikes.py) simulates a ID signal 
to be encoded. This can be easily replaced by a ROS subscriber 
to any sensor available.

-----  Original signal -----  Reconstructed signal

0 50 100 150 200 250 300 350 400
Timestamps

Fig. 3. Example of the spike generation in ROS using the SF algorithm. 
(Top) Graphic representation of the original (blue) and reconstmcted (orange) 
signals. (Bottom) Spikes generated by the encoding scheme. Time: one 
timestamp equals 0.01 seconds.

Fig. 4. Example of the application of the SF algorithm to a video stream. 
(Left) Original video input. (Middle) Encoding with a threshold of 1. (Right) 
Encoding with a threshold of 10.

B. Examples
Here we provide an example of the output signals provided 

by the ROS toolbox. In this example, we consider an input 
signal of 4 seconds with a sampling frequency of 100 Hz. The 
signal is defined as the sum of three sine waves of frequencies 
1 Hz, 2 Hz, and 5 Hz. Noise is added to the signal. The 
encoding scheme selected is the SF model for which the 
threshold is equal to 0.35. A Python script is available for 
automatic processing of rosbags. In Fig. 3. the recorded data, 
i.e., the input signal and the generated spikes, are displayed 
along with the reconstructed signal.

In Fig. 4, we provide an example of the effect of the use of 
the SF coding scheme on a video input for varying threshold. 
The video is part of the open-source Obstacle and Avoidance 
(ODA) Dataset (https://github.com/tudelft/ODA_Dataset). The 
toolbox can therefore help emulating the so-called event-based 
cameras and ensures an easy tuning of the encoding of the 
visual input with respect to both the robotic application and 
the environmental conditions.

IV. C o n c l u s i o n s  a n d  f u t u r e  w o r k

We introduced a toolbox for neuromorphic coding for sens
ing in robotics with the aim to facilitate the development of 
fully neuromorphic systems onboard robots, from perception 
to action. It includes the following algorithms: the position 
coding, the Gaussian Receptive Fields (GRF) population cod
ing, the Temporal-Based Representation (TBR, also used in 
event-based cameras), the Step-Forward (SF) and the Moving
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Window (MW) algorithms, as well as the following rate-based 
coding schemes: the Ben’s Spike Algorithm (BSA), the Hough 
Spike Algorithm (HSA) and the Threshold Hough Spike 
Algorithm (T-HSA). The toolbox contains implementations 
of the encoding and decoding algorithms in MATLAB and 
Python, and has been integrated to the ROS framework to 
encode and decode signals online onboard robots using off- 
the-shelf sensors. A benchmark was proposed to assess the 
advantages and drawbacks of each of the proposed coding 
schemes.

S u p p l e m e n t a r y  m a t e r ia l s

The MATLAB, Python and ROS codes are available at: 
https://github.com/tudelft/SpikeCoding.
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