

Delft University of Technology

A toolbox for neuromorphic perception in robotics

Dupeyroux, J.J.G.; Stroobants, S.; de Croon, G.C.H.E.

DOI
10.1109/EBCCSP56922.2022.9845664
Publication date
2022
Document Version
Final published version
Published in
Proceedings - 2022 8th International Conference on Event-Based Control, Communication, and Signal
Processing, EBCCSP 2022

Citation (APA)
Dupeyroux, J. J. G., Stroobants, S., & de Croon, G. C. H. E. (2022). A toolbox for neuromorphic perception
in robotics. In Proceedings - 2022 8th International Conference on Event-Based Control, Communication,
and Signal Processing, EBCCSP 2022 (Proceedings - 2022 8th International Conference on Event-Based
Control, Communication, and Signal Processing, EBCCSP 2022).
https://doi.org/10.1109/EBCCSP56922.2022.9845664
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/EBCCSP56922.2022.9845664
https://doi.org/10.1109/EBCCSP56922.2022.9845664

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

20
22

 8
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 E

ve
nt

-B
as

ed
 C

on
tro

l,
C

om
m

un
ic

at
io

n,
 a

nd
 S

ig
na

l P
ro

ce
ss

in
g

(E
B

C
C

SP
) |

 9
78

-1
-6

65
4-

53
49

-3
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
EB

C
C

SP
56

92
2.

20
22

.9
84

56
64 A toolbox for neuromorphic perception in robotics

Julien Dupeyroux
Micro Air Vehicle Lab. (MAVLab)

Delft University of Technology
Delft, The Netherlands

j.j.g.dupeyroux@tudelft.nl

Stein Stroobants
Micro Air Vehicle Lab. (MAVLab)

Delft University of Technology
Delft, The Netherlands
s.stroobants@tudelft.nl

Guido C.H.E. de Croon
Micro Air Vehicle Lab. (MAVLab)

Delft University o f Technology
Delft, The Netherlands

g.c.h.e.decroon@tudelft.nl

A bstract—The third generation of artificial intelligence (AI)
introduced by neuromorphic computing is revolutionizing the
way robots and autonomous systems can sense the world,
process the information, and interact with their environment.
Research towards fulfilling the promises of high flexibility, energy
efficiency, and robustness of neuromorphic systems is widely sup
ported by software tools for simulating spiking neural networks,
and hardware integration (neuromorphic processors). Yet, while
efforts have been made on neuromorphic vision (event-based
cameras), it is worth noting that most of the sensors available
for robotics remain inherently incompatible with neuromorphic
computing, where information is encoded into spikes. To facilitate
the use of traditional sensors, we need to convert the output
signals into streams of spikes, i.e., a series of events (+ 1 ,-1) along
with their corresponding timestamps. In this paper, we propose a
review of the coding algorithms from a robotics perspective and
further supported by a benchmark to assess their performance.
We also introduce a ROS (Robot Operating System) toolbox
to encode and decode input signals coming from any type of
sensor available on a robot. This initiative is meant to stimulate
and facilitate robotic integration of neuromorphic AI, with the
opportunity to adapt traditional off-the-shelf sensors to spiking
neural nets within one of the most powerful robotic tools, ROS.

I. I n t r o d u c t io n

Neuromorphic artificial intelligence (AI) is the so-called
third generation of AI, and it yields a wide range of in
credible opportunities for solving technical and technological
challenges, particularly in robotics and autonomous systems.
The current second generation of AI has been focusing on
the applications of deep-learning networks to analyse large
datasets, with outstanding applications to sensing and percep
tion. However, the high performance achieved by the proposed
solutions come with major flaws for robotics applications. First
and foremost, the computational needs of these solutions are
extremely high, especially for vision-based deep networks,
and this hinders scientific progress, for instance in solving

This work has received funding from the ECSEL Joint Undertaking (JU)
under grant agreement No. 826610 (project Comp4Drones). The JU receives
support from the European Union’s Horizon 2020 research and innovation
program and Spain. Austria, Belgium, Czech Republic, France, Italy, Latvia,
Netherlands. This material is also based upon work supported by the Air Force
Office of Scientific Research under award number FA8655-20-1-7044.

All authors are with the Micro Air Vehicle Lab, Faculty of Aerospace
Engineering, Delft University of Technology, The Netherlands. Contact:
j .j .g .dupeyroux@tudelft.nl

978-1-6654-5349-3/22/$3 1.00 ©2022 IEEE

online learning tasks. Hardware solutions such as the Kapoho
Bay [1] have been proposed but they remain often expensive
and/or beyond the robots’ affordable payload (e.g., micro
air vehicles). Moreover, as artificial neural networks (ANNs)
are executed in a fully synchronized manner, most of the
computation is inherently uselessly done. For instance, a
visual-based ANN performing object tracking analyses the
entire image at each timestamp while most of the informa
tion remains unchanged within small time intervals. Another
consequence of the synchronous execution is that traditional
ANNs are not optimized to extract the timing information
between different neurons. In contrast, neuromorphic systems
are characterized by the asynchronous and independent exe
cution of the neurons within the neural net, therefore enabling
more flexibility, as well as the ability to learn the timing
information. In this respect, spiking neural networks (SNNs)
feature biologically inspired neurons that fire independently
in time and asynchronously of the others. So far, SNNs have
been widely studied in simulations, thanks to the booming
efforts in designing convenient simulation environments like
the Python-based APIs NORSE [2], Brian [3], or Nengo [4].
Unfortunately, the performance of SNNs remains limited for
robotic applications, the major reason being that SNNs are
executed on conventional, synchronous hardware.

Over the past few years, intense efforts have been put in
the design of neuromorphic hardware, such as HICANN [5],
NeuroGrid [6], TrueNorth [7], SpiNNaker [8], Loihi [1], and
SPOON [9]. Although these neuromorphic chips remain under
development, some of them are getting integrated onboard
robots to push the frontiers of neuromorphic sensing and
control in robotics [10]—[13]. Early results show outstanding
performance, i.e. extremely fast execution along with high
energy efficiency [1], Yet. sensing may represent the ultimate
bottleneck of neuromorphic AI in robotics. As a matter of
fact, only a very limited number of neuromorphic sensors
is available, the vast majority of which being dedicated to
vision only (i.e., event-based cameras [14]). The current lack
of technology for neuromorphic sensing in robotics (IMU,
sonar, radar, Lidar. etc.) can be tackled in a quite efficient way
by means of spike coding algorithms [15]—[17], which allow
to convert traditional sensors data into a stream of spikes, that
is, a series of events determined by their timestamp and their
polarity (+1 or —1). Although the overall performance will
be hampered by the sensors’ sampling frequency, it is worth

Authorized licensed use limited to: TU Delft Library. Downloaded on September 06,2022 at 10:13:19 UTC from IEEE Xplore. Restrictions apply.

noting that spike encoding, and decoding algorithms offer
the opportunity to investigate novel neuromorphic algorithms
while benefiting from standard off-the-shelf sensors.

Spike coding algorithms can be divided into three cate
gories. Population coding is the most straight-forward ap
proach. In population coding, a set of distinct neurons is
defined to encode (or decode) the signal. Each of these neurons
is characterized by a receptive field that describes the neurons
response to a certain stimulus. The id or position of the neuron
that produces a response now describes the encoded value. The
remaining categories are based on the temporal variations of
the signal. First, temporal coding algorithms allow to encode
the information with high timing precision. The core idea of
temporal coding is that spikes will be emitted whenever the
variation of the signal gets higher than a threshold. Lastly,
rate coding is used to encode the information into the spiking
rate. An alternative to these algorithms is to directly setup
the encoding and decoding layers in the simulated SNN, and
then train/evolve the network itself. However, this approach
is case-specific and may not be supported by neuromorphic
hardware.

In this paper, we propose an overview of the different
neuromorphic coding solutions available for applications in
robotics, with a set of MATLAB scripts and Python codes
implementing both encoding and decoding algorithms. A
benchmark is proposed to assess the interests of each of the
implemented methods, focusing on crucial aspects in field
robotics like how the information is encoded, but also the
computational requirements and the coding efficiency (i.e.,
quality of the signal reconstruction, number of spikes gen
erated, etc.). Lastly, we introduce a ROS (Robot Operating
System) package implementing these algorithms to enhance
the use of neuromorphic solutions for robotics with traditional
sensors (see Supplementary Materials).

II. Spike CODING SCHEMES OVERVIEW

A. Population coding schemes

Population coding has been shown to be widely used in the
brain (sensor, motor) [18], [19], It suggests that neurons (or
populations of neurons) activity is determined by a distribution
over the input signal. A typical example of such coding has
been extensively studied in ganglion cells of the retina [20],
[21] and studies in the somatosensory cortex, responsible for
processing somatic sensations, also revealed the existence of
population coding [22].

In this work, we implemented a two simple models of
population coding, position-coding and Gaussian Receptive
Fields, further referred to as GRF.

(i) Position coding is the simplest form of population
coding. In this encoding method, a group of neurons all
get assigned a small part of the underlying distribution
(Algorithm 1). This distribution can be linearly divided
but also non-linear distributions are possible. While hav
ing a linear distribution allows to encode a signal with
all neurons representing a similar portion of the input

Data: input, distribution, amountNeurons
Result: spikes, minVal, maxVal

1 L <— lengthen put)
2 spikes <— zeros(L, amountN eurons)
3 distances <— zeros(amountN eurons)
4 for j = 1: L do
5 for i = l : length(distribution) do
6 | distances(i) = abs((input(j) — distribution^)))
7 spikingN euron = argmin(distances)
8 s pikes (j, spikingNeuron) = 1

Algorithm 1: Position-coding

Algorithm 2: GRF-based population spike encoding

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

Data: input, amountN eurons, timesteps
Result: spikes, minSig, maxSig
L lengthen put)
[minSig, maxSig] <— [min(input). max(input)]
spikes <— zeros (L, timesteps, amount Neurons)
responses <— zeros (amountNeurons)
for i = l : amountN eurons do

ju(i) = minSig + (2- (i +1) — 3)/2- (maxSig —
minSig) / (amountN eurons — 2)

<7 (i) = (maxSig — minSig) / (amount Neurons — 2)
maxProb <— norm(p(0). p(0),sigma(0)
timingDistribution <— linspace(0, maxProb, n-\-1)
for j = 1: L do

for i = l: amountN eurons do
responses(i) = norm (input(j),p(i),o(i))
distances(i) = abs ((res pons es(i) — timingDistribution(i)))
spikeTime(i) = timesteps — 1 — min(distances(i))
if spikeTime(i) < timesteps — 1 then

| spikes(j,spikeTime(i),i) = 1

space, one could consider implementing a non-linear
distribution instead to allow more precise representation
of values at certain parts of the input space, but more
coarse at others. Such a non-linear distribution might for
instance be used for a control task, with input being the
error to a targeted set point (e.g., thrust control based on
the divergence of the optic flow field in a drone landing
task [11]). Using a Gaussian distribution for instance
allows for precise control around the set point, while
limiting the amount of neurons necessary.

(ii) Inspired by the aforementioned studies, the GRF model
encodes the signal by means of a set of neurons which
activity distributions are defined as Gaussian waves
determined by a centre /i and a variance a 2. In the
proposed model, all centres /i, of neurons i are regularly
spaced to cover the maximum amplitude of the input
signal, while the variances are set equal. The sequence
between the regular timesteps is now split in a number of
(sub-)timesteps that allow for a combination of position-
and temporal encoding. Neurons with a high activation
will fire at the beginning, and neurons with a lower
activation later (or not at all if the response is below
a certain threshold) (Algorithm 2). If a temporal com
ponent is not desirable or possible for the application, it
can also be chosen to map the neurons activation value
to a probability of spiking, meaning that neurons closer
to the encoded value have a larger probability of spiking.

Authorized licensed use limited to: TU Delft Library. Downloaded on September 06,2022 at 10:13:19 UTC from IEEE Xplore. Restrictions apply.

Data: input, filte r
Result: spikes, shift

1 L <— lengthen put)
2 F <— length(filter)
3 spikes <— zeros(1, L)
4 sh ift <— min(input)
5 input <— input — shift
6 for i = 1 : L do

Algorithm 3: Hough spike encoding (HSA)

7 count ^ 0

8 for / = 1 : F do
9 if i + j+ 1 < L & in put (i + j — 1) > filter (j) then

10 count-\- — 1

11 if count = = F then
12 spikes(i) = 1

13 for j = l : F do
14 I if i + j + 1 < L then
15 input (i+ j — 1) = input(i + j — 1) — filter(j)

B. Rate coding schemes

According to the rate coding paradigm, the information
is encoded in the spiking rate instead of the specific spike
timing. In this paper, we will focus on the following coding
algorithms:

(i) The Hough Spike Algorithm (HSA): equivalent to a
threshold-based mode, the HSA makes use of a ’’reverse
convolution” between the buffered input signal with a
finite impulse response (FIR) filter to determine the
spike timings (Algorithm 3) [23], This reverse convo
lution starts with the assumption that the output will be
decoded using a convolution with a FIR over the output
spike-train, and tries to invert this convolution to produce
the correct input.

(ii) The Threshold Hough Spike Algorithm (T-HSA): sim
ilar to the HSA, the T-HSA introduces a threshold to
compare with the error between the signal and the filter
(Algorithm 4) [24]. Whenever the error exceeds this
threshold, a spike is emitted, and the input signal is
updated by subtracting the filter response. In the T-
HSA, the threshold depends on the signal and must be
determined prior to the encoding.

(iii) The Ben’s Spike Algorithm (BSA): as for the previous
coding schemes, the BSA applies a reverse convolution
of the signal with a FIR filter. To determine when a
spike must be generated, the algorithm uses two errors,
the first one being the sum of differences between the
signal and the filter, and the second one being the sum of
the signal values. The algorithm then generates spikes by
comparing the first error to a fraction of the accumulated
signal, defined as the product between the second error
and a predefined threshold (Algorithm 5) [24]. Unlike T-
HSA, the threshold is filter-dependent, allowing to keep
the same value for different signals.

While rate coding is considered to be the universal way
neurons encode the information, many studies highlighted the
poor performance of rate coding schemes as compared to
temporal coding algorithms [25], [26].

Algorithm 4: Threshold Hough spike encoding (T-
HSA)__

Data: input, filter, threshold
Result: spikes, shift

1 L <— lengthen put)
2 F 4— length(filter)
3 spikes <— zeros (1 ,L)
4 sh ift <— min (input)
5 input input — sh ift
6 for i = 1 : L do
7 error - 0
8 for j = 1 : F do
9 if i + j + 1 < L & input(i + j — 1) > filter(j) then
10 error-\- = filter (j) — input(i + j — 1)
11 if error < threshold then
12 spikes(i) = 1
13 for j = \ : F do
14 1 if i + j + 1 < L then
15 | input{i + j - 1) = input(i + j - 1) - filter(j)

Algorithm 5: Ben’s spike encoding (BSA)
Data: input, filter, threshold
Result: spikes, shift

1 L <— lengthen put)
2 F <— length(filter)
3 spikes <— zeros (1,L)
4 shift min(input)
5 input <— input — sh ift
6 for i'= 1 : (L — F) do
7 err 1 , err2 <— 0

8 f o r j = 1 : F d o

9 err 1 = err 1 -\-abs(input(i-\- j) — filter (j))
10 erri = erri -\-abs(input(i + j — 1))

11 if err 1 < erri - threshold then
12 s pikes (i) = 1

13 f o r j = 1 : F d o

14 I if i + j + 1 < L then
15 input(i + j+ 1) = in pu t(i+ j+ 1) - filter(j)

C. Temporal coding schemes

Temporal representations, also called pulse coding, provide
a time-based coding where the information is encoded in
the exact spike timing. Unlike rate coding, temporal coding
provides more information capacity [27], and is further sup
ported by neuro-physiological studies showing that auditory
and visual information are processed with high precision in
the brain [28].

Several models have been proposed. Assuming that the most
significant information is carried by the first spikes, the Rank
Order Coding (ROC) arranges spikes with respect to their
arrival time [26], [29]. Taking inspiration from the ganglion
cells, the Latency-Phase Coding (LPC) was introduced to
combine the exact time spiking provided by temporal coding
with the phase information (encoding spatial information in
the ganglion cells) [30], [31]. Phase encoding has also been
implemented in [32] to investigate on neurons in the human
auditory cortex. In this paper, we will focus on the following
coding algorithms:

(i) The Temporal-Based Representation (TBR): also called
temporal contrast, the TBR algorithm generates spikes
whenever the difference of the signal between two con-

Authorized licensed use limited to: TU Delft Library. Downloaded on September 06,2022 at 10:13:19 UTC from IEEE Xplore. Restrictions apply.

Algorithm 6: Temporal-Based Representation(TBR)
Data: input, a
Result: spikes, threshold
L <— lengthen put)
spikes <— zeros(1 ,L)
d iff< —zeros(\.L— 1)
for i= 1 : L- 1 do

| d i f f { i) = input (i + 1) — input (i)
threshold <— m ean(diff) + a • s td (d iff)
, / ; / / . >////; 1;. d i f f \

8 for i = 1 : L — 1 do
if d iff(i) > threshold then

I spikes(i) = 1
else if d iff(i) < —threshold then

| spikes{i) = — 1

Algorithm 7: Step-forward encoding (SF)

2
3

4

5

6

7

8

9

10

Data: input, threshold
Result: spikes, init
L <— length{input)
spikes <— zeros(1 ,L)
init, base <— input (1)
for i = 2: L do

if input(i) > base + threshold then
I spikes{i) = 1
| = ¿rase + threshold

else if input(i) < base — threshold then
I spikes(i) = — 1

base = base + threshold

secutive timestamps, gets higher than a fixed threshold
(Algorithm 6) [33]. Event-based cameras such as the
Dynamic Vision Sensor (DVS) implement this coding
scheme to generate a stream of events at extremely fast
speed [33], [34],

(ii) The Step Forward Algorithm (SF): based on the TBR
coding scheme, the SF uses a baseline signal to compute
the difference of the input signal (Algorithm 7) [35]. As
for the TBR model, a spike (+1 or — 1) is emitted when
ever the variation exceeds the threshold. Simultaneously,
the baseline gets updated by ± the threshold depending
on the spike polarity.

(iii) The Moving Window Algorithm (MW): the MW model
is similar to the SF model, but here the baseline signal
is defined as the mean of the previous signal intensities
over a time window (Algorithm 8) [35],

Since SF and MW models feature an adaptive component
in the calculation of the signal variations by means of the
baseline, they are known to result in better reconstruction of
the encoded signal after decoding.

D. Comparison o f the selected schemes
The selected algorithms have been implemented both in

MATLAB and Python 3 (encoding and decoding algorithms;
see Supplementary Materials). In this section, we propose to
investigate their performance by means of a benchmark over
a set of ID signals (sum of noisy sine waves). An overview
of the typical outputs provided by each algorithm is shown
in Fig. l(A-G). Qualitatively, it is worth noting that both the
quality of the signal reconstruction and the sparsity in spike

Algorithm 8: Moving window encoding (MW)

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

Data: input, window, threshold
Result: spikes, init
L <— lengthen put)
spikes <— zeros (1, L)
init input (1)
base <— mean (in put (1 : (window + 1)))
for z = l : window + 1 do

if input(i) > base -{-threshold then
| s pikes (i) = 1

else if input (i) < base — threshold then
| s pikes (i) = — 1

for i = window + 2 : L do
base = mean{input{{i — window — 1) : (i — 1)))
if input (i) > base + threshold then

| s pikes (i) = 1
else if input (i) < base — threshold then

| s pikes (i) = — 1

encoding vary from one model to another. In the following,
we define spiking sparsity as the percentage of timestamps
without spike emission:

/ spike count \
spiking sparsity = 1 - ----- -— — --- :------- x 100 (1)

V length o f the signal /
These observations are further investigated by assessing

the spiking sparsity of each algorithm as well as the root
mean squared error (RMSE) between the input signal and the
reconstructed one over a set of N = 1000 samples. The long
term drift, due to cumulative errors in the signal reconstruction,
are also considered by extending the duration of the signal
from 5 seconds to 100 seconds. Statistical results are given in
Tables I (spiking sparsity) and II (RMSE). First, we observe
that algorithms SF, HSA, and T-HSA result in a high spiking
sparsity (> 50%). In particular, we note that the SF model is
not affected by the duration of the signal (stable at 73%), while
the spiking sparsity of rate coding HSA and T-HSA drops 13
(HSA) and 7 (T-HSA) points, respectively. In contrast, the
MW scheme maintains a spiking sparsity of 27%, regardless
of the signal duration. Lastly, it is interesting to note that the
standard deviation of the spiking sparsity tends to 0 when
the signal duration gets bigger. This suggest that for each
algorithm, and certainly for each type of signal, an optimal
duration of the signal ensures stable spiking sparsity. Fig 1(H)
shows an example of the spiking sparsity over the 1000 sample
tests (case 3).

The quality of the reconstruction is reflected by the RMSE.
Once again, the SF model demonstrates the best performance,
showing no significant effect of the signal duration, and with
an overall RMSE as low as 0.26 ±0.01 (mean ± standard
deviation), while the amplitude of the input signal is equal
to 5.8. Besides, we note that the performance of the rate
coding (BSA, HSA, and T-HSA) tend to improve as the
signal duration increases, with a final average RMSE inferior
to 0.6. As for the spiking sparsity, algorithms SF, BSA,
HSA, and T-HSA tend to stabilize their mean RMSE with
increased signal duration, thus reflecting the existence of an
optimum. However, the temporal coding TBR and MW show

Authorized licensed use limited to: TU Delft Library. Downloaded on September 06,2022 at 10:13:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Example of the typical outputs of the selected coding schemes on a ID signal. A-C Temporal coding. D-F Rate coding. G Population coding. For
each coding scheme (A-G). the original (blue) and the reconstructed (orange) signals are displayed (top), as well as the corresponding spikes (bottom). H
Coding sparsity of the different methods, expressed as a percentage. Yellow: SF. Green: HSA. Cyan: T-HSA. Blue: TBR. Purple: BSA. Orange: MW.

TABLE 1
Av e r a g e s p ik in g s p a r s it y o f t h e c o d in g s c h e m e s

W.R.T. THE SIGNAL DURATION

TBR MW SF BSA HSA T-HSA
Case #1 - T_max = 1 sec (1 period), nbJests = 1000
Mean 36.7 29.2 74.6 45.8 74.0 62.4
SD 4.1 3.4 2.0 1.8 1.3 1.1
Case #2 - T_max = 5 sec (5 periods), nb_tests = 1000
Mean 36.7 27.5 73.4 33.1 64.5 57.5
SD 1.7 1.5 0.9 1.3 1.0 1.1
Case #3 - T_max = 15 sec (15 periods), nb Jests = 1000
Mean 36.6 27.2 73.2 30.0 62.1 55.8
SD 1.0 0.9 0.5 0.8 0.6 0.6
Case #4 - T_max = 50 sec (50 periods), nb Jests = 1000
Mean 36.7 27.1 73.2 29.3 61.6 55.6
SD 0.6 0.5 0.3 0.4 0.3 0.3
Case #5 - Tjnax = 100 sec (100 periods), nb Jests = 1000
Mean 36.6 27.1 73.2 29.0 61.4 55.5
SD 0.4 0.3 0.2 0.2 0.2 0.2

TABLE 11
Av e r a g e RMSE b e t w e e n t h e o r ig in a l a n d t h e

RECONSTRUCTED SIGNALS W.R.T. THE SIGNAL DURATION

________TBR MW SF BSA HSA T-HSA
Case #7 - T_max = 1 sec (1 period), nb Jests = 1000
Mean 0.80 0.68 0.26 0.84 0.97 0.68
SD 0.39 0.24 0.01 0.04 0.05 0.03
Case #2 - Tjnax = 5 sec (5 periods), nb Jests = 1000
Mean 1.41 1.11 0.26 0.64 0.62 0.39
SD 0.68 0.54 0.01 0.02 0.03 0.01
Case #3 - Tjnax = 15 sec (15 periods), nb Jests = 1000
Mean 2.24 1.74 0.26 0.60 0.51 0.30
SD 1.17 0.86 0.00 0.01 0.02 0.06
Case #4 - Tjnax = 50 sec (50 periods), nb Jests = 1000
Mean 3.90 2.94 0.26 0.58 0.48 0.26
SD 2.00 1.57 0.00 0.00 0.01 0.00
Case #5 - Tjnax = 100 sec (100 periods), nb Jests = 1000
Mean 5.55 4.14 0.26 0.57 0.46 0.25
SD 2.98 2.17 0.00 0.00 0.01 0.00

an increasing RMSE, reaching the amplitude of the input
signal itself after 100 periods. As shown in Fig. 2, these

-----Original signal -----Reconstruction

0 5 10 15
Time (seconds)

Fig. 2. Typical drift of the reconstructed signals for both the TBR (top) and
the MW (bottom) temporal coding schemes (N = 1000 samples).

algorithms accumulate errors over time and tend to drift from
the input, while the wave form of the signal is maintained.

Lastly, the GRF population coding scheme shows accurate
signal reconstruction for as long as enough encoding neurons
are available (Fig. 1G). However, since the normal distribution
has to be evaluated for every neuron at every time step, the
computational cost grows with the amount of coding neurons,
and the spiking sparsity is null: a spike is emitted at each
timestamp, resulting in a loss in the spike sparsity.

Authorized licensed use limited to: TU Delft Library. Downloaded on September 06,2022 at 10:13:19 UTC from IEEE Xplore. Restrictions apply.

E. Summary

When it comes to robotic applications, it is of high impor
tance to balance the overall performance of the coding schemes
with the available computational resources and the type of
information to process. For instance, the GRF population
coding algorithm allows to precisely encode the value of the
input signal, while temporal and rate coding schemes will
rather encode the temporal variations. Rate coding schemes
can be greedy in the way that they require buffered signals
to achieve good performance. They also suffer from major
limitations as they are inefficient (i.e., they produce a great
number of spikes), and their performance depends on the type
of filter (which itself depends on the data encoded). On the
positive side, they are quite robust to disturbances (very low
RMSE after reconstruction). Each algorithm makes use of
distinct sets of parameters to be optimized. These parameters
are mostly case specific and must be determined prior to
the online robotic application. Optimization can be achieve
by means of evolutionary algorithms within Python-based
frameworks like DEAP [36], PyBrain [37] and PyEvolve [38].

III. A ROS PACKAGE PROPOSAL

A. Description of the package

With the aim of reducing the sensing bottleneck and
therefore stimulating investigations in neuromorphic AI for
robotics, we propose a ROS implementation of the afore
mentioned coding schemes {GRF, TBR, MW, SF, BSA, HSA,
and T-HSA; see Supplementary Materials). Both encoding and
decoding algorithms are implemented in Python, in the same
scripts as those described in the previous section. The provided
ROS tools are organized as follows:

(i) The spykemsgs package introduces two new type of
ROS messages, i.e. spyke.msg which contains the spike
(+1, 0, —1), the corresponding timestamp (in seconds),
and a set of parameters that depend on the signal and the
coding scheme. The second message, spyke array.msg
is a copy of the previous one but designed for carrying
an array of spikes instead.

(ii) The spyke_coding_schemes package contains the encod
ing and decoding functions to be installed in ROS.

(iii) The spykecoding package defines the ROS node to be
launched to start encoding or decoding an input signal.
Once active, the ROS node will publish the message and
record the data in a rosbag located at ~/. ros/. We also
provide a Python script to process the data.

The ROS node can be launched as usual by running the
following command: roslaunch spyke coding <launchfile>.
A set of launch files for each implemented coding
scheme is available within the spyke_coding package.
To facilitate the use of the package, the ROS node
{spyke_coding/src/generate_spikes.py) simulates a ID signal
to be encoded. This can be easily replaced by a ROS subscriber
to any sensor available.

----- Original signal ----- Reconstructed signal

0 50 100 150 200 250 300 350 400
Timestamps

Fig. 3. Example of the spike generation in ROS using the SF algorithm.
(Top) Graphic representation of the original (blue) and reconstmcted (orange)
signals. (Bottom) Spikes generated by the encoding scheme. Time: one
timestamp equals 0.01 seconds.

Fig. 4. Example of the application of the SF algorithm to a video stream.
(Left) Original video input. (Middle) Encoding with a threshold of 1. (Right)
Encoding with a threshold of 10.

B. Examples
Here we provide an example of the output signals provided

by the ROS toolbox. In this example, we consider an input
signal of 4 seconds with a sampling frequency of 100 Hz. The
signal is defined as the sum of three sine waves of frequencies
1 Hz, 2 Hz, and 5 Hz. Noise is added to the signal. The
encoding scheme selected is the SF model for which the
threshold is equal to 0.35. A Python script is available for
automatic processing of rosbags. In Fig. 3. the recorded data,
i.e., the input signal and the generated spikes, are displayed
along with the reconstructed signal.

In Fig. 4, we provide an example of the effect of the use of
the SF coding scheme on a video input for varying threshold.
The video is part of the open-source Obstacle and Avoidance
(ODA) Dataset (https://github.com/tudelft/ODA_Dataset). The
toolbox can therefore help emulating the so-called event-based
cameras and ensures an easy tuning of the encoding of the
visual input with respect to both the robotic application and
the environmental conditions.

IV. C o n c l u s i o n s a n d f u t u r e w o r k

We introduced a toolbox for neuromorphic coding for sens
ing in robotics with the aim to facilitate the development of
fully neuromorphic systems onboard robots, from perception
to action. It includes the following algorithms: the position
coding, the Gaussian Receptive Fields (GRF) population cod
ing, the Temporal-Based Representation (TBR, also used in
event-based cameras), the Step-Forward (SF) and the Moving

Authorized licensed use limited to: TU Delft Library. Downloaded on September 06,2022 at 10:13:19 UTC from IEEE Xplore. Restrictions apply.

Window (MW) algorithms, as well as the following rate-based
coding schemes: the Ben’s Spike Algorithm (BSA), the Hough
Spike Algorithm (HSA) and the Threshold Hough Spike
Algorithm (T-HSA). The toolbox contains implementations
of the encoding and decoding algorithms in MATLAB and
Python, and has been integrated to the ROS framework to
encode and decode signals online onboard robots using off-
the-shelf sensors. A benchmark was proposed to assess the
advantages and drawbacks of each of the proposed coding
schemes.

S u p p l e m e n t a r y m a t e r ia l s

The MATLAB, Python and ROS codes are available at:
https://github.com/tudelft/SpikeCoding.

R e f e r e n c e s

[1] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain et a i, “Loihi: A neuromorphic
manycore processor with on-chip learning,” Ieee Micro, vol. 38, no. 1,
pp. 82-99, 2018.

[2] C. Pehle and J. E. Pedersen, “Norse - A deep learning library for spiking
neural networks,” Jan. 2021, documentation: https://norse.ai/docs/.
[Online]. Available: https://doi.org/10.5281/zenodo.4422025

[3] D. F. Goodman and R. Brette, “Brian: a simulator for spiking neural
networks in python,” Frontiers in neuroinformatics, vol. 2, p. 5, 2008.

[4] T. Bekolay, J. Bergstra, E. Hunsberger, T. De Wolf, T. C. Stewart,
D. Rasmussen, X. Choo, A. Voelker, and C. Eliasmith, “Nengo: a
python tool for building large-scale functional brain models,” Frontiers
in neuroinformatics, vol. 7, p. 48, 2014.

[5] J. Schemmel, D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Millner,
“A wafer-scale neuromorphic hardware system for large-scale neural
modeling,” in 2010 IEEE International Symposium on Circuits and
Systems (ISCAS). IEEE, 2010, pp. 1947-1950.

[6] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chan-
drasekaran, J.-M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla,
and K. Boahen, “Neurogrid: A mixed-analog-digital multichip system
for large-scale neural simulations,” Proceedings o f the IEEE, vol. 102,
no. 5, pp. 699-716, 2014.

[7] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et a l, “A
million spiking-neuron integrated circuit with a scalable communication
network and interface,” Science, vol. 345, no. 6197, pp. 668-673, 2014.

[8] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The spinnaker
project,” Proceedings o f the IEEE, vol. 102, no. 5, pp. 652-665, 2014.

[9] C. Frenkel, J.-D. Legat, and D. Bol, “A 28-nm convolutional neuromor
phic processor enabling online learning with spike-based retinas,” in
2020 IEEE International Symposium on Circuits and Systems (ISCAS).
IEEE, 2020, pp. 1-5.

[10] R. K. Stagsted, A. Vitale, A. Renner, L. B. Larsen, A. L. Christensen,
and Y. Sandamirskaya, “Event-based pid controller fully realized in neu
romorphic hardware: a one dof study,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2020, pp.
10939-10944.

[11] J. Dupeyroux, J. Hagenaars, F. Paredes-Vallès, and G. de Croon, “Neu
romorphic control for optic-flow-based landings of mavs using the loihi
processor,” arXiv preprint arXiv:2011.00534, 2020.

[12] C. Michaelis, A. B. Lehr, and C. Tetzlaff, “Robust trajectory generation
for robotic control on the neuromorphic research chip loihi,” Frontiers
in neurorobotics, vol. 14, 2020.

[13] I. Polykretis, G. Tang, and K. P. Michmizos, “An astrocyte-modulated
neuromorphic central pattern generator for hexapod robot locomotion
on intel’s loihi,” in International Conference on Neuromorphic Systems
2020, 2020, pp. 1-9.

[14] G. Gallego, T. Delbruck, G. M. Orchard, C. Bartolozzi, B. Taba,
A. Censi, S. Leutenegger, A. Davison, J. Conradt, K. Daniilidis, and
D. Scaramuzza, “Event-based vision: A survey,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, pp. 1-1, 2020.

[15] B. Petro, N. Kasabov, and R. M. Kiss, “Selection and optimization of
temporal spike encoding methods for spiking neural networks,” IEEE
transactions on neural networks and learning systems, vol. 31, no. 2,
pp. 358-370, 2019.

[16] B. Meftah, O. Lézoray, S. Chaturvedi, A. A. Khurshid, and A. Benyettou,
“Image processing with spiking neuron networks,” in Artificial Intelli
gence, Evolutionary Computing and Metaheuristics. Springer, 2013,
pp. 525-544.

[17] Q. Liu, G. Pineda-García, E. Stromatias, T. Serrano-Gotarredona, and
S. B. Furber, “Benchmarking spike-based visual recognition: a dataset
and evaluation,” Frontiers in neuroscience, vol. 10, p. 496, 2016.

[18] A. P. Georgopoulos, A. B. Schwartz, and R. E. Kettner, “Neuronal
population coding of movement direction,” Science, vol. 233, no. 4771,
pp. 1416-1419, 1986.

[19] B. B. Averbeck, P. E. Latham, and A. Pouget, “Neural correlations, pop
ulation coding and computation,” Nature reviews neuroscience, vol. 7,
no. 5, pp. 358-366, 2006.

[20] S. Nirenberg and P. E. Latham, “Population coding in the retina,” Current
Opinion in Neurobiology, vol. 8, no. 4, pp. 488—493, 1998.

[21] D. K. Warland, P. Reinagel, and M. Meister, “Decoding visual in
formation from a population of retinal ganglion cells,” Journal o f
neurophysiology, vol. 78, no. 5, pp. 2336-2350, 1997.

[22] R. S. Petersen, S. Panzeri, and M. E. Diamond, “Population coding in
somatosensory cortex,” Current opinion in neurobiology, vol. 12, no. 4,
pp. 441^147, 2002.

[23] M. Hough, H. De Garis, M. Korkin, F. Gers, and N. E. Nawa, “Spiker:
Analog waveform to digital spiketrain conversion in atr’s artificial
brain (cam-brain) project,” in International conference on robotics and
artificial life, vol. 92. Citeseer, 1999.

[24] B. Schrauwen and J. Van Campenhout, “Bsa, a fast and accurate
spike train encoding scheme,” in Proceedings o f the International Joint
Conference on Neural Networks, 2003., vol. 4. IEEE, 2003, pp. 2825-
2830.

[25] J. Gau trais and S. Thorpe, “Rate coding versus temporal order coding:
a theoretical approach,” Biosystems, vol. 48, no. 1-3, pp. 57-65, 1998.

[26] R. V. Rullen and S. J. Thorpe, “Rate coding versus temporal order
coding: what the retinal ganglion cells tell the visual cortex,” Neural
computation, vol. 13, no. 6, pp. 1255-1283, 2001.

[27] M. Abeles, Y. Prut, H. Bergman, and E. Vaadia, “Synchronization in
neuronal transmission and its importance for information processing,”
Progress in brain research, vol. 102, pp. 395^104, 1994.

[28] C. E. Carr, “Processing of temporal information in the brain,” Annual
review o f neuroscience, vol. 16, no. 1, pp. 223-243, 1993.

[29] L. Perrinet, M. Samuelides, and S. Thorpe, “Coding static natural images
using spiking event times: do neurons cooperate?” IEEE Transactions
on neural networks, vol. 15, no. 5, pp. 1164-1175, 2004.

[30] Z. Nadasdy, “Information encoding and reconstruction from the phase of
action potentials,” Frontiers in systems neuroscience, vol. 3, p. 6, 2009.

[31] J. Hu, H. Tang, K. C. Tan, H. Li. and L. Shi, “A spike-timing-based
integrated model for pattern recognition,” Neural computation, vol. 25,
no. 2, pp. 450-472, 2013.

[32] J. Wu, Y. Chua, M. Zhang, H. Li, and K. C. Tan, “A spiking neural
network framework for robust sound classification,” Frontiers in neuro
science, vol. 12, p. 836, 2018.

[33] P. Lichtsteiner and T. Delbruck, “A 64x64 aer logarithmic temporal
derivative silicon retina,” in Research in Microelectronics and Electron
ics, 2005 PhD, vol. 2. IEEE, 2005, pp. 202-205.

[34] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128x128, 120 db, 15 us
latency asynchronous temporal contrast vision sensor,” IEEE journal of
solid-state circuits, vol. 43, no. 2, pp. 566-576, 2008.

[35] N. Kasabov, N. M. Scott, E. Tu, S. Marks, N. Sengupta, E. Capecci,
M. Othman, M. G. Doboijeh, N. Murli, R. Hartono et al., “Evolving
spatio-temporal data machines based on the neucube neuromorphic
framework: Design methodology and selected applications,” Neural
Networks, vol. 78, pp. 1-14, 2016.

[36] F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M. Parizeau, and
C. Gagné, “Deap: Evolutionary algorithms made easy,” The Journal of
Machine Learning Research, vol. 13, no. 1, pp. 2171-2175, 2012.

[37] T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke,
T. RUckstieB, and J. Schmidhuber, “Pybrain,” Journal o f Machine
Learning Research, vol. 11, no. ARTICLE, pp. 743-746, 2010.

[38] C. S. Perone, “Pyevolve: a python open-source framework for genetic
algorithms,” Acm Sigevolution, vol. 4, no. 1, pp. 12-20, 2009.

Authorized licensed use limited to: TU Delft Library. Downloaded on September 06,2022 at 10:13:19 UTC from IEEE Xplore. Restrictions apply.

