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A computationally-efficient strength optimization method tailoring novel composite laminates using
lamination parameters is developed. The method adopts a global p-norm approach to aggregate local fail-
ure indices into a global failure index, based on the Tsai-Wu failure criterion. For design purposes, the
novel composite laminates are characterized via lamination parameters that can subsequently be trans-
formed into locally variable fiber orientations in an existing three-step optimization method. An elliptical
formulation of the conservative failure envelope is applied to represent the Tsai-Wu criterion in terms of
lamination parameters. A lamination-parameter-based two-level approximation for the global failure
index is derived, which guarantees the anticipated conservativeness and convexity in a gradient-based
optimization framework. Numerical results show that the computational efficiency of the proposed
strength optimization method improves remarkably with a proper value of p, compared to the existing
local-based min-max method. The method is also shown to be robust and generate converged optimum
designs even in the presence of stress concentrations and singularities.

� 2022 Elsevier Ltd. All rights reserved.
1. Introduction freedom of the problem increases. The computational cost can be
A basic requirement in structural design is to verify that the
internal stresses and/or strains during operation do not exceed
an allowable limit (i.e., the local failure strength) in order to guar-
antee the integrity of a structure. This process typically requires
the computation of a stress or strain-based scalar quantity mea-
sured at every integration point in the structure under design loads
and, subsequently, a verification that it does not exceed a critical
value. This requirement can be incorporated in an optimal design
problem as a local constraint or, in a strength-oriented formula-
tion, as the design objective itself. A challenging issue with stress
or strain-related optimization is that it often demands a significant
computational effort, particularly as the number of degrees of
ascribed to the sensitivity analysis, which has to be executed for
every local failure index to determine the change in failure index
due to a variation of a design variable. An alternative approach,
which has been implemented in order to reduce the computational
cost, is to use a so-called p-norm formulation that aggregates the
local values of the failure index into a single global failure measure
for the whole structure. In contrast to minimizing the maximum
failure index using the bound formulation [1], the use of a global
(aggregate) p-norm failure index facilitates the implementation
of the adjoint method for the design sensitivity analysis. Thus,
the computational effort can be effectively reduced.

An early application of the p-norm approach was developed by
Duysinx and Sigmund [2] in the context of topology optimization
for isotropic materials. More recently, Holmberg et al. [3] proposed
two different ways of clustering the stress constraints in the p-
norm formulation, which effectively reduced the stress concentra-
tion in topology optimization. The p-norm aggregation has also
been applied in a multi-constrained and multi-load topology opti-
mization by Deng and Suresh [4]. In order to successfully constrain
the maximum stress, Le et al. [5] proposed an adaptive normaliza-
tion scheme as well as an interlacing regional stress measure for
the p-norm stress constraint, which together provide direct control
on the local stresses. A correction for the lower bound p-norm
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Nomenclature

List of Acronyms
VSLs variable stiffness laminates
CCSA conservative convex separable approximation
LPs lamination parameters
FEM finite element method

KKT Karush-Kuhn-Tucker
FI failure index
MMA method of moving asymptotes
SLSQP sequential least square quadratic programming
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stress constraint was proposed by Lee et al. [6] in topology opti-
mization with the phase-field method. It was achieved by scaling
the upper bound p-norm formulation with a scalar computed from
the ratio between the lower bound p-norm formulation and its
upper bound counter-part. Kiyono et al. [7] used a multi-p-norm
to maximize the safety factor in topology optimization. Moreover,
Verbart et al. [8] demonstrated that the lower bound p-norm func-
tion also has a relaxation effect on the stress constraint in topology
optimization. Yang et al. [9] compared the stability transformation
method-based stress correction scheme (using the p-norm func-
tion as one of the global stress measures) with the violated set
enhanced stress measure in topology optimization. The results
indicated that the former performs well in the volume minimiza-
tion problem, whereas the latter behaves superior in the compli-
ance minimization problem. Kambampati et al. [10] applied p-
norm aggregation to constrain both stress and temperature fields
in a multi-physics model in topology optimization.

The aforementioned research has focused mainly on isotropic
materials. Notable applications of the p-norm approach to compos-
ite materials include a method based on the maximum strain or
maximum stress criterion in combination with the discrete mate-
rial optimization method [11]. In a follow-up research [12], the
p-norm was used to separately take fiber failure and inter-fiber
failure into account in the design of wind turbine blades made of
composite material. More recently, Anderson et al. [13] applied a
p-norm to aggregate the stress field of a composite wind turbine
blade to improve the fatigue life via optimization. The aggregation
is also utilized in an updated stress-based topology optimization of
composite laminates using the layerwise theory, constrained by
the Tsai-Hill criterion [14]. In the aforementioned works, the fiber
angles are taken as the design variables in optimizing composite
laminates. There is a recent publication by Montemurro and Cata-
pano [15], where they introduce a framework to use polar param-
eters as design variables and B-spline to control the variable angle
tows to optimize variable stiffness laminates. They also demon-
strate an approach to optimize the strength of variable stiffness
composites using polar parameters in the framework of the first-
order shear deformation theory [16]. A high value of p is shown
to be adopted in their framework utilizing the Sequential Least
Square Quadratic Programming [17]. Many details on the relevant
implementation can be found in [18].

For optimal design of variable stiffness laminates, one
commonly-used framework is the three-step optimization method
[1,19–25]. In the first step of the method, the optimal lamination
parameters are identified. Subsequently, in the second step, the
fiber angles in each ply of a composite laminate are retrieved from
the optimal lamination parameters. Finally, in the third step, the
fiber paths of the variable stiffness laminates (VSLs) are con-
structed based on the fiber angles obtained.

Although the three-step optimization framework has proven to
be an efficient and versatile approach for designing advanced com-
posite materials, we want to explore an effective numerical
approach to overcome the bottleneck of the strength optimization
on its expensive computational cost. The p-norm aggregation has
hitherto not been investigated within this framework, where the
2

lamination parameters are the design variables. In view of this,
we want to introduce an approach with details on how to carry
out strength optimization of variable stiffness laminates using
the p-norm formulation to speed up the calculation of [1] in our
three-step optimization framework. The aim of this work is two-
fold: (i) to develop and implement a p-norm approach for efficient
strength optimization of VSLs composites using the lamination
parameters as design variables, and (ii) to compare the perfor-
mance of the p-norm approach with an existing min-max formula-
tion [1] within the same three-step optimization framework.

For the accuracy and ease of implementation, the Tsai-Wu fail-
ure criterion is used in the present work. In order to fit and simplify
the fiber angle-based Tsai-Wu failure criterion with respect to the
lamination parameters, an elliptical formulation of the conserva-
tive failure envelope [1] is employed. According to our previous
study on strength-related optimization [26], we found the stress
field and its sensitivity field are not continuous in the space. This
causes the optimal design mesh-dependent in strength optimiza-
tion. Therefore, we deal with this problem by proposing a hybrid
interpolation scheme in terms of the analysis and optimization.
In addition, we want to come up with a convex approximation
for the p-norm failure index with respect to the lamination param-
eters, which is essential in our framework. The p-norm failure
index is obtained by aggregating the nodal indices with a critical
failure surface that accounts for all possible angle orientations. This
approach can be applied to other failure criteria. In the first step of
the three-step optimization method, the original optimization
problem is replaced by an approximate sub-problem, which
requires the derivation of a convex, two-level approximation for
the p-norm failure index. Finally, the strength optimization is
resolved with a predictor-corrector interior point method [27]
within the framework of the conservative convex separable
approximation (CCSA) [28].

The structure of this work is as follows: Section 2 describes the
lamination parameters and the structural analysis of the VSLs
using the finite element method. The proposed p-norm failure
index and its convex two-level approximation are also derived in
this section. The formulation of the strength optimization and
the corresponding methods to solve the problem are discussed in
Section 3. In Section 4, numerical results on the effect of p and
the mesh convergence of the optimal solutions, and the compar-
ison with the local min-max bound formulation are demonstrated
for a square plate with a cut-out. Another numerical case of an L-
shaped plate is tested in Section 5 to examine the performance
of the proposed strength optimization in the presence of stress sin-
gularity in detail. Finally, concluding remarks are provided in
Section 6.
2. Strength analysis for variable stiffness laminates and the
global failure index

The structural analysis of the VSLs is undertaken using the finite
element method, which provides the local state of stress in a struc-
ture or structural component under design loads. The relative
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strength of the VSLs, which compares a given state of stress with a
maximum allowable value, is represented locally by a failure index
based on the Tsai-Wu failure criterion. A global failure index, for-
mulated using the p-norm formulation, is introduced here, and is
henceforth referred to as the ‘‘p-norm failure index”. Subsequently,
a convex two-level approximation is derived for this p-norm fail-
ure index to ensure both the convexity and conservativeness of
the sub-problem associated with the strength optimization,
required by the convex optimization framework. Details about
the structural analysis and p-norm failure index are described in
this section.

2.1. Lamination parameters

The lamination parameters (LPs), which are the design variables
in the first-step optimization, are particularly suited for identifying
the effective properties of layer-wised composite laminate without
the need to specify the ply angles [29,30]. The effective stiffness of
the VSLs can be directly calculated through the LPs. In particular,
the in-plane stiffness matrix A can be calculated by four in-plane
LPs (V1;V2;V3;V4), the thickness of the laminate h and five matrix
constants (C0;C1;C2;C3;C4) using

A ¼ h C0 þ V1C1 þ V2C2 þ V3C3 þ V4C4ð Þ: ð1Þ
The parameters V1;V2;V3;V4ð Þ are defined based on the classical
lamination theory as

V1;V2;V3;V4ð Þ ¼
Z 1

2

�1
2

cos 2h zð Þ; sin 2h zð Þ; cos 4h zð Þ; sin 4h zð Þð Þdz;

ð2Þ
where z is the normalized position in the thickness direction with
the center defined at the mid-plane and h zð Þ is the fiber angle at z.

Similarly, the out-of-plane stiffness matrix D can be calculated
by four out-of-plane LPs. More information about the LPs and the
corresponding matrix constants can be found in [31].

Since the LPs are calculated from the trigonometric functions in
Eq. (2), each pair of the LPs is confined within a feasible region. For
the in-plane LPs, the feasible domain is given by

2V2
1 1� V3ð Þ þ 2V2

2 1þ V3ð Þ þ V2
3 þ V2

4 � 4V1V2V4 6 1; ð3aÞ
V2

1 þ V2
2 6 1; ð3bÞ

� 1 6 V3 6 1: ð3cÞ
The current work aims to design symmetric and balanced lami-
nates. This aligns with the design principle in the aerospace indus-
try. Two lamination parameters become zero (V2;V4 ¼ 0) due to the
stacking sequence. The feasible domain simplifies to

2V2
1 � V3 � 1 6 0; ð4aÞ

V3 � 1 6 0: ð4bÞ
This would be the feasible domain for zero membrane/bending cou-
pling and membrane orthotropic laminates, which is a sufficient
condition to generate symmetric and balanced laminates. By using
this, we exclude the potential designs which do not correlate with
symmetric and balanced stacks in the first-step optimization. In
the angle retrieval step, we can develop symmetric and balanced
layups based on the optimal design in the first-step to guarantee
the specific stacking sequence. (method can be found in [25]). We
would like to note here that the feasible domain of the lamination
parameters is an approximated convex-hull [32], where the values
in a small fraction of the domain can not be mapped into physical
carbon fiber lay-ups [33]. Since this drawback alleviates effectively
when the number of design layers is high, we regard such con-
straints as valid in formulating the optimization problem.
3

As the in-plane stiffness matrix A is linear with respect to the
LPs (see Eq. (1)), the convexity of a functional with respect to A
is preserved in the LP space. This convexity is a significant advan-
tage of taking the LPs as design variables instead of the fiber angles
in all layers. Furthermore, the number of design variables can be
reduced to a maximum of 4 at each design point for in-plane cases,
regardless of the number of design layers for balanced laminates. A
similar rule applies to the out-of-plane cases.

2.2. Structural analysis of variable stiffness laminates

As described in our research [26], the strength related optimiza-
tion behaves mesh-dependent in structural design. The reason is
that the sensitivity of the strength obtained from the FEM model
is not continuous [26,8]. Hence, we propose a well-behaved hybrid
interpolation scheme in the finite element method (FEM) model
after numerous trial and error in order to depress such an effect.
Specifically, we utilize a higher order element to smoothen the
strength field in the FEM model compared to the constant-strain
triangle element in [1]. An 8-noded serendipity element [34] is
applied, which aims to enhance the continuity of the stress field.
This continuity is desirable when calculating the sensitivity of
the stress-based objectives or constraints. For the design purpose,
both the material stiffness and the local strength constraint are
defined on the vertices of the serendipity element, which are also
named as the design nodes (see Fig. 1). The interpolation of the fail-
ure indices between the Gauss points and the design nodes is
achieved using a linear quadrilateral element, referred to as ”design
and interpolation element”. By using different elements for analysis
and interpolation respectively, not only the local strength can be
well-defined, the number of strength constraints and design vari-
ables can also be reduced.

To evaluate the stiffness matrix in one element, the material
stiffness Ag at a Gauss point g is obtained using a reciprocal
interpolation,

A�1
g ¼

Xn
i¼1

Ri;gA
�1
i ; ð5Þ

where Ai is the stiffness matrix at the ith design node in the element,

Ri;g is the linear shape function of the ith design node in the interpo-
lation element evaluated at the gth Gauss point, and n is the total
number of design nodes. In the remainder of the text, the subscript
g refers to the value at the gth Gauss point, and the subscript i indi-

cates the value at the ith design node.
Once the stiffness matrix is computed for each element, the glo-

bal stiffness matrix K can be obtained following a standard assem-
bly procedure. The displacement ~u for each degree of freedom can
be obtained through

K~u ¼~f ; ð6Þ

where~f is the external load vector. Thereafter, the strain or stress of
the VSLs at the Gauss points can be obtained for the calculation of
the relative strength.

2.3. p-norm failure index

The elliptical formulation of the conservative failure envelope
[1] is applied in this study to achieve a conservative approximation
of the safe region given by the Tsai-Wu failure criterion. The ratio-
nale is to approximate the safety region in the strain space using a
quadratic function for the most critical fiber angles. This is neces-
sary for use in conjunction with lamination parameters, since the
fiber angles, required by the Tsai-Wu failure criterion, are not
available during the first step of the optimization process (they



Fig. 1. Analysis, and design and interpolation element in the finite element model.
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are obtained during a subsequent step after the optimal lamination
parameters have been identified). Another type of failure index in
the framework of first-order shear deformation theory is intro-
duced by Izzi et al. [17]. In this approach, the failure index is
obtained by integrating layerwise carbon fiber failure indices
through the thickness. The advantage of this approach is that it
simplifies a complex physical mechanism, and is precise for the
composite fiber layers. We recommend this approach as long as
the inter-laminate matrix is robust enough. In our work, the local
failure index r is calculated as the largest root of the Tsai-Wu fail-
ure envelope at each Gauss point as

a0r2 þ a1r þ a2 ¼ 0; ð7Þ
where the coefficients a0; a1 and a2 are given as follows:

a0 ¼ C0; ð8aÞ
a1 ¼ CIeI þ CIIeII; ð8bÞ
a2 ¼ CI;Ie2I þ CII;IIe2II þ 2CI;IIeIeII: ð8cÞ
In the previous expression, eI and eII are the principal strains, where
the subscripts I and II refer to the maximum and minimum strain
directions, respectively. The coefficients C0;CI; CII;CI;I; CII;II and CI;II

are obtained from the material properties (strength and stiffness).
Details associated with the calculation are discussed in Khani
[35]. The critical envelope (occurence of failure) is defined by
r ¼ 1 and the safe region, where no failure occurs, is given by r 6 1.

Next, the nodal failure indices are determined by interpolation
from the values at the Gauss points. With this interpolation, both
the local failure indices and the design variables are defined at

the design nodes. The failure index at the ith design node is recov-
ered using an equivalent formulation as the one described in Nagy
et al. [36], which results in

ri ¼
R
rRidXR
RidX

; ð9Þ

where Ri is the shape function of an interpolation element associ-
ated with the design nodes and X denotes the domain occupied
by the structure.

Once the nodal failure index is obtained, the p-norm failure
index rPN can be estimated by
4

rPN ¼ 1
jXj

Z
X
rpdX

� �1
p

� 1
jXj
Xn
i¼1

jXijrpi
 !1

p

; ð10Þ

where jXj ¼ RX dXis the area of the entire design domain, p is the

coefficient of the p-norm, Xi is a domain associated with the ith

design node. It is obtained through Xi ¼
Pni

g¼1wi;g Ji;g
�� ��, where

wi;g ; Ji;g
�� �� are the weight and the determinant of Jacobian matrix

respectively of the gth Gauss point connected with the ith design
node in the Gaussian quadrature, ni is the number of Gauss points

connected with the ith design node.

2.4. Convex two-level approximation for the p-norm failure index

In order to implement the optimization algorithm, it is conve-
nient to develop a two-level approximation, which reduces redun-
dant computational work of the sensitivity analysis by updating
hierarchically only if improvement is achieved in one level
[20,37–39]. In this section, a convex two-level approximation is
derived for the p-norm failure index.

In the first level approximation, the p-norm failure index is
expanded with respect to the in-plane stiffness, which is to be opti-
mized for maximum strength. According to Eq. (7), the local failure
index r is a function of local strain~eg , thus a function of Ag as well.
Therefore, rg can be locally approximated at a Gauss point g by

rg � Ug : A
�1
g : ð11Þ

The coefficient matrix Ug is a symmetric matrix calculated by

Ug ¼ 1
2

~Ng~qT
g þ~qg

~NT
g

� �
; ð12Þ

with ~qg ¼ @rg
@~eg

being the sensitivity of rg with respect to~eg , and ~Ng is

the resultant internal force. Note that Eq. (11) is called ‘‘locally
approximated” as it only considers the variation of the stiffness

matrix A�1
g . The change of the internal force ~Ng and the global effect

of load redistribution associated with ~Ng inUg (Eq. (12)))) due to the
variation of Ag still needs to be calculated through the adjoint
method. Details about the derivation of Eq. (11) are omitted here
for the sake of brevity (see Khani et al. [1]).
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The nodal failure index can be obtained by substituting Eq. (11)
into Eq. (9) and using Gaussian quadrature, resulting in

ri ¼

Xng
g¼1

Ug : A
�1
g

� �
Ri;gwg Jg

�� ��
Xng
g¼1

Ri;gwg Jg
�� �� ; ð13Þ

where ng is the total number of Gauss points in the model, Jg
�� �� is

the determinant of the Jacobian matrix in the element, Ri;g is the
shape function evaluated at the Gauss point and wg is the weight
factor for the Gaussian quadrature.

After substituting Eq. (5) into Eq. (13), the following expression
is obtained:

ri ¼

Xng
g¼1

Ri;gwg Jg
�� ��Ug :

Xn
j¼1

Rj;gA
�1
j

 ! !

Xng
g¼1

Ri;gwg Jg
�� �� : ð14Þ

By rearranging the terms, the formulation for the nodal failure
index is expressed in terms of the nodal in-plane stiffness Aj as

ri ¼
Xn
j¼1

Ui;j : A
�1
j ; ð15Þ

where the coefficient matrix Ui;j is given as

Ui;j ¼

Xng
g¼1

Ri;gwg Jg
�� ��Rj;gUg

Xng
g¼1

Ri;gwg Jg
�� �� : ð16Þ

The local approximation for rPN can be subsequently obtained by
substituting Eq. (15) into Eq. (10), which leads to

rPN A�1
� �

¼
Xn
j¼1

UPN
j : A�1

j ; ð17Þ

where UPN
j is obtained through the chain rule as follows:

UPN
j ¼ @rPN

@A�1
j

¼
Xn
i¼1

@rPN

@ri

@ri
@A�1

j

: ð18Þ

Hence, combining Eq. (10) and Eq. (15), the complete formulation of
UPN

j is given by

UPN
j ¼

Xn
i¼1

1
jXj
Xn
i¼1

jXijrpi
 ! 1

p�1ð Þ jXij
jXj r

p�1ð Þ
i

� �
Ui;j: ð19Þ

The coefficient matrix UPN
j is not guaranteed to be a positive semi-

definite matrix. In order to guarantee the convexity of the first level
approximation, spectral decomposition is applied to convexify Eq.
(17), which leads to

rPN A;A�1
� �

�
Xn
j¼1

WPN
j

� ��
: Aj þ

Xn
j¼1

UPN
j

� �þ
: A�1

j ; ð20Þ

where UPN
j

� �þ
is the positive definite part of UPN

j obtained from the

spectral decomposition, and
Pn

j¼1 WPN
j

� ��
: Aj is the linear expansion

of the corresponding non-definite part. Details on the implementa-
tion of this spectral decomposition are described by Khani et al. [1].
5

Finally, the complete convex first level approximation of the p-
norm failure index, accounting for the linear expansion and load
redistribution part obtained through the adjoint method, is

rPN Ið Þ A;A�1
� �

¼
Xn
j¼1

WPN
j : Aj þ

Xn
j¼1

UPN
j

� �þ
: A�1

j ; ð21Þ

whereWPN
j includes WPN

j

� ��
, the linear expansion ofUPN

j in rPN A�1
� �

(Eq. (17)) with respect to Aj, and the load redistribution part in UPN
j

calculated by solving the adjoint problem. More details are dis-
cussed in Appendix A.

The second level approximation for the p-norm failure index

rPN IIð Þ ~V
� �

is formulated in terms of the lamination parameters ~V as

rPN IIð Þ ~V
� �

� rPN Ið Þ
0

~V0
� �

þ ~gPN
� �T

D~V þ 1
2
D~VTHPND~V ; ð22Þ

where ~V is a vector that collects all lamination parameters at all

design nodes (i.e., ~V ¼ Vb;i
	 


, with b ¼ 1;3 and i ¼ 1; . . . ;n), ~V0 is a
design point about which the approximation is being made,

D~V ¼ ~V �~V0; rPN Ið Þ
0

~V0
� �

is the value of rPN Ið Þ at the approximation

point ~V0;~gPN is the gradient of rPN Ið Þ with respect to the lamination

parameters at ~V0, and HPN is the Gauss-Newton part of the Hessian
matrix [37].

Denote as k ¼ 1; . . . ;2n an index that corresponds to a unique
combination of a pair of indices b ¼ 1;3 and i ¼ 1; . . . ;n such that

Vk ¼ Vb;i. The calculation of the kth component of ~gPN and the cor-

responding diagonal component of HPN is as follows:

gPN
k ¼ WPN

i :
@Ai

@Vk
þ UPN

i

� �þ
:
@A�1

i

@Vk
; ð23Þ

and

HPN
k;k ¼ UPN

i

� �þ
:
@2A�1

i

@V2
k

: ð24Þ
3. Strength optimization with p-norm failure index

The formulation and the algorithm to resolve the strength opti-
mization problem with a p-norm failure index are described in this
section. The p-norm failure index is the objective and the feasible
domain of the lamination parameters at each design node are
taken as constraints. Consequently, the formulation of the opti-
mization takes the following form:

min
~V1 ;

~V3

rPN ð25aÞ

subject to 2V2
1;i � V3;i � 1 6 0; ð25bÞ

V3;i � 1 6 0 i ¼ 1 . . .n: ð25cÞ
The aforementioned second level approximation rPN IIð Þ is employed
to set up the sub-problem that replaces the original optimization
problem. The Karush-Kuhn-Tucker (KKT) condition of the sub-
problem is addressed using Mehrotra’s predictor-corrector interior
point method [27] due to its fast convergence rate. The detailed pro-
cess to formulate the Schur complement follows the procedure in
Hong and Abdalla [40], which is omitted here for conciseness. The
conservative convex separable approximation (CCSA) [28] is chosen
as the optimization framework to control the convergence in each
level.

The conservativeness of the approximation required in the CCSA
aims to ensure the value at the new optimum obtained from the
approximation is higher than that from the finite element model.
Under this condition, the optimal solution obtained from the
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subproblem improves the design on the feasible side, which finally
leads to a converged solution. To guarantee this characteristic in
the two-level approximation for rPN , extra damping functions,
selected to be convex and separable, are supplemented to each
level. To this end, the first level approximation together with
damping is denoted as

�rPN Ið Þ A;A�1
� �

¼ rPN Ið Þ A;A�1
� �

þ q Ið Þd Ið Þ A;A�1
� �

; ð26Þ

where q Ið Þ 2 Rþ is the damping factor in the first level to scale the

effect of the damping function d Ið Þ. The function d Ið Þ A;A�1
� �

is given

by

d Ið Þ A;A�1
� �

¼
Xn
i¼1

oi Ai : A
�1
0;i þ A0;i : A

�1
i � 2I : I

� �
; ð27Þ

where I is the identity matrix, A0;i is the in-plane stiffness at the

approximation point ~V0 and at the design node i; oi is the weight
factor for the terms at each design node with oi ¼ jXi j

jXj . The value of

d Ið Þ A;A�1
� �

and its first derivative at the approximation point are

zero, which ensures Eq. (26) is still a valid approximation.
The corresponding second level approximation with damping

added is expressed as

�rPN IIð Þ ~V1; ~V3

� �
¼ rPN IIð Þ ~V1; ~V3

� �
þ q IIð Þd IIð Þ ~V1; ~V3

� �
; ð28Þ

where q IIð Þ 2 Rþ is the damping factor in the second level to scale

the effect of the damping function d IIð Þ. The function d IIð Þ ~V1; ~V3

� �
in this level is formulated as follows:

d IIð Þ ~V1; ~V3

� �
¼
Xn
i¼1

oi V1;i � V0
1;i

� �2
þ
Xn
i¼1

oi V3;i � V0
3;i

� �2
; ð29Þ

where V0
1;i and V0

3;i are the lamination parameters at the approxima-

tion point ~V0 at the design node i.
The flowchart of the optimization in the CCSA is illustrated in

Fig. 2. The associated procedure is summarized in Algorithm 1.
The optimization loop connected to the first level approximation
is named as the ‘‘Level 1 optimization”, which is in essence the
outer loop of the CCSA. Similar rule applies to the ‘‘Level 2 opti-
mization”, which correlates with the inner loop of the CCSA. The
sensitivity analysis and the convergence check using FEM analysis
is called ‘‘Level FEM”.

Algorithm 1. Strength optimization with p-norm failure index

1 Initialize ~V0;q Ið Þ;q IIð Þ and set the tolerance of stopping
criterion in Level 1, Level 2 and Level FEM optimization
g Ið Þ;g IIð Þ;g 0ð Þ, respectively;

2 Start FE analysis to calculate rPN and its sensitivity

UPN
j

� �þ
;WPN

j ;

3 Set up Level 1 approximation �rPN Ið Þ;
4 Set up Level 2 approximation �rPN IIð Þ. Build up the

subproblem with �rPN IIð Þ and solve it with the predictor-
corrector interior point method;

5 Update damping factor q IIð Þ;
6 Check if �rPN Ið Þ improves. If D�rPN Ið Þ 6 g Ið Þ, solution accepted

and update �rPN Ið Þ. Otherwise go back to step 4;
7 Check the convergence of �rPN Ið Þ. If j D�rPN Ið Þ j6 g Ið Þ, update q Ið Þ.

Otherwise, go back to step 4;
8 Check if rPN from the Level FEM is reduced. If DrPN 6 g 0ð Þ,
6

solution accepted. Otherwise, go back to step 3;
9 Check the convergence of rPN from the Level FEM. If

j DrPN j6 g 0ð Þ, optimal result ~V� is obtained. Otherwise, go
back to step 2.
In this work, the tolerance for the Level 2 optimization is
g IIð Þ ¼ 10�10. The tolerance for the Level 1 optimization is
g Ið Þ ¼ 10�3 and the variation in the Level 1 approximation D�rPN Ið Þ

is given by

D�rPN Ið Þ ¼ rPN Ið Þ ~Vkþ1
� ��� �

� rPN Ið Þ ~Vk
� ��� �

; ð30Þ

where ~Vk
� ��

is the optimal solution obtained in the kth Level 1 iter-

ation. Once the kþ 1ð Þth Level 1 optimization converges, the in-

plane stiffness A and its inverse A�1 in rPN Ið Þ (Eq. (21)) are updated.
The tolerance for the convergence of the Level FEM optimiza-

tion is g0 ¼ 10�3 and the variation in this level D�rPN is

D�rPN ¼ rPN ~Vlþ1
� ��� �

� rPN ~Vl
� ��� �

; ð31Þ

where ~Vl
� ��

is the optimal solution obtained at the lth Level FEM

iteration.
The damping factors q Ið Þ and q IIð Þ are updated as follows:

q að Þ;tþ1 ¼ dq að Þ;t; ð32Þ
where the superscript a ¼ I; II and t is the iteration number in the
ath level optimization. To calculate d, a parameter d is computed

first at the optimal solution ~V� in the ath level

d ¼
rPN a�1ð Þ ~V�

� �
� �rPN að Þ ~V�

� �
q að Þ;td að Þ ~V�

� � þ 1: ð33Þ

Then d in the ath level is obtained using:

d ¼

�d d > �d

d d̂ < d 6 �d

d̂ 1 < d 6 d̂

1þ 0:5 tanh 2d� 2ð Þ d 6 1;

8>>><
>>>:

ð34Þ

where �d and d̂ are two adjustable parameters. These two parameters
intend to make the damping factor increase by a reasonable ratio in
each iteration, neither dramatically large nor small. The function for
the d 6 1 case constrains the damping factor q að Þ to decrease no fur-
ther than to half of the current value when the accepted optimum

�rPN að Þ ~V�
� �

is more than rPN a�1ð Þ ~V �
� �

.

In this work, the value of �d and d̂ are chosen to be 3 and 1:02,
respectively. More details about the optimization procedure can
also be found in Peeters et al. [37,39].

4. Numerical results on a square plate with a cut-out

To demonstrate the performance of the strength optimization
with the p-norm failure index, a representative application, namely
a square plate with a circular cut-out under tension, is solved. A
mesh refinement study is conducted to verify convergence of
designs and a parametric analysis is carried out to test the effect
of distinct values of p on the optimal results. The relative perfor-
mance and efficiency of the globally-based p-norm method is
quantified based on a comparative analysis with the locally-
based min-max bound formulation.



Fig. 2. Flowchart of the strength optimization for the VSLs.
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In this model, the central points of the top and bottom edges
in the plate are fixed in the x direction as shown in Fig. 3. The
central points of the left and right edges are fixed in the y direc-
tion to prevent rigid body motion. Multipoint constraints are
applied on both the left and right edges to ensure an identical
deformation in the x direction. A point load of 500kN is applied
on both the left and right edges. The material properties of the
laminate are as follows: E1 ¼ 148GPa, E2 ¼ 9:65GPa,
G12 ¼ 4:55GPa and m12 ¼ 0:3 (Nagy et al. [41]), with 1 indicating
the fiber direction, 2 referring to the direction transverse to the
fiber. The strength properties are chosen as those in Khani et al.
[42]. The tension and compression strength along the fiber are
Fig. 3. Square plate with a

7

Xt ¼ 2:28GPa and Xc ¼ 1:44GPa, respectively. The tension and
compression strength transverse to the fiber are Yt ¼ 0:057GPa
and Yc ¼ 0:228GPa, respectively. The pure shear strength is
S ¼ 0:071GPa.

The thickness of each ply is 0:6mm and the number of design
layers is 6 in order to obtain a symmetric and balanced stacking
sequence (i.e., 24 layers in total). The initial design is a quasi-
isotropic laminate, where both V1;V3 ¼ 0 at each design node. In
order to have a broad view of the strength optimization with global
failure index, the effect of the p value is studied systematically on a
reference FEM model, a refined model and half of the reference
model with symmetry boundary conditions.
cut-out in the center.
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4.1. Effect of p on the optimal result

4.1.1. Numerical results in a reference model
In this test, the model is discretized using 512 elements and 576

design nodes, which also serves as a reference model in the subse-
quent sections. Observe that in this case no symmetry is used in
the computation or the design process; instead, the entire plate
is discretized to test how the design and analysis perform in the
presence of two stress concentration regions at the top and bottom
of the cut-out. The maximum local failure index associated with
the initial design is rmax ¼ 1:033, slightly over the allowable
strength tolerance (r ¼ 1). This intends to demonstrate that the
maximum failure index in the model can be reduced to values
below a critical material limit. The strength optimization with glo-
bal failure index is conducted with p ¼ 1;2; � � � ;11.

The distribution of the optimal ~V1; ~V3 and the corresponding
local failure index (FI) are shown for four representative values
of the power p (p ¼ 1;4;6;8) in Fig. 4. From the contour plots of
the optimal local failure index, all the figures feature a stress con-
centration region in different sizes. This highly-stressed region is
particularly visible with p ¼ 1, which minimizes the volume aver-
age of the local failure indices. When the value of p increases, the
stress concentration region reduces in size. This indicates that a
higher p value, which elevates the effect of the critical local failure
indices in the p-norm failure index, helps to reduce the maximum
local failure index more effectively. In particular, for the results of
p ¼ 6, the maximum value is evenly spread towards its neighbours
(from 0:346 to 0:2). However, when the value of p further increases
to 8, the procedure appears to have less local control in the sense
that the stress concentration reappears. The failure indices in the
neighbourhood of the stress concentrations increase from 0:2 to
roughly 0:3, which is undesirable. This indicates that care must
be exercised when choosing the value of p since the procedure will
generate an optimal value for all values tested, but has intrinsic
numerical limitations for local control using large values of p.

For each case presented in Fig. 4, both optimal ~V1 and ~V3 in the
top and bottom of the plate are close to 1. The associated fiber
paths are aligned with the x direction in order to carry the tension
in the model. When p ¼ 4 or 6, this region is reshaped linking to
the stress concentration region, resulting in a lower maximum fail-
ure index. Notably for the case p ¼ 6, on the edges next to the

stress concentration region, ~V1 is around �0:5 and ~V3 is approxi-
mately 0:5. This indicates that the fiber angles are oriented
between 60� and 90� to transfer the internal force. As a result,
the overall design results in an efficient reduction of the stress con-

centration. However, when p ¼ 8, the contour plots of ~V1 and ~V3

exhibit fluctuations, which reflects limitations in local control as
the nonlinearity of the objective function increases. The lamination
parameters close to the top and bottom of the cut-out are around

�0:5 for ~V1 and 0:6 for ~V3. The orientation of the corresponding
fiber paths is around 70�, which reduces the tensile load carrying
capacity in this section.

The convergence history of both the p-norm failure index and
the associated maximum local failure index for p ¼ 1;4;6;8 is
shown in Fig. 5. Regarding the p-norm failure index, the objective
in the optimization, it converges within 8 accepted iterations
(outer loop in the CCSA) for all the p values.

From the curves of the maximum local failure index, a reduction
from 1:033 to at least 0:6 (a 42% improvement in strength) is
achieved for all these cases. However, when p ¼ 6 (Fig. 5 (c)), a
slight increment appears for the maximum local index in the third
accepted outer loop. In contrast, as p ¼ 8, the history of the local
failure index starts to fluctuate and the total number of iterations
also increases to 8 (see Fig. 5 (d)). This behaviour is observed for
8

p ¼ 10 as well, where it takes 13 iterations to converge. The result
is omitted here for brevity.

The fluctuation in the maximum local failure index is a draw-
back of using the p-norm failure index, as it does not precisely con-
trol the maximum local failure index with a finite p value. Thus,
this may result in a slight increment of the maximum local value
while the optimizer reduces the p-norm failure index. Fig. 5 (d)
together with the contour plots for p ¼ 8 in Fig. 4 indicate that
numerical issues occur using a high value of p. This is due to the
fact that while the p-norm failure index amplifies the effect of cru-
cial local failure indices with a high value of p, the numerical noise
in the numerical computation of the p-norm failure index and its
sensitivity are amplified simultaneously. Also as discussed in the
previous work [5,6,8,43], numerical instability and high nonlinear-
ity occur as p increases over a certain range (which was found to be
6 in the work of Lee et al. [6]). Therefore, a proper p value should be
chosen for the p-norm aggregation.
4.1.2. Numerical results in a refined model
In order to check the mesh dependency of the optimal solutions

and the effect of mesh size on the proper value of p, the geometri-
cal model is discretized with a refined mesh. In this refined model,
there are 2048 elements and 2176 design nodes (nearly fourfold as
those in the reference model). As in the previous test, the p values
also range from 1 to 11. Fig. 6 illustrates the optimal results for
p ¼ 1;4;6;8.

The optimal solutions in the refined model (Fig. 6) are com-
pared with those in the reference model (Fig. 4). The main features

in contour plots of ~V1 and ~V3 are identical between the two models

for each listed p value. Specifically, ~V1 and ~V3 are close to 1 on the
top and bottom of the plate. As the p value increases to 4 and 6, the

red regions of ~V1 and ~V3 become sharper towards the central hole.

Similar to the reference model for p ¼ 6, the distributions of ~V1 and
~V3 next to the red regions around the cut-out appear to be approx-
imately �0:5 and 0:5, respectively. When p ¼ 8, the red regions in

both ~V1 and ~V3 shift away from the central hole. Interestingly, in
the optimum design of both the reference and the refined model,
around 66% improvement for the maximum local failure index is
achieved when p ¼ 6, compared to the initial design. Hence, both
quantitatively and qualitatively, the results confirm that the
method developed in this work leads to reasonable mesh conver-
gence in the optimal solutions.

The range in which the p value leads to good results using the
refined model can be recognized from the contour plots of the opti-
mal failure indices in Fig. 6. Similar to the results in the reference
model, the maximum local failure index is effectively reduced for
p ¼ 4;6 due to the power elevated in the p-norm failure index.
Whereas, for p ¼ 8, the local failure indices increase adversely
again in the top and bottom half of the plate. Thus, despite the
increase in the accuracy of the FEM analysis, the refinement of
the mesh does not influence the maximum suitable value of p for
the p-norm failure index.
4.1.3. Numerical results in half of the reference model
Both the reference model and the refined model are symmetric

along the central line in x direction. Therefore, there are two loca-
tions that simultaneously obtain the maximum failure index. The
presence of multiple local maxima could potentially affect the
proper range of the p value in the p-norm failure index. The reason
for analyzing a half model is to check whether a higher value of p
can be used when there are no repetitive values in the aggregation.
In view of this hypothesis, numerical results on the half model are
created with symmetry boundary conditions imposed (i.e., move-



Fig. 4. Optimal V1;V3 and corresponding local failure indices of p ¼ 1;4;6;8 in the strength optimization using p-norm failure index in the reference model.
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ment in y direction fixed to zero for the nodes on the symmetry
axis).

The optimal results obtained in the half model are shown in
Fig. 7. Compared to Fig. 4, it can be observed that the features of
results for p ¼ 1;4;6 in the half model are similar to those in the
reference model. The local failure indices decrease as p increases

from 1 to 6 and the red regions in ~V1; ~V3 are linking to the apex
of the cut-out. However, the optimal lamination parameters of
the two models for p ¼ 8 are different. In particular, the result of
the half model shows further improvement in terms of decreasing
the maximum local failure index as shown in the fourth column of
Fig. 7.

The convergence history of the four test cases is shown in Fig. 8.
Similar to the tests with the reference model and the refined
9

model, the curves for the p-norm failure index are initially decreas-
ing monotonically. In terms of the maximum local failure index,
convergence history for p ¼ 1;4;6 is also similar to the previous
models. Whereas, for p ¼ 8 in the half model, even though the
number of accepted iterations (i.e., the outer loop of the CCSA)
increases to 18 (Fig. 5 (d)), the optimal local failure index obtained
(0:314) is lower than that for p ¼ 6 (0:345). This shows that the
proper range of the p-value is affected by the structural details.
From this figure, it seems the gap between the p-norm failure
index and the maximum local failure index after each iteration
under a certain p value is constant. We can not prove this from a
mathematical point of view. However, it will be a valuable topic
to proceed our work by exploring a sufficient calibration for the
p-norm failure index similar to the works in [5,6,9].



Fig. 5. History of the p-norm failure index with different p value and its associated maximum failure index in the iteration in the reference model (a) p ¼ 1 (b) p ¼ 4 (c) p ¼ 6
(d) p ¼ 8.

Z. Hong, D. Peeters and Y. Guo Computers and Structures 271 (2022) 106856
4.2. Optimal results with min-max bound formulation

In order to compare the performance of the proposed strength
optimization using the p-norm failure index and the existing
approach using local failure indices, the min-max bound formula-
tion is implemented for the reference and refined model in this
section.

The optimization problem is formulated as

min
~V1 ;

~V3

b ð35aÞ

subject to ri � b 6 0; ð35bÞ
2V2

1;i � V3;i � 1 6 0; ð35cÞ
V3;i � 1 6 0 i ¼ 1 . . .n: ð35dÞ

The variable b ¼ max ri i¼1...nð Þ
� �

is the upper bound for the maximal
local failure index in a structure. In essence, this formulation is a
local version alternative to minimize rik k1 (i.e., rPN with p ! 1)
in Eq. (25). The results from min-max bound formulation are pro-
vided in Fig. 9.

From the local failure indices obtained in the design, the stress
concentration in the model obviously disappears. The failure
indices are more uniformly distributed in both the reference and
the refined model. This is due to the fact that the maximal failure
10
index in the optimization is precisely bounded by the parameter b

in contrast to that in the p-norm failure index. From the optimal ~V1

and ~V3, it is obvious that the configuration of the red regions, cru-
cial to reduce the stress concentration, converge to the case of
p ¼ 6 using the global approach (See Fig. 4 and 6). Thus, this con-
firms the optimum pattern to enhance the strength in this struc-
ture. The CPU time for the two test cases is also shown in Fig. 9.

The convergence history of the maximum local failure index
obtained with the min-max bound formulation is shown in
Fig. 10. From both sub-figures, this local measurement is reducing
monotonically due to the precise bounding on max ri i¼1...nð Þ

� �
(Eq.

(35b)). In the reference model, an improvement of 74:4% is
achieved in strength, with the maximum failure index dropping
from 1:033 to 0:264. Obviously, this is more effective compared
to using the p-norm failure index. Also, in the refined model, the
maximum local failure index decreases from 1:083 to 0:291,
achieving a 73:1% improvement. In both sub-figures, the p-norm
failure index corresponding to p ¼ 6 obtained in each iteration is
also plotted with the dashed lines as a qualitative reference. With
the min-max bound formulation, the p-norm failure index is not
decreasing monotonically. This is due to the fact that a large num-
ber of failure indices reach the upper bound in the optimal design,
yielding a slight increase in the p-norm failure index towards the
end of the history.



Fig. 6. Optimal ~V1; ~V3 and corresponding local failure indices of p ¼ 1;4;6;8 in the strength optimization using p-norm failure index in the refined model.
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4.3. Comparative analysis for strength optimization using the p-norm
failure index and min-max bound formulation

To assess the overall performance of the strength optimiza-
tion using the global and local failure indices, the data of the
maximum local failure index and the corresponding CPU time
in the three aforementioned models is shown in Fig. 11. Accord-
ing to Fig. 11 (a), the trends for the reference and the half mod-
els are the same since the models are essentially identical. The
curve of the maximum local failure index for the refined model
is higher, due to the higher stress concentration in the FEM
model. In the refined model, the maximum local failure index
reaches a minimum when p ¼ 6. Thereafter, it starts to fluctuate
when p increases further. The curve for the reference model
11
reduces to the minimum when p ¼ 7. In contrast, for the half
model, the curve keeps decreasing until p ¼ 9. Combining the
results from Section 4.1.1–4.1.3, the maximum value of p that
can be used in practice varies between 6 and 9, depending on
the structural details.

In Fig. 11 (a), the result from the min-max bound formulation is
included to give a qualitative comparison. The value from the ref-
erence model is 0:264, which is even 15:4% lower than 0:312
obtained from the best case with p-norm failure index in the half
model. Correspondingly, the value achieved in the refined model
is 0:291, approximately 20:7% lower than 0:367 in the same model
with p-norm failure index of p ¼ 6. Therefore, the min-max bound
formulation performs significantly better than the p-norm failure
index in enhancing the strength of the VSLs.



Fig. 7. Optimal ~V1; ~V3 and corresponding local failure indices of p ¼ 1;4;6;8 in the strength optimization using p-norm failure index in the half model.
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The result in a comparative work by Izzi et al. [17] shows some
common features for the layout of the optimal design from both
works: 1) The carbon fibers on the top of the plate align with the
horizontal direction to bear the tension. Whereas the fibers around
the central hole steer around the cut-out to transfer the shear. 2)
The highest failure load is located on the top edge of the central
hole in the reference model. However, this disappears after the
optimization in both works. The stress becomes evenly distributed
in this region.

Regarding the difference of the numerical results between these
two approaches, we reduce the feasible domain to Eq.(4) as we
described. In contrast, the authors in [17] use the polar parameters
in the first step of their method, where the feasible domain spans
the entire feasible design space without any assumption on the
12
lay-ups of the laminates. It is equivalent to Eq.(3), which is wider
than ours. Thus, the solution they obtained can be better in this
phase.

It is interesting to note that a high value of p (p ¼ 709) can be
utilized in their framework. This renders them to achieve an equiv-
alent solution using the min-max bound formulation. We think the
reason can be as follows. The work by Izzi et al. [17] uses a general
sequential least square quadratic programming (SLSQP) to solve
the optimization. With this iterative approach, the optimizer still
manages to reach an optimum despite a high value of p. Details
associated with the SLSQP can be found in [44]. However, in our
approach or those using the method of moving asymptotes
(MMA) in topology optimization, the optimization is solved using
the interior point method. The sub-problem with a high value of



Fig. 8. History of the p-norm failure index with different p value and its associated maximum failure index in the iteration in the half model (a) p ¼ 1 (b) p ¼ 4 (c) p ¼ 6 (d)
p ¼ 8.
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p in the p-norm failure index leads to solutions that are fluctuating,
which is difficult to converge. Later, we found this can possibly be
alleviated by increasing p gradually during the iterations [45].

Since the SLSQP converges with a large p value, and the sensitiv-
ity of the p-norm failure index is efficient to obtain using the
adjoint method, it can be a good idea to solve the aggregated
strength optimization with the SLSQP formulation.

From Fig. 11 (b), the curves for the p-norm failure index show
that the CPU time is not sensitive to p as it changes from 1 to 6.
In the reference model, the CPU time is constant at around 800s.
The values are about 200s and 8500s in the half model and the
refined model, respectively. The increment of the computational
cost is close to quadratic with respect to the size of the problem
(the number of design variables). This is due to the fact that the
computational cost is dominated by the computational complexity
to resolve the Schur Complement in the interior point method with
the direct method. When the value of p is higher than 6, the com-
putational cost starts to increase. This is because the number of
inner loops taken within every outer loop increases evidently in
the CCSA due to the numerical instability and the non-linearity
of the p-norm function.

In contrast to the p-norm failure index, the computational cost
of the min-max bound formulation is indeed heavy. Its CPU time
for the reference model is 14950s, almost ten-fold of 1512s with
13
p ¼ 7 using p-norm failure index. The CPU time for the refined
model is 812070s, more than 70 times of that from p-norm failure
index with p ¼ 6 (10908s) due to the quadratic increment of the
computational work.

The gaps between the maximum local failure index ( rk k1) and
rk kp (p ¼ 1;2; � � � ;11) obtained using the p-norm failure index in
all of the three test models are presented in Fig. 12. All the three
sub-figures show that the gap decreases consistently when the p
value increases within a region, referred to as the well-
conditioned range. With a higher value of p beyond this range,
the gap between the two values fluctuates due to the numerical
issues induced. Therefore, the highest p value in this well-
conditioned range should opt for the p-norm failure index. In this
case, the optimum p value is 6, the most conservative range among
all these cases. In addition, we find in this numerical case that a
higher p value can be chosen by removing the symmetric part in
the half model. As shown in Fig. 11 and Fig. 12, the maximum fail-
ure index can be reduced further with a lower CPU time cost as the
model size is halved.

According to the comparative analysis, the min-max bound for-
mulation is more effective than the p-norm failure index in
improving the strength of the VSLs. However, its computational
cost is obviously more demanding, especially for large scale prob-
lems. Therefore, to achieve a good compromise between the



Fig. 9. Optimal ~V1; ~V3 and corresponding local failure indices in the strength optimization using min-max bound formulation.

Fig. 10. History of the maximum local failure index using the min-max bound formulation and its associated p-norm failure index in the iteration (p ¼ 6).
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strength improvement and the computational effort, the well-
posed p-norm failure index is recommended for the strength opti-
mization of the VSLs.
5. Strength optimization on the L-shaped plate

The second numerical study is implemented on the L-shaped
plate (See Fig. 13), which is a challenging problem due to the stress
singularity at the reentrant corner. The intention of this study is to
exploit the performance of the proposed method under such an
extreme condition. The boundary conditions of the model are as
follows: the top edge of the plate is fixed and a shear load of
500kN/m is applied on the lower half of the right edge. The param-
eters associated with the variable stiffness laminate are the same
14
as those in the previous example. The initial layout is again chosen
to be a quasi-isotropic laminate.
5.1. Mesh-convergence study

In the mesh-convergence study, the numerical model is first
discretized with 8 elements for the 0:4m edge, and 12 elements
for the 0:6m edge. Subsequently, it is refined using
12� 18;16� 24 and 20� 30 elements for the two edges, respec-
tively. From the previous test case, the best design is achieved with
p ¼ 6 in the p-norm failure index. Therefore, the optimal results for
p ¼ 6 in each mesh level are plotted in Fig. 14. The distributions of
~V1 and ~V3 converge to a unique solution as the mesh is refined. The
distributions of the local failure indices also exhibit mesh



Fig. 11. Comparison of the maximum local failure index and CPU time cost for various p values in the reference model, refined model and the half model using p-norm failure
index and min-max bound formulation.

Fig. 12. Gaps of optimal rk k1 vs rk kp in three different models (a) the reference model, (b) the refined model, (c) the half model.

Fig. 13. L-shaped plate.
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convergence. Some discrepancy exists in the lamination parame-
ters, presumably due to the fact that stress singularity already
induces some numerical instability when p ¼ 6 in this case. To ver-
ify the mesh convergence, the same tests for p ¼ 1;4 are con-
ducted. The corresponding results of different sizes in the mesh
15
refinement converge to a unique solution. The figures are omitted
here for brevity.

The effect of different p values on the optimal solution is also
investigated for this case. The results of the 20� 30 mesh for
p ¼ 1;4;6 are shown in Fig. 15. From the contour plots of local



Fig. 14. Study of the mesh convergence of ~V1; ~V3 and corresponding local failure indices using p-norm failure index (p ¼ 6).
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failure indices, it can be observed that the maximum local failure
index reduces as the value of p increases. Simultaneously, a larger
portion of the structure contributes to the load carrying capacity
around the corner. This again confirms that a high value of p in
the well-conditioned range effectively relieves the stress
concentration.

As the p value increases, the distribution of the optimal ~V1 and
~V3 also adapts to reduce the maximum local failure index. When

the value of p ¼ 1 changes to p ¼ 4;6, the ~V3 at the reentrant cor-

ner turns from 0 to �1. Together with ~V1 being around 0, this indi-
cates that the fiber angles should be roughly �45�½ 	s with respect to
the x axis to alleviate the stress concentration. Simultaneously, the

pair of ~V1 and ~V3 at the bottom left of the plate also changes from 0
and�0:7, to 0 and�0:4 gradually to dissipate the internal load. The
16
corresponding layout of the laminate on the bottom right part of

the plate becomes quasi-isotropic for p ¼ 6 (both the ~V1 and ~V3

are close to 0) in order to carry the shear load on the edge. As a
result, the maximum failure index in these cases is obviously lower
than that of p ¼ 1.

The main conclusion of the mesh-convergence study is that the
proposed method basically generates mesh-independent solutions
even in a model with stress singularity. However, it is worth noting
that numerical problems already appear when p ¼ 6 in this case.
5.2. The optimal design from the min-max bound formulation

The optimal designs obtained using the min-max bound formu-
lation for different mesh sizes are presented in Fig. 16. As the mesh



Fig. 15. Investigation of different p values on the optimal solution using p-norm failure index for 20� 30 mesh.
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becomes denser, the broad features of the optimal designs resem-
ble the optimal designs obtained from the p-norm (comparing
Fig. 16 to Fig. 14). However, some local discrepancies between
results with different mesh sizes can be apparently observed. This
can be interpreted by the numerical problem from minimizing the
maximum failure index precisely with stress singularity occur-
rence at the reentrant corner, which perturbs the optimizer in
the iterations.

From the contour plots of the local failure indices in Fig. 16, the
maximum local failure index obtained for each mesh level is lower
than that from the p-norm failure index. Simultaneously, the unique
upper bound in the min-max bound formulation results in a larger
portion of the plate contributing to the load carrying capacity (i.e.,
larger light blue region but lower maximum local failure index).

5.3. Comparative analysis of the optimal results from the p-norm
failure index and min-max bound formulation

In this section, themaximum local failure index and the CPU time
cost obtained from the strength optimization of using the p-norm
failure index and the min-max bound formulation are depicted in
Fig. 17.

Themaximumlocal failure indicesobtainedwith the fourmeshes
investigated before are shown in Fig. 17 (a). The value for the initial
quasi-isotropic laminate increases from 0:856 to 1:336 as the mesh
17
is refined because of the singularity issue. For the results of each
mesh level using p-norm failure index, a higher p value results in a
more effective reduction in the maximum local failure index. With
onlyoneexception forp ¼ 10with637designnodes,whichoverlaps
with that of p ¼ 8 due to the occurrence of numerical noise. Consis-
tent with the previous test case, the min-max bound formulation
generates a lower failure index compared to the p-norm formula-
tion. The remark of the results from the p-norm failure index and
the min-max bound formulation in this figure is two-fold: first, the
min-max bound formulation is superior in strength enhancement
of the VSLs; second, the p-norm formulation provides a converged
design even with stress singularity given a proper p value.

The CPU time using the p-norm failure index and the min-max
bound formulation is presented in Fig. 17 (b). The curve for p ¼ 6
represents the relatively well-conditioned case, whereas p ¼ 10
represents the case with a numerical issue. The slope of all these
curves is roughly quadratic, identical to the conclusion in the
square plate with a cut-out case. Apparently, the data for p ¼ 6
in the model with 1105 and 1701 design nodes is approaching that
for p ¼ 10, complying with the assumption that numerical issues
already appear as presented in Fig. 14. As the upper bound b in
the min-max formulation shown in Eq.(35) controls the maximum
local failure index more precisely, and due to the numerical distur-
bance from strength singularity as the mesh refined further, the
min-max formulation reaches the stopping criterion with fewer



Fig. 16. Study of the mesh convergence of ~V1; ~V3 and corresponding local failure indices using local min-max formulation.
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iterations. This bends the curve for the CPU time of the min-max
formulation to be closer to those using the p-norm failure index
as the mesh is refined to 1105 and 1701 nodes in Fig. 17 (b). How-
ever, its maximum local failure index is not fully reduced yet for
the 1701 nodes (20� 30 elements) model as can be seen in
Fig. 17 (a). Regarding the min-max bound formulation, the compu-
tational cost is one order of magnitude higher than the inferior case
of p ¼ 10 in the log-log plot.

Eventually, the optimal designs obtained from the p-norm fail-
ure index and the min-max bound formulation are briefly com-

pared to show the differences. The difference of the optimal ~V1

and ~V3 obtained from the p-norm failure index (p ¼ 6) and the
min-max formulation under the 8� 12 mesh are shown in
Fig. 18 in Appendix B. From Fig. 18 (a) and (b), it can be deduced
18
that the most obvious difference locates on the top left part and

the part next to the corner for both ~V1 and ~V3. The other parts

match for ~V1 obtained from both methods, the ~V3 distribution is
similar as well. Interestingly, the contour plot showing the differ-
ence in failure index (Fig. 18 (c)) indicates that the difference of
the highest local failure index (around the corner of the L shaped
plate) is small. The most obvious difference of the failure index
locates only on the left top part and the part around the corner.
This shows that the p-norm failure index helps to reduce the max-
imum local failure index effectively in this case.

In order to have a view on the performance of the proposed
strength optimization approach using the p-norm failure index
on general structures without singularity or hole, we recommend
executing the approach on a cantilever plate or a three point bend-



Fig. 17. (a) the maximum local failure index for the optimum design of p ¼ 1;4;6;8;10 in the p-norm failure index and the min-max bound formulation, (b) log-log plot of the
CPU time cost for p ¼ 6;10 and the min-max bound formulation.
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ing plate without symmetry. Most likely, on the structures without
either symmetry or singularity, a higher p value (base on our test in
Section 4.1.3) can be employed in the p-norm failure index to fur-
ther improve the performance of the approach.
6. Conclusion

In the current work, the p-norm formulation is applied to
enhance the computational efficiency of strength optimization
for VSLs. Due to the intrinsic aggregation of the p-norm formula-
tion, the size of the subsequent optimization problems can be sig-
nificantly reduced. Therefore, the computational work to address
the Schur complement of the sub-problem, which dominates the
overall cost, is effectively reduced. The sensitivity analysis of the
p-norm failure index also becomes efficient using the adjoint
method. Additionally, an elliptical formulation of the conservative
failure envelope is employed to fit the Tsai-Wu failure criterion in
the lamination parameter space. This general approach can also be
used in conjunction with other failure criteria. Based on this for-
mulation, a convex two-level approximation is derived for the p-
norm failure index.

The proposed method in this work leads to a stable convergence
in the iterative optimization procedure and mesh-independent
optimal results. In the numerical test of a square plate with a
cut-out, the effect of the p value on the optimal results is studied
on a reference model, a refined model and a half model. A mini-
mum of 42% improvement in strength is achieved against the ini-
tial quasi-isotropic laminate. The optimal lamination parameters
exhibit mesh convergence expected using the proposed hybrid
interpolation method. By comparing the optimal solution from
the local min-max bound formulation, the computational cost is
reduced dramatically using the global aggregation method with a
proper p value, albeit the maximum local failure index obtained
is relatively higher.

In the L-shaped case, the numerical results illustrate that the
computational cost can be reduced by at least an order of magni-
tude using this method compared to the local min-max formula-
tion even in the presence of a stress singularity. A p value higher
than 6 still reduces the maximum local failure index considerably,
however, some numerical instabilities already have an effect on
the iterative procedure.

In future work, we can attempt the approach under multiple
load cases, which guarantees that the structures withstand differ-
19
ent operating conditions. This will contribute to generate practical
engineering designs.
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Appendix A. Sensitivity analysis for the linear expansion and
load redistribution part of rPN Ið Þ

The coefficient matrices UPN in Eq. (17) is a function of Ug (Eq.

(11)), which is obtained from the internal force ~Ng . Thus, the com-
plete sensitivity analysis of rPN should account for the linear expan-
sion and the load redistribution effect due to the change of A in
UPN . According to the chain rule, the derivative of rPN with respect
to Aj can be written as

@rPN

@Aj
¼
Xn
i¼1

@rPN

@ri

Xng
g¼1

@ri
@rg

@rg
@Aj

 !
: ð36Þ

Substituting Eq. (12) into Eq. (11), the derivative of rg with respect
to Aj can be obtained:

@rg
@Aj

¼ 1
2

@ ~Ng~qT
g þ~qg

~NT
g

� �
: A�1

g

@Aj
: ð37Þ

Rearranging the terms, it becomes:

@rg
@Aj

¼ 1
2

@ ~qT
g A�1

g

� �T
~Ng þ ~NT

g A�1
g

� �T
~qg

� �
@Aj

: ð38Þ

The chain rule is required again to implement this calculation,
which is given by
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@rg
@Aj

¼
Xng
g¼1

@rg
@A�1

g

@A�1
g

@Aj
; ð39Þ

and the derivative of a matrix inverse can be obtained by

@rg
@A�1

g

¼ �Ag
@rg
@Ag

Ag : ð40Þ

The derivative of ~Ng with respect to Ag in rg of Eq. (40) yields the
linear part and load redistribution part in the sensitivity that are
being discussed in this section:

@~Ng

@Ag
¼~eg þ Ag

@~eg
@Ag

; ð41Þ

where~eg is the strain at the Gauss point.
The derivative of the strain in the second part is

@~eg
@Ag

¼ Bg
@~ue

@Ag
; ð42Þ

where Bg is the strain-displacement matrix, and ~ue is the displace-
ment in the eth element. The adjoint method is needed to estimate
the load redistribution effect. Taking the derivative of Eq. (6) with
respect to Ag , the derivative of the displacement is obtained by

@~u
@Ag

¼ �K�1 @K
@Ag

~u: ð43Þ

Substituting Eqs. (42), (43) back into Eq. (41) and then putting the

result into @rg
@Ag

, the pseudo load for the adjoint problem in the rg level

is (Ag is symmetric)

~tg ¼ BT
gA

T
gA

�1
g
~qg ¼ BT

g
~qg : ð44Þ
Fig. 18. Absolute differences of the optimal ~V1; ~V3 and the corresponding local failure i
formulation (value of the p-norm subtracts those from the min-max formulation).

20
Finally, substituting the result obtained in Eq. (38) (based on Eqs.
(39)–(44)) back into Eq. (36), the linear part of the sensitivity for
the p-norm failure index is

@rPN

@Aj


l

¼
Xn
i¼1

ai
Xng
g¼1

bi;gA
�1
j Ag

Rj;g

2
~qT
gA

�1
g ~eg þ~eTgA

�1
g
~qg

� �
Ag

� �
A�1

j : ð45Þ

The adjoint part of the sensitivity for the p-norm failure index is

@rPN

@Aj


adj

¼ �~vT
Xng
g¼1

A�1
j Rj;g Ag � @K

@Ag
� Ag

� �
A�1

j

 !
~u; ð46Þ

where ai ¼ @rPN
@ri

is the ith coefficient of Ui;j in Eq. (19), and bi;g ¼ @ri
@rg

is

the gth coefficient of Ug : A
�1
g

� �
in Eq. (13). The adjoint vector ~v is

obtained from

K~v ¼~t; ð47Þ
where the pseudo load~t is

~t ¼
Xn
i¼1

ai
Xng
g¼1

bi;g~tg : ð48Þ

It is important to note that caution needs to be executed when
implementing @K

@Ag
, since the result is a three-dimensional matrix.

The calculation is executed component-wise from the derivative
of Kg (stiffness matrix at the gth Gauss point) with respect to the
terms in Ag . Also keep in mind that Ag is a symmetric matrix. Details
are omitted here for the sake of brevity.

Appendix B. Absolute differences of the optimal design between
using the p-norm failure index and the min-max formulation

Fig. 18
ndex between using the p-norm aggregation (p ¼ 6) and those using the min-max
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