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Efficient Bang-Bang Model Predictive Control for Quadcopters

Jelle Westenberger1, Christophe De Wagter1, Guido C.H.E. de Croon1*

1Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The Netherlands

Time-optimal model predictive control is important for achieving fast racing drones but is computationally intensive and thereby
rarely used onboard small quadcopters with limited computational resources. In this work, we simplify the optimal control problem
(OCP) of the position loop for several maneuvers by exploiting the fact that the solution resembles a so-called ‘bang-bang’ in the
critical direction, where only the switching time needs to be found. The non-critical direction uses a ’minimum effort’ approach.
The control parameters are obtained through bisection search schemes on an analytical path prediction model. The approach is
compared with a classical PID controller and theoretical time-optimal trajectories in simulations. We explain the effects of the OCP
simplifications and introduce a method of mitigating one of these effects. Finally, we have implemented the ‘bang-bang’ controller as
a model predictive controller (MPC) onboard a Parrot Bebop and performed indoor flights to compare the controller’s performance
to a PID controller. We show that the light novel controller outperforms the PID controller in waypoint-to-waypoint flight while
requiring only minimal knowledge of the quadcopter’s dynamics.

Keywords: UAV; quadrotors; MPC; Optimal Control.

1. Introduction

Unmanned air vehicles (UAV) are used in an increasing va-
riety of applications [1]. Several applications, such as emer-
gency response or race tasks require the drones to fly as
fast as they can. Autonomous drone racing has recently
emerged as a discipline to boost the development of fast-
flying robots [2–4].

Traditionally the problem of time-optimal control gen-
eration is solved offboard as available hardware lacks the
computational performance to quickly solve the Optimal
Control Problem (OCP) onboard a quadcopter [5]. Fast
flight is achieved by tracking these trajectories with high-
performance controllers [6].

Recent work demonstrated efficient trajectory opti-
mization for snap and leveraging differential flatness to de-
rive the corresponding control inputs [7, 8]. However, the
snap optimization method does not optimize for ‘minimum
time’. The total flight time must be predefined and the
dynamical limits of the quadcopter are not taken into ac-
count. Including time and dynamic feasibility constraints in
the optimization process increases the computational com-
plexity of the problem [9]. On the other hand, Falanga et
al [10] defines a sequential quadratic programming prob-
lem to simultaneously optimize control inputs for action
and perception objectives. Albeit that in this work, the ref-
erence trajectories are pre-computed. Kaufmann et al [11]
has extended this work and demonstrated a pipeline that is
fully embedded and is efficient enough to be implemented

E-mail: jellewestenberger@gmail.com, c.dewagter@tudelft.nl,
g.c.h.e.decroon@tudelft.nl

as a robust MPC. Wang et al [12] even presented MPC-
Based Trajectory generation for multiple quadrotors flying
together in cluttered environments.

While the former results are great, this comes at a very
high computational cost. To address this, optimal control
has also been approximated with deep neural nets, which
are lighter than the original optimization [13–15]. This ap-
proach is powerful but very data intensive.

Model predictive control remains very computation-
ally expensive and few onboard implementations exist for
very light drones [11,16]. In this category, classical control
remains common [17].

For a lot of trajectories, the time-optimal solution sim-
plifies to a well-timed maximal control deflection. This pa-
per, therefore, proposes a light strategy to approximate
time-optimal control by computing this timing onboard
(See Fig. 1).

Fig. 1: A comparison of a circular flight path between the
proposed controller (green) and a classical PID controller
(red)
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Section 2 shows that the time-optimal position control
simplifies to a ‘bang-bang’ action on the attitude under
well-selected conditions. In Section 3 we derive the differ-
ential equations that drive the proposed light MPC con-
troller. Simulation results are presented in Section 4. Sec-
tion 5 augments the model for the latency in attitude. Sec-
tion 6 shows the results obtained onboard a Parrot Bebop
before Section 7 gives the conclusions.

2. Simplified Time-Optimal Control

We have simplified the OCP by assuming a constant alti-
tude and using the fact that for second-order systems the
time-optimal solution consists of a ‘bang-bang’ motion. For
quadcopter position control this translates to a double step
in either pitch or roll with maximal amplitude. The OCP
is hereby reduced to a problem in which the only param-
eter to be optimized is the switching time, which reduces
the computational complexity of the problem sufficiently
to even allow implementation onboard very small quad-
copters. The collective thrust is governed by the constant
altitude assumption and is therefore considered to be al-
ways equal to W/cos θ cosφ, where W is the weight, θ, and
φ are the pitch and roll angles, respectively. The lateral
dynamics can then be further simplified.

2.1. Proving ‘bang-bang’ solution for
constant angles

Hehn et al [5] show in their work that with Pontryagin’s
minimum principle it can be proven that the time-optimal
solution for a two-dimensional quadcopter trajectory con-
sists of a ‘bang-bang’ input in thrust and bang-singular-
bang in rotational rate. We show that this solution remains
valid in our simplified OCP in which we neglect the rota-
tional dynamics, to further reduce the computational ex-
pense. Continuing with the Hamiltonian from [5]:

H(x,u,p) = 1+p1
˙̂x+p2uT sin θ+p3

˙̂z+p4(uT cos θ−1)+p5uR
(1)

where uT is the thrust input and uR is the rotation rate
input. pi are the co-states. Our model assumes instanta-
neous attitude changes and no changes in altitude. There-
fore we can discard the last three terms of equation 1 and
change the state θ to input uθ. Pontryagin’s minimum prin-
ciple states that the optimal control input u∗ minimizes the
Hamiltonian [18].

u∗ = argmin p2uT sinuθ (2)

Depending on the sign of p2, u∗θ is either ±0.5π or singu-
lar when p2 = 0. However, at these pitch angles, it would
be impossible to maintain altitude. Therefore, maximum
pitch and roll angles are determined based on the thrust-
to-weight performance of the quadcopter while reserving a
margin of available thrust for additional control.

2.2. Minimum-effort Approach

We apply the ‘bang-bang’ solution to one critical axis. In-
tuitively, this axis is selected to be the direction with the
largest initial position error. Control of the direction per-
pendicular to this axis is based on a ‘minimum effort’ ap-
proach. The intuition behind this approach is to only spend
the minimum required thrust on decreasing the position
error in the non-critical dimension such that a maximum
available thrust can be spent on the critical dimension. This
is achieved by calculating the constant attitude for which
the non-critical position target is reached at the same time
the critical target is reached.

3. Bang-Bang MPC

Based on the simplified OCP, we have created a controller
that calculates the optimal roll and pitch angle from path
predictions. We refer to this pipeline as the ‘bang-bang’
controller.

3.1. Path Prediction

For the sake of computational efficiency, we have simpli-
fied the dynamics such that the quadcopter’s position and
velocity can be evaluated analytically. By discarding the
rotational and vertical dynamics, and partially decoupling
the longitudinal and lateral dynamics we have derived a set
2nd order differential equations to describe the quadcopter’s
position and velocity.

Fig. 2: 2-D Quadcopter Dynamics

Based on the aforementioned assumptions and the
force diagram depicted in Fig. 2 we state that the pitch an-
gle θ and the thrust are constant and Tz equals the weight
W . Furthermore, we assume that drag force D, consists
only of flapping drag and is linearly proportional to air-
speed ẋ, which is governed by drag coefficient Cd. So we
can write:

ẍ = g tan θ − Cd
m
ẋ (3)

Where g and m are the gravitational acceleration and mass,
respectively.
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Equation 3 is a 2nd order, non-homogeneous equation
and is easily solved with the characteristic equation and
method of undetermined coefficients. This yields:

x = c1e
−Cd
m t + c2 +

W tan θ

Cd
t (4a)

ẋ = c1
−Cd
m

e
−Cd
m t +

W tan θ

Cd
(4b)

Constants c1 and c2 are solved with the quadcopter’s initial
position x0 and initial velocity ẋ0. This procedure can be
repeated for the lateral direction, which is the direction
out-of-plane in Fig. 2, taking into account the proper Euler
angle rotations when deriving the lateral component of the
thrust force:

y = c3e
−Cd
m t + c4 +

W

cos θ

tanφ

Cd
t (5a)

ẏ = c3
−Cd
m

e
−Cd
m t +

W

cos θ

tanφ

Cd
(5b)

c3 and c4 are solved with the quadcopter’s initial lateral
position y0 and lateral velocity ẏ0.

Equations 4 and 5 can now be used to describe the
quadcopter’s position in time. Fig. 3 illustrates an example
of a single path prediction and the corresponding pitch and
roll angles. The ‘bang-bang’ maneuver of the longitudinal
path can be described by evaluating equation 4 for two
segments; One segment up to the switching instant (the
acceleration phase) and a segment up to the time of arrival
(the braking phase). Only the constants and pitch angles
change between the two sets. The final velocity and position
of the first segments are used as initial conditions for the
second segment.
The lateral path can be described by one segment because
in the ‘minimum effort’ approach the roll angle is assumed
to be constant for the entire maneuver up to the target.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Time [s]

0

2

4

6

8

10

12

P
o

s
it
io

n
 [

m
]

Path Prediction

Bang-Bang: Segment 1

Bang-Bang: Segment 2

Minimum-Effort

Longitudinal Target Position (10m)

Lateral Target Position (5m)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Time [s]

-100

0

100

A
tt

it
u

d
e

 A
n

g
le

 [
d

e
g

]

Pitch Angle

Roll Angle

Fig. 3: Example of predicted longitudinal and lateral paths.
The longitudinal direction takes on a ‘bang-bang’ motion
that consists of two segments with opposing constant pitch
angles. The lateral direction takes a minimum-effort ap-
proach which consists of a single segment and a constant
roll angle.

3.2. Optimizing

In the OCP, the switching time and the non-critical angle
are the two parameters to be optimized. Thanks to the ana-
lytical nature of the path equation a fast iterative bisection
scheme can be used to find the optimal switching time and
angle.

3.2.1. Solving Switching Time

To solve the switching time a desired velocity at the posi-
tion target must be given in advance. The bisection scheme
then iteratively adapts the switching time to minimize the
velocity error at the target position. This procedure is de-
scribed in Algorithm 1. In addition to an optimized switch-
ing time, an estimated time of arrival (ETA) is given as
well. This is used in optimizing the non-critical angle.

Algorithm 1
t0 ← 0
t1 ← initial guess
Et ← error threshold
yd ← desired position
while E > ET do
ts ← t0+t1

2
tt ← get time from desired speed(vd)
E ← get position(tt)− yd
if E > 0 then
t1 ← ts
else
t0 ← ts
end if
end while
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Fig. 4: Illustration of the switching time, ts, optimization
process. The goal is to reach the target at 30m with zero
rest speed.
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3.2.2. Solving Minimum-Effort Angle

Analogously to the critical direction, a bisection scheme is
used to iteratively change the angle to minimize the non-
critical position error at the estimated time of arrival. The
goal for the quadcopter is to reach the critical and non-
critical targets simultaneously.
Moreover, during the braking phase of the ‘bang-bang’ mo-
tion, the related angle will also be optimized in this fashion
to correct for prediction inaccuracies in this phase.

4. Simulations

Simulations have been performed to compare the ‘bang-
bang’ controller flight performance to a classical PID con-
troller and to time and snap optimized trajectories, pro-
vided by the well-known ICLOCS toolbox [19]. This tool-
box uses direct collocation to optimize a nonlinear OCP
from an initial guess. Two maneuvers, a straight and a cor-
nered trajectory have been simulated to individually test
the longitudinal and lateral flight behavior. The resulting
flight times are summarized in table 1.

Forward Corners

Bang-Bang 1.52 s 2.53 s
PID 2.51 s 4.16 s
Min. Snap 1.77 s 2.53 s
Min. Time 1.30 s 1.87 s

Table 1: Simulated flight times

It can be seen that the ‘bang-bang’ controller outper-
forms the PID controller in all maneuvers and is on par
with the snap-optimized solution, but at a fraction of the
computational cost.

5. TRANSITION COMPENSATION

It was found in simulations that the instantaneous angle as-
sumption of the path predictor has the largest negative ef-
fect on the performance of the ‘bang-bang’ controller. Since
a quadcopter cannot achieve infinitely high rotation rates
the second part (further called the braking phase) of the
‘bang-bang’ maneuver will always be initiated too late. As
Fig. 6 illustrates, path predictions deviate during the rota-
tion from rest to acceleration at 0 s, and during the tran-
sition from accelerating to braking around 1.6 s.

To mitigate this issue, we have implemented a method
that approximates the elapsed time and change of speed
and position during the transition. Subsequently, the initial
conditions of the braking phase are augmented with these
values to improve the path predictions, as Fig. 7 illustrates.

Fig. 8 shows the effect of different degrees of compen-
sation for a simulated flight. The amount of compensation
in this simple simulation is determined by manually setting

Fig. 5: Trajectory comparison in simulation
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Fig. 6: Development of the ETA of a simulated flight cor-
rected for passed simulation time. For perfect predictions,
the time of arrival would be constant.
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Fig. 7: The initial conditions of the braking phase are
shifted with ∆t,∆y, and ∆v to compensate for the rotation
dynamics during the transition from accelerating to brak-
ing.

the expected transition duration, thereby blindly forcing a
braking motion during this time period. It can be seen that
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Fig. 8: Different degrees of transition compensation are illustrated here. The shaded area indicates the period at which
braking is forced. The desired target speed vt is set to 0 m/s.

increasing the amount of compensation reduces the velocity
error at the target position. Also, it visualizes the situation
of overcompensation at which point the quadcopter comes
to a stop before the target is reached.

6. EXPERIMENTS

Flight tests have been performed with a commercial Par-
rot Bebop quadcopter in which all software was changed.
The performance of the ‘bang-bang’ MPC is compared to a
traditional PID controller for different types of maneuvers.

6.1. Experimental Setup

The ‘bang-bang’ controller has been implemented in the
open-source autopilot framework Paparazzi-UAV [20] and
is executed onboard a Parrot Bebop quadcopter. The flights
were performed in TU Delft’s ’CyberZoo’ indoor flight area
outfitted with an Optitrack position and attitude tracking
system. The position and heading are sent to the drone via
WiFi and the state estimation is executed on board, where
it is merged with inertial measurements by a complemen-
tary filter. The ‘bang-bang’ MPC and PID controller give
roll and pitch commands while the inner control loop, based
on Incremental Nonlinear Dynamic Inversion (INDI) [21],
controls the rotational rates. Fig. 9 gives an overview of the
control pipeline.

6.1.1. PID Controller

The PID controller is a high-gain cascaded position-velocity
controller. That is, the position error will govern the desired
speed, which in turn governs the pitch and roll commands.
A single set of gain values has been selected that gives the

best overall result in all tests. This set is kept constant
throughout all flight experiments. Furthermore, we have
defined saturation limits for the allowable speed and pitch
and roll angles. For a fair comparison, the same limits have
also been applied to the ‘bang-bang’ controller.

6.2. Transition Estimators

As discussed in section 5, we can compensate for the un-
modeled transition dynamics by approximating the transi-
tion losses. These dynamics are difficult and costly to sim-
ulate for a real quadcopter, therefore we have derived a
simple linear regression model to approximate transition
losses ∆t,∆y and ∆v from flight measurements. We as-
sumed that these losses are a function of the speed at the
switching time, vi, and of the total angle, ∆Θ (roll or pitch),
the quadcopter needs to rotate. So that the functions have
the form as shown in Equation 6.

∆t = ξ0 + ξ∆Θ · ∆Θ + ξvi · vi (6)

We found that the transition losses varied between forward,
backward and sideways flight maneuvers. Therefore, three
different sets of least-squares estimators have been derived,
each corresponding with one of these directions. In the con-
trol pipeline, one set of estimators is selected based on the
direction in which a ‘bang-bang’ maneuver is planned.

6.3. Motion Primitives Flights

Test flights have been performed to test the ‘bang-bang’
controller for different motion primitives. That is, four dif-
ferent maneuvers have been established to test the longi-
tudinal and lateral performance in which the quadcopter
starts and ends at rest. For each maneuver, a comparison is
made between the ‘bang-bang’ controller, the ‘bang-bang’
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Fig. 9: Control Pipeline

Maneuver Initial → Target Position (x,y,z) [m]

Forward (−2, 0, 1.5)→ (2.5, 0, 1.5)
Backward (−2, 0, 1.5)→ (2.5, 0, 1.5)
Sideways (0,−2, 1.5)→ (0, 2, 1.5)
Forward-Sideways (−2,−2, 1.5)→ (2, 1, 1.5)
Forward-Up (−2, 0, 1)→ (2.5, 0, 2.75)
Forward-Down (−2, 0, 2.75)→ (2.5, 0, 1)

Table 2: Translated distances for each motion primitive ma-
neuver.

controller with transition compensation, and the high-gain
PID controller.
During these maneuvers, the heading is kept constant and
the critical direction for which the ‘bang-bang’ maneuver
is planned is based on the largest component of the initial
position error.
Table 2 lists all maneuvers and their initial and target po-
sitions. The controllers are assessed on the time it takes to
reach their target, the degree of overshoot, and the veloc-
ity error while passing the target. Also, it should be noted
that the ‘bang-bang’ controllers are configured to switch to
a low-gain PID controller once the target position and de-
sired speed are crossed for the first time to avoid endlessly
oscillating when close to the target position.

6.3.1. Results

Appendix A visualizes the results of the motion primitive
flights. Figures A.1 to A.4 show a comparison of the three
different controllers in forward, backward, sideways, and
forward + sideways step response maneuvers, respectively.

For each maneuver, similar relative behavior is ob-
served between the controllers. Due to the high gains of
the PID controller the acceleration phase consists of im-
mediately saturated control inputs for all controllers, and
therefore the paths are practically identical in this phase.
Differences begin to distinguish themselves at the mo-
ment of braking. While the braking angle commands of
the ‘bang-bang’ controllers are steps, the PID controller
shows a steep but slanted braking command, proportional

to the velocity error. The instant at which braking is initi-
ated differs between the different controllers. As expected,
the ‘bang-bang’ controller with transition compensation in-
cluded brakes earlier than the ‘bang-bang’ controller with-
out this compensation. The PID controller starts to brake
even earlier. This leads to a slightly overdamped response
for the PID controller, not overshooting the target.

Finally, notice the different paths in Fig. A.4. Here,
it is visible that the ‘bang-bang’ controller prioritizes the
longitudinal motion over the lateral motion, minimizing the
roll angle which benefits stability and control. The PID
controller on the other hand saturates both roll and pitch
commands at the start, even though the lateral position
error is smaller than the longitudinal.

Table 3 summarizes the flight results of the step re-
sponses. It can be seen that the non-compensated ‘bang-
bang’ controller has the largest velocity errors and over-
shoot. Furthermore, it becomes obvious that the compen-
sation system has a positive effect on the path prediction
performance. Unfortunately, the transition loss model is
not accurate enough to completely mitigate the transition
losses and some degree of overshoot still occurs. In these
simple start-stop tests, the PID controller is marginally
slower than both ‘bang-bang’ controllers but has lower over-
shoot and velocity errors.

6.4. Consecutive Waypoints Flight

To test the proposed controller in a setting that more
closely resembles an autonomous drone race, a flight plan
with consecutive positional waypoints has been imple-
mented. In this flight plan, the quadcopter is no longer
instructed to come to a full stop at each waypoint. The
desired speed at each waypoint has been set to 2 m/s as it
was found iteratively that this value in combination with a
position threshold of 70 cm resulted in smooth trajectories
for both the PID and ‘bang-bang’ controllers (See Fig. 1).
However, it is expected that the optimal threshold values
are controller- and trajectory-dependent.
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Controller Maneuver
Forward Backward Sideways Forward-Sideways

Mean Time of Arrival [s]

Bang-Bang 1.38 (n=4) 1.41 (n=4) 1.29 (n=5) 1.47 (n=4)
Bang-Bang Comp. 1.42 (n=15) 1.47 (n=12) 1.37 (n=11) 1.53 (n=15)
PID 1.48 (n=10) 1.54 (n=8) 1.43 (n=8) 1.51 (n=8)

Mean Overshoot [m]

Bang-Bang 0.62 (n=4) 0.81 (n=4) 0.53 (n=5) 0.27 (n=4)
Bang-Bang Comp. 0.18 (n=15) 0.22 (n=12) 0.06 (n=11) 0.11 (n=15)
PID 0.05 (n=10) 0.04 (n=8) 0.04 (n=8) 0.04 (n=8)

Mean Velocity Error [ms ]

Bang-Bang 3.05 (n=4) 3.51 (n=4) 3.06 (n=5) 1.85 (n=4)
Bang-Bang Comp. 1.60 (n=15) 1.88 (n=12) 0.69 (n=11) 0.38 (n=15)
PID 0.08 (n=10) 0.08 (n=8) 0.14 (n=8) 0.06 (n=8)

Table 3: Performance values the different controllers in 4 maneuvers. n is the number of runs performed.

Because currently no heading changes were incorporated
into the ‘bang-bang’ maneuver planning, the heading is
kept constant. The critical direction in which a ‘bang-bang’
motion is planned is automatically adjusted based on the
direction with the largest position error.

6.4.1. Results

Fig. 10 shows top views of flights with the two controllers.
Both controllers have been assessed on the time it takes to
complete one circle and the minimum position error. The
results are displayed in Fig. 11. Here, the ‘bang-bang’ con-
troller is seen to outperform the PID both in speed and
target accuracy. The PID controller is unable to give pri-
ority to one direction over the other. Due to the high gain
values, roll and pitch angles are quickly saturated even if
the position error of one direction is much smaller than the
other, which slows down the critical axis. In the various
flight runs of the PID controller, large lateral oscillations
can be seen. It was also found that the PID controller was
more likely to reach unstable situations due to the high
simultaneous pitch and roll angles compared to the ‘bang-
bang’ controller.

The predicted times of arrival for a single run are illus-
trated in Fig. 12. From this figure, we can derive the real-
time path prediction performance. As expected the time
increases during the angular rotations. However, during the
acceleration phases, the time is seen to decrease. We think
that this is caused by inaccurate aerodynamic drag esti-
mation and by the effect the non-critical angle has on the
acceleration in the critical direction.

7. CONCLUSIONS

We have proposed the ‘bang-bang’ MPC which approaches
time-optimal control principles while being computation-
ally efficient enough to run onboard a commercial quad-
copter. This is achieved by assuming that the solution con-
sists of a double step control input in attitude angle for
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Fig. 10: Top-view of consecutive waypoints flights

one ‘critical’ direction while the non-critical direction has
a constant angle as the solution. This simplifies the OCP
and drastically reduces the computational complexity. For
efficient control parameter optimization, a bisection scheme
in combination with an analytical path prediction model is
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Fig. 11: Circle completion time and minimal waypoint dis-
tance for consecutive waypoint flights
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Fig. 12: Estimated time of arrival corrected for passed time.

used. We have shown both in simulation and in real-world
flights that the ‘bang-bang’ controller is a feasible option
for fast flight. In fact, for the consecutive waypoint flight,
the ‘bang-bang’ controller is shown to be 17.5% faster than
a traditional high-gain PID controller on average. The en-
tire control pipeline easily runs at the main control loop
frequency of 512Hz on the Bebop and is sufficiently light
to run on even smaller and computationally-limited quad-
copters. However, a more thorough analysis is needed to
quantify the required computational effort.
The ‘bang-bang’ MPC also shows promise to be an attrac-
tive easy-to-implement solution for different quadcopters.
As the pipeline requires minimal knowledge of the dynam-
ics (only Cd and mass). And despite that the transition
compensation in its current state relies on measurement
data, future work could mitigate this process with online
transition loss estimation. Currently, the constant altitude
constraint forms the largest deviation from the theoreti-

cal time-optimum solution found by ICLOCS. Finally, the
pitch, roll, and thrust limits are set conservatively and
flight performance could be improved if these parameters
are made adaptive.

Appendix A Step Response Results

In this appendix, a compilation of the motion primitive
flight experiments results from subsection 6.3 are presented,
showing the trajectory and attitude commands of each dif-
ferent controller for the corresponding maneuver. Addition-
ally, a composition of recorded video frames is included.
Where the drone colors Red, Blue and Green correspond
with PID, ‘Bang-Bang’, and ‘Bang-Bang’ with transition
compensation, respectively.

Forward Maneuver
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Fig. A.1: Forward Maneuver

Fig. A.1 displays the step maneuver in which the quad-
copter is instructed to fly 4.5m forward with a maximum
pitch angle of 35◦deg.

Backward Maneuver

The maneuver depicted in Fig. A.2 is similar to the forward
maneuver except that it will fly backward.
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Fig. A.2: Backward Maneuver

Sideways Maneuver

The sideways maneuver shown in Fig. A.3 tests the steps re-
sponse for the roll angle only. The quadcopter is instructed
to fly 4.5m sideways with a maximum roll angle of 35◦deg.
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Fig. A.3: Sideway Maneuver

Forward-Sideways Maneuver

The forward-sideways maneuver combines the longitudinal
and lateral step performance, as can be seen in Fig. A.4.
The maximum absolute roll and pitch commands are set to
35◦deg.
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Fig. A.4: Forward-Sideway Maneuver
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