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The performance (paraxial phase delay) of conventional diffractive optical elements is generally analyzed using
the analytical scalar theory of diffraction, based on thin-element approximation (TEA). However, the high thick-
ness of multilayer diffractive optical elements (MLDOEs) means that TEA yields inaccurate results. To address
this, we tested a method based on ray-tracing simulations in mid-wave and long-wave infrared wave bands and
for multiple f -numbers, together with the effect of MLDOE phase delay on a collimated on-axis beam with an
angular spectrum method. Thus, we accurately generate optical figures of merit (point spread function along the
optical axis, Strehl ratio at the “best” focal plane, and chromatic focal shift) and, by using a finite-difference time-
domain method as a reference solution, demonstrate it as a valuable tool to describe and quantify the longitudinal
chromatic aberration of MLDOEs. ©2022Optica PublishingGroup

https://doi.org/10.1364/AO.456055

1. INTRODUCTION

Earth observation in the thermal infrared (IR) domain cov-
ers a wide range of applications, including security, land, and
solid-Earth geophysics, health, and hazards monitoring [1,2].
Multispectral spaceborn instruments are particularly inter-
esting, as they provide the high coverage required for most
applications. We consider two IR wave bands, defined by the
atmospheric IR windows: the mid-wave infrared (MWIR)
from 3 to 5 µm and the long-wave infrared (LWIR) from 8 to
12 µm. The MWIR band is often shortened (4.4–5 µm) to
avoid solar albedo contributions. Only a handful of optical
materials are transmissive in both MWIR and LWIR, even
though the relatively new chalcogenide family [3], composed
of “soft” moldable materials, has enhanced the IR catalog.
Generally speaking, refractive IR dual-band instruments are
complex, expensive, and bulky, one reason being the large num-
ber of lenses needed to correct optical aberrations, especially
chromatic and thermal defocus.

The most effective way to solve these defocus aberrations, in
addition to the bulkiness issues, is to use diffractive lenses. When
combined with refractive components (hybrid doublets), lenses
correct most of the chromatic aberration and still remain com-
pact. It should be noted that conventional monolayer diffractive
lenses can operate in only a narrow spectral range, rendering
them useless for dual-band applications. Since LWIR wave-
lengths are 2 times higher than MWIR wavelengths, the use of
higher-order diffractive optical elements (DOEs) may provide
a valuable alternative, with the first and second orders being
used, respectively, in LWIR and MWIR. However, the addition

of another working order for shorter wavelengths creates a
discontinuity in the chromatic focal shift, rendering correction
of the longitudinal chromatic aberration (LCA) difficult. This
drawback can be overcome by using an extended dual-band
diffractive solution, called a multilayer diffractive optical ele-
ment (MLDOE). This optical component has been intensively
studied since 1997 [4]. The most common approach used for
modeling an MLDOE is analytical scalar diffraction theory
(SDT). MLDOEs, composed of two harmonic diffractive layers
[5,6], are recognized as one of the most promising diffractive
optical components. In the context of SDT [7,8], it has been
demonstrated that the diffraction efficiency of such MLDOEs
can reach over 95% in the whole MWIR-LWIR bandwidth
for on-axis incidence. In addition, a properly selected design
can also ensure a high diffraction efficiency for off-axis inci-
dence [9,10]. It is instructive to note that SDT involves the
thin-element approximation (TEA), which becomes progres-
sively inaccurate with increasing diffractive microstructure
height [11,12]. In the case of MLDOEs, the typical heights of
the grooves are 100 times higher than in conventional mono-
layer DOEs. Accordingly, rigorous electromagnetic numerical
approaches such as the rigorous coupled-wave analysis have
been used to model the effect of microstructure depth and inci-
dent angle on the diffraction efficiency of multilayer saw-tooth
optical elements [13,14]. However, these rigorous approaches,
far more accurate than SDT, are computationally intensive,
especially in the case of three-dimensional design modeling.
Recently, attractive approaches have involved geometric optics
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approximations. These sit between analytic TEA and rigor-
ous electromagnetic methods. For instance, the effective-area
method has been proposed to perform accurate computations
of diffraction efficiency for saw-tooth MLDOEs [15,16]. Using
geometric optics approximations to describe an optical com-
ponent’s phase delay is also a method used by field tracing [17].
Field tracing often combines rigorous or approximate phase
models with exact Fourier optics propagation tools to obtain the
most efficient and reliable field description through complex
optical systems.

In this paper, we use a scalar, ray-tracing based method (which
we call our “ray model”) instead of TEA to compute MLDOE
phase delay. This approach is not new and was developed in [18]
under the name “zone decomposition” modeling for the design
of hybrid optical systems. It is further implemented in [19] and
coupled with diffraction calculation to estimate the modula-
tion transfer function of relief-type DOEs. We aim to examine
the reliability and accuracy of the ray model compared with
TEA in the case of MLDOEs. The latter predicts nearly perfect
imaging performance [20], whereas the former heavily depends
on refractive index variations and aspect ratios, due to Snell’s
law of refraction. Because neither of these scalar approaches is
rigorous, an electromagnetic phase calculation is conducted
using the finite-difference time-domain (FDTD) method. This
provides a reference solution from which the accuracy of the ray
model predictions can be assessed. The outputs of each of the
three methods (TEA, ray model, and FDTD) are the MLDOE
phase and amplitude patterns in the near field. Consequently,
a Fourier optics propagator based on the angular spectrum
method is used to generate optical fields and evaluation metrics
in the far field, at the detector plane (similarly to [19]). Both
MWIR and LWIR wave bands are investigated.

Fourier optics provides an exact free-space propagation
method that generates performance outputs based on a phase
mask input (Section 2). Three input phase models are stud-
ied, respectively, based on the TEA (Section 3), the ray model
(Section 4), and FDTD (Section 4). Approximate scalar models
(TEA and ray model) and FDTD are compared in Section 5,
providing an analysis of the beam shape along the optical
axis and the imaging performance at the focal plane. Various
wavelengths, materials, and f -numbers (F /#) are considered.

2. FOURIER-BASED SIMULATION PROCESS

A. Wave Propagation Using Fourier Optics

Analysis using Fourier transform formalism is a powerful optical
modeling tool introduced and popularized widely by Goodman
[21]. It provides a straightforward method for evaluating, in
any point in space, the properties (phase and amplitude) of
a monochromatic electromagnetic wave, propagating in a
free-space medium (linear, homogeneous, non-magnetic, free
of electric charge and current). Under such assumptions, and
far from the medium’s boundaries, Maxwell’s coupled-wave
equations simplify into a single complex equation called the
Helmholtz equation:

(∇2
+ k2)U(r)= 0, (1)

where U(r) is the exponential notation (phasor) of the complex
amplitude distribution of the optical wave u(r, t); r is the vector

position; t is time; and k is the wavenumber, defined as

k = 2πn
ν

c
=

2π

λ
, (2)

where λ is the wavelength in the dielectric free-space medium.
The complex field phasor U(P ) expression can be retrieved by
applying the Fourier transform for two parallel planes z= 0
and z> 0 and using Eq. (1) (demonstrated in more detail in
[21]). This provides a powerful tool for accurately simulating
optical wave propagation, commonly referred to as the angular
spectrum method:

U(x , y ; z)=F−1
{F{U(x , y ; 0)}Hz( fx , f y )}

Hz( fx , f y )=F{h z(x , y )} = exp

[
ikz
√

1− (λ fx )
2
− (λ f y )

2

]
,

(3)
where ( fx , f y ) are the spatial frequencies of the field, Hz is the
transfer function of the wave propagation phenomenon, and h z

is the impulse response of the system. Note that, since the angu-
lar spectrum method is constrained by free-space assumptions,
it cannot be employed to compute the optical field propagation
through an MLDOE. Therefore, Fourier optics is bounded to
propagate a complex field, computed after the MLDOE, onto
a target plane. Since the angular spectrum is a scalar method, it
is limited to fields that do not contain components propagating
at high numerical apertures (NAs) (e.g., angles greater than
NA= 0.6). This is ensured by using the band-limited angular
spectrum method developed in [22] (i.e., there is no aliasing due
to high-frequency components).

B. Simulation and Comparison Process

This section describes the main simulation steps involved in our
rationale to compare the TEA and ray models. The simulation
and comparison process is shown in Fig. 1.

As indicated in Fig. 1, the optical effect of an MLDOE
is described by a scalar complex phasor U(x , y ; 0)=
A(x , y ) exp[i8(x , y )] in both the TEA and ray models,
considering an on-axis collimated monochromatic source. In
contrast, FDTD provides an exact electromagnetic vectorial
description of the MLDOE effects, encompassed in the electri-
cal field E= (E x , E y ). The calculations of these initial fields
are detailed in Sections 3.A and 3.B. The resulting wavefront
is propagated, using the angular spectrum of plane waves, to
the focal plane, where the image quality of the MLDOE can be
retrieved. The Strehl ratio and the LCA, also known as chro-
matic focal shift, provide a way to assess the optical quality.
These evaluation metrics are computed in MWIR and LWIR
for various F /#. The “best” focal plane, a priori unknown, is
defined in this paper as the plane z> 0 that provides the highest
Strehl ratio. Consequently, it may differ from the expected
analytic focal plane, whose expression is the same for standard
DOEs and MLDOEs [20]:

f j (λ)= D
F /#
jλ
, (4)

where j is the diffractive order ( j = 1 is considered in this
paper).
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Fig. 1. Diagram showing the numerical processes involved in this paper, in order to compare the TEA and the ray model, using FDTD as
reference.

3. MLDOE TEA DESIGN AND PHASE MODEL

This section derives the analytical phase model based on TEA,
which is the most widely adopted model for the design of DOEs.

A. TEA Phase Model

An MLDOE is composed of two harmonic diffractive opti-
cal elements (HDOEs) [5,6] (Fig. 2), joined together by an
optical material or separated by air. These HDOEs are made
of different materials, and their groove heights are designed to
provide constructive interference for two distinct wavelengths,
called “design wavelengths” and denoted λ1 and λ2. In this
paper, the selected design wavelengths are λ1 = 4.7 µm and
λ2 = 10.4 µm, based on a wavelength selection method [8]
applied in both MWIR and LWIR. Both layers are aligned and
have the same groove periods (i.e., the same number of diffrac-
tive zones). The TEA involves paraxial rays that travel through
the component parallel to the optical axis, with no deviation.

This leads to an analytical expression of optical path lengths
(OPLs) and phase delay for each layer.

Figure 2 shows the geometric framework for the study of
OPLs inside a MLDOE. The TEA implies a paraxial incident
beam. The shape of layer i = 1, 2 along the optical axis z at
radius r is described by zi (r ); Hi is the maximal height of the
profile; f (λ) is the focal distance of the MLDOE at wavelength
λ; and m is the diffractive zone being considered, starting at
radius rm and finishing at rm+1. Each layer i is made of a distinct
material with refractive index ni (λ), and the gap is filled with a
material ng (λ). Interference between each zone is constructive
at the focal plane.

The optical path differences for both DOEs 1 and 2 of
the MLDOE layout can be calculated using the analytical
equation [20]:

8TEA(r , λ)=
2π

λ

[
−H1(n1 − ng )− H2(n2 − ng )

] (
m −

r 2

r 2
1

)
.

(5)

Fig. 2. Extended model of DOE to MLDOE.
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In this equation, 8TEA(r , λ) is the total phase delay under
normal incidence. The layer heights H1 and H2 can be straight-
forwardly evaluated from Eq. (5) under the condition of
constructive interference [20], for the first diffractive order and
the two selected design wavelengthsλ1 andλ2:{

H1 =
λ2 A(λ1)−λ1 A(λ2)

B(λ1)A(λ2)−B(λ2)A(λ1)

H2 =
λ1 B(λ2)−λ2 B(λ1)

B(λ1)A(λ2)−B(λ2)A(λ1)

, (6)

where A(λ)= n2(λ)− ng (λ) and B(λ)= n1(λ)− ng (λ). As
seen in Eq. (5), the shape of each zone is parabolic due to the
converging requirement in the MLDOE design. The complex
scalar field phasor associated with the TEA model, expressed in
the MLDOE near field at wavelengthλ, is

U(x , y ; λ)= exp
[
i8TEA(x , y ; λ)

]
. (7)

The amplitude is constant over the aperture. Finally, using the
Pythagorean theorem in Fig. 2, the zone radius is given by

r 2
m = 2m f λd + (mλd )

2
' 2m f λd . (8)

This standard definition of the period and radii of diffractive
zones [Eq. (8)] is similar for MLDOEs and classical monolayer
DOEs. In the following, the mth zone period Tm is defined as
Tm = rm+1 − rm , the ring width. The aspect ratio (R) of the
mth zone is, therefore, introduced:

R=max(H1, H2)/Tm . (9)

B. TEA Validity: Numerical Comparison

In this section, the TEA boundaries are derived based on the
study of MLDOE thicknesses (design based on Section 3).

According to [12], the TEA remains valid when R [Eq. (9)]
is less than 1/6. As seen in the previous section, this ratio is
influenced by the material combination, the choice of design
wavelengths, and the optical parameters F /# and diameter
D. As an example, in this section, we fix the number of zones
N = 10 and the aperture diameter D= 10 mm, keeping in
mind manufacturability concerns.

We check the validity of the TEA (Fig. 3) in the worst-case
scenarios by considering the lowest zone period and the thickest
layer. This is done for various F /# and considering all possible
MLDOE material combinations. In our study, each layer (as
well as the gap) can consist of 12 potential IR materials: Ge,
ZnS, ZnSe, GaAs, AgCl, CdTe, and six chalcogenide materials,
from IRG22 to IRG27. We, therefore, define an “MLDOE
combination” as a triplet of material (m1,mg ,m2). The denom-
inations “two-layer DOE” and “three-layer DOE” are employed
when the gap material mg is, respectively, filled by air or by
another IR material.

Figure 3 displays the aspect ratios obtained for each MLDOE
combination and F /#. Because changing any material in a
combination can lead to very different aspect ratios, the latter are
sorted by thickness in Fig. 3, where the cumulative percentage
of MLDOE combinations is considered. This is the number of
MLDOE combinations (in %) that display at most a specific
aspect ratio for a given F /#.

An air gap is imposed in Fig. 3(a). Only combinations with
total height lower than 1 mm are depicted in Fig. 3, for a total
of 253 combinations. Figure 3(a) shows that the TEA valid-
ity requirement is fulfilled for at most only 15% of two-layer
DOEs, with a minimal f -number of 37. This degrades to 5% in
Figs. 3(b) for three-layer DOEs.

The result is that the TEA model requirement is never sat-
isfied, except for extremely high F /#. Thereby, the period size

Fig. 3. MLDOE aspect ratios R [Eq. (9)] in function of the cumulative percentage of MLDOE combinations, for various F /#. The combina-
tions have been sorted from the thinnest (R< 1/6) to the thickest (R> 2) for all F /# between 5 and 40. (a) Two-layer DOE (air gap). b) Three-layer
DOE (filled gap). The aperture diameter is fixed to D= 9.6 mm, and the design wavelengths are λ1 = 4.7 µm and λ2 = 10.4 µm. The worst case is
considered: thickest layer and lowest zone period. Only material combinations with a total height<1 mm are kept and displayed, to keep a relatively
thin element. The orange region shows the validity of the TEA model [12].
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of MLDOEs and monolayer DOEs is the same [Eq. (8)], but
MLDOEs are 10 to 100 times thicker than DOEs. For instance,
considering a monolayer DOE, we analyze the TEA model’s
validity in the worst possible case: the lowest refractive index
material, AgCl (n ' 2), and an f -number of 5 atλ= 8µm:

RDOE =
H

Tmin
=

λ

(n − 1)Tmin
' 1/10< 1/6. (10)

Considering the validity region in Fig. 3, this numerical
application proves that the TEA model, while accurate in
the case of monolayer DOEs, is not suited for the study of
MLDOEs.

For the rest of this paper, the design wavelengths are fixed to
λ1 = 4.7 µm and λ2 = 10.4 µm. Two MLDOE combinations,
arbitrary selected, will be considered for the comparison of ray
and TEA models: a ZnS-air-Ge MLDOE and a ZnS-air-IRG25
MLDOE. The former combination has the lowest thickness
among “air-gap combinations” and has already been studied in
[20]. The ZnS-air-IRG25 combination is chosen to replace the
expensive and hard Ge layer by a “softer” chalcogenide material,
increasing the potential for manufacturability.

4. ALTERNATIVE PHASE MODELS: RAY MODEL
AND FDTD

In this section, two alternatives to TEA are described. Our ray
model, inspired by [18,19], examined in this paper is a scalar
model based on the calculation of OPL using ray-tracing.
FDTD is an electromagnetic calculation providing exact vecto-
rial fields and serves as a reference solution for the comparison of
the ray and TEA models.

A. Ray Model

As shown in Section 3, TEA is not suitable for describing
MLDOE behavior except for very high F /#. The examined ray
model still belongs to SDT but introduces a deviation of the
rays at each interface according to Snell’s law of refraction.
The assumption, used by the TEA, of rays traveling parallel to
the optical axis is removed in the ray model. Therefore, OPLs
are longer in the ray model, and their lengths strongly depend
on the zone shape and aspect ratio, as well as on the transition
from one material to another. Optical effects such as total inter-
nal reflection may appear for high aspect ratios/high index
variations and are taken into account in the ray model.

The effect of an MLDOE on a plane wave is obtained in the
near field through the calculation of a phase mask. The latter is
computed following Eq. (11):

8ray =
2π

λ
OPL=

2π

λ

3∑
i=1

ni;i+1OPLi;i+1, (11)

where i is an optical interface of the MLDOE, numbered
between 1 and 3, ni;i+1 and OPLi;i+1 are, respectively, the
refractive index and the OPL between interface i and i + 1. The
latter is obtained using a ray-tracing engine (the professional
modeling and ray-tracing software ASAP NextGen [23]).

Fundamentally, the ray model differs from the TEA model
only by computation of the OPL. The complex scalar field pha-
sor associated with the ray model is expressed in the near field of
an MLDOE by [19]

U(x , y , λ)= Aray(x , y )exp
[
i8ray(x , y , λ)

]
. (12)

It is interesting to notice that the TEA model is able, by
design, to optimize the zone heights and OPLs to obtain the
maximum performance at the focal plane regardless of the
selected materials and aspect ratios (see Section 5). In contrast,
the ray model is based on refraction at the interfaces and will
provide phase masks that heavily depend on the material choice
and aspect ratio. Thereby, the selection of materials and F /#
will not only impact the focal length and the diffractive zone
thickness, but also the optical performance at the focal plane.

B. FDTD Phase Simulation

Both TEA and ray models are scalar approximations; therefore,
a third phase model is used as reference in this paper, computed
with the vectorial FDTD method. This rigorous electromag-
netic calculation method will serve as a reference solution to
establish the accuracy of the ray model.

FDTD wave simulation is performed using OptiFDTD
software [24]. Starting from a plane wave, a complex electric
field is propagated numerically through the MLDOE. Only the
E x and E y components are considered, with the E z component
being negligible, as it is along the propagation direction. The
circular symmetry of the problem is used to reduce the sam-
pling effort needed. The most adequate sampling is studied
in the worst-case scenario: lowest F/# (F/10) and wavelength
(λ= 4.4 µm). Figure 4 shows the sampling converging curve,

Fig. 4. FDTD sampling convergence curve. The metric associated
with each sampling is the Strehl ratio, computed at the “best” focal
plane. The sampling along the optical axis (Nz , δz), as well as the radial
and time sampling steps δx and δt , are automatically computed by
the OptiFDTD software. Nx is the number of samples in the radial
dimension (perpendicular to wave propagation direction z), and Nt is
the number of time steps.
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Fig. 5. Two-dimensional FDTD layout of a ZnS–IRG25 F/15
MLDOE. The source and the detector, respectively, lies in the planes
z= 0 µm and z= 300 µm. The blue and red layouts represent the two
HDOE layers, separated by an air gap.

obtained by computing the Strehl ratio at the focal plane, for
each sampling.

The results of this numerical investigation (Fig. 4) confirm
that the chosen metric converges for the sampling Nx = 20,000
and Nt = 5000, which is defined in the worst-case scenario.
The resulting vectorial optical field obtained in the MLDOE
near field is E (x , y )= [E x (x , y ); E y (x , y )]. The E x and E y

components are obtained, respectively, through separate trans-
verse magnetic and transverse electric polarization simulations;
therefore, they are not coupled. These two components can
be propagated using the angular spectrum, and incoherently
summed to obtain the point spread function (PSF), modulation
transfer function, and Strehl ratio at the target plane, meaning
that the simulation is done for unpolarized light.

Finally, the two-dimensional FDTD layout of one of the
selected MLDOEs (ZnS-air-IRG25) is shown in Fig. 5.

The MLDOE layout of Fig. 5 was obtained by superposing
parabola pieces made of the specified materials.

5. RESULTS

In this section, optical figures of merit (PSF, Strehl ratio, and
LCA) are obtained based on the simulation process described
in Fig. 1. Using these metrics, both the TEA and ray model
are compared to FDTD. Two MLDOEs are considered: ZnS-
air-Ge and ZnS-air-IRG25. The aperture diameter is fixed at
D= 9.6 mm (Section 3).

A. Results Along the Optical Axis: PSF Comparison

We compare the irradiance along the optical axis, predicted by
each of the three models (TEA, ray, and FDTD). We recall that,
starting from an initial field at plane z= 0 (scalar or vectorial),
the angular spectrum method allows us to accurately predict the
resulting field at any parallel plane z> 0 in the context of free-
space propagation. We propagate the fields to multiple planes z,
and for each, we compute the PSF for all three models. FDTD
vectorial field irradiances are incoherently added to provide a
total irradiance output for each plane. Because we are comparing
the wave propagation predicted by the two scalar models, we use
a single setup: λ= 8 µm and F /#= 15, giving an analytic focal
length f = F /#D= 144 mm. The “best” focal in this paper

is obtained in the sense of the Strehl ratio, computed at each
propagation plane.

Figure 6 displays the distribution of energy along the optical
axis for the three models, for the ZnS-air-Ge MLDOE. The
TEA model predicts diffraction-limited optical performance
at the focal plane (Strehl ratio of 0.98), and the latter coin-
cides with the analytical focal length value. This result is not in
accordance with the prediction of the ray and FDTD models.
In fact, both models predict that only a central portion of the
MLDOE actually contributes to the focus energy. A secondary
ring of light, coming from the “intermediate zones” also tends
to converge, but to a further focal point, creating important
stray light. Finally, both the ray and FDTD models predict a
different “best” focal plane (around z= 111 mm) and different
Strehl ratio values. The ray model is an approximate model,
giving more pessimistic Strehl ratio values than FDTD (0.11
for the ray model and 0.24 for FDTD) for this design and
f -number. Note that the number of zones contributing to the
focus energy is higher for FDTD, explaining the lower peak irra-
diance value and, thus, the lower Strehl ratio for the ray model.
A one-dimensional cut of the logarithm of the PSF at the best
focal plane (yellow line) is displayed in Fig. 11(a) of Appendix A.
The TEA model provides a diffraction-limited Airy pattern,
while the other models predict a very different PSF shape. The
secondary light ring visible in Figs. 6(b) and 6(c) clearly appears
in Fig. 11(a), with an irradiance level of 10−1.5 Wm−2. The ray
model accurately predicts the existence of this secondary ring
but, as mentioned above, underestimates the peak irradiance
value compared with FDTD (and overestimates the secondary
ring irradiance).

Figure 7 displays the same optical metric as Fig. 6: the varia-
tion of PSF along the optical axis, but for the ZnS-air-IRG25
MLDOE. As stated in the ray model description (Section 4), the
TEA model generates the same diffraction-limited performance
when the Ge layer is replaced by IRG25 [Fig. 7(a)]. The focal
length remains equal to the analytical one: f = 144 mm. In
contrast, the ray model and FDTD generate a similar beam
shape in Fig. 7, with a thinner outer light ring. FDTD and
ray models both predict the location of the best focal plane
at z= 86 mm. Once again, the ray model is pessimistic
with a Strehl ratio value of 0.11 against 0.18 for the FDTD.
Figure 11(b) in Appendix A again shows the difference in PSF
energy distribution between the TEA and the other two models.

The results of this section highlight the accuracy of the ray
model over the TEA model. The former, even if less precise than
FDTD, is able to retrieve the shape of the irradiance pattern at
the focal point and along the optical axis, and to provide realistic
estimates of irradiance peak value, Strehl ratio, and focal length.
It is worth noting that changing the material of one or more
layers has a strong impact on the optical performance, beam
shape, and focal length.

B. Results at the Detector Plane: Strehl Ratio and
LCA

In this section, we compare the TEA and ray model by using
both the Strehl ratio and the chromatic focal shift as optical
performance metrics. Multiple wavelengths in the MWIR
and LWIR bandwidths and multiple F /# are studied for both
ZnS-air-Ge and ZnS-air-IRG25 MLDOE combinations.
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Fig. 6. PSF along the optical axis for a ZnS–Ge F/15 MLDOE considering: (a) the TEA model, (b) our ray model, and (c) FDTD. The initial
plane is in z= 0 mm, just after the MLDOE component. The maximum irradiance value, obtained at the focal plane, is displayed in the color bar.
The vertical yellow line shows the simulated “best” focal plane, whose value F as well as the associated Strehl ratio S are indicated in red. The predic-
tions of the TEA model are too optimistic, in contrast to the ray model and FDTD.

Fig. 7. PSF along the optical axis for a ZnS–IRG25 F/15 MLDOE considering: (a) the TEA model, (b) our ray model, and (c) FDTD. The initial
plane is in z= 0 mm, just after the MLDOE component. The vertical yellow line shows the simulated “best” focal plane, whose value F as well as the
associated Strehl ratio S are indicated in red. The maximum irradiance value, obtained at the focal plane, is displayed in the color bar. The predictions
of the TEA model are too optimistic, again. In addition, these predictions are not impacted by the change of the Ge layer to an IRG25 layer. In con-
trast, this change has modified the predicted PSF, Strehl ratio, focal length, and beam shape in the case of the ray model and FDTD.

We recall that the chromatic focal shift (also known as LCA)
is a major figure of merit for diffractive optics. Thereby, diffrac-
tive lenses mainly serve to provide efficient achromatic hybrid
solutions when combined with refractive lenses, so the accurate
knowledge of their LCA is of prime importance. The LCA is,
therefore, associated with the design performance, while the
Strehl ratio gives a direct optical performance metric.

Figure 8 shows the evolution of the IR Strehl ratio with the
F /# for the three considered models (TEA, ray, and FDTD).
The IR Strehl ratio StrehlI is defined as

StrehlI (F /#)=meanλ[Strehl(λ, F /#)], (13)

where the wavelengthλ is in the range 4.4–12µm.
As shown by the black flat curve of Fig. 8, the TEA model

predicts a near-perfect IR Strehl ratio regardless of the materials
and F /#. However, looking at the ray model (red curve) and
FDTD model (blue curve), we can infer more realistic behavior
for both MLDOE designs: Increasing the F /# lowers the aspect
ratio; thus, more light is likely to be collected at the focal plane.
Likewise, less stray light will be generated by the MLDOE,
resulting in an increase in the Strehl ratio. As seen in Fig. 3,
decreasing the aspect ratio makes the TEA progressively more
valid, providing asymptotic behavior as displayed in Fig. 8.

As previously noted in Figs. 6 and 7, for both MLDOE
designs, on average for all wavelengths, the ray model gives more
pessimistic results than FDTD, which, as will be discussed in
Section 6, is an acceptable result. Nevertheless, the accuracy
of the ray model remains inferior to the FDTD (which will be
quantified in Section 5.C).

Figure 9 shows the evolution of the LCA with the wavelength
for the ZnS-air-Ge MLDOE and various F /#. The LCA is
defined in this paper as LCA(λ)= f (λ)− f (λ= 12 µm).
A similar graph can be found in Appendix A for the
ZnS-air-IRG25 MLDOE.

Figure 9 confirms that the TEA model (black curve) is per-
fectly in agreement with the diffractive lens focal law [Eq. (4),
black diamond curve] for all F /#. Both the FDTD and ray
model (blue and red curve) are in good agreement for all
F /#, wavelength, and material combinations (see Fig. 10
in Appendix A). However, they disagree with the analytical
expression [Eq. (4)] and with the TEA model.

C. Accuracy of the Ray Model

In this section, the accuracy of the ray model (its divergence
from the FDTD model) is computed using the root mean square
error (RMSE), presented in Table 1.
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Fig. 8. Infrared Strehl ratio at the best focus for multiple F /#. The TEA model, ray model, and FDTD are, respectively, displayed in black, red,
and blue. Each point results from the wavelength averaged Strehl ratio in the 4.4–12 µm bandwidth. (a) ZnS-air-IRG25 MLDOE. (b) ZnS-air-Ge
MLDOE.

Fig. 9. LCA for a ZnS-air-Ge MLDOE for various F /#: (a) F/10, (b) F/15, (c) F/20, and (d) F/30. The “best” focal plane is defined as the plane
z> 0 with highest Strehl ratio. The TEA model, ray model, and FDTD are, respectively, displayed in black, red, and blue. The analytical LCA is dis-
played with black diamonds [Eq. (4)]. FDTD is the reference curve.

The RMSE metric describes the standard deviation of the
residuals (the averaged distance between the FDTD model pre-
dictions and the ray model predictions). In the case of the LCA,
the RMSE value (given in millimeters) must be compared to the
LCA maximum extent (for the FDTD model) to be interpreted.
The IR Strehl ratio RMSE is∼15% for both designs, meaning
that the ray model is not able to give accurate values of image

quality. Nonetheless, it provides a good IR Strehl ratio tendency,
especially when compared with the TEA model.

The LCA is well predicted by the ray model, with an
RMSE between 4 and 8 mm. In the worst case [F/10 ZnS-air-
IRG25 MLDOE, Fig. 10(a)], the LCA extent is 40 mm with
RMSE' 6 mm (Table 1), leading to a worst-case relative
RMSE of 15%. This value decreases to less than 10% for higher
f -numbers, regardless of the design. The ray model worst-case
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Fig. 10. LCA for a ZnS-air-IRG25 MLDOE for various F /#: (a) F/10, (b) F/15, (c) F/20, and (d) F/30. The “best” focal plane is defined as the
plane z> 0 with highest Strehl ratio. The TEA model, ray model, and FDTD are, respectively, displayed in black, red, and blue. The analytical LCA is
displayed with black diamonds [Eq. (4)]. FDTD is the reference curve.

Table 1. Table Displaying the RMSE Values between
the Ray Model and FDTD (Reference) for the Two
Studied MLDOE Designs

a

LCA

RMSE Strehl Ratio F/10 F/15 F/20 F/30

ZnS–Air–IRG25 16.1 % 5.7 mm 6.5 mm 3.8 mm 5.6 mm
ZnS–Air–Ge 15.3 % 5.8 mm 7.5 mm 6.6 mm 4.2 mm

aThe numerical values are based on the 10 subfigures displayed in Figs. 8–10.

RMSE is 15%, relative to the extent of the considered physi-
cal quantity (Strehl ratio, LCA). This means, at least in the
two MLDOE cases studied in this paper, that the ray model
is not suited for the accurate determination of optical metrics
and must be complemented by rigorous calculations, such as
FDTD. In the meantime, as shown in Figs. 8–10, the ray model
is able to accurately model the evolution of the Strehl ratio and
LCA for multiple f -numbers, wavelengths, and MLDOE
combination materials, which is not at all the case for the TEA
model.

6. CONCLUSION

We have shown that our ray model is more accurate than the
TEA model for f -numbers between 10 and 30, at least for
the two presented MLDOE designs. The TEA model matches
the asymptotic behavior of the ray model for very high f -
numbers (Fig. 8). The latter allows us to extend the scalar theory
to low f -numbers and high aspect ratios. Because of its scalar
nature, the ray model is fast to compute and can even be used for

off-axis MLDOE simulations. This makes it valuable because
three-dimensional FDTD simulation takes a huge amount
of processing time and requires complex three-dimensional
MLDOE layouts. Particularly when multiple wavelengths,
materials, and f -numbers are studied (e.g., chromatic aberra-
tion estimation), the FDTD time requirements become difficult
to handle. Therefore, if FDTD is necessary for verification
purposes, the ray model examined here should be used as an
optimization and estimation tool.

In addition, in the two cases studied here, the ray model
provides pessimistic results compared with FDTD, which,
in the context of predicting MLDOE performance with an
approximate model, is a major advantage. Thereby, the ray
model provides a form of image quality insurance, being a
worst-case scenario, at least in the two cases studied here. This
is due to a higher number of “operating” zones for FDTD than
for the ray model, leading to increased peak intensity at the
focal point. Physically, interference inside the MLDOE leads
to a converging wavefront for the intermediate zones, where
the aspect ratio is sufficiently high to block geometrical rays
(total internal reflection). Therefore, the ray model provides
pessimistic estimations because it neglects the wave nature of
light propagating inside the MLDOE.

In contrast to the TEA model, the ray model is able to com-
pute an average transmission and to take into account total
internal reflection. These quantities can be used as additional
metrics to evaluate the performance of MLDOE design without
requiring Fourier optics wave propagation. The ray model
examined here is, therefore, a powerful designing tool when
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Fig. 11. One-dimensional cut of the logarithm of the PSF, at the best focus, for the two F/15 MLDOE designs: (a) ZnS-air-Ge, (b) ZnS-air-
IRG25. The TEA model, ray model, and FDTD are, respectively, displayed in black, red, and blue. In both (a) and (b), the TEA model provides
purely diffraction-limited PSF. In contrast, the ray model and FDTD both predict a very different PSF shape, with a clear secondary ring of light and
a weaker central lobe. Contrary to the TEA model prediction, the PSF shape strongly depends on the MLDOE design.

numerous materials, f -numbers, and wavelengths must be
studied.

APPENDIX A

The LCA for the ZnS-air-IRG25 MLDOE is presented in
Fig. 10, for various F-numbers: Similarly to Fig. 9, Fig. 10
demonstrates that the LCA does not follow the analytical curve
as expected by the TEA model.

A one-dimensional cut of the irradiance at the best focal plane
for both MLDOE designs (corresponding to the yellow lines
in Figs. 6 and 7) is displayed in Fig 11: The irradiance pattern
predicted by the ray model and FDTD differ from the TEA
approach, for the two MLDOE designs.
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