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A B S T R A C T   

A novel micromechanics-based multiscale progressive damage model, employing minimal material parameters, 
is proposed in this paper to simulate the compressive failure behaviours of 3D woven composites (3DWC). The 
highly realistic constructions of microscopic and mesoscopic representative volume cells are accomplished, and a 
set of strain amplification factor is employed to bridge the meso-scale and micro-scale numerical calculations. 
Considering that the multiple failure mechanisms of 3DWC under compression are all caused by the matrix 
failure from the microscopic perspective, a new method incorporating the micromechanics of failure (MMF) 
theory and 3D kinking model is developed to identify the micro matrix failure associated with the kinking of 
yarns, inter-fiber fracture and pure matrix failure. As a result, only the matrix parameters are required for the 
failure simulation of 3DWC, eliminating the necessity of using other material parameters such as the fracture 
toughness and failure strengths of fiber yarns, which are generally difficult to accurately obtain through ex-
periments. The newly proposed damage model is numerically integrated into ABAQUS with a user-defined 
subroutine UMAT. The numerical predictions and the experimental results exhibit good agreement, verifying 
the feasibility and accuracy of the novel damage model.   

1. Introduction 

Benefiting from the three-dimensional spatial reinforcement archi-
tecture, 3D woven composites (3DWC) are extensively used in aero-
space, aeronautics and national defense fields owing to the attractive 
superiorities of near-net-shape adaptability, better impact resistance and 
high structural integrity with respect to traditional laminates [1,2]. In 
actual applications, composite structures are inevitably subjected to 
compressive loading conditions. However, the compressive properties of 
composites are much inferior to the tensile properties [3], which greatly 
limits the wide usages of composite materials. Moreover, the failure 
mechanisms of 3DWC under compression are very complicated because 
of the complex reinforcement architecture. Many experimental in-
vestigations have been conducted by Waas group at the University of 
Michigan to reveal the compressive failure mechanisms of textile com-
posites [4–8]. Quek and Waas [4] first experimentally investigated the 
biaxial compression/tension performance of braided composites. The 

experimental results indicated that the buckling and kinking of yarns are 
the dominant failure mechanisms. Then Pankow et al. [5] studied the 
high strain rate dependent compressive responses of 3DWC through split 
Hopkinson pressure bar (SHPB) testing. The effects of Z-pins on the 
compressive strength of Z-pinned woven composites have been evalu-
ated by Huang and Waas [6]. It was found that the initial damage zone 
caused by Z-pins insertion reduces the compressive strength. Subse-
quently, the flexural and compressive progressive failure responses of 
hybrid 3D textile composites were experimentally studied by Zhang 
et al. [7] and Patel et al. [8], respectively. Recently, Zheng et al. [9] 
conducted an experimental investigation on the compression properties 
of 3DWC. It was observed that the kinking of longitudinal yarns, 
inter-fiber fracture, pure matrix failure and interface debonding are the 
primary competing mechanisms within 3DWC. Although the main fail-
ure mechanisms can be obtained through the final fracture morphol-
ogies of macroscopic specimens, the initiations and evolutions of each 
failure mechanism cannot be isolated for independent analysis. 
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Consequently, high-accuracy numerical models are essential to fully 
understand the compressive loading behaviors and damage progressions 
of 3DWC. 

Progressive damage models have proven to be a promising approach 
to investigating the failure mechanisms of textile composites, where the 
damage initiations are determined by criteria and the stiffness degra-
dations are governed by damage evolution models. Many phenomeno-
logical failure criteria were put forward to identify the damage 
initiations of composite materials. Hashin [10] firstly proposed four 
quadratic formulas to identify the tension and compression fiber and 
matrix damage modes of unidirectional composites. After that Chang 
[11] introduced the material nonlinearity to the Hashin criterion, based 
on which Lessard [12] proposed the concept of in-situ strength and 
derived a fiber buckling failure criterion. In an attempt to improve the 
predictions of inter-fiber failure, Hashin criterion has been modified by 
Puck [13,14] by taking the action plane concept and Mohr-Coulomb 
friction into account. Derived from Puck’s action plane proposal, the 
physically based LaRC criteria [15,16] were also well-established to 
predict the inter-fiber failure and fiber kinking. However, all the criteria 
mentioned above are developed at the meso-scale based on the 
assumption that composites are regarded as homogeneous materials. 
This assumption is still questionable because the composite materials 
are actually composed of fiber and resin constituents with distinct ma-
terial properties. To independently determine the damage initiations of 
fiber filaments and resin at the microscopic scale, Ha et al. [17] pro-
posed the micromechanics of failure (MMF) theory by employing the 
stress and strain amplification factor (SSAF) [18]. For different load 
conditions and material systems of composites, MMF theory has 
exhibited prominent prediction capabilities [19,20]. Based on fully 
analytical solutions, Zhang and Waas [21] and Patel et al. [22] proposed 
the 2-CYL and NCYL concentric cylinder models to calculate the spatial 
strain and stress distributions within the fiber and resin constituents, 
which provides a distinct computational efficiency for the multiscale 
analysis of composite structure. 

In addition to predicting the onset of damage, appropriate damage 
evolution models need to be employed to control the evolutions of 
damage variables. The simplest form of damage evolution model is the 
stiffness reduction method [23,24]. Once the failure criteria are acti-
vated, the material properties directly degrade to a small magnitude, 
ignoring the gradual fracture process. However, according to Fang et al. 
[25], the empirical magnitudes of stiffness reduction present a signifi-
cant impact on the damage behaviors of composites. Moreover, the 
stiffness reduction method will inevitably lead to strong mesh depen-
dence of numerical predictions [26]. To alleviate the mesh dependence, 
a crack band theory was developed by Bažant [27], based on which 
multiple damage evolvement schemes depending on fracture toughness 
have been subsequently developed. Maimí [28] proposed an exponential 
evolvement model to capture the brittle fracture of composites, which 
effectively alleviates the mesh dependence problem. For easier numer-
ical implementation, a bilinear damage evolution model controlled by 
equivalent displacement has been developed by Lapczyk [26]. Based on 
a smeared crack approach, Zhang et al. [29] designed different 
traction-separation laws to differentiate the tensile and compressive 
damage evolutions of fiber tows. Subsequently, Zhong [30] and He [31] 
employed the linear and exponential evolvement schemes to simulate 
the fiber pull-out and bridging phenomena. It should be noted that the 
fracture toughness associated with different damage modes of fiber 
yarns are difficult to accurately measure through experiments. For the 
damage evolution prediction of fiber yarns, most scholars quoted the 
fracture toughness of similar material systems from other literature [28, 
31–34]. In some cases, scholars artificially assumed the values of frac-
ture toughness [25,26,35], which would bring uncertainty and weaken 
the reliability of simulation results. Furthermore, the fiber yarns inside 
3D textile composites with different fiber volume fractions will un-
doubtedly possess different fracture toughness, which further increases 
the difficulty of the experimental measurements. Therefore, how to use 

minimal material parameters to simulate the failure behaviors of 3DWC 
with high accuracy is an urgent problem to be solved. 

This paper proposes a novel micromechanics-based multiscale 
damage model to investigate the compressive failure behaviours of 
3DWC with minimal material parameters. With the built-in functions 
and Python scripts of TexGen, the highly realistic constructions of 
microscopic and mesoscopic representative volume cells (RVC) are first 
accomplished. Then the MMF theory is applied to bridge the meso-scale 
and micro-scale calculations by employing a set of SSAF. From the 
microscopic perspective, the compressive failure mechanisms of 3DWC, 
including the kinking of yarns, inter-fiber fracture and pure matrix 
failure, are caused by the damage of matrix. Consequently, a new 
method incorporating the MMF theory and three-dimensional kinking 
model is developed to identify the micro matrix failure within the fiber 
yarns. As a result, only matrix parameters are required to predict the 
damage initiations and evolutions, eliminating the necessity of using 
other material parameters that are generally difficult to accurately 
obtain through experiments. The compressive effective properties and 
damage accumulations of 3DWC are predicted by the newly proposed 
multiscale damage model and compared with the corresponding 
experiments. 

2. Multiscale modeling based on MMF theory 

2.1. Mesoscopic representative volume cell (RVC) 

As presented in Fig. 1(a), 3D woven composites are composed of fiber 
tows, matrix and tow/matrix interfaces at meso-scale, and the tows can 
be further divided into three categories: binder, weft and warp tows. The 
warp and weft layers are vertically distributed in the plane, along the 
global X and Y direction, respectively. To enhance the out-of-plane 
performance and integrity of the composites, the binder bundles are 
designed to interlock with weft tows in the thickness direction. The 
matrix phase for all impregnated bundles is TDE-86 epoxy resin. The 
reinforced phase of warp and weft tows is T700-12K carbon fibers, and 
the reinforced phase of binder tows is T300-3K fibers. The material 
properties of reinforced T700 and T300 fibers and TDE-86 matrix are 
listed in Table 1. 

Because the geometric structure of 3DWC is periodic, a mesoscopic 
RVC illustrated in Fig. 1(b) is identified to simulate the overall woven 
architecture. The material geometry of the top and bottom-most layers is 
different to that of the bulk composite. However, these layers represent 
only a small portion of the total material volume, and there is no reason 
to assume failure would initiate specifically in those layers. Therefore, to 
reduce the computational cost of the model, it is chosen to only create an 
RVC based on the internal geometry of the composites. It is noted the 
geometry modeling of the RVC is carried out in the TexGen software. 
With the built-in functions and Python scripts of TexGen, the cross 
sections and undulating paths of yarns can be generated parametrically, 
allowing for more realistic reconstruction of the woven architecture. The 
warp and weft tows are created by sweeping several ellipse cross- 
sections along an undulating path defined by sinusoidal functions, and 
the cross-sections of binder are constructed by lenticular functions. The 
detailed geometric parameters of the RVC can be seen in Ref. [36]. Given 
that the geometric structure of the meso RVC is complex, the C3D4 el-
ements with good boundary adaptability are adopted for mesh dis-
cretization. Because of the requirement of imposing periodic boundary 
conditions, the meshes on opposite boundaries need to be consistent. In 
addition, a Python script was compiled to automatically apply boundary 
constraints to the corresponding node pairs. To characterize the inter-
face debonding between yarns and matrix, zero-thickness cohesive ele-
ments (COH3D6) shown in Fig. 1(e) are created according to the 
common coordinates of tow and matrix elements. 

T. Zheng et al.                                                                                                                                                                                                                                   
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2.2. Microscopic representative volume cell 

At the microscale level, the fiber yarns within 3DWC are generally 
regarded as a unidirectional lamina. The effective performances of this 
unidirectional lamina can be characterized by the microscopic RVC with 
hexagonal fiber distributions over the cross section perpendicular to the 
fibers. Jin and Huang [18,37] have confirmed that for high fibre volume 
fractions (Vf ≥ 75%) a random packing trends towards a hexagonal 

configuration. As the Vf of the tows in the present case exceeds 75%, a 
hexagonal distribution is considered suitable to simulate the properties 
of yarn bundles. As illustrated in Fig. 2, L and W respectively represent 
the length and width of the micro RVC, which are both equal to 1, and H 
is the height and equal to 

̅̅̅
3

√
. Once the fiber volume fraction of yarns is 

determined, the fiber radius can be calculated by R =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3

√
Vf/(2π)

√

. 
Through the micro RVC, not only the elastic constants of the yarns can 
be according to the properties of the constituents, but also the strain and 
stress distribution of pure fibers and micro matrix can be determined, 
which makes it feasible to judge the microscopic failure based on the 
MMF theory [17]. 

2.3. Strain and stress amplification factor (SSAF) 

In this paper, the micromechanics of failure (MMF) [17] is employed 
to bridge the mesoscopic and microscopic calculations. By employing 
the strain and stress amplification factor, the strain and stress compo-
nents of constituents at the micro scale can be calculated by the stress 

Fig. 1. Geometric structure and mesoscopic RVC of 3D woven composites.  

Table 1 
The material properties of reinforced carbon fibers and TDE-86 matrix [30].  

Fiber: T700 Fiber: T300 Matrix: TDE-86 

Ef11 (GPa) = 230.0  Ef11 (GPa) = 221.0  Em (GPa) = 3.55  
Ef22 (GPa) = 18.20  Ef22 (GPa) = 13.81  νm = 0.33  
Gf12 (GPa) = 36.62  Gf12 (GPa) = 9.00  mt (MPa) = 80.0  
νf12 = 0.27  νf12 = 0.20  mc (MPa) = 241.0  
νf23 = 0.30  νf23 = 0.25  GC,m (N/mm) = 1.0 [25]   

Fig. 2. Microscale representative volume cell and key elements in fibers and matrix.  
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and strain components of fiber yarns at the meso scale. The SSAF can be 
defined as follows: 
{

σff = Mf ,σσf ; σfm = Mm,σσf
εff = Mf ,εεf ; εfm = Mm,εεf

(1)  

where Mf ,σ and Mm,σ indicate the stress amplification factor of the fiber 
and matrix within micro RVC, respectively, and Mf ,ε and Mm,ε indicate 
the strain amplification factors. It is noted that σf , σff , and σfm denote the 
meso stress of tows, micro stress of pure fiber and matrix, respectively, 
and εf , εff , and εfm denote the corresponding strain components. The 
complete forms of Eq (1) can be expressed as follows [18]: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ11

σ22

σ33

τ12

τ13

τ23

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ff

fm

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Mσ11 Mσ12 Mσ13 0 0 Mσ16

Mσ21 Mσ22 Mσ23 0 0 Mσ26

Mσ31 Mσ32 Mσ33 0 0 Mσ36

0 0 0 Mσ44 Mσ45 0

0 0 0 Mσ54 Mσ55 0

Mσ61 Mσ62 Mσ63 0 0 Mσ66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

σf 11

σf 22

σf 33

τf 12

τf 13

τf 23

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ε11

ε22

ε33

γ12

γ13

γ23

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ff

fm

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0

Mε21 Mε22 Mε23 0 0 Mε26

Mε31 Mε32 Mε33 0 0 Mε36

0 0 0 Mε44 Mε45 0

0 0 0 Mε54 Mε55 0

Mε61 Mε62 Mε63 0 0 Mε66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

εf 11

εf 22

εf 33

γf 12

γf 13

γf 23

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2) 

Because the stress and strain can be converted through constitutive 
equations at each scales, the relations between the strain and stress 
amplification factors can be derived as follows: 

{
σfm = Mm,σσf ⇒Cmεfm = Mm,σCf εf ⇒εfm = C− 1

m Mm,σCf εf

and εfm = Mm,εεf ⇒ so Mm,ε = C− 1
m Mm,σCf

(3)  

where Cm and Cf are the stiffness constitutive equations of the matrix 
and fiber yarns respectively. Therefore, in the actual calculation, it is 
enough to obtain the stress amplification factor, then the corresponding 
strain amplification factor can be calculated by Eq (3). Alternatively, the 
strain amplification factor can be obtained first, and then converted to 
obtain the stress amplification factor. As for the calculation of SSAF, a 
set of microanalyses on the micro RVC needs to be carried out. Due to the 
uneven distributions of stress and strain in the micro RVC, a total of 50 
fiber key elements and 56 matrix key elements shown in Fig. 2 are 
chosen as representatives. A parameter study has been conducted to 
prove the numbers of key elements are sufficient to obtain the conver-
gent SSAF. It was observed that the SSAFs obtained when using 2496 key 
materix elements were identical to those obtained using only 56 key 
elements. Therefore 56 key elements were considered sufficient. Six 
normalized meso stress cases are sequentially loaded on the micro RVC 
to calculate each column of the SAF matrix as follows. When the unit 
meso stress σf = [1, 0, 0, 0, 0, 0]T is applied, the stress components of 
each key element can be extracted, which allows the first column of Mf ,σ 

and Mm,σ to be calculated. The remaining five columns can be obtained 
by the same method, applying a unit load for the corresponding stress 
component, and setting the other components to zero. 

3. Compressive failure mechanisms of 3DWC 

According to the experimental observations as illustrated in Fig. 3 
[9], there are four primary failure mechanisms within 3DWC under 
compressive loadings, which are kinking of fiber yarns in longitudinal 
direction, inter-fiber fracture in transverse direction, pure matrix failure 
and yarns/matrix interface debonding. In this section, each failure 
mechanism is introduced separately and the corresponding damage 
initiation and evolution are also considered. 

Fig. 3. Primary failure mechanisms within 3DWC under compressive loadings [9].  
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3.1. Pure matrix failure and progressive damage model 

Although the matrix can be regarded as isotropic, it presents 
different tension and compression strengths. Both the von Mises stress 
σVM and first stress invariant I1 contribute to the damage initiation of 
matrix. In order to consider these two stress components, Raghava [38] 
proposed a modified von Mises failure criterion. 

φm =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4mtmcσ2
VM + (mc − mt)

2I2
1

√

+ (mc − mt)I1

2mtmc
(4)  

where mt and mc denote the matrix tension and compression strengths. 
The concept of equivalent stress is generally employed to transform 
complex multiaxial stress-strain relationships into uniaxial simple stress- 
strain relationships. Based on the failure criterion, the equivalent stress 
σeq,m of matrix can be deduced as follows: 

σeq,m =

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4mtmcσ2
VM + (mc − mt)

2I2
1

√

+(mc − mt)I1

]/

(2mc) (5) 

σeq,m defined by Eq. (5) can be also called Stassi’s equivalent stress 
[39]. According to Huang et al. [20], the matrix failure occurs when σeq,m 

exceeds the tensile strength mt. Correspondingly, the equivalent 
displacement δeq,m of matrix under complex multiaxial stress condition 
can be calculated based on the stress-strain relation. 

δeq,m = lc,m

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
2− 4νm
1+νm

)2

mtmcε2
VM + (mc − mt)

2J2
1

√

+ (mc − mt)J1

2mc(1 − 2νm)
(6)  

Where lc,m is characteristic element length, and the detailed expressions 
of the first strain invariant J1 and von Mises strain εVM can be written as 
follows: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

J1 = εm11 + εm22 + εm33

εVM =
1̅
̅̅
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(εm11− εm22)
2
+ (εm11− εm33)

2
+ (εm22− εm33)

2
+

3
(
γ2

m12 + γ2
m13 + γ2

m23

)/
2

√
√
√
√

(7) 

To alleviate the mesh dependency, a bilinear damage evolution 
model [25], controlled by fracture toughness GC,m, as well as δeq,m and 
lc,m, is adopted to control the damage evolution of matrix. The damage 
variable dm, tracking the matrix failure, can be defined as follows: 

dm = 1 −
δi

eq,m

(
δu

eq,m − δeq,m

)

δeq,m

(
δu

eq,m − δi
eq,m

), δi
eq,m ≤ δeq,m ≤ δu

eq,m (8)  

where δi
eq,m is the equivalent displacement corresponding to the initial 

matrix failure, and δu
eq,m corresponds to the ultimate damage state as 

indicated in Fig. 4. As mentioned above, the equivalent stress corre-
sponding to the initial matrix failure is equal to mt , that is σi

eq,m = mt. 
Therefore, δi

eq,m and δu
eq,m can be simply calculated through the following 

relations: 
⎧
⎨

⎩

δi
eq,m = lc,mσi

eq,m

/
Em = lc,mmt

/
Em

δu
eq,m = 2GC,m

/
σi

eq,m = 2GC,m

/
mt

(9)  

where GC,m denotes the fracture toughness. In Eq. (8), δi
eq,m and δu

eq,m can 
be calculated by material parameters. So as long as the equivalent 
displacement δeq,m is calculated by Eq. (6), the corresponding damage 
variable dm can be directly obtained without using the stress compo-
nents of the matrix, which greatly simplifies the actual numerical 
calculations. 

3.2. Transverse inter-fiber fracture of yarns 

Inter-fiber fracture of fiber yarns in transverse direction is a common 
damage mode within 3D woven composites, which is caused by matrix 
failure inside fiber bundles at the micro-scale. According to the MMF 
theory, the strain components of the yarns can be converted into the 
strain components of matrix in the micro RVC through the strain 
amplification factors. In actual calculations, the damage status on 56 
matrix key elements needs to be checked in turn. When one of the ele-
ments satisfies the failure criterion, the inter-fiber fracture of yarns is 
considered to be initiated. As mentioned in Section 3.1, it is only 
necessary to calculate the equivalent displacement of matrix, then the 
damage variable can be directly obtained. In this paper, df ,m is defined as 
the damage variable associated with inter-fiber fracture of yarns. 

df ,m = 1 −
δi

eq,m

(
δu

eq,m − δeq,fm

)

δeq,fm

(
δu

eq,m − δi
eq,m

), δeq,fm =max
(

δ(K)

eq,fm

)
, K ∈ [1, 56] (10)  

3.3. Kinking of yarns in longitudinal direction 

The kinking of yarns in longitudinal direction is initiated by initial 
fiber misalignments or microstructural defects [3]. According to Argon 
[40], the initial fiber misalignment results in certain shear stresses 

Fig. 4. The bilinear damage evolvement model for the pure matrix.  
Fig. 5. 3D kinking model of fiber yarns under complex stress states.  
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within yarns under axial compression, then these shear stresses would 
produce shear strain to further increase the misalignment angle of fiber, 
which will in turn increase the shear stress. Finally, once the matrix 
stresses between fibers satisfy the failure criterion, the kinking failure of 
yarns occurs. In this paper, a novel method incorporating the MMF 
theory [17] and 3D kinking model [16] is developed to identify the 
kinking failure of yarns. The axial frame (1 − 2 − 3), misalignment frame 
(1m − 2m − 3m) and kinking frame (1k − 2k − 3k) of yarns under complex 
stress states are illustrated in Fig. 5. The relationships between different 
coordinate frames are as follows: 1 − 2 − 3 rotates θ degrees around 1 
axis to get 1k − 2k − 3k, and 1k − 2k − 3k rotates φ degrees around 3k axis 
to get 1m − 2m − 3m. It is noted that σf , σk

f , and σm
f are the stresses of 

yarns corresponding to the axial frame, kinking frame and misalignment 
frame, respectively, and εf , εk

f , and εm
f denote the related strains. The 

angles θ and φ are functions of the meso stresses of the fiber yarns and 
the initial misalignment angle φ0.  

θ= arctan
(

2τf 23

σf 22 − σf 33

)/

2, φ=
φ0Gf 12+|τk

f 12

⃒
⃒
⃒

Gf 12 + σk
f 11 − σk

f 22
(11) 

In this paper, df ,kink is defined to correlate the kinking failure of yarns. 
It is known from Section 3.1 that the matrix failure within 1m− 2m− 3m 

frame can be simply determined by calculating the equivalent 
displacement of the micro matrix through Eqs. (6) and (8). As a result, 
df ,kink can be obtained by the following equations:  

df ,kink = 1 −
δi

eq,m

(
δu

eq,m − δm
eq,fm

)

δm
eq,fm

(
δu

eq,m − δi
eq,m

), δm
eq,fm =max

(
δm (K)

eq,fm

)
, K ∈ [1, 56] (12)  

where δm (K)
eq,fm denotes the equivalent displacement of K-th matrix key 

element, which is calculated from the micro strains εm (K)
fm of the matrix in 

misalignment frame. εm (K)
fm can be calculated by the strain amplification 

factor as follows: 

εm (K)

fm =M(K)
m,εεm

f , K ∈ [1, 56] (13)  

where the strains of yarns in the misalignment frame (εm
f ) can be ob-

tained by converting the strain components in the kinking frame (εk
f ) 

through the following coordinate transformations: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εm
f 11 =

(
εk

f 11 − εk
f 22

)
cos2 φ + εk

f 22 + γk
f 12 sin θ cos θ

εm
f 22 =

(
εk

f 22 − εk
f 11

)
cos2 φ + εk

f 11 − γk
f 12 sin θ cos θ

εm
f 33 = εk

f 33

γm
f 12 = 2

(
εk

f 22 − εk
f 11

)
sin θ cos θ + γk

f 12 cos 2 φ

γm
f 13 = γk

f 13 cos φ + γk
f 23 sin φ

γm
f 23 = − γk

f 13 sin φ + γk
f 23 cos φ

(14)  

where εk
f in the kinking frame can be obtained by converting εf in the 

axial frame: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εk
f 11 = εf 11

εk
f 22 =

(
εf 22 − εf 33

)
cos2 θ + εf 33 + γf 23 sin θ cos θ

εk
f 33 =

(
εf 33 − εf 22

)
cos2 θ + εf 22 − γf 23 sin θ cos θ

γk
f 12 = γf 12 cos θ + γf 13 sin θ

γk
f 13 = − γf 12 sin θ + γf 13 cos θ

γk
f 23 = 2

(
εf 33 − εf 22

)
sin θ cos θ + γf 23 cos 2 θ

(15)  

3.4. Yarns/matrix interface debonding 

In this work, the yarn/matrix interface debonding is captured by 
cohesive zone model. The constitutive responses of the cohesive inter-
face can be described by the following relations: 

σn =(1 − d)Knδn, τs = (1 − d)Ksδs, τt = (1 − d)Ktδt (16)  

where n, s and t indicate the normal and shear directions of the interface, 
respectively, and σn, τs, τt and δn, δs, δt indicate the related traction and 
displacement components. Considering the mixed-mode loadings within 
3DWC, the quadratic stress criterion is adopted to detect the interface 
debonding initiations. 
(
〈σn〉

/
σmax

n

)2
+
(
τs
/

τmax
s

)2
+
(
τt
/

τmax
t

)2
= 1 (17)  

where σmax
n , τmax

s , τmax
s denote the critical strengths of the interface. The 

〈x〉 operator means that the compressive normal traction has no influ-
ence on the debonding. Upon the initial interfacial debonding is detec-
ted, the gradual damage development is characterized by the linear 
softening scheme based on dissipated energies: 
(
Gn

/
GC

n

)2
+
(
Gs

/
GC

s

)2
+
(
Gt
/

GC
t

)2
= 1 (18)  

where Gn, Gs and Gt represent the fracture energies associated with 
normal and shear damage modes, respectively, and GC

n , GC
s and GC

t 
represent the related critical energies. Given that there are no accurate 
experimental data, the interface parameters in this paper are quoted 
from Ref. [31] because of the similar material system, where σmax

n =

50 MPa, τmax
s = τmax

t = 70 MPa, GC
n = 2, GC

s = GC
t = 30 N/m, and Kn =

Ks = Kt = 108 MPa/mm. 

4. Constitutive equations and numerical implementation 

4.1. Constitutive equations with damage variable 

The longitudinal and transverse load-bearing capacities of fiber 
bundles are associated with the damage variables df ,kink and df ,m, 
respectively. Once df ,m and df ,kink are calculated through Eqs. (10) and 
(12), the damaged constitutive equations of yarns can be described by 
the following relations [41,42]: 

σf =Cf (d)εf (19)  

where Cf (d) can be further expressed as follows:   

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
1 − df ,kink

)
C11

(
1 − df ,kink

)(
1 − df ,m

)
C12

(
1 − df ,kink

)(
1 − df ,m

)
C13 0 0 0(

1 − df ,m
)
C22

(
1 − df ,m

)
C23 0 0 0(

1 − df ,m
)
C33 0 0 0

(1 − ds)C44 0 0
SYM (1 − ds)C55 0

(1 − ds)C66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(20)   
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where the damage variable ds related to shear performance can be 
calculated by: 

ds = 1 −
(
1 − df ,m

)(
1 − df ,kink

)
(21) 

After the matrix failure initiation, the performance of the matrix will 
continue to decrease with the increasing deformation. In this paper, the 
stress-strain relationships of matrix, including the damage variable, are 
defined as σm = (1 − dm)Cmεm. 

4.2. Viscosity regularization and tangent constitutive tensors 

It should be noted that damage evolution in implicit algorithms 
generally leads to great convergence difficulties. To avoid this problem, 
the Duvaut-Lions viscosity regularization [43] is conducted in this 
paper. The time derivatives of damage variables are defined as follows: 

ḋ
v
f ,kink =

df ,kink − dv
f ,kink

η ; ḋ
v
f ,m =

df ,m − dv
f ,m

η ; ḋ
v
m =

dm − dv
m

η (22)  

where η denotes the viscous parameter. The regularized damage vari-
able of the I − th analysis increment can be deduced by backward-Euler 
methods: 

dv (I)
f ,kink =

Δtd(I)
f ,kink + ηdv (I− 1)

f ,kink

η + Δt
; dv (I)

f ,m =
Δtd(I)

f ,m + ηdv (I− 1)
f ,m

η + Δt
; dv (I)

m

=
Δtd(I)

m + ηdv (I− 1)
m

η + Δt
(23)  

where Δt is the time increment. It is known that accurate calculations of 
the tangent constitutive tensors are conducive to fast convergence rate 
for the numerical implicit algorithms. In this work, the tangent consti-
tutive tensors in damage configurations can be deduced as follows: 

σ̇=CT ε̇f ⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Cm,T =Cm(d)+
[

∂Cm(d)
∂dv

m

∂dv
m

∂dm

∂dm

∂δeq,m

∂δeq,m

∂ε

]

: ε

Cf ,T =Cf (d)+

[
∂Cf (d)
∂dv

f ,kink

∂dv
f ,kink

∂df ,kink

∂df ,kink

∂ε +
∂Cf (d)
∂dv

f ,m

∂dv
f ,m

∂df ,m

∂df ,m

∂ε

]

: ε

(24) 

The strain derivatives of the equivalent displacement for the matrix 
are presented in Appendix A. For the fiber yarns, the derivatives of df ,kink 

and df ,m with respect to the strain components of yarns are presented in 
Appendix B. The other terms in Eq. (24) can be simply calculated by the 

Fig. 6. The flow chart of the multiscale calculation procedure of 3D woven composites.  

Fig. 7. Compressive stress-strain curves of the 3DWC in warp direction.  
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formula presented in previous sections. 

4.3. Multiscale calculation procedure based on MMF theory 

The flow chart of the multiscale calculation procedure of 3D woven 
composites under compressive loading based on MMF theory is briefly 
displayed in Fig. 6. The newly proposed damage model is numerically 
integrated into ABAQUS with a user-defined subroutine UMAT. 

5. Results and discussion 

5.1. Stress-strain relations and effective properties 

The compressive stress-strain curve in warp direction of the 3DWC 
was predicted and displayed in Fig. 7, in comparison with the experi-
mental curves taken from Ref. [9], where six specimens with two widths 
were tested. It can be seen that the slope and the peak point of the curve 
obtained by prediction are slightly higher than those of the experiment, 
and the overall agreement is good. Initially, the predicted curve rises in a 
linear relationship. As the loading increases, the slope gradually de-
creases due to the damage accumulations inside the composites. When 
exceeding the maximum compressive stress point, the reaction force will 
quickly drop to a small value. The experimental and predicted effective 
properties of 3DWC are listed in Table 2, including the strengths, 
modulus and failure strains. The experimental results exhibit a certain 
degree of dispersion. The standard deviations of the strength, modulus 
and failure strain obtained by the experiments are 36.43 MPa, 2.72 GPa, 
and 0.084%, respectively, which are 7.35%, 5.13%, and 8.35% of the 
corresponding experimental averages, respectively. The average 
strength, modulus and failure strain are 495.47 MPa, 53.03 GPa and 
1.01% respectively, while the corresponding values obtained by the 
prediction are 522.95 MPa, 55.47 GPa, and 0.97% respectively. The 
errors of the results are all within 6%, which are less than the experi-
mental standard deviations, indicating the reliability and accuracy of 
the new micromechanics-based multiscale damage model. 

5.2. Damage accumulation process 

The initial damage locations and damaged element percentages 
corresponding to different failure mechanisms of 3DWC under 
compressive loading in warp direction are illustrated in Fig. 8. Damage 
element percentage is defined to measure the severity of failure, which 
can be obtained by dividing the number of damaged elements by the 
number of component elements. As can be seen, the fiber kinking df ,kink 
in warp tows, inter-fiber fracture df ,m in fiber tows, matrix failure dm and 
tows/matrix interfacial debonding SDEG, continue to accumulate as the 
compressive load increases. The detailed damage accumulation process 
of the meso RVC is intuitively displayed in Fig. 9, and the compressive 
strains at I, II and III locations are 0.80%, 0.97% and 1.10%, respec-
tively. When the compressive strain is 0.44%, the interface debonding 
first occurs in the area where the binder tow and the matrix are 
squeezed. Then, the inter-fiber fracture is detected due to the weaker 
transverse load-bearing capacity of fiber tows. The matrix is not prone to 

failure because of the hydrostatic pressure under compressive loads, 
thus only a small amount of matrix failure appear in the stress concen-
tration area at 0.67% strain. Finally, the fiber kinking in longitudinal 
tows initiates at 0.84% strain. After the final rupture of the meso RVC, 
the various failure mechanisms quickly accumulate in a short strain 
range. In the end, about 80% of the fiber elements suffer inter-fiber 
fracture, about 70% of warp elements suffer kinking failure and most 
of the interfaces are debonding, while there are few failure matrix 
elements. 

5.3. Influence of initial misalignment angle of fiber yarns 

In this paper, a novel method incorporating the MMF theory [17] and 
3D kinking model [16] is developed to identify the kinking failure of 
fiber yarns at the micro-scale. The fiber kinking failure is mainly caused 
by the longitudinal compressive stress σ11 and shear stress τ12 [15]. 
Based on the newly developed method, the kinking failure envelopes 
displayed in Fig. 10 of fiber tows with varied initial misalignment φ0 
under combined σ11 and τ12 stresses can be obtained. The compressive 
strengths of kinking failure are greatly sensitive to the fiber initial 
misalignments. As the shear stress increases, the compressive strength 
approximately presents a linear decreasing trend. When the shear stress 
increases to approach the shear strength, the envelope curves exhibit a 
slight nonlinearity. 

In reality, the fiber initial misalignments are randomly distributed 
throughout the experimental samples. In this paper, the normal proba-
bilistic functions are employed to characterize such stochastic distri-
butions. A user-defined subroutine SDVINI is written to assign the 
stochastic φ0 to each fiber element. As shown in Fig. 11, the initial 
misalignment angle in the mesoscopic RVC model varies from element 
to element and obeys the normal distribution. The influences of the 
initial misalignments on the compressive properties of 3DWC were 
investigated by conducting a parametrical study. The stress-strain 
curves of the meso RVC with six varied φ0 ranges are displayed in 
Fig. 11. The fiber initial misalignments have obvious influences on the 
compression failure strength and strain. Due to the different random 
seeds generated each time, the predicted curves with the same φ0 range 
exhibit small difference between each other. As the normal distribution 
range increases, the predicted strengths and strains gradually decrease. 
The meso RVC without fiber initial misalignment provides slightly 
overestimated predictions compared to the experimental results, but the 
differences are accepted as mentioned in Section 5.1. It should be noted 
that the fiber tows inside 3DWC undulate, thus even a simple uniaxial 
compression will lead to a certain fraction of shear stress. The greater the 
undulation amplitude, the greater the shear stress. Therefore, even if the 
fiber initial misalignment is not introduced, acceptable prediction 

Table 2 
The experimental and predicted effective properties of the 3DWC.  

warp compression [9] strengths (MPa) modulus (GPa) failure strains (%) 

Specimen-1 465.71 52.38 0.94 
Specimen-2 531.64 48.73 1.10 
Specimen-3 451.49 51.84 0.91 
Specimen-4 471.34 53.49 0.95 
Specimen-5 522.80 56.37 1.10 
Specimen-6 529.81 55.34 1.04 
Average 495.47 53.03 1.01 
Prediction 522.95 55.47 0.97 
errors/% 5.55 4.60 3.96  

Fig. 8. The initial damage locations and damaged element percentages of the 
3DWC under compressive loading in warp direction. 
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Fig. 9. The damage accumulations of the meso RVC: damage related to df ,kink in warp tow (a1)-(a3), df ,m in fiber tows (b1)-(b3), matrix failure dm (c1)-(c3), interface 
debonding between tows and matrix (d1)-(d3). 

Fig. 10. Kinking failure envelopes of tows with varied φ0 under σ11 versus τ12 stresses.  
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results can be obtained as long as the woven architecture is realistically 
constructed. Nevertheless, the introduction of appropriate fiber initial 
misalignment distributions can obtain more precise predictions that are 
more consistent with the experiments. Moreover, the experimental re-
sults present obvious dispersion, which may be attributed to the 
randomly distributed initial imperfections in the actual specimens. Thus 
it is more reasonable to adopt the stochastic φ0 distribution for nu-
merical simulations to characterize the scattered experimental results. 

5.4. Discussion on matrix plasticity and initial residual stress 

It should be noted that the matrix material studied in the present 
work is very brittle, and that the model presently does not include the 
effect of matrix plasticity. Therefore it could be expected that the 
model’s prediction accuracy might be lower for a composite containing 
a more ductile resin. Adding the capability to account for matrix plas-
ticity in future work might increase the applicability of the model. 

It is known that initial residual stresses can cause an apparent 
reduction of the strength of cured fiber tows and textile composites. 
Heinrich et al. [44] and D’Mello and Waas [45,46] have proposed a 
virtual manufacturing model to calculate these stresses. However, this 
method requires certain properties that need to be measured during the 
actual curing process. In the present study, the material was supplied in 
a cured state, and the material properties required for the virtual 
manufacturing method were not available. Therefore the present model 
does not model the effect of residual stresses. This is something that 
could be added in future work to increase the accuracy of the model. 

6. Conclusion 

A novel micromechanics-based multiscale progressive damage 
model is presented in this work to investigate the compressive failure 
behaviours of 3D woven composites with minimal material parameters. 
The highly realistic constructions of microscopic and mesoscopic 
representative volume cells (RVC) were first accomplished, then the 
MMF theory was employed to bridge the meso-scale and micro-scale 
calculations by introducing a set of SSAF. Some important conclusions 
can be summarized as follows:  

(1) The micromechanics-based multiscale model was adopted to 
predict the rupture strength and failure behaviors of 3DWC sub-
mitted to compressive loadings. The numerical predictions were 
compared with the experiments, and a good agreement (within 

6% in terms of strength, failure strain, and stiffness) was ob-
tained, which verifies the feasibility and accuracy of the model.  

(2) The newly proposed multiscale damage model identifies the 
micro matrix failure associated with the kinking of yarns, inter- 
fiber fracture and pure matrix failure by developing a new 
method incorporating the MMF theory and 3D kinking model. As 
a result, only matrix parameters are employed to predict the 
damage initiations and evolutions and good agreement with 
experimental results was achieved. This verifies the feasibility of 
modelling the compressive failure mechanisms of 3DWC without 
using other material parameters such as the fracture toughness 
and failure strengths of the yarns, which are generally difficult to 
accurately obtain through experiments.  

(3) The influences of stochastic initial fiber misalignments on the 
compressive properties of 3DWC were estimated by conducting a 
parametrical study. It was observed that the fiber initial mis-
alignments had great influences on the compression failure 
strength and strain. Additionally, appropriate introduction of 
fiber initial misalignment distributions can obtain more precise 
predictions and characterize the scatter of experimental results. 
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Appendix A. The strain derivatives of the equivalent displacement for the matrix 

For the pure matrix, the strain derivatives of the equivalent displacement in Eq. (24) can be expanded as: 

∂δeq,m

∂εm,j
=

∂δeq,m

∂J1

∂J1

∂εm,j
+

∂δeq,m

∂εVM

∂εVM

∂εm,j
(A.1)  

where the specific items in Eq. (A.1) can be further expressed as follows: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂δeq,m

∂J1
= lc,m

{

(β − 1) + J1(β − 1)2

[(
2 − 4νm

1 + νm

)2

βε2
VM + (β − 1)2J2

1

]− 1/2}/

[2β(1 − 2νm)]

∂δeq,m

∂εVM
= lc,mβεVM

(
2 − 4νm

1 + νm

)2
[(

2 − 4νm

1 + νm

)2

βε2
VM + (β − 1)2J2

1

]− 1/2/

[2β(1 − 2νm)], β = mc

/

mt

∂J1

∂εm11
=

∂J1

∂εm22
=

∂J1

∂εm33
= 1;

∂J1

∂γm12
=

∂J1

∂γm13
=

∂J1

∂γm23
= 0

∂εVM

∂εm11
=

1
2εVM

(2εm11 − εm22 − εm33) ;
∂εVM

∂εm22
=

1
2εVM

(2εm22 − εm11 − εm33)

∂εVM

∂εm33
=

1
2εVM

(2εm33 − εm11 − εm22);
∂εVM

∂γm12
=

3
4εVM

γm12

∂εVM

∂γm13
=

3
4εVM

γm13;
∂εVM

∂γm23
=

3
4εVM

γm23

(A.2)  

Appendix B. The strain derivatives of df ,kink and df ,m for the fiber yarns 

For the fiber yarns, the derivatives of df ,kink and df ,m with respect to the strain components of yarns can be expanded as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂df ,m

∂εf ,j
=

∂df ,m

∂δeq,fm

[
∂δeq,fm

∂J1

∑

L

∂J1

∂εfm,L

∂εfm,L

∂εf ,j
+

∂δeq,fm

∂εVM

∑

L

∂εVM

∂εfm,L

∂εfm,L

∂εf ,j

]

∂df ,kink

∂εf ,j
=

∂df ,kink

∂δm
eq,fm

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂δm
eq,fm

∂J1

∑

L

∂J1

∂εm
fm,L

∑

M

∂εm
fm,L

∂εm
f ,M

∑

N

∂εm
f ,M
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(B.1) 

It is noted that εL; εM; εN; εj = (ε11, ε22, ε33, γ12, γ13, γ23) in Eq. (B.1). The superscripts m and k of the strain components indicate the misalignment 
frame and kinking frame, respectively, and the subscripts fm and f indicate the micro strains within yarns and meso strains of yarns, respectively. 
According to the strain amplification factor, ∂εfm,L/∂εf ,M = Mm,ε(L,M). The other terms in Eq. (B.1) can be simply calculated by the formula presented in 
previous sections. 
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