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1 Introduction

Climate change is one of the major issues that hu-
manity is facing. The International Panel on Climate
Change (IPCC) recommends system transitions in dif-
ferent industries around the globe to limit the global
temperature rise to 1.5 °C [20]. Electrification The
maritime industry is responsible for around 3% of
the GHG emissions in the world [42]. The Interna-
tional Maritime Organization (IMO) has adopted sev-
eral measures to reduce GHG emissions from interna-
tional shipping. These measures include the manda-
tory Energy Efficiency Design Index (EEDI) for new
ships and Ship Energy Efficiency Management Plan
(SEEMP) [29, 49].

Electrification is considered as an important way
for reducing GHG emissions on ships [7]. Currently,
alternating current (AC) grids are employed on ships.
However, there is a clear trend of moving towards di-
rect current (DC) grids on ships. This is because of
their higher power density, ease of integration of al-
ternative fuels, higher power quality, and lower losses
[21]. A recent real case study demonstrated fuel sav-
ings of around 6% during the entire voyage [12]. More-
over, the area occupied and weight of the equipment
in the dc are reduced by 41% and 56% respectively
when compared with ac grid [12].

The dc grids on the ships can be either unipolar
(UDC) or bipolar (BiDC). The UDC grids uses two
conductors (+ and – poles) for power transfer. On the
other hand, a BiDC grid can have either two (+ and
– poles) or three conductors (+, neutral and – poles).
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The BiDC grids have a higher power density and flex-
ibility compared to UDC grids. This is because of
the availability of multiple point of connection of the
loads. Many examples of UDC grids on ships are avail-
able. However, BiDC grids are still in nascent stages of
development. Hence, there is a dearth of knowledge
about their implementation on ships. This article is
an attempt to reduce that gap.

The structure of the paper is as follows. In Sect. 2,
the methods and components for implementing
a BiDC grid is discussed. The discussion is mainly
focused upon the generation technologies (Sect. 2.1)
and methods along with the load connection meth-
ods (Sect. 2.2). The issue of power balancing in BiDC
grids are also discussed in Sect. 2.3. Thereafter, the
challenges of implementing BiDC grids on ships are
discussed in Sect. 3. Conclusions are given in Sect. 4.

2 Implementation of BiDC grids on ships

2.1 Generation

The generation of power in marine vessels usually
comprises of a prime mover and a generator in case
of electric propulsion system. Traditionally, the prime
movers are combustion engines fueled with Diesel or
heavy fuel oil, gas turbines, steam turbines, combined
cycle turbines, and nuclear engine [3]. The IMO has
put new limits on the fuel sulfur content (FSC) of
ships to 0.5% (0.1% in sulfur emission control areas).
This is considerably lower than the previous limit of
3.5% [18]. Therefore, the ship manufacturers are con-
sidering much cleaner fuels like liquefied natural gas
(LNG) for the prime mover [18]. Contrarily, unburnt
methane (methane slip) is a big issue when using LNG
in ships. Methane slip can be more severe for the cli-
mate due to its high carbon dioxide equivalence [18].
Moving forward, the shipping industry is considering
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Power-to-X (PtX) strategy to produce fuels like green
hydrogen [51]. The green hydrogen produced can be
used as fuel for the solid oxide fuel cells (SOFC) on
ships [48]. A detailed discussion on the fuels for the
prime mover is beyond the scope of this article.

The generators installed on the ships are usually
3-phase synchronous generators [22, 35]. The arma-
ture windings are arranged in Y so as to reduce the
phase to ground insulation requirements [35]. The
neutral of the generator is kept open to improve the
resilience of the grid as it will remain unaffected in
case of single phase to ground fault. According to
IEEE Standard 45.1 and 1709-2018, there are standard
voltages defined for generation and distribution on
ships. These are summarized in Table 1 [1, 2]. Due
to the various voltage and power levels of ships, it is
pertinent to have a discussion on the various types in
which the generation units are arranged in a ship.

Any voltage below 1500V is considered low voltage
(LV) in ships. According to IEEE Std 45.1, LVAC (480V
and 690V) and LVDC are used when the total installed
generation capacity is lower than 4MW and any single
load has a power rating of no more than 400kW [1, 3].
The examples of such ships would consist of ferry,
yacht, platform supply vessel, anchor handling vessel
etc.

An example platform supply vehicle with prospec-
tive BiDC grid is shown in Fig. 1. Here, the service
loads are low power loads and hence their converters

Tab. 1 System voltages for AC and DC ships
Power
Utilization

IEEE Std 45 IEEE Std 1709 Remarks

Generation AC: 120V, 208V, 230V, 240V, 380V, 450V, 480V, 600V, 690V, 2400V,
3300V, 4160V, 6600V, 11kV, 13.8kV
DC: 120, 240

DC: 1.5kV, 3kV, 6kV,
12kV, 18kV, 24kV, 30kV

The IEEE Std 45 only defines low voltage
dc

Distribution AC: 115V, 200V, 220V, 230V, 350V, 440V, 460V, 575V, 660V, 2.3kV,
3.15kV, 4kV, 6.3kV, 10.6kV, 13.2kV
DC: 12V, 24V, 28V, 115V, 230V, 270V, 380V

– The IEEE Std 1709 does not explicitly
define voltages for generation and distri-
bution

Fig. 1 Example of Plat-
form Supply Vessel BiDC
power system

are connected between a single pole and neutral. The
thruster and propulsion motors are high power loads.
Hence, their drives are connected between the + and
– poles.

There are several topologies of the three phase AC-
DC rectifiers that can be used to form the BiDC volt-
age. The commonly known topologies can be divided
into two parts: unregulated ac-dc rectifiers and ac-
tive pwm rectifiers. The unregulated ac-dc rectifiers
consist of diode bridge rectifiers and multiple pulse
rectifiers. They can be only used when there is a pos-
sibility of voltage regulation at the generator side [11].
Hence, they cannot be used with permanent magnet
synchronous generators. Keeping that in mind, be-
low are shown some of the ways in which a BiDC grid
can be created with three winding wound rotor syn-
chronous generator.

In Fig. 2, a three phase synchronous generator is
used to create a BiDC grid. The synchronous genera-
tor is interfaced with the BiDC grid using a three wind-
ing transformer and a 12 pulse rectifier [4, 32]. The
three winding transformer adds weight to the ship and
also consumes space. This leads to additional weight
and hence increases costs and reduces efficiency of
ships [36]. To circumvent these issues, a dual stator
synchronous generator can be used [11, 44]. Dual sta-
tor machines are usually used for MVDC systems and
when higher fault tolerance is required [11, 44]. For
a wound rotor synchronous generator, multi-winding
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Fig. 2 Different ways of creating BiDC grids on ships. aCreation of BiDC from single 3-phase synchronous generator, bCreation
of BiDC from dual stator synchronous generator, c Creation of BiDC from two synchronous generator

Fig. 3 3-level neutral point
clamped converter

transformer is not necessary. This scheme is shown in
Fig. 2b.

In this topology, the power imbalance between
a pole and neutral can lead to harmonics which in
turn lead to higher copper losses and torque pulsa-
tions [30]. Damper windings can be used to dampen
the oscillation but they increases the losses in the
generator [30]. The 12 pulse rectifier used in the
above methods shall have characteristic harmonics at
12k±1 times the fundamental frequency of the gener-
ator [34]. These harmonics usually get canceled when
the dc load at the output are balanced. Alternatively,
additional negative sequence voltage are induced on
the ac side when the dc loads are unbalanced [34].

When multiple generators are available aboard
a ship then two generators can be used to form
a BiDC grid as shown in Fig. 2c. In this scheme, the
redundancy provided by the two generators, when
used otherwise, is sacrificed.

As discussed above, the uncontrolled rectifier can-
not be used when there are unbalances in the grid.
There have been several catastrophic incidents on
ships due to harmonics [22]. To mitigate these is-
sues, controlled/active rectifier technologies become
necessary. There are several topologies of the con-
verters that can be utilized for creating a BiDC grid
on a ship. The three level topologies are the most

prominent and mature technologies. These consist of
the 3 Level Neutral Point Clamped (3LNPC) converter
and 3 Level T-Type (3LTT) converter. Figure 3 shows
a NPC converter interfacing an ac system with BiDC
system.

A comparison of all the three BiDC grid generation
method are compared in Table 2.

In case of unbalanced loads on the dc side, the
3LNPC converter can balance the voltage. The bal-
ancing of capacitor voltages in a NPC converter is an
active area of research [40]. One of the major issues
of NPC converter is the unequal power losses in the
different semiconductors [8, 24].

Moving forward, as the power levels are increasing
aboard a ship, the requirement of power converter
topologies also keep on changing. To satisfy the re-
quirement of high voltage on a ship, multilevel con-
verter topologies are also being utilized.

2.2 Loads

The loads on a ship primarily consist of propulsion
motors and hotel loads. In a BiDC grid, there are sev-
eral ways of connecting them. The higher power loads
can be connected between the poles; the lower power
loads can be connected between a pole and neutral.
These connections are also shown in Fig. 1. This has
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Tab. 2 Comparison of various BiDC generation methods
Parameter Single Sync Generator Dual Stator Generator Dual Sync Generator

Cost Low Medium High

Space Medium Low High

Weight High Low Medium

Fault tolerance Low Low High

the added advantage that the cost of power converters
for low power loads can be kept lower as the semicon-
ductor of lower voltage will be needed.

2.3 Power balancing

The issue of imbalance in power is inherent to BiDC
grids. Unbalanced power flow between poles and neu-
tral can lead to the shift in voltage of the neutral line.
This can lead to tripping of critical equipment relays
and reduced overall efficiency of operation [14]. Power
balancing can be done in three ways. The 3 level con-
verters shown in Fig. 2a and 2c can be controlled ap-
propriately to supply the required power by the dif-
ferent poles. The power converter connected to the
dual stator machine in Fig. 2b can be controlled in
the synchronous reference frame to balance the BiDC
grid [13].

Other methods of balancing the BiDC include in-
stalling dc-dc converters on the dc grid side. Various
suitable power converters for balancing a BiDC grid
are shown in Fig. 5 [23, 50]. These topology have sev-
eral advantages. They can be installed in a distributed
manner in the grid. Also, the power levels can be
much smaller as they are intended for handling lim-
ited power unbalance. Other strategies include using
the power converters already installed in the grid to
balance the power flow [26]. The features of the dif-
ferent topology are summarized in Table 3.

3 Challenges of BiDC implementation

Although the BiDC grids on ships seems desirable,
there are still several challenges to be solved to make
them feasible. These are discussed in this section.

Fig. 4 3 level T-Type con-
verter

3.1 Stability

In a dc ship, the propulsionmotors and other loads are
interfaced through power electronic converters with
the grid. When the converters are tightly regulated
(having large bandwidth), the loads behave as con-
stant power loads (CPL) [16, 45]. Due to the presence
of CPL, the shipboard power system can become un-
stable as they can lead to oscillations and even col-
lapse of the dc bus [45]. Therefore, before realizing
a dc shipboard, it is necessary to perform stability
analysis of the system.

A BiDC ship would inherently consists of several
power electronics converters for the generation and
consumption of power. A power electronic dominated
grid also brings more challenges to the stability of the
grid. When power electronic converters are used to in-
terface primemovers to the grid, the inertia of the grid
decreases [6]. The power electronic interface usually
consists of converters which uses phase locked loop
(PLL) to synchronize with the grid (in this case it is the
synchronous generator). However, these converter are
not suitable for forming the grid and also are unable
to share power if several generators are present. To
mitigate these issues, droop control and virtual syn-
chronous generator algorithms are used [25]. How-
ever, there is still a considerable research which is re-
quired to understand the issues in shipboard power
systems.

Power grids on ships are inherently weak. This is
because the installed generation capacity is not signif-
icantly higher than the highest total load demand. The
weak grids can become easily unstable when there
is a sudden change in the load requirements [46].
The system to be studied is divided into several sub-
systems of sources and loads [39]. Thereafter, sev-
eral methods are available to study the effect of pas-
sive components size on the system stability. Two of
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Fig. 5 Different topologies for a balancing converter. a Boost converter, b Sepic converter, c Zeta converter, d Cuk converter,
e B6 converter, f 3 level converter

the most used methods are eigenvalue analysis and
nyquist stability criterion [17]. These methods have
been extensively used to study stability of UDC grids.
However, in BiDC grids there are additional factors
which can lead to instability in the grid. In [47], the
author depicted a BiDC grid as a multi input multi
output (MIMO) system. Gershgorin Band Theorem
was used to quantify the interactions between the in-
put-output pairs. The authors also concluded that
the stability is greatly influenced by the imbalance of
power flow between the poles of the grid. The authors,
did not however, include the parameters of distribu-
tion lines in their analysis. More general method of
modeling and stability analysis of a BiDC grid involv-
ing the line parameters (resistance, self and mutual
inductance, capacitance) are given in [6, 52].

Tab. 3 Qualitative assessment of different balancing converters [23, 50]
Balancing Converter Switch Voltage Passive component amount Symmetric switch loading

Buck/Boost High Low Yes

Cuk Low High Yes

Sepic High High No

Zeta High High No

3 Level converter Low Low Yes

B6 converter Low High Yes

3.2 Protection

Protection is one of the most important criteria for
successful operation of a power grid. The protection
in a dc grid is much more challenging than an ac grid
because of the reasons as follows [12, 15, 19, 37, 41,
43].

� Contrary to an ac grid, a dc grid does not have zero
current crossing. When a fault occurs in ac grid, the
current interruption can be done during or around
the zero current crossing. Due to the current be-
ing near or equal to zero, the arc formed can be
quenched easily. This however, is not possible in
a dc grid. When a fault occurs in a dc grid, the cur-
rent do not decrease and hence a formidable arc is
formedwhen the contacts try to open. This can lead
to the erosion of the circuit breaker’s contacts and
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Fig. 6 De-energizing protection scheme for dc grids

in severe cases, the arc cannot be quenched at all
thus leading to catastrophic situations.

� The dc grids are usually fed with power electronic
converters. When a fault occurs anywhere in the
grid, the converters are shut down first to break the
supply for the whole grid. Hence, there is limited
selectivity in the detection and isolation of faults.

� During a fault on the dc side, the filter capacitors
and cable capacitance dump all their energy into
the fault in a very short time period. This leads to
higher rate of rise of current during the fault. This is
not the case in ac grid as the fault current is limited
by the transformer and cable impedance.

� The dc grids are usuallymade with power electronic
converterswhich do not provide sustained high cur-
rents when a fault occurs. Due to this, the detection
and selectivity in isolation becomes problematic.

There are several schemes for designing the protection
system for dc microgrids. One of the schemes is based
on de-energizing the whole grid [9]. In this approach,

Fig. 7 Protection concepts on LVDC ships. a Description of protection zones according to NPR 9090:2018 standard, b Example
of protection zones in ferry ship

first the main converter is turned off and the current
is reduced. When the current is below a predefined
value, the contactors are operated to isolate the faulty
power supplies. Lastly, the bus is re-energized. The
process is illustrated by Fig. 6. Traditionally, faulty
power supply is isolated when the current in the bus is
close to zero. However, the authors in [10] suggest that
the contactor of the faulty supply can be operated at
much lower current (in Fig. 6, this is 0.5 times nominal
current In) for isolation. In this way, the bus outage
time can be significantly decreased which improves
the power quality on a ship [9, 10].

Another scheme of protection in an LVDC grid is
given by the NPR 9090:2018 standard [31]. In DC
grids, some power sources have very high short circuit
currents and therefore portray risks for other equip-
ment in the system. In this standard, the generation
and load units are distributed in different zones based
upon their fault characteristics, short circuit (SC) &
nominal current limits, and current flow direction.
The characteristics of different zones are summarized
in Fig. 7a. A notional distribution system for a ferry
ship showing the protection zones is shown in Fig. 7b.
The ferry uses batteries as the main power source.
The loads are distributed in different zones depending
upon their power limits. For instance, propulsion mo-
tors have much higher power rating than the service
motors. Hence, the propulsion motors are assigned
to zone 2 and service motors are assigned to zone 3.
In zone 4, low voltage and low power loads are kept
which have only unidirectional power flow. Due this
distribution of power sources and sinks in different,
the risks due to faults in the grid can be lowered.

Grounding is also critical for power systems. The
selection of inappropriate grounding methods can
lead to corrosion issues in ships. The issue of cor-
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rosion is more severe in dc systems compared to an
ac system with the effect decreasing with increasing
frequency [38]. This is because of the non-oscilla-
tory current and voltage magnitude in dc. The direct
grounding of the negative terminals leads to the cor-
rosion of metal parts [28, 33]. This happens due to the
electrochemical reactions taking place on the metal
surface because of stray currents through the ground
electrode. This subsequently leads to higher oper-
ation and maintenance costs as the corroded metal
parts are sometimes invisible to the naked eye [5].

The study of grounding is even more important in
the BiDC grids with several power sources. In such
grids, when there are multiple points of grounding,
there is a possibility of the flow of circulating currents
between them. This is because of the voltage unbal-
ance in the grid which leads to different potential of
neutral line at various nodes. The extent of the effect
is dependent upon the type of grounding connection
and the grid architecture [27]. This can eventually in-
crease the rate of corrosion on a ship. Hence, design-
ing a proper grounding scheme is essential to ensure
safe operation of a ship.

3.3 Standardization

BiDC grids is an emerging technology with limited real
world applications. One of the reasons for the lim-
ited adoption of BiDC technology is the limited num-
ber of standards. The Netherlands is the first country
to publish guidelines for LVDC (350–1400VDC) grids
[31]. The standard segregates a dc system into several
safety zones. Each zone has its own risks and mea-
sures for protection.

For a BiDC grid on ship, IEEE Standard 1709:2018
provides guidelines for MVDC systems (1–35kV) [2].
However, as illustrated in Table 1, there are no stan-
dards for generation of LVDC on ships. Hence, it
becomes difficult for manufacturers to build devices
suitable for the purpose. Therefore, standardization
remains a challenge for BiDC grids on ships.

4 Conclusion

The recent regulations by the IMO have become the
key drivers for the changing infrastructure on ships.
The industry is now gradually moving towards the
concept of more electric ships to increase the effi-
ciency of operation and reduction of GHG emissions.
BiDC grids have several advantages compared to three
phase ac and UDC grids. A ship is nothing but a mi-
crogrid floating on sea. Hence, there is a great poten-
tial for BiDC grids to be implemented and utilized on
them.

In this article, the methods and challenges of im-
plementing BiDC grids on ships are discussed. There
are several ways of forming a BiDC grid on ships. The
choice of an appropriate technology is constrained by
the power quality requirements, costs, and space. Bal-

ancing converters are an integral part of a BiDC grid.
However, the choice of the type of balancing converter
can vary depending upon the size of ships. For small
ships, a single balancing converter might suffice. On
the other hand for large ships like cruise ships, mul-
tiple balancing converters might be needed. More re-
search is required to find the optimal placement of
these converters on large ships.

Although seemingly beneficial, the implementation
of BiDC grids on ships still have several challenges.
First limitation is ascertaining the stability of opera-
tion when large amount of power electronic compo-
nents are used. There is parity between the total in-
stalled generation and load capacity. Hence, the BiDC
grid becomes weak leading to instability. Secondly,
the biggest challenge is the unavailability of cost ef-
fective and reliable protection systems for BiDC grids.
The unavailability of standards for LV BiDC grids on
ships is also a challenge. Availability of such standard
would lead to greater acceptance of the technology in
the market. All the above challenges must be solved
concurrently to make BiDC grids feasible on ships in
the coming future.
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