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Abstract. Successful transition to renewable energy supply depends on the devel-
opment of cost-effective large-scale energy storage technologies. Renewable
energy can be converted to (or produced directly in the form of) green gases,
such as hydrogen. Subsurface formations offer feasible solutions to store large-
scale compressed hydrogen. These reservoirs act as seasonal storage or buffer to
guarantee a reliable supply of green energy in the network. The vital ingredients
that need to be considered for safe and efficient underground hydrogen storage
include reliable estimations of the in-situ state of the stress, especially to avoid
failure, induced seismicity and surface subsidence (or uplift). Geological forma-
tions are often highly heterogeneous over their large (km) length scales, and entail
complex nonlinear rock deformation physics, especially under cyclic loading. We
develop a multiscale simulation strategy to address these challenges and allow for
efficient, yet accurate, simulation of nonlinear elastoplastic deformation of rocks
under cyclic loading. A coarse-scale system is constructed for the given fine-
scale detailed nonlinear deformation model. The multiscale method is developed
algebraically to allow for convenient uncertainty quantifications and sensitivity
analyses.

Keywords: Energy storage · Poromechanics · Inelasticity · Algebraic multiscale
method

1 Introduction

Scaling up the energy storage technologies have been aworldwide focus of research for a
long time.More recently, as theworld increasingly shifts from fossil fuel-based energy to
green fuels, such as hydrogen, the necessity of designing efficient and sustainable energy
storage systems has also gained increasing attentions from the scientific community. A
well-known technology, already developed for this purpose, is the storage of natural gas
in underground geological formations (known as UGS, i.e., Underground Gas Storage).
These storage reservoirs, typically located between 1 to 5 km below the surface, act
as a buffer to guarantee a reliable supply of green energy (Trakowski 2019; Hashemi
et al. 2021). Depleted oil and gas reservoirs, which offer large-scale storage capacities
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(TWh), are well characterized, and often include the already-installed facilities that can
be repurposed for UGS (Zivar et al. 2021), thus reducing operational costs. The vital
ingredients that need to be considered in UGS include accurate and reliable storage
capacity estimation and risk assessment, especially to avoid failure due to changes in the
in-situ state of stresses (subsidence, induced seismicity, fault reactivation, etc.). Under-
ground formations are often highly heterogeneous over large (km) length scales. They
also exhibit inelastic behaviours which are uncertain to a large extent. These structures
also entail complex nonlinear deformations under cyclic loadings (Ramesh Kumar and
Hajibeygi 2021). Inelasticity can be modelled through several factors, including creep,
viscoplastic and thermoplastic physics. In this work, we incorporate it through empirical
creep laws, as pointed out by Firme et al. (2019). Notice also that the power law models,
such as Carter’s model (Carter et al. 1993) and Arrhenius law to account for temperature
dependency, are typical for modelling creep behaviour (Ramesh Kumar et al. 2021).

To capture all the geological heterogeneities demand for field scale sizes, algebraic
multiscale strategy is developed (Castelleto et al. 2015; Sokolova et al. 2019; Ramesh
Kumar andHajibeygi 2021) to solve the system at coarse scale.More precisely, this work
focuses on simulating sandstone reservoirs by accounting the inelastic deformation and
solving the coupled poro-inelastic system using a hybrid Finite-Element (FE) - Finite-
Volume (FV) scheme, at fine scale for mechanics and flow respectively. Built on this
hybrid system, an algebraic multiscale strategy is developed which allows for solving
the systems at much coarser scales to accommodate heterogeneity in the domain and
nonlinear physics.

Inwhat follows, the coupled consolidationmodelwith creep are presented in sections.
Section3presents the numerical formulation andSect. 4 discusses themultiscale strategy.
The numerical results are shown in Sect. 5, and Sect. 6 closes the presentation.

2 Coupled Consolidation Model

The governing equations considered in this work follow Biot’s consolidation theory
(Biot 1941). Neglecting gravitational effects, the mass conservation equation for a fully
saturated and deforming porous medium can be written as

1

M

∂p

∂t
− ∇ ·

(
k
μ

· ∇p

)
+ α

∂εv

∂t
= q, (1)

where M = [
cf ϕ + cs(α − ϕ)

]−1, with cf , cs, ϕ and α representing the fluid phase
compressibility, solid phase compressibility, porosity and the Biot’s coefficient, respec-
tively. Additionally,μ represents the fluid phase viscosity, k is the absolute permeability
(which is a 2nd order tensor), q is the source term, εv is the volumetric strain of the
porous rock, and p is the fluid pressure.

Considering Terzaghi’s effective stress principle, the momentum balance equation
is

∇ · (C : ∇su − αpI) = f, (2)
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where C denotes the 4th order stiffness tensor, I is the identity 2nd order tensor, ∇s is the
symmetric gradient operator and f is the equivalent of the sum of body forces (g) and
fictitious forces caused due to inelastic creep strain, i.e. f = g + ∇ · (C : εcr).

Creep is the tendency of a material to continuously deform under the application
of an external load. Because this is a time-dependent phenomenon, creep is usually
represented by a strain rate and it is highly dependent not just on effective stress σ ′ but
also on temperature T. For simplicity, this work only considers secondary (stationary)
creepwhich ismodelled by usingCarter (Carter et al. 1993) andArhenius laws to account
for stress and temperature dependency, respectively. In this case, the creep strain rate
can be expressed as

ε̇cr = 3

2
Ae− Q

RT σ n−1
VM s, (3)

whereA and n arematerial parameters,σVM is theVonMisses stress and s is the deviatoric
stress tensor, Q and R are the activation energy and Boltzmann’s constant, respectively.
Next we will briefly revisit the numerical method used to simulate the coupled flow-
mechanics system, with nonlinear creep as explained above.

3 Numerical Formulation

In this work, a hybrid FV-FE formulation is adopted for solving the model equations.
Particularly, FV is employed for discretizing the mass conservation equation (Eq. 1)
on a three-dimensional structured Cartesian corner-point grid, whereas a FE approach
is adopted for solving the mechanical problem (Eq. 2). Although both formulations
share the same computation grids, pressure and displacements are stored at different
positions, as shown in Fig. 1. The displacements, on the other hand, are stored at the
element vertices as in standard Galerkin FE formulations. A staggered grid is employed
where the displacements are stored in the vertex and the pressure is stored at the cell
centre.

Fig. 1. Element of a corner-point grid highlighting pressure and displacement positions.

After discretization with the FV-FE formulation and employing an implicit time
integration (i.e., backward Euler), the resulting system of equations can be expressed as

Ku + Lp = fu

Qu + Ap = fp
(4)

where matrices K, L, Q and A represent the effective stresses, pressure gradients, volu-
metric strains and the accumulation terms plus Darcy velocities, respectively. Further-
more, fp contains pressures and volumetric strains from the previous time step, and fu

comprises the boundary conditions and the fictitious creep forces.
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According to Eq. (3), the creep forces also depend on u, since σVM = σVM (u) and
s = s(u), thus Eq. (4) represents a nonlinear system of equations. For a given time level,
the residuals of Eq. (4) for an iteration k can be expressed as

rp,k = fp,k − Apk − Quk

ru,k = fu,k − Lpk − Kuk .
(5)

Following Newton’s method, Eq. (5) is expanded by Taylor series, i.e.,

rp,k+1 ≈ rp,k + ∂rp

∂u

∣∣∣∣
k

δuk+1 + ∂rp

∂p

∣∣∣∣
k

δpk+1

ru,k+1 ≈ ru,k + ∂ru

∂u

∣∣∣∣
k

δuk+1 + ∂ru

∂p

∣∣∣∣
k

δpk+1,

(6)

and the residuals at the current iteration k + 1 are made equal to zero, which results in
the following system of equations

[
∂uru ∂pru

∂urp ∂prp

]k[
δu
δp

]k+1

= −
[
ru

rp

]k
. (7)

Finally, the linearized system of Eq. (7) is iteratively solved monolithically for each
time step. Within each Newton’s iteration loop, pressure and displacements are updated
as uk+1 = uk + δuk+1 and pk+1 = pk + δpk+1.

4 Multiscale Formulation

Physical phenomena related to underground activities usually involve different scales,
with highly heterogeneous material properties. From the numerical perspective, this
represents a significant challenge, since the poromechanics system is mathematically
global (i.e., parabolic), and thus simulation domain must be as big as the physical geo-
system. Any localization, with assumed boundary conditions, will add to the uncertainty
of the assessments. Solving on the coarse scale, on the other hand, raises the question of
how to properly upscale the physical properties. Classically, homogenization or upscal-
ing approaches have been used to reduce the complexity of the system. However, for
geo-systems with heterogeneous coefficients which do not have separation of scales,
upscaling leads to significant and uncontrollable error norms.

To address this challenge, a multiscale finite element/finite volume formulation
(MsFEM/FVM) in which a coarse-scale grid is superimposed to a finescale grid is
adopted (Castelletto et al. 2017). The fundamental concept behind this work is to build
the system of equations in the finescale grid and then project and solve it onto to the
coarse-scale grid. Let us denote the finescale system of equations (Eq. 6) as

Af xf = bf , (8)

where the subindex f denotes the finescale grid. Let us denote the number of nodes in the
fine and coarse grids as nf and nc, respectively. For three-dimensional poromechanics,
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the dimensions of Af and bf are respectively (4nf × 4nf ) and (4nf × 1). Because, there
exists 3 displacements (in each physical dimension) and the scalar pore pressure.

The prolongation (P) and restriction (R) operators are then defined such that the
coarse matrix of coefficients and coarse independent vector can be obtained by

Ac = R Af P and bc = Rbf , (9)

respectively. This implies that R and P have dimensions (4nc × 4nf ) and (4nf × 4nc),
respectively. In this manner, the system of equations to be actually solved is Acxc = bc,
which is much smaller than Eq. (7) depending on the chosen coarsening ratio. After
solving the coarse-scale system, the fine scale solution can be retrieved through the
prolongation operator, that is, xf = Pxc.

The important detail in the above strategy is how to buildmatrices P andR, especially
when coarsening ratios are big enough to cause high variations of coefficients within
each coarse block. These matrices are composed of locally-computed basis functions,
associated to the mechanical and flow problems (Sokolova et al. 2019). These basis
functions are computed at the beginning of the simulation by solving the local problems
at each coarse grid cell. Details of this procedure for mechanical deformation under
nonlinear creep can be found in Ramesh Kumar and Hajibeygi (2021). In this work, flow
and mechanics basis functions are solved independently; and used to construct the block
diagonal prolongation and restriction operators.

5 Results

In this section, numerical results of the above formulation are presented. The well-
known Mandel test case is studied for benchmarking linear finescale and multiscale
elastic poromechanics. The schematic is shown in Fig. 2. The problem describes an
infinitely long poroelastic slab bounded by impermeable plates with fluid. A load is
applied on the top face at t = 0, and the drainage is allowed from the east boundary.

Figure 3 shows the poroelastic Mandel test case simulation results for both finescale
and multiscale. The parameters chosen for this test case are shown in Table 1. The
analytical formulation is obtained from (Wang 2000).

Fig. 2. The above illustration shows the schematic of Mandel test case. The domain is subjected
to roller constraint at south, west, a traction free surface in the east and a constant load is applied
on the top face. Drainage is allowed in the east face.

Figure 3a shows the variation of the pressure along the horizontal distance along
the domain. The overpressure at the initial timesteps is caused due to the contraction at



588 K. Ramesh Kumar et al.

Table 1. The parameters chosen for Mandel test case for poroelastic and poro-inelastic domain.

Load 2 Pa Time step 0.009 s tend 0.89 s

Grid 24 × 2 × 24 Poisson ratio 0.2 M 1e100 Pa

Q 60000 J/mole E 1e4 Pa b 1

A 5e4 n 2.5 T 300 K

Fig. 3. The above illustrations show the a) variation of pressure along the domain in horizontal
direction, b) variation of pressure with time and c) variation of horizontal deformation along the
domain in horizontal direction at four time instants [0.01, 0.1, 0.5, 0.9] × tend, for the grid size of
24 × 2 × 24 for both finescale and multiscale poroelastic domain. Note that for multiscale (MS)
simulations the coarsening ratios (CR) of 16 (i.e., 4 × 4) and 64 (i.e., 8 × 8) are used.

the plate’s drained edges, causing a buildup in the pore pressure. It can be seen that the
multiscale solution for coarsening ratio of 64 is not accurate compared to the finescale
solution. This could be further improved by using an iterative MS strategy beyond the
scope of this work Ramesh Kumar and Hajibeygi (2021). Figure 3b shows the pressure
variation with time for finescale and multiscale grids of different coarsening. It can
be seen that the trend is captured well by the MS procedure; however, the jump in the
pressure initially is slightly different from the analytical and finescale solution. Figure 3c
shows the variation of the horizontal displacement with distance along the domain of
the homogeneous rock. It can be seen that the MS pressure and deformation are very
close to the finescale and analytical solutions for homogeneous poroelastic rocks.

This test case is further analyzedwhen the rocks are considered inelastic and undergo
creep deformation. The parameters chosen for the creep formulation are presented in
Table 1. The chosen parameters are adopted in order to study the effect of creep defor-
mation on the poro-mechanical system both at finescale and multiscale. Figure 4 shows
the results of the simulation. Figure 4a and b show the results of pressure and hori-
zontal displacement along the x-axis when creep is incorporated. The effect of creep
is not prominently seen in these graphs, which are very similar to Fig. 3a and Fig. 3c.
To further quantify the effect of creep, the difference of the solutions with the elastic
domain is presented in Fig. 4c and 4d for both displacement and pressure, respectively.
They are shown along the horizontal distance for time instants [0.01, 0.05, 0.10, 0.15,
0.5, 0.9] ×tend. It can be seen that the difference in displacement and pressure increases
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with time which is caused due to permanent inelasticity that is incorporated. Secondly,
for time instants t2 and t3 the change in displacement and pressure is not smooth. This
could be caused by a sudden buildup of pore pressure in the initial timesteps, resulting
in non-uniform stress distribution in the domain. The magnitude of increase in pressure
and deformation caused due to creep is around 1%.

Fig. 4. The above illustrations show the (a) variation of pressure with time, (b) variation of
pressure along the domain in horizontal direction for time instants time instants [0.01, 0.1, 0.5,
0.9]× tend and (c) show the difference between the inelastic and elastic deformation and (d) show
the difference between the inelastic pressure and elastic pressure at time instants [0.01, 0.05, 0.10,
0.15, 0.5, 0.9] × tend.

The effect of creep using synthetic input parameters was not so pronounced in this
test case. However, with high heterogeneity in the physical domain and the parameters
chosen from the experimental data the effects of creep could be significant.

6 Conclusions

Successful scaling up of this technology requires, among others, scalable simulation
methods for nonlinear poromechanical systems. In this work, after developing a fully-
implicit fine-scale hybrid FE-FV scheme, an algebraic multiscale strategy, consistent
with the hybrid FE-FV fine-scale formulation, was developed. This allows for field
relevant test cases, in which heterogeneous geo-models are required to be solved for
many possible realizations. As a proof-of-the-concept, the well-studied Mandel test
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case was investigated in more details, especially on the applicability of the multiscale
method for coupled systems in the presence of creep.

Future work involves studying heterogeneous systems, with viscoplasticity and
thermos-plasticity included. Sensitivity analysis and uncertainty quantification will be
also studied in future developments, for specific potential sites. The developed multi-
scale strategy does not rely on any upscaling of parameters, aims at mapping the solution
space between fine and coarse scape; and thus can be employed for accurate and efficient
field relevant studies.
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