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Multimodal Learning Experience for
Deliberate Practice

Daniele Di Mitri , Jan Schneider , Bibeg Limbu , Khaleel Asyraaf Mat
Sanusi , and Roland Klemke

Abstract While digital education technologies have improved to make educational
resources more available, the modes of interaction they implement remain largely
unnatural for the learner. Modern sensor-enabled computer systems allow extending
human-computer interfaces for multimodal communication. Advances in Artificial
Intelligence allow interpreting the data collected from multimodal and multi-sensor
devices. These insights can be used to support deliberate practice with personalised
feedback and adaptation through Multimodal Learning Experiences (MLX). This
chapter elaborates on the approaches, architectures, and methodologies in five
different use cases that use multimodal learning analytics applications for deliberate
practice.

Keywords Deliberate practice · Psychomotor learning · Sensor devices ·
Multimodal interfaces · Intelligent tutoring systems

1 Introduction

In times of physical distancing and learning in isolation, digital learning is com-
monly associated with video-conferencing tools or online learning platforms such
as Learning Management Systems (LMS). Defining digital learning to these well-
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known digital tools is a limitation, both for what modern digital technologies can
offer and what someone can learn. With a desktop computer, one can sit down,
watch a video, read some material, but there is no guarantee that it will translate to
real-world performance. For example, it is not recommended to jump into the ocean
just after reading the manual on how to swim. The discrepancy between learning
time and learning gain can be attributed to the lack of actual authentic practice. The
authentic practice is performed within the context/physical world where often more
than one modality is involved. Learning in the physical world is multimodal, which
may explain the limitations of traditional desktop-based digital learning, which only
utilises visual and auditory modalities (Gruber et al., 1995). The current landscape
of educational technologies is also constrained by the modalities of interaction with
computers and smartphones.

The majority of current digital education still relies on traditional desktop
experiences, which are still the most common computational interfaces. However,
the increased availability of sensors as consumable technologies has paved the
way for the potential use of multimodal technologies for learning (Schneider et
al., 2015a; Di Mitri et al., 2018). By translating measurements of the physical
world into digitally readable formats, sensors enable awareness of the physical
environment in computing units which facilitate digital instructions in authentic
practice. For example, sensors such as microphones that capture audio signals can
be used to naturally train certain voice aspects like the voice volume for public
speaking or voice pitch for singing. Furthermore, processing units have gotten
smaller and faster, reducing the overall size of computing devices, making wearable
technologies more comfortable and unobtrusive to use, and allowing for near to
real-time calculations on sensor data input. Works on sensor fusion further facilitate
a complex eco-system of sensors that can monitor various attributes of the physical
environment and interactions between them. For example, Augmented Reality
(AR) utilises multiple sensors such as cameras, accelerometers, and gyroscopes to
provide users with affordances for natural multimodal interactions and wearable
displays via which digital instructions can be provided during authentic practice
(Guest et al., 2017). Such technologies offer unique learning opportunities via
multimodal learning experiences (MLX). In this book chapter, we elaborate on
the approaches, architectures, and methodologies derived from five different case
studies of technologies providing MLX for deliberate practice with the purpose to
present a novel perspective and the potential impact of educational technologies
with new multimodal interfaces.

We define MLX as any learning activity using more than two modalities within
an authentic learning setting. The use of multimodality is founded on three basic
principles: (1) sensors, (2) authentic practice, and (3) immersive and ubiquitous
technologies.

Sensors Data from a single sensor or modality are usually insufficient to reliably
capture and explain the complex interactions between the learner and the environ-
ment that results in learning (Di Mitri et al., 2018). For example, by tracking the
heartbeat of a learner, it might be difficult to identify if the learner is sleeping or fully
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concentrated watching an educational video. An additional eye-tracking sensor, in
this case, can be helpful to support the interpretation of the heartbeat. Learning in an
authentic setting (e.g. an industry workplace) naturally comprises interaction using
multiple modalities. MLX makes use of multiple modalities and hence, associated
sensors to support digital learning in an authentic setting.

Authentic Practice Desktop-based interactions have constrained support provided
by educational technologies to the cognitive domain, limiting practice to traditional
naive drill-based learning. This limitation often results in learners using educational
technology failing to transfer learning and demonstrate expert performance in the
real world (Clark & Voogel, 1985). Watching video instructions on how to ride
a bicycle is not likely to automatically translate to learning to ride a bicycle.
To learn how to bike, the student must use a bicycle, and in doing so, they are
practicing in an authentic context. Multimodal learning technologies merge learning
and authentic practice, which increases the likelihood of better performance in a
real-world setting. Furthermore, multimodal technologies also show affordances
that support deliberate practice in authentic settings, fostering efficient and effective
learning of skills.

Immersive and Ubiquitous Technologies Beyond only supporting learning in
an authentic setting, multimodal technologies can push the learning experience
further by creating immersive and ubiquitous learning environments. Multimodal
technologies such as AR create immersive environments by augmenting digital
content to the physical world, enabling immersive learning at any time and place.
These technologies make it possible to simulate environments like the audience of
a presentation while practicing to speak in public. Moreover, such technologies
can present feedback and instruction unobtrusively. For example, in the aircraft
maintenance training use case, the necessary instructions can be shown in the direct
path of vision of the learner.

Multimodal technologies enable educational technologies to be designed around
the learning activities instead of the device. They promote ubiquitous and construc-
tivist learning while facilitating immersive, authentic practice. This chapter will use
the term “MLX systems” to indicate the various multimodal sensor-based immersive
and ubiquitous technologies that support learning. By practicing in an authentic
setting, learners can reduce the gap between knowledge acquisition and application.
However, it does not account for the attainment of expertise. Consistent progress
towards expertise requires deliberate practice, a particular type of purposeful and
systematic practice that needs to focus attention and repetitive executions to improve
a particular skill (Ericsson et al., 1993), which will be further discussed in the
following section.
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2 Multimodal Learning Theories

2.1 Embodied Learning

Multimodal learning, simply put, is learning with multiple modalities/senses. In
a standard classroom, we often use two modalities to learn, namely visual and
auditory. In line with this, multimodal learning proposes using multiple senses,
often more than two, for effective learning and skill acquisition. For example,
Juntunen (2020) and Odena (2012) argue that multimodal learning helps learners
retain knowledge for a longer time. Juntunen (2020) also argues that multimodal
learning is inseparable from embodied learning and is a way to promote embodied
learning. Embodied learning views learning and skill acquisition as grounded in
the body and the environment it is operating. Since senses, which are functions of
the human body, are the only way humans can perceive the environment, it can be
argued that senses play a vital role in learning. Multimodal learning aims to leverage
this and design learning environments that use multiple modalities/senses and foster
embodied learning.

Embodied learning involves perception via senses, motor activity, and introspec-
tion that helps to assimilate better knowledge (Robbins & Aydede, 2009; Clark et
al., 2019). For example, children learning language by writing have shown better
recall and recognition of the characters and more brain activation (Longcamp et
al., 2003). This claim is homogeneous to Clark and Paivio (1991)’s assumption
in Dual coding theory, which states that humans process information via visual
and auditory means without a cognitive load overhead. For example, Chandler
and Tricot (2015) note that body movement, such as gestures, can help offload
working memory, which in turn allows working memory resources to be used in
creating a deeper understanding. Besides, Clark et al. (2019) and Kiefer et al. (2015)
state that embodied learning also leads to better recall rates of training. Embodied
learning and, therefore, Multimodal Learning offers various benefits for learning.
Additionally, in the following sections, we would like to argue that multimodal
learning and embodied learning-based learning environments have the potential to
foster deliberate practice.

2.2 Deliberate Practice

Learning occurs via the repeated perception-action cycles, which is central to the
ideas of Embodied learning. In addition to sheer repetition, Ericsson et al. (1993)
claim that conscious and structured practice is required for sustained improvement.
Goldman Schuyler (2010) also states that embodied learning does not occur
automatically via sheer repetition and requires awareness. In both cases, the authors
claim that a conscious form of practice is required, also known as deliberate practice.
This practice, however, requires a high cognitive load. Learning in an embodied
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manner distributes the cognitive load among the body and environment, i.e. the
senses, as also claimed by the Multimedia theory of cognitive load (Hutchins 1995).
Therefore, integrating embodied learning into deliberate practice can help better
manage cognitive load. Hence, we view deliberate practice and embodied learning
as complementary concepts.

Ericsson et al. (1993) define deliberate practice as a conscious and highly
structured activity, the explicit goal of which is to improve performance. However, it
is difficult for novice learners to practice deliberately, as it is cognitively demanding
to be conscious of their performance (Rikers et al., 2004; Ericsson et al., 2007).
Goldman Schuyler (2010) also claims that developing the capacity to act with
awareness – to be fully present to what is taking place – is fundamental to embodied
learning as well. Nonetheless, embodied learning and multimodal learning claim to
distribute the cognitive load among the body/its senses and modalities, increasing
the likelihood for the learner to practice deliberately. A key assumption behind the
distribution of cognitive load to the environment is that the learner must practice
within the context, i.e. learners will learn a skill better by actually practicing it in
the authentic context. Neelen and Kirschner (2016) also claim the same by arguing
that deliberate practice must be done in an authentic setting. This requirement for
an authentic setting can also better explain/foster transfer of learning observed in
embodied learning.

Practicing deliberately is a complicated endeavour that entails many more
variables in practice and their interrelationship, which must be explored further.
Regardless, embodied learning methods are apt to support deliberate practice,
especially in novices, as they provide strategies for better cognitive load manage-
ment. Multimodal learning technologies such as sensors, augmented reality, etc.,
can facilitate learning environments that foster embodied learning and, eventually,
deliberate practice. Hence, multimodal learning technologies show potential for
training psychomotor skills. Therefore, in this chapter, we aim to present our
experience working with it in the context of psychomotor skills development.

3 Engineering Aspect

MLX systems need to be able to track the learners’ performance while deliberately
practicing their tasks. Ideally, as unobtrusively as possible, learners can focus
on the practice rather than on the interaction with the technology. Sensors are
technologies that enable the unobtrusive tracking of learners while engaging in
deliberate practice. Sensor data, however, is noisy and generally has poor semantic
value; therefore, in many cases, multiple data sources are needed to do a reliable
analysis of the learners’ performance. Multimodal data introduces multidimensional
complexity. Tracing or analysing multiple modes of interaction implies that the
efforts for data gathering and inference making must be multiplied. As compared to
log data, sensor-based signals are highly dimensional and have low semantic values
(Dillenbourg, 2016). Learning analytics, by their definition, aims to ultimately
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support learners in the environments where the learning occurs (Greller &Drachsler,
2012). The use of MMLA for deliberate practice can be pictured as a Multimodal
Feedback Loop, i.e. a data-informed cycle in which the data gathered from the
learner undergoes a series of steps to ultimately come back to the learner in the
form of feedback and actionable information for the user. Despite, such steps vary
depending on the specifics of the learning domain, can group they can be grouped
in the following “Big Five” challenges for MMLA: (1) data collection, (2) data
storing, (3) data annotation, (4) data processing, and (5) exploitation (Di Mitri et al.,
2019b). Engineering MMLA systems that tackle each of these challenges requires
the use of complex and interconnected systems resulting often in a time-consuming
development task.

3.1 Architecture Overview

To lower the entry point for MMLA and support current and future researchers
in leveraging the potentials of multimodal data for learning, we introduced the
Multimodal Pipeline, a generic technological framework that can serve as an
architectural blueprint for MMLA/MLX projects (Di Mitri et al., 2019b). The
Multimodal Pipeline introduces a set of generic solutions to the above-mentioned
“Big Five” challenges introduced by multimodal data, namely the collection, stor-
ing, annotation, processing, and exploitation of multimodal data. The Multimodal
Pipeline is a process model, which is directed primarily at research purposes, i.e.
the data of the learners are collected to research and unfold particular aspects of
learning. In the future, we can imagine that systems following the blueprint of the
Multimodal Pipeline can reach and enter a production stage in which the data from
learners are systematically collected in their learning contexts.

In the following sections, we describe the components of the Multimodal
Pipeline by analysing four functional layers as represented in Fig. 1: (1) the
interaction layer, (2) the data collection layer, (3) the feedback layer, and (4) the
data layer.

3.2 Interaction Layer

The interaction layer refers to the user interface (UI) indicating the set of sensors
and actuators, including the applications with which the target user (most often the
learner and the tutor) interacts. In multimodal interaction, the UI usually comprises –
but not exclusively – non-graphic interface elements, meaning that in addition
to displays, various wearable sensors, cameras, or internet of things devices are
involved. In some examples, the multimodal interfaces are accompanied by some
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Fig. 1 Structure of the MLX system

types of displays for visual feedback to the learner. One example is the Calligraphy
tutor (Limbu 2020), which uses the capacitive display of a tablet in conjunction with
the digital pen and the myographic device to train character writing skills in foreign
alphabets. Another example is the Presentation Trainer, which uses a large display
connected to a depth camera that provides real-time feedback on the speaker’s body
position and presentation style (Schneider et al., 2015). Both examples are further
described in Sect. 5.
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3.3 Data Layer

The data layer deals with data collection, storing, annotation, and processing. The
first two challenges are addressed by theMultimodal Learning Hub (LearningHub),
a research prototype that allows for a customised collection of learning experiences
(Schneider et al., 2018). The LearningHub enables the researcher to collect data
from various sensor applications and to obtain synchronised session files into a
custom file format. In its current version, the LearningHub supports the recording
and storage of data from a limited number of commercial sensor devices.

Multimodal data are noisy and difficult to interpret. The Visual Inspection Tool
(VIT) (Di Mitri et al., 2019b) allows visualising and annotating the data collected
by the LearningHub. This tool helps experts to design interventions. It is the basis
for further developments towards general learner data analysis support.

3.4 Feedback Layer

The feedback layer implements the Tutoring model, which characterises the
approach for providing feedback. The feedback of MLX systems is distinguishable
between (near) real-time and retrospective feedback. The real-time approach
is typically used for steering the learner towards the ideal learning trajectory.
This feedback can consist of correction, nudges, or other forms of automatic
intervention which is popular among the Intelligent Tutoring System community.
The retrospective feedback instead includes either the novice or the learner in
the assessment process. Examples of retrospective feedback are learning analytics
dashboards which can brief the execution of the task for stimulating self-reflection.

3.5 Task Layer

The task layer represents the learning and training tasks a learner needs to go
through. Learning tasks can be highly diverse. Consequently, there is not a one-
size-fits-all solution for all use cases where MLX systems can be employed. Every
experimental scenario has specific requirements and constraints that are unique from
other scenarios. Before deciding to utilise a particular system for a learning session,
the engineering part should collect system requirements and constraints. We talk in
this case about the ‘task model’, which means considering all aspects related to the
learning task, including how long it lasts, what age are the learners, what meaningful
actions are they supposed to take during the task, which modalities are best to track
during this task. Yet, there is limited understanding of which sensors and modality
are best matching the sensors. The literature review from Schneider et al. (2015a)
provides the first analysis to best match the sensor devices to types of psychomotor
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learning tasks. Yet, at this stage, the matching between learning activities, sensor
devices, and modalities of interaction is best found as a result of compromise of
what has been proven to work and what is technologically feasible.

3.6 The MLX System into Teaching

With the multimodal architecture presented in Fig. 1 and described in the previous
sections, we have detailed a general MLX architecture. It is relevant to describe how
this architecture is embedded into the teaching and learning process of psychomotor
skills training. The use of the MLX system for psychomotor skills training promotes
Deliberate Practice which is the sequence of learning sessions with graduating
criteria that the learner takes autonomously that feature both real-time feedback
and retrospective feedback at the end of the session. They also provide the mentor
with high fidelity representation of the student’s practice session, which allows
them to provide more effective feedback asynchronously (e.g. hours or days after
the learner has practiced with the MLX system). The AI-generated feedback of the
MLX system does not replace human feedback but can complement it.

4 Research Methodologies

The mere act of developing an MLX system for learning is no guarantee that it will
support learners in improving their skills. It might as well cause adverse effects by
distracting, confusing, or forcing the learner to perform cumbersome interactions
with the MLX system. Therefore, it is important to follow a methodological
approach for developing and evaluating MLX systems for deliberate practice.

MLX for deliberate practice exploits the use of emerging sensing and display
technologies to support the deliberate practice of specific skills. This exploitation
of technologies requires the design, development, and evaluation of educational
prototypes. Therefore, the overall methodology commonly conducted in this field is
based on Design-Based Research (DBR), using the proposed engineering aspect of
MLX systems as a blueprint to develop technological solutions. DBR is an iterative
research methodology, which consists of designing, developing, and evaluating pro-
totypical solutions (Anderson & Shattuck, 2012). This methodology is commonly
used in the learning sciences to create and refine educational interventions. High-
quality design-based research studies commonly have characteristics such as the
involvement of multiple iterations, being situated in a real educational context,
close collaboration between researchers and practitioners, focusing on the design
and evaluation of the significant intervention, use of mixed methods, etc.

Currently, MLX for deliberate practice is an emerging field of study. At the
moment no established best practices indicate the number of iterations needed nor
well-defined procedures for each of the iterations. Based on our studies on MLX for
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deliberate practice, the following subsections present basic descriptions and pointers
about important considerations for the first few iterations when researching MLX
for deliberate practice.

4.1 First Iteration

In the case of the research of multimodal technologies for deliberate practice, the
first iteration following DBR consists of the design, development, and evaluation of
a proof of concept. Before starting with the first design phase, it is important to do
a requirement analysis where one selects a skill to be developed through deliberate
practice supported by multimodal experiences. In other words, the development of
which skill do we want to support?

Once the skill is selected, it is important to do a part of the task analysis because
skills usually consist of sub-skills. We define sub-skills as unit aspects of the
complex task that cannot be further broken down and can be practised by itself (van
Merriënboer et al., 2002). For this step, first, one needs to identify the attributes and
performance indicators that the prototype will support. For example in the scenario
of practicing public speaking skills, voice volume, body posture, etc. can be the
selected attributes or performance indicators. After the requirement acquisition, one
needs to design the intervention that the tutor will provide to learners based on the
selected performance indicators. In the example of practicing public speaking, the
intervention could be the display of a message indicating the learner to speak softer
when the learner is speaking above a predefined threshold. To guide this fourth step,
models like Instructional design for Augmented Reality (ID4AR) from Limbu et al.
(2018) can be used. ID4AR, which is based on the 4C/ID model (van Merriënboer
et al., 2002), supports the holistic design of multimodal learning environments
that support deliberate practice, with individual interventions for each attribute or
performance indicator.

After the task analysis is conducted, it is important to design the setup configura-
tion for the MLX system for deliberate practice. This step requires the identification
and selection of hardware devices required for the tutor. There are three distinctive
hardware devices needed for the development of such a tutor. Sensors to track the
learners’ performance, a processor to analyse the captured performance, and output
devices that present the results of the analysis back to the learner/teacher. The
selected hardware highly depends on the skill, for example, if the skill is something
like running, cycling, etc., to train the skill, the learner needs to move in space. In
such a case, wearable hardware is more suitable than static. While in cases where the
learner remains stationary such as practicing Cardiopulmonary Resuscitation(CPR),
ambient sensors and displays can be a better option.

The development of the proof of concept MLX system for deliberate practice
comes after its design phase. This phase is usually more problematic than expected,
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especially for this first iteration. Rather than reinventing the wheel, the MLX system
(See Sect. 3) presents a model that can serve as a blueprint to develop MLX system
prototypes.

The evaluation of the MLX system proof of concept is the last phase of the first
research iteration. This last phase comprises two main steps: conducting user tests
and evaluating the results of the tests. Conducting user tests is an activity that needs
to be carefully planned. Before starting the tests, one needs to define the goals of
the evaluation, target users of the tutor, and the evaluation procedure.

The goals of the evaluation must align with the insights that user tests can
provide. For this first iteration, user tests can reveal important aspects regarding
the interaction with the tutor and their usability issues. They also provide crucial
information concerning the appropriate setup of the tutor for its effective use and
evaluation.

In this first iteration, explorative instruments such as questionnaires and surveys
are helpful to provide a general idea of how the interaction with the multimodal
tutor is perceived by the users. Questionnaires regarding user experience, usability,
and technology acceptance are useful for this goal. Nonetheless, at this point of the
research, an analysis of the interactions between users and the tested multimodal
tutor and qualitative data provided by the users that tested the system can bring
better insights into the necessary improvements for future versions of the tutor.

Another possible goal of the user tests is to investigate whether the data collected
by the sensor setup is good enough to gain insights into the learners’ performance.
Artificial intelligence, more specifically machine learning approaches, can be very
helpful for this goal. To implement these machine learning approaches, it is
important to first annotate the collected sensor data. The sensor data is in many
cases not possible to be directly interpreted by humans, therefore, to perform the
annotation task, video recordings of the user tests are needed. By looking at the
videos, human experts can analyse the learners’ performance and annotate the
sensor data accordingly. For example, in the study of Di Mitri et al. (2019a), a
proof of concept of a multimodal tutor for the deliberate practice of CPR was
developed. User tests were conducted to investigate if the data collected by the
proposed sensor setup allowed the identification of a good CPR technique. In this
study, human experts examined the video recordings of the user tests, identified
correct and incorrect techniques, and correspondingly annotated the sensor data with
the help of the VIT (Di Mitri et al., 2019b).

4.2 Second Iteration

The first iteration can provide sufficient insights to move an MLX system prototype
beyond the proof of concept. The design phase of this second iteration includes a
prototype design and a user interaction design. The first step in the design of the
prototype consists of designing solutions to address the challenges pointed out by
the results of the first iteration. In this second iteration, the prototype design might
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include requirement acquisition studies with experts in the field to identify important
aspects that the multimodal tutor should support based on what is technologically
feasible to implement. Whether experts should be included for the requirement
acquisition in the first iteration or in this second one is a chicken and the egg
problem. Some arguments for including experts after the first iteration, is that they
can see and experience a working prototype and based on their expertise, once
they see what is possible, they can provide valuable input for the MLX system.
An example of this type of requirement acquisition is depicted in the study of
Schneider et al. (2017), where authors interviewed experts on public speaking to
identify non-verbal communication aspects that could be practiced with the use of
their Presentation Trainer prototype.

Results from the previous iteration can also provide insights that support the
design of the user interaction with the MLX system. For example, results from the
study of Schneider et al. (2015b), show that, for the effective use of the Presentation
Trainer, learners should be familiar with the feedback that they might receive, and
should not improvise while practicing their presentations.

The development phase of this second iteration usually is more straightforward
than the first one because researchers and developers are already familiar with
the used technologies and the system architecture to follow. However, it still
requires considerable time and effort on fine-tuning several aspects, such as UX,
software reliability, of the prototype to reach a state that is good enough to test its
effectiveness. The specific type of fine-tuning depends on the prototype.

For this second iteration, the MLX system prototype might have reached a stage
where it is possible to evaluate its effectiveness. Experiments or quasi-experiments
can be used to conduct this evaluation. A tricky part of this evaluation is identifying
a valid procedure to follow for the control group because, in most of the cases, there
are no comparable treatments. Schneider et al. (2016) used as a control group the
system with feedback disabled.

To examine the effectiveness of the treatment provided by the MLX system,
one can look at log files that register the captured performance of the participants.
Log files can point out evidence that learners correct some mistakes after receiving
feedback, as is shown in the study of Di Mitri et al. (2020), where participants cor-
rected their CPR technique accordingly after receiving audio feedback instructions
provided by the CPR tutor. In the study of Schneider et al. (2016), log files show how
participants from the treatment group significantly reduced the proportion of time
making nonverbal communication mistakes for public speaking after each practice
session. In contrast to participants from the control group whose proportion of time
making mistakes remained constant throughout the different practice sessions.

It is not possible to predict whether the evaluation of this second iteration will
provide results showing the effectiveness of the evaluated prototype. Therefore, it
is important to keep using user experience, usability, and technology acceptance
questionnaires. Even when the study shows clear effects of the tutor, these types of
questionnaires will help to improve it for future iterations.
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4.3 Following Iterations

The following iterations are used to improve the MLX system by adding new
features and addressing old challenges. These following iterations can also help to
evaluate different aspects of the tutor like long-term effects, long-term use, effects
on a different population, etc.

5 Application Use Cases

In previous sections, we have summarised the theory of deliberate practice, defined
the MLX system, an engineering model that helps as a guide to developing specific
MLX applications, and presented a methodology that allows us to evaluate and
refine these applications. To show the potential of MLX for deliberate practice, in
this section, we present an overview of concrete use cases that have used MLX to
support deliberate practice.

5.1 Presentation Trainer

The Presentation Trainer (PT) is an MLX application designed to support the
development of non-verbal communication skills for public speaking through
deliberate practice. Learners can practice the delivery of their presentations in
authentic settings, which is a vital aspect of deliberate practice (Neelen & Kirschner,
2016). The PT will analyse the non-verbal communication of the learner. Based
on the results of the analysis, the PT then provides the learner with real-time
feedback instructions to foster conscious practice and correct some basic non-verbal
communication mistakes for public speaking such as voice volume, body posture,
facial expressions, use of gestures, and use of pauses. The feedback instructions are
displayed on a screen which should be placed in front of the learner (Schneider et
al., 2016) or on an AR display showing also a virtual audience (Schneider et al.,
2019; see also Fig. 2, left). A report of the mistakes performed during a practice
session and the practice session is recorded and can be shown to the learner for
self-reflection.

The research of the PT has gone through multiple iterations from the DBR
methodology. Results from the different evaluations show that learners practicing
with the PT significantly reduce the proportion of time of making non-verbal
communication mistakes after each practice session (Schneider et al., 2016).
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5.2 CPR Tutor

The CPR Tutor (Di Mitri et al., 2019a) is a real-time multimodal feedback system
for cardiopulmonary resuscitation (CPR) training. The CPR Tutor detects mistakes
using recurrent neural networks for real-time time-series classification. It automat-
ically recognises and assesses the quality of the chest compressions according to
five performance indicators such as, correct locking of the arms, correct use of the
body position, right compression rate, release, and depth. The chest compressions
are classified from a multimodal data stream consisting of kinematic and elec-
tromyographic data (see Fig. 2, right-end). Based on this assessment, the CPR Tutor
provides audio feedback to correct the most critical mistakes and improve CPR
performance. The CPR Tutor was designed by running two experiments, the first
which aimed to design the neural network architecture for detecting the mistakes
in the chest compression (Di Mitri et al., 2019b); the second experiment embedded
the mistake detection system in a real-time feedback architecture. A dataset from 10
experts was used for model training. The impact of the feedback functionality, we
ran a user study involving ten participants. Although long-lasting learning effects
cannot be acknowledged given the insufficient number of participants, the results of
the feedback study show a short-term positive improvement in the error rate on the
five target performance indicators.

5.3 Calligraphy Tutor

The Calligraphy Tutor (Limbu et al., 2019b) is an MLX application designed to
allow learners to practice handwriting deliberately. It was developed using the
Microsoft Surface tablet and Myo armband. It was designed using the ID4AR

Fig. 2 Left: Learner practicing a presentation with the PT in front of a virtual audience. Right:
Learner practicing CPR with the CPR tutor
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Fig. 3 Set up for Calligraphy tutor

framework (Limbu et al., 2018) for fostering deliberate practice. While writing
notes by hand is often considered beneficial for a deep understanding of concepts,
handwriting is a complex perceptual-motor skill that needs numerous hours of
practice to master. The calligraphy tutor application allows the teacher to create
practice materials quickly using the pen and the Myo data. It also allows the
learner to practice from the material while receiving guidance and feedback.
The application provides feedback on various perceptual-psychomotor attributes
involved in performing calligraphy.

The research on the calligraphy tutor only went through one iteration. The focus
of this iteration was to ensure that the design of feedback would not demand
excessive mental effort from the learner because practicing deliberately is already
cognitively demanding. The results of the study show that the application and the
feedback do not impose additional mental effort (Limbu et al. 2019b; see Fig. 3 for
study setup).

5.4 Table Tennis Tutor

The Table Tennis Tutor (T3) (Mat Sanusi et al., 2021) is an MLX applica-
tion designed specifically for psychomotor skills development in the table tennis
domain. The application was built to address the sport’s complexity which involves
numerous dynamic movements and difficult techniques that require the learners to
repeatedly practice the specific skill to the extent that the muscle memory is trained
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Fig. 4 Left: Learner practicing the forehand table tennis stroke with the T3. Right: Learner
practicing how to provide maintenance to a model of a Mars rover

(Feder & Majnemer, 2007), which automates them. In this study, the T3 allows
beginners to practice the most fundamental technique – the forehand stroke. The
application uses the Multimodal Pipeline framework (Di Mitri et al., 2019b) for the
creation of a data corpus by collecting the motion data and tracking the human body
using smartphone sensors (accelerometer and gyroscope) and the Kinect’s depth
camera sensor, respectively. Moreover, the study intended to explore the potential
of using only motion data from a smartphone for learners to practice the stroke since
such a device is commonly owned (the study setup is shown in Fig. 4, left).

The results show that the combination of smartphone sensors and the Kinect
achieved a higher classification rate than the smartphone sensors alone, which
emphasises the importance of the multimodal approach in classifying complex
activities. The research of the T3 only went through one iteration but provides a
significant step into designing the feedback system. It is vital that the feedback
system should be designed with the least demanding mental effort as the sport
itself, and practicing it deliberately, can be physically and mentally exhausting (Mat
Sanusi et al., 2021).

5.5 Astronaut Training

TheWEKIT (Ravagnolo et al., 2019) application is an augmented reality application
for training astronauts, developed in the context of a European project called
Wearable Experience for Knowledge Intensive Training.1 It was developed for

1 http://wekit.eu/


 -1446 58376 a -1446 58376
a
 
http://wekit.eu/
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Microsoft Hololens and was designed to be used with a wearable harness consisting
of various sensors. The WEKIT application uses the ID4AR framework (Limbu et
al., 2018) for fostering deliberate practice. The WEKIT application has two major
interfaces, the “expert mode” for the experts to create a learning material and the
“student mode” for the student to learn from the recorded material. The objective of
the WEKIT application was to reduce the time and cost associated with training the
astronauts on the ground and potentially train the astronauts during their journey.
By using AR and recorded expert data, the astronaut can train by himself in space.

The WEKIT application was tested in two iterations. In the first iteration, the
usability of the system was tested, which was found to be acceptable. In the second
iteration, the learning effectiveness of the application was tested using a control
group. The results found no difference in learning between the group that used the
WEKIT application and the control group that used instructional manuals (Limbu
et al., 2019a; see Fig. 4, right for the study setup).

5.6 Commonalities and Differences

Table 1 displays the presented use cases showing their commonalities and dif-
ferences based on our MLX system architecture as presented in Sect. 3.1. As
seen in Table 1, there are three main different Task Models: specific structured,
semi-structured, and generic unstructured. Specific structured Task Models focus
on well-defined tasks that have been repeated multiple times in order to master
them. Supervised classification with Neural Networks can be used to identify the
performance indicators for the Student Models. This specific structure allows the
Tutoring Model of our use cases to objectively assess the learners’ performance and
provide feedback based on the objective assessment.

Semi-structured Task Models in our use cases follow a rule-based Student Model
approach. The tasks practiced by the learners are, to a certain degree, quite flexible,
e.g. there are multiple ways to do a presentation and multiple ways to write a text.
The semi-structured approach allows the Tutoring Model of our use cases to provide
learners’ with feedback based on the predefined rules. However, the assessment of
the performance cannot be completely objective.

Unstructured Task Models, on the other hand, focus on providing generic
instructions based on the recorded expert model in which then students imitate the
defined tasks. They offer support for multiple types of learning tasks. However,
this flexibility of tasks restricts the Tutoring Model of the system to process-based
guidance without any performance feedback.
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6 Conclusions and Future Work

In this book chapter, we introduced the reader to multimodal learning experiences
for deliberate practice to address a research gap in educational technology research:
the tendency of designing systems fitted on technological devices rather than on the
learning process. MLX systems aim to address this gap through multimodal data
collection and analysis, and the use of ubiquitous and immersive systems. MLX
systems rely on multi-sensor networks and data collection that leverage immersive
and ubiquitous technologies to support embodied learning and deliberate practice
in authentic settings. In Sect. 2, we have described the theoretical foundations of
MLX systems, arguing why the current educational theories such as the dual-coding
theory must be updated. In Sect. 3, we have detailed the engineering aspect of
MLX systems and introduced a prototypical architecture design. In Sect. 4, we have
described the experimental procedure for evaluating and validating these systems.
Finally, in Sect. 5, we have listed some relevant use cases for the MLX system
presenting their tested potential to support deliberate practice.

When contemplating the future of MLX systems, it is inevitable to consider the
existing philosophical discussion on whether AI systems are set to augment human
abilities or replace them completely. This discussion applies without exceptions
to learning, about the degree of activation the AI systems assume in the learning
process and to what extent they are set to imitate the cognition of the human
expert and replace human feedback. Educational researchers have different stands
concerning the autonomy the AI systems should take for education and practice.
Beyond the work on autonomous and intelligent tutoring systems in the last
decades, new approaches based on human-AI hybrid intelligence have been recently
proliferating, especially within the CrossMMLA community. These systems do not
necessarily rely on automatic feedback but rather on intelligence augmentation
(Cukurova et al., 2019). For example, multimodal data indicators can be displayed
in the learning analytics dashboard for both the teachers and learners (Jivet et al.,
2018); similarly, using data storytelling approaches, it is possible to create narratives
to better communicate the insights of data to the learners (Martinez-Maldonado
et al., 2020). Such hybrid approaches keep the human in the loop of the sense-
making process and are aimed to engage in reflection and debriefing moments where
learners and teachers can discuss and gain insights into their performance.

It is also important to state that it is not affordable, nor feasible, to have human
experts provide learners with personalised feedback and instruction whenever
learners want to engage in deliberate practice. MLX systems can bridge this
gap enabling learners to practice their skills and receive personalised feedback at
any time. Moreover, while conducting our research, we have experienced subtle,
nonetheless important differences between feedback provided by human tutors
and MLX systems. Feedback from human tutors inevitably contains an emotional
aspect, which can be incredibly motivating for learners. However, it can also
be overwhelming and, in some cases, detrimental. The emotional aspect of the
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feedback from MLX systems is reduced, allowing learners to make as many
mistakes as needed to improve their skills.

Humans, as teachers and learners, have natural virtues and limitations. The same
applies to MLX systems. We can observe that MLX systems have to compromise
the flexibility of their Task Model with the capabilities of their Tutoring model.
High levels of flexibility demand a loss in the objectivity of the assessment and
thus capabilities of instruction. We, therefore, consider that human tutors and MLX
systems are not competing for mutually exclusive variables. Hence, we argue that
learners, human tutors, and MLX systems together can conform to an eco-system
able to take digital learning to unprecedented levels.
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