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Abstract. We investigate an attack on a machine learning classifier that
predicts the propensity of a person or household to move (i.e., relocate)
in the next two years. The attack assumes that the classifier has been
made publically available and that the attacker has access to informa-
tion about a certain number of target individuals. That attacker might
also have information about another set of people to train an auxil-
iary classifier. We show that the attack is possible for target individuals
independently of whether they were contained in the original training
set of the classifier. However, the attack is somewhat less successful for
individuals that were not contained in the original data. Based on this
observation, we investigate whether training the classifier on a data set
that is synthesized from the original training data, rather than using the
original training data directly, would help to mitigate the effectiveness
of the attack. Our experimental results show that it does not, leading us
to conclude that new approaches to data synthesis must be developed if
synthesized data is to resemble “unseen” individuals to an extent great
enough to help to block machine learning model attacks.

Keywords: Synthetic data · Propensity to move · Attribute
inference · Machine learning

1 Introduction

Governmental institutions charged with collecting and disseminating informa-
tion may use machine learning models to produce estimates, such as imputing
missing values or inferring variables that cannot be directly observed. When
such estimates are published, it is also useful to publish the machine learning
model itself, so that researchers using the estimates can evaluate it closely, or
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even produce their own estimates. Moreover, society also asks for more insight
into the models that are used, e.g., to address possible discrimination caused by
decisions based on machine learning models.

Unfortunately, machine learning models can be attacked in a way that allows
an attacker to recover information about the data set that they were trained
on [19]. For this reason, publishing machine learning models can lead to a risk
that information in the training set is leaked. In this paper, we carry out a
case study of an attribute inference attack on a machine learning classifier to
better understand the nature of the risk. The classifier that we study predicts
propensity to move, i.e., whether an individual or household will relocate their
home within the next two years. The attack scenario assumes that the classifier
has been released to the public, and that an attacker wishes to learn a sensitive
attribute for a group of victims, i.e., target individuals. The attacker has non-
sensitive information about these target individuals that is used for the attack
and has scraped information about other people from the Web.

Our experimental investigation first confirms that a machine learning classi-
fier is able to predict propensity to move for individuals in its training data set as
well as for previously “unseen” individuals, reproducing [3]. We then attack this
classifier and demonstrate that an attacker can learn sensitive attributes both
for individuals in the training data as well as for previously “unseen” individ-
uals. However, for “unseen” individuals the attack is somewhat less successful.
We reason that data synthesis might potentially allow us to create data that we
could use for training and that would be far enough from the original data, than
any real individual would have the somewhat higher resistance to attack of an
“unseen” individual. Based on this idea, we create a synthetic training set, train
a machine learning classifier on that set, and repeat the attacks. Interestingly,
the resulting classifier is just as susceptible to attack as the original classifier,
which was trained on the original data. We relate this finding to the success
of an attack that infers sensitive information from individuals using priors and
not the machine learning model. Our findings point to the direction that future
research must pursue in order to create synthetic data that could reduce the risk
of attack when used to train machine learning models.

2 Threat Model

Our goal is to test whether a machine learning model trained on synthetic data
can replace a machine learning model trained on original data. The idea is to
release a machine learning model trained on synthetic data such that there is no
leak of original data. The synthetic data serves as a replacement of the original
data. In this section, we specify our goal more formally in the form of a threat
model.

Inspired by [23], a threat model follows three main dimensions. First, the
threat model describes the adversary by looking at the resources at the adver-
sary’s disposal and the adversary’s objective. In other words, it specifies what
the attacker is capable of and what the attacker’s goal is. Second, it describes
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the vulnerability, including the opportunity that makes an attack possible. Then,
the threat model specifies the nature of the countermeasures that can be taken
to prevent the attack.

Table 1 provides the specifications of our threat model for each of the dimen-
sions. As resources, we assume that the attacker has access to our released
machine learning classifier. In addition to the ML model, the attacker has a
subset of the data that is used to train an attacker model. The adversary’s
objective is to infer sensitive information about individuals. In our experiments,
the attack model is trained using subset of data in addition to the released
machine learning model that predicts propensity-to-move. The opportunity for
attack is the possession of original data including sensitive attributes. Finally,
the countermeasure that we are investigating is data synthesis.

Table 1. Threat model addressed by our approach

Component Description

Adversary: Objective Specific attributes about individuals

Adversary: Resources The attacker has access to the released classifier and
has a subset of data

Vulnerability: Opportunity Possession of original data and inference of
individuals’ sensitive data

Countermeasure Make access to original data and model unreliable

3 Background and Related Work

In this section, we give a brief overview on basic concepts and related work on
predicting the propensity to move, on privacy in machine learning, and model
inversion attribute inference attack.

3.1 Propensity to Move

The propensity to move is defined as desires, expectations, or plans to move to
another dwelling [5]. Multiple factors come to play to understand and estimate
the propensity to move in a population. In [5], the authors have grouped those
factors into two categories: (1) Residential satisfaction which is defined as the
satisfaction with the dwelling and its location or surroundings. Residential sat-
isfaction is divided into housing satisfaction and neighborhood satisfaction. (2)
Household characteristics which is related to demographic and socioeconomic
characteristics of the household. The gender and age are indicators of a house-
hold are important demographic attributes. For instance, a male household has
different mobility patterns than a female household. Also, education and income
of the household are important socioeconomic attributes.

In [10], authors investigated the possible relationship between involuntary job
loss and regional mobility. In a survey, the German socio-economic panel [10]
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looked at whether job loss increases the probability to relocate to a different region
and whether displaced workers who relocate to another region after job loss have
better labor market outcomes than those staying in the same area. They found
that job loss has a strong positive effect on the propensity to relocate. In [17], the
authors examined the residential moving behavior of older adults in the Nether-
lands. [17] used a data collected from the Housing Research Netherlands (HRN) to
provide insights into the housing situation of the Dutch population and their living
needs. A logistic regression model was used to assess the likelihood that respon-
dents would report that they are willing tomove in the upcoming two years. Among
their key findings, they showed that older adults with a propensity to move are
more often motivated by unsatisfactory conditions in the current neighborhood.
Further results revealed that older adults are more likely to have moved to areas
with little deprivation, little nuisance, and a high level of cohesion.

In [3], the authors studied the possibility of replacing a survey question about
moving desires by a model-based prediction. To do so, they used machine learn-
ing algorithms to predict moving behavior from register data. The results showed
that the models are able to predict the moving behavior about equally well as the
respondents of the survey. In [4], the authors used data collected by the British
Household Panel Survey. The data is conducted using a face to face interviews.
They examined the reasons why people desire to move and how these desires
affect their moving behavior. The results show that the reasons people report
for desiring to move vary considerably over the life course. People are more likely
to relocate if they desire to move for targeted reasons like job opportunities than
if they desire to move for more diffuse reasons relating to area characteristics.
In [18], the authors studied the social capital and propensity to move of four dif-
ferent resident categories in two Dutch restructured neighborhoods. They defined
social capital as the benefit of cursory interactions, trust, shared norms, and col-
lective action. Using a logistic regression model, they showed that (1) age, length
of residency, employment, income, dwelling satisfaction, dwelling type and per-
ceived neighborhood quality significantly predict residents’ propensity to move
and (2) social capital is of less importance than suggested by previous research.

3.2 Privacy in Machine Learning

In this section, we will discuss challenges and possible solutions in privacy pre-
serving techniques. Existing works can be divided into three categories according
to the roles of machine learning (ML) in privacy [19]: First, making the ML model
private. This category includes making ML model (its parameters) and data pri-
vate. Second, using ML to enhance privacy protection. In this category, the ML
is used as a tool to enhance privacy protection of the data. Third, ML based
privacy attack. The ML model is used as an attack tool of the attacker.

Based on the threat model, both data and the prediction model are impor-
tant. Predicting and estimating the propensity to move requires access to models
as well as to data. However, since the propensity to move data contains sensitive
data such as income, gender, age, education level, the data is treated as sensi-
tive and once collected from individuals it cannot be shared with third parties.
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One possible solution is to generate synthetic data that captures the distribution
of the original data and generates artificial, but yet realistic data. The synthetic
data offers a replacement for the original data to enable model training, model
validation and model explanation. In order to attempt to protect the machine
learning model before release or sharing, we propose to train our model on the
synthetic data instead of the original data. The goal is to test whether it is
possible to release a machine learning model trained on synthetic data without
leaking sensitive information.

Synthetic data generation is based on two main steps: First, we train a model
to learn the joint probability distribution in the original data. Second, we gen-
erate a new artificial data set from the same learned distribution. In recent
years, advances in machine learning and deep learning models have offered us
the possibility to learn a wide range of data types.

Synthetic data was first proposed for Statistical Disclosure Control (SDC) [8].
The SDC literature distinguishes between two types of synthetic data [8]. First,
fully synthetic data sets create an entirely synthetic data based on the original
data set. Second, partially synthetic data sets contain a mix of original and
synthetic values. It replaces only observed values for variables that bear a high
risk of disclosure with synthetic values. In this paper, we are interested in fully
synthetic data. For data synthesize, we used an open source and widely used R
toolkit: Synthpop. We used a CART model for synthesize since it has been shown
to perform well for other type of data [9]. Data synthesis is based on sequential
modeling by decomposing a multidimensional joint distribution into conditional
and univariate distributions. In other words, the synthesis procedure models and
generates one variable at a time, conditionally to previous variables:

fx1,x2,..,xn
= fx1 × fx2|x1 × ..× fxn|x1,x2,..xn−1 (1)

Synthesis using CART model has two important parameters. First, the order
in which variables are synthesized called visiting.sequence. This parameter has an
important impact on the quality of the synthetic data since it specifies the order in
which the conditional synthesize will be applied. Second, the stopping rules that
dictate the number of observations that are assigned to a node in the tree.

3.3 Attribute Inference Attack

Privacy attacks in machine learning [6,22] include membership inference
attacks [24], model reconstruction attacks such as attribute inference [29], model
inversion attacks [11,12], and model extraction attacks [28]. Here, we focus on a
form of model inversion attacks, namely, attribute inference attack.

Model inversion attacks try to recover sensitive features or the full data sam-
ple based on output labels and partial knowledge (subset of data) of some fea-
tures [1,22]. [1] provided a summary of possible assumptions about adversary
capabilities and resources for different model inversion attribute inference attacks.
In [11,12], the authors introduced two types of model inversion attacks: Black-box
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attack and white-box attack. The difference between black-box attack and white-
box attack lies in the amount of resources that are available for the adversary. In [1],
the authors proposed two types of model inversion attacks: (1) confidence score-
based model inversion attack and (2) label-only model inversion attack. The first
attack assumed that the adversary has access to the target model’s confidence
scores, whereas the second assumed that the adversary has access to the target
model’s label predictions only.Other attacks such as [14] assumed that the attacker
does not have access to target individuals non-sensitive features.

Attribute Inference Attack. An attribute inference attack or attribute disclosure
occurs if an attacker is able to learn new information about a specific individual,
i.e., the values of certain attributes. Examples from the Statistical Disclosure
Control (SDC) literature include [8,16].

Here, we study attribute inference attack as prediction. An attacker trains
a model to predict the value of an unknown sensitive attribute from a set of
known attributes given access to raw or synthetic data [15,25]. We implemented
our attribute inference attack using adversarial robustness toolbox1. In order to
perform an attribute inference attack, we assume that the attacker has access to
a subset of data, a marginal prior distribution representing possible values for the
sensitive features in the training data, and the released ML model’s predictions.
Using this resources, an attacker is able to train a model to learn sensitive
information. This attack is called black-box attack because the predictions of
the model, but not the architecture or the weights are available to the attacker.
Further details about our black-box attack will be discussed in Sect. 4.3.

In addition to black-box attack, we use two other attack models as baselines
for comparison, namely, random attack and baseline attack. Both attacks assume
that the attacker does not have access to the released ML model. First, the
random attack has only access to the marginal prior distribution of the sensitive
feature that is being targeted. Our random attack uses random classifier with
a stratified strategy, i.e., it generates random predictions that respect the class
distribution of the training data. Second, the baseline attack also access to the
prior distribution of the sensitive feature. However, in addition it also uses a
ML model, i.e., a random forest classifier, to infer sensitive attributes. Recall
that only the black-box attack is related to our threat model defined in Sect. 2.
The random and baseline attacks provide comparative conditions, which the
black-box attack must outperform.

Measuring Success of Inference. Prior work on synthetic data disclosure risk [26]
looked at either matching probability by comparing perceived match risk,
expected match risk, and true match risk [20], or Bayesian estimation approach
by assuming that an attacker seeks a Bayesian posteriori distribution [21]. In this
paper, our black-box attack is considered successful if its accuracy outperforms
the accuracy of a random attack. In other words, we assume that going beyond
a random guess, can reveal sensitive information about individuals. This type of

1 https://github.com/Trusted-AI/adversarial-robustness-toolbox.

https://github.com/Trusted-AI/adversarial-robustness-toolbox
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measurement is similar to previous work on model inversion attribute inference
attacks [11,12,14], which measure the difference between the adversary’s predic-
tive accuracy given the model and the best, i.e., ideal, accuracy that could be
achieved without the model [29]. Methods for measurements of success are dis-
cussed in [2], who also covers the precise or probabilistic measures conventionally
used in the SDC community, i.e., using matching or Bayesian estimate.

4 Experimental Setup

In this section, we describe our data sets, utility measures measured by applying
different machine learning algorithms, and adversary resources.

4.1 Data Set

For our experiments, we used an existing data about someone’s propensity-to-
move. The data was collected by [3]. [3] linked several registers from the Dutch
System of Social Statistical Datasets (SSD). The data set has around 150K indi-
viduals including 100K individuals drawn randomly from register data and 50K
individuals are sampled from the Housing Survey 2015 (HS2015) respondents.
The resulting data set has used in [3] has 700 variables containing for each indi-
vidual: (1) “y01” the binary target variable indicating whether (=1) or not (=0)
a person moved in year j where j = 2013, 2015. The target attribute “y01” is
imbalanced and dominated by class 0. (2) time independent personal variables,
(3) time dependent personal, household, and housing variables, (4) information
about regional variables.

Feature Selection. Different from [3], we applied feature selection to reduce the
number of features. Some features can be noise and potentially reduce the per-
formance of the models. Also, reducing number of feature helps to reduce the
complexity of synthesize and to better understand the output of the ML model.
To do so, we applied SelectKBest from Sklearn2. We use chi2 method as a scoring
function. We selected top K = 30 features with the highest scores. Our final data
set contains 30 best features for a total of 150K individuals3. In addition to the
30 features, we added gender (binary), income (categorical with five categories),
and age (categorical with seven categories) as sensitive features that will be used
in our attribute inference attack later (Sect. 5.2). Gender, age, and income have
balanced classes. Similar to [3], we found that the most important features are
age (lft), time since latest change in household composition (inhehalgr3), and
time since latest move or number of moves (rinobjectnummer).

2 https://scikit-learn.org/stable/modules/generated/sklearn.feature selection.Select
KBest.html.

3 We note that reducing the number of features does not have an impact on the success
rate of the attack because there is a redundancy in some variables since they go until
17 years back [3].

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
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Data Splits. As mentioned earlier, our propensity to move data was collected
in 2013 and 2015. Following [3], we use the 2013 data to train our classifier
and the 2015 data to test the classifier and to carry out the attacks. The 2015
data contains individuals who were present in the 2013 data set, and also new
individuals. We split the 2015 data set into two parts “original individuals”
(inclusive) and “new in 2015 individuals” (exclusive) in order to test our classifier
and our attacks on individuals who were in the training set but also in the also
on “unseen individuals”.

4.2 Utility Measures

Machine Learning Algorithms. We selected a number of machine learning algo-
rithms to predict propensity-to-move. The chosen machine learning techniques
provide insight into the importance of the features and are easy to interpret and
understand [3].

In our experiments in Sect. 5.1, we used: decision tree where a tree is created/
learned by splitting the source set into subsets based on an attribute value test.
This process is repeated on each derived subset in a recursive manner. Extra trees
and random forest are part of ensemble methods. In random forest, each tree in the
ensemble is built from a sample drawn with replacement (i.e., a bootstrap sample)
from the training set. Extra trees fits a number of randomized decision trees on
various sub-samples of the data set and uses averaging to improve the predictive
accuracy and control overfitting. Naive Bayes is a probabilistic machine learning
algorithm based on applying Bayes’ theorem with strong (naive) independence
assumptions between the features.KNN, K-nearest neighbors, is a non-parametric
machine learning algorithm. KNN uses proximity to make predictions about the
grouping of an individual data point.

Metrics for Evaluating Performance of ML Models. Similar to [3] and since
our target propensity-to-move attribute is imbalanced, we used: F1-score, as a
harmonic mean of precision and recall score. Matthews Correlation Coefficient
(MCC), and Area Under the Curve (AUC) that measures the ability of a classifier
to distinguish between classes.

4.3 Adversary Resources

In Sect. 3.3, we provided description of our attack models. The attacker is inter-
ested to infer target individual sensitive features. Below, we briefly discuss dif-
ferent attack models used in our experiments along with different resources that
are available for the attacker.

– Random attack : uses a subset of data and marginal prior distribution.
– Baseline attack : uses a subset of data, marginal prior distribution, and ran-

dom forest classifier.
– Black-box attack : uses a subset of data, marginal prior distribution, released

ML model, and random forest classifier.
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In random attack model, a random classifier4 randomly infers target individual’s
sensitive features i.e., gender, age, income. In baseline attack model, a random
forest classifier5 is trained on a subset of data and marginal prior distribution
to predict sensitive features. Last but not least, a black-box attack model has
access to the released ML model’s predictions, in addition to having access to
subset of data and marginal prior distribution. Then, a random forest classifier
is trained to infer target individual’s sensitive features.

Understanding the vulnerability of a model to attribute inference attack
requires using right metric to evaluate different attack models. Since our sensi-
tive target features (gender, age, income) are balanced [11], we used precision,
recall to measure the effectiveness of the attacks. Precision measures the ability
of the classifier not to label as positive a sample that is negative. Precision is
the ratio of tp/(tp + fp) where tp is the number of true positives and fp the
number of false positives. Recall measures the ability of the classifier to find all
the positive samples. Recall is the ratio of tp/(tp+fn) where tp is the number of
true positives and fn the number of false negatives. We also measure accuracy
which is defined as the fraction of predictions that our classifier got right.

5 Experimental Results

Now, that we have defined our threat model including the adversary resources
and capabilities, and utility measures to evaluate the quality of synthetic data
and machine learning algorithms, we turn to discuss our experimental results.

5.1 Evaluation of Machine Learning Algorithms

Table 2 shows our results of classification performance of propensity to move,
and confirms the results of [3]. As expected, all classifiers outperform the ran-
dom baseline, with classifiers using trees generally the stronger performers. We
also see that when the test set includes only individuals already present in the
training set (inclusive), the performance is better than when it includes only
“unseen” individuals (exclusive). Note that if the data for the inclusive individ-
uals were identical in the training and test set, we would have expected very high
classification scores. However, the data is not identical because it was collected
on two different occasions with two years intervening, and individuals’ situations
would presumably have changed.

Reproducing Burger et al.,’s [3] results In Table 2, results show that all
machine learning classifiers outperform random classifier. Overall we observe
that our results are in line with [3] across different metrics. This confirms that
we can still predict individuals moving behavior in the same level as in [3] even
after reducing number of features.
4 Random Classifier using Stratified strategy from https://scikit-learn.org/stable/

modules/generated/sklearn.dummy.DummyClassifier.html.
5 Random Forest Classifier: https://scikit-learn.org/stable/modules/generated/sklea

rn.ensemble.RandomForestClassifier.html.

https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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Table 2. Classification performance of propensity-to-move measured in terms of AUC,
MCC, and F1-score on original data and synthetic data. (Right) the data splitting
is similar to [3]. The training set individuals and test set individuals are inclusive.
(Left) A different data splitting where we train the model on individuals data from
2013, then, we test the model on different individuals from 2015.

Machine learning
algorithms

Training and test
individuals are exclusive

Training and test
individuals are
inclusive

AUC MCC F1-score AUC MCC F1-score

Original
data

Random 0.4962 −0.0105 0.2139 0.5014 0.0029 0.1633

NaiveBayes 0.5656 −0.0328 0.5491 0.6815 0.2204 0.2992

RandomForest 0.7061 0.3210 0.6322 0.7532 0.3121 0.4460

DecisionTree 0.6372 0.2692 0.5376 0.6568 0.2292 0.3057

ExtraTrees 0.7226 0.3197 0.6325 0.7597 0.3212 0.4525

KNN 0.6304 0.2074 0.4104 0.6717 0.1744 0.2235

Synthetic
data

Random 0.4991 −0.025 0.2261 0.5011 0.0022 0.1657

NaiveBayes 0.5658 0.045 0.5451 0.6822 0.2029 0.2578

RandomForest 0.7053 0.3282 0.6343 0.7467 0.3133 0.4471

DecisionTree 0.6489 0.2598 0.4878 0.6618 0.2125 0.3078

ExtraTrees 0.7188 0.3185 0.6321 0.7557 0.3138 0.4464

KNN 0.6067 0.1152 0.1857 0.6542 0.1637 0.2070

In addition to reproducing [3], we looked at another prediction model where
train and test individuals are exclusive/different. We found that it is also possible
to predict moving behavior of new individuals from 2015 based on a classifier
trained on different individuals from 2013.

Measuring the Utility of Synthetic Data. In order to evaluate the quality of
synthetic data, we run machine learning algorithms on synthesized training set
(2013 data). we used TSTR [13] evaluation strategy where we train classifiers
on 2013 synthetically generated data and we test on 2015 original data. Results
in Table 2 show that the performance of machine learning algorithms trained
on synthetic data is very close and comparable to the performance of machine
learning algorithms trained on original data. This confirms that the synthetic
training set can replace the original training set. In the remainder of the paper,
we will focus on decision tree model. We will assume that we are releasing a
decision tree model.

5.2 Model Inversion Attribute Inference Attack

In this section, we present the results of our experiments on attribute inference
attack using the three attack models: (1) random attack, (2) baseline attack, (3)
black-box attack (Sect. 4.3). Recall that we assume that the adversary can have
access to three different subsets of data (Sect. 2).
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1. Inclusive individuals (2013): the attacker has access to a subset of the
data that is used from 2013 to train the released machine learning algorithm.

2. Inclusive individuals (2015): the attacker has access to a more recent
subset of data from 2015, but for the same set of individuals that are used to
train the released machine learning algorithm.

3. Exclusive individuals (2015): the attacker has access to a recent subset
of data from 2015, but the individuals are different from individuals that are
used to train the released machine learning algorithm.

Table 3 shows results of different attribute inference attacks for three type of
sensitive features gender, age and income. We notice that attack always achieves
better than random scores, which demonstrates the viability of the attack.

Table 3. Results of model inversion attribute inference attacks. Adversary resources
can be either: Inclusive individuals (2013), Inclusive individuals (2015), or
Exclusive individuals (2015). ± represents the standard deviation over ten times
of running the experiments. Numbers in gray represent the best inference results across
conditions. Note that only black-box attack is related to threat model described in
Sect. 2. An attack is considered successful if its score is higher than a score of random
attack.

Adversary

Resources

Released

ML

Attack

Models

Gender Age Income

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

Inclusive

individuals (2013)

Original

Random
0.500

±0.00

0.500

±0.00

0.500

±0.00

0.1095

±0.00

0.1129

±0.00

0.1112

±0.00

0.2086

±0.00

0.2060

±0.00

0.2077

±0.00

Baseline
0.6107

±0.007

0.6103

±0.007

0.6104

±0.007

0.1472

±0.003

0.1566

±0.003

0.1407

±0.001

0.1483

±0.005

0.1590

±0.005

0.2323

±0.006

Black-Box
0.6187

±0.005

0.6181

±0.005

0.6183

±0.005

0.1482

±0.004

0.1577

±0.004

0.1412

±0.001

0.1469

±0.004

0.1576

±0.005

0.2302

±0.006

Synthetic

Random
0.500

±0.00

0.500

±0.00

0.500

±0.00

0.1164

±0.00

0.1223

±0.00

0.1213

±0.00

0.1838

±0.00

0.1889

±0.00

0.1983

±0.00

Baseline
0.6262

±0.00

0.6263

±0.006

0.6264

±0.006

0.1562

±0.004

0.1561

±0.004

0.1412

±0.001

0.1509

±0.003

0.1575

±0.003

0.2189

±0.004

Black-Box
0.6298

±0.005

0.6299

±0.005

0.6300

±0.005

0.1562

±0.003

0.1561

±0.003

0.1412

±0.001

0.1492

±0.003

0.1553

±0.004

0.2182

±0.006

Inclusive

individuals (2015)

Original

Random
0.500

±0.00

0.500

±0.00

0.500

±0.00

0.1095

±0.00

0.1129

±0.00

0.1112

±0.00

0.2086

±0.00

0.2060

±0.00

0.2077

±0.00

Baseline
0.6240

±0.006

0.6228

±0.006

0.6227

±0.00

0.1552

±0.003

0.1590

±0.003

0.1467

±0.001

0.1502

±0.004

0.1552

±0.004

0.2327

±0.007

Black-Box
0.6235

±0.009

0.6226

±0.009

0.6223

±0.009

0.1547

±0.003

0.1585

±0.003

0.1463

±0.001

0.1545

±0.003

0.1599

±0.003

0.2428

±0.005

Synthetic

Random
0.500

±0.00

0.500

±0.00

0.500

±0.00

0.1164

±0.00

0.1223

±0.00

0.1213

±0.00

0.1838

±0.00

0.1889

±0.00

0.1983

±0.00

Baseline
0.6186

±0.006

0.6188

±0.006

0.6186

±0.006

0.1657

±0.003

0.1606

±0.003

0.1465

±0.001

0.1620

±0.003

0.1592

±0.003

0.2169

±0.005

Black-Box
0.6236

±0.006

0.6237

±0.006

0.6236

±0.006

0.1646

±0.003

0.1595

±0.003

0.1456

±0.001

0.1626

±0.003

0.1596

±0.003

0.2259

±0.006

Exclusive

individuals (2015)

Original

Random
0.500

±0.00

0.500

±0.00

0.500

±0.00

0.1095

±0.00

0.1129

±0.00

0.1112

±0.00

0.2086

±0.00

0.2060

±0.00

0.2077

±0.00

Baseline
0.5269

±0.009

0.5198

±0.009

0.5201

±0.009

0.0830

±0.001

0.2116

±0.005

0.1279

±0.001

0.0829

±0.003

0.1779

±0.008

0.2182

±0.02

Black-Box
0.5272

±0.005

0.5195

±0.005

0.5199

±0.005

0.0817

±0.001

0.2100

±0.005

0.1280

±0.001

0.0804

±0.003

0.1693

±0.008

0.2283

±0.02

Synthetic

Random
0.500

±0.00

0.500

±0.00

0.500

±0.00

0.1164

±0.00

0.1223

±0.00

0.1213

±0.00

0.1838

±0.00

0.1889

±0.00

0.1983

±0.00

Baseline
0.5268

±0.009

0.5198

±0.009

0.5201

±0.009

0.0825

±0.001

0.2116

±0.005

0.1279

±0.001

0.0829

±0.003

0.1779

±0.008

0.2182

±0.02

Black-Box
0.5272

±0.005

0.5195

±0.005

0.5198

±0.005

0.0817

±0.001

0.2100

±0.005

0.1280

±0.001

0.0804

±0.003

0.1693

±0.008

0.2283

±0.02
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Comparing the row “Original” for the three individuals sets and across all three
sets of sensitive attributes (columns), we see that the attack is less successful for
the “Exclusive” individuals who were unseen in the training data of the classifier.
This fact might lead us to wonder whether training the classifier on synthetic
data might lead to less successful attacks, since the individuals in the training
data would be in some way “different” with the target individuals. This, how-
ever, turns out not to be the case. Comparing the row “Synthetic” for the three
individuals sets and across all three sets of sensitive attributes (columns), we see
that if the training data is synthesized using the original training data, the model
is just as susceptible to attack as when trained on the original data. This point
is less surprising when we take into account the high success of the “Random”
attack. This attack recovers sensitive attributes of individuals without access to
the trained machine learning model. Instead, priors are used. We assume that
the information of the priors is also retained in the trained model. These results
demonstrate the magnitude of the challenge that we face, if we wish to release
a trained machine learning model publically.

6 Conclusion and Future Work

In this paper, we have investigated an attack on a machine learning model trained
to predict individual’s propensity-to-move i.e., in the next two years. for indi-
viduals in the training data as well as for “unseen” individuals. However, we
observed that for “unseen” individuals, the attribute inference attack is some-
what less successful. This result is consistent with the training data used to train
ML model having a different distribution than the “unseen” individuals.

To explore the ability of synthetic data to protect against attribute infer-
ence attack, we created fully synthetic data using CART model. The ML model
trained on synthetic data maintained prediction performance, but was found to
leak in the same way as the original classifier. This result is not particularly sur-
prising. Synthetic data mimics properties of the original data including overall
structure, correlation between features, and the joint distributions [25].

Our results is interesting because until now The SDC community working
with synthetic data has mainly focused on measuring the risk of identity disclo-
sure rather than attribute disclosure [26]. In the identity disclosure literature,
synthetic data has been shown to provide protection [7,27].

Our work draws attention to the fact a lot of work is still needed to protect
against attribute disclosure [2]. A potential solution to protect against attribute
inference attack is to apply privacy-preserving techniques during synthesis, e.g.,
data perturbation or masking sensitive attributes. Also, it would be interesting
to explore different combinations of ML and conventional models to synthesize
and carry out attribute attacks. From an evaluation perspective, future work
should look at other metrics [15] (e.g., from SDC and/or ML perspective) to
evaluate and quantify the success of attribute inference attack for a given target
individual. Finally, future research should expand the threat model that we have
adopted in this research (Sect. 2) and other attack scenarios in which the attacker
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has access to more limited resources, e.g., assuming that attacker does not have
access to all attributes in data.
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