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Abstract

Easy to construct and optimally convergent generalisations of B-splines to unstructured meshes are essential for the
pplication of isogeometric analysis to domains with non-trivial topologies. Nonetheless, especially for hexahedral meshes, the
onstruction of smooth and optimally convergent isogeometric analysis basis functions is still an open question. We introduce
simple partition of unity construction that yields smooth blended B-splines, referred to as SB-splines, on semi-structured

uadrilateral and hexahedral meshes, i.e. on mostly structured meshes with sufficiently separated unstructured regions. To
his end, we first define the mixed smoothness B-splines that are C0 continuous in the unstructured regions of the mesh but

have higher smoothness everywhere else. Subsequently, the SB-splines are obtained by smoothly blending in the physical
space the mixed smoothness B-splines with Bernstein bases of equal degree. One of the key novelties of our approach is
that the required smooth weight functions are assembled from the available smooth B-splines on the unstructured mesh. The
SB-splines are globally smooth, non-negative, have no breakpoints within the elements and reduce to conventional B-splines
away from the unstructured regions of the mesh. Although we consider only quadratic mixed smoothness B-splines in this paper,
the construction generalises to arbitrary degrees. We demonstrate the excellent performance of SB-splines studying Poisson
and biharmonic problems on semi-structured quadrilateral and hexahedral meshes, and numerically establishing their optimal
convergence in one and two dimensions.
© 2022 Elsevier B.V. All rights reserved.

Keywords: Isogeometric analysis; B-splines; Smooth splines; Quadrilateral meshes; Hexahedral meshes

1. Introduction

The smoothness of spline basis functions is vital in the isogeometric analysis of problems with higher-order
artial differential equations. For instance, gradient-theories of elasticity and plasticity [1–5], phase-field modelling
f sharp interfaces [6–8] and Kirchhoff–Love type plate and shell models [9–12] and their extensions [13,14] all
ead to higher-order partial differential equations. Since its inception, isogeometric analysis brought about a revival
f such theories mainly because of the ease of discretising higher-order partial differential equations using smooth
pline basis functions. In particular, smooth basis functions avoid the introduction of (non-physical) extra degrees of
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Table 1
Summary of the terminology and symbols used in this paper. Note that this terminology, in particular, the
usage of blending or blended is not uniform across the isogeometric analysis and geometric design literature.

Terminology Definition

Mixed B-splines, B(x) B-splines of mixed smoothness.
Blending Combination of different basis functions using weight functions.
SB-splines, N(x) Smooth blended splines obtained by the proposed construction.

freedom and promise a better integration with common computer-aided design representations. However, standard
spline basis functions, including B-splines, NURBS and box-splines, are defined only on structured meshes and must
be suitably extended for domains with non-trivial topology. For instance, multivariate B-splines are defined only
on structured quadrilateral and hexahedral meshes in 2D and 3D, respectively. Most industrial complex geometries
cannot be parametrised with a structured mesh so that a limited number of singularities on the surface or inside the
volume must be introduced [15–23]. These singularities manifest themselves as extraordinary vertices and edges in
the mesh, see Fig. 1. For a hexahedral mesh, an interior vertex is extraordinary if it is not incident to 8 hexahedra,
and an interior edge is extraordinary if it is not incident to 4 hexahedra. Similarly, an interior vertex is extraordinary
for a quadrilateral mesh if it is not incident to 4 quadrilaterals. The construction of smooth splines which generalise
or extend B-splines to unstructured meshes is currently a very active area of research in isogeometric analysis.

In computer-aided design numerous constructions have been proposed to deal with extraordinary vertices in
surface mesh, including geometrically Gk and parametrically Ck continuous constructions [24–33], subdivision

surfaces [34–40], macro-elements [41–43] and manifold constructions [44–50]. There are, however, a very limited
number of constructions for volume meshes, including [51–56]; most likely because conventional computer-aided
design representations do not require a volume parametrisation. As widely reported, most constructions from
computer-aided design lead in isogeometric analysis to suboptimally convergent finite elements, especially when
applied to higher-order partial differential equations; see the discussion in [29]. There are, however, constructions for
semi-structured quadrilateral meshes, including [30,32,38,48,49], which yield optimal or nearly optimal convergence
rates. In contrast, there are no B-spline based optimally convergent smooth constructions for unstructured hexahedral
meshes. Currently, optimality is achieved by either reducing continuity to C0 around extraordinary features [56–58],
combining B-splines with meshless approximants [59] or resorting to non-standard spline definitions [60]. The first
approach is not suitable for higher-order partial differential equations whereas the latter approaches lead to schemes
that are usually computationally costly.

In this paper, we derive a computationally efficient, easy to construct and optimally convergent extension of
B-splines to semi-structured quadrilateral and hexahedral meshes. We dub the new basis functions SB-splines;
see Table 1 for the terminology used throughout this paper. Although we consider only quadratic B-splines, the
presented ideas should carry over to arbitrary degrees. To begin with, we determine on the given unstructured mesh
a set of B-splines of mixed smoothness following the construction for quadrilateral meshes in Toshniwal [61]. The
mixed B-splines are C0 continuous around extraordinary features, i.e. extraordinary vertices (in 2D and 3D) and
extraordinary edges (in 3D), but are C1 smooth everywhere else. Subsequently, we use the partition of unity method
of Melenk and Babuška [62] to blend the mixed B-splines B(x) with tensor-product Bernstein basis functions Q(x)
of equal degree. To this end, a set of smooth weight, or partition of unity, functions wB(x) and wQ(x) are defined to
blend both types of basis functions. A key novelty of our approach is that the blending function wB(x) is assembled
from the mixed B-splines on the unstructured mesh, by excluding the C0 ones, so that wQ(x) := 1 − wB(x).

onsequently, the weight functions wB(x) and wQ(x) are C1 smooth and have their breakpoints at the element
oundaries. On quadrilateral meshes with extraordinary vertices the SB-splines are simply given by the weighted
asis functions wB(x)B(x) and wQ(x) Q(x). In hexahedral meshes, the extraordinary edges and vertices usually
orm a connected network as illustrated in Fig. 1(c); see also relevant work on hexahedral meshing [15–23].
hat is, the weight function wQ(x) = 1 − wB(x) has a support over the entire network and is decomposed as
Q(x) =

∑
i
∑

j wP
i, j (x) +

∑
j w J

j (x) into locally supported weight functions. In brief, the support of one weight
function w J

j (x) covers a region where more than two extraordinary edges meet, and the supports of the weight
functions wP

i, j (x) are restricted to the remaining regions along the connecting extraordinary edge chains. We note
for blending instead of the Bernstein basis Q(x) a different tensor-product basis or a triangular Bernstein–Bézier
2
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Fig. 1. Spherical domain discretised with a hexahedral mesh containing extraordinary edges and vertices. The Bézier mesh represents the
hysical domain.

asis can be considered. Similarly, in principle, differently constructed mixed smoothness B-splines B(x) could be
used, including the enhanced smoothness B-splines presented in Buchegger and Jüttler [63], which are conceptually
similar to the chosen mixed B-splines. However, the enhanced smoothness B-splines use nested refinement (leading
to a more involved implementation) and exhibit optimal convergence only for extraordinary vertices with a valence 3
using uniform refinement.

The proposed approach uses, like the manifold-based constructions [46–50] and their variations [64–67], the
partition of unity method to smoothly blend mixed B-splines with C∞ continuous Bernstein basis functions.
Unlike manifold-based constructions, the two types of basis functions are blended in the Euclidean ambient
space, i.e. R2 in 2D and R3 in 3D. Thus, for blending we do not use an atlas consisting of charts and smooth
transitions maps. Although it is easy to devise smooth transition maps for 2-manifolds, e.g. using conformal
or characteristic maps [36,46], it is not clear how to construct them in R3. Circumventing the need for such a
smooth atlas yields a conceptually and implementation-wise simpler approach and smooth basis functions with
appealing properties. The SB-splines are obtained by blending polynomials defined on the parameter or ambient
space and, hence, can be integrated very efficiently using standard Gauss–Legendre quadrature. Furthermore, the
weight functions wB(x) and wQ(x) have minimal polynomial degree considering that they are assembled from
B-splines and their complements to one.

The outline of this paper is as follows. To begin with, we briefly discuss in Section 2 the construction of SB-
splines in 1D to introduce the key ideas and terminology used throughout the paper. Subsequently, we consider
in Section 3 the construction of SB-splines on unstructured quadrilateral meshes with extraordinary vertices. We
first review the mixed B-splines in Section 3.1 and then discuss the construction of SB-splines, in particular the
weight functions, in Section 3.2. As explained in Section 3.2, it is straightforward to derive closed-form expressions
of the new basis functions for use in existing isogeometric analysis implementations. In Section 4, we consider
the construction of SB-splines on unstructured hexahedral meshes with extraordinary edges and vertices. After
discussing the extension of mixed B-splines to hexahedral meshes in Section 4.1, we first introduce the notions
of an extraordinary prism and extraordinary joint and discuss how to construct the respective weight and smooth
basis functions in Section 4.2. Finally, we present in Section 5 several Poisson and biharmonic examples to confirm
the convergence of the SB-splines. We study in particular the influence of the number of quadrature points and the
valence of the extraordinary vertices on finite element convergence in 2D. Although we have not investigated the
finite element convergence in 3D, we demonstrate the global C1 continuity and excellent performance of the finite
element solution on the same spherical domain as shown in Fig. 1. The paper is supplemented by four appendices
that provide a proof of linear independence and discuss aspects of finite element discretisation, mesh refinement

and an illustration of the treatment of arbitrary hexahedral meshes.

3
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2. One-dimensional SB-splines

The proposed construction is best illustrated in the one-dimensional setting. Given is a domain Ω ⊂ R with the
arametrisation

x(ξ ) =

nB∑
i=1

Bi (ξ )xi with ξ ∈ Ω̂ := [0, 1] , (1)

here Bi (ξ ) are the univariate B-splines of degree pB ≥ 2 and xi are the coordinates of the control points. As
entioned earlier, in higher dimensions we will focus solely on the case pB = 2. The B-splines Bi (ξ ) are defined

n the parametric domain Ω̂ with the parametric coordinate ξ . For the sake of illustration, they are chosen to
e C0 continuous at the break point ξep and C pB−1 continuous at every other break point. Hence, the point with
he coordinate xep := x(ξep) is an extraordinary point.

Assuming that the parametrisation x(ξ ) is, as usual, bijective, the push-forward of the basis functions on the
hysical domain Ω are given by

Bi (x) = Bi (ξ ) ◦ x(ξ )−1 . (2)

or later reference, the basis functions on the physical domain Ω are collected in the array

B(x) =
(
B1(x) . . . BnB (x)

)T
. (3)

n the neighbourhood of the extraordinary point xep, we aim to blend the B-splines B(x) with a second polynomial
asis defined only over the blending domain Ω Q

⊂ Ω . The second basis is, without loss of generality, throughout
his paper a Bernstein basis with the basis functions

Q(x) =
(
Q1(x) . . . QnQ (x)

)T
, (4)

here nQ = pQ + 1 and pQ is the polynomial degree of the Bernstein basis.
For blending together the two sets of basis functions, we choose a weight function wQ(x) with supp wQ(x) = Ω Q

nd its complement to one wB(x), i.e.,

wQ(x) + wB(x) ≡ 1 ∀x ∈ Ω . (5)

uch weight functions can be chosen in many different ways. In the proposed construction, we assemble the weight
unction wB(x) from the B-splines Bi (x). In particular, with the index set I = {i | Bi (x) is at most C0 at xep} and
ts complement I∁, the weight function is given by

wB(x) =

∑
i∈I ∁

Bi (x) . (6)

he so-assembled weight functions have the following properties.

roposition 1. The weight functions wB(x) and wQ(x) are at least C1 smooth, piecewise polynomials in the
arameter space, have local support and form a partition of unity.

Finally, using the above set of weight and basis functions, we define the smooth blended B-splines, or SB-splines,
s

N(x) =
(
wB(x)B(x)T wQ(x) Q(x)T

)T
=

(
N1(x) . . . NnN (x)

)T
, (7)

here nN = nB + nQ . Evidently, the smoothness, the support size and the polynomial degree of the SB-splines
epend on the properties of B(x), Q(x), wB(x) and wQ(x). Critical for the smoothness properties of the SB-splines
s the choice of the weight function wB(x).

roposition 2. The SB-splines N(x) are at least C1 smooth, linearly independent, non-negative, have local support
nd form a partition of unity.

The properties of smoothness, non-negativity, local support and partition of unity follow directly from the
lending construction since both B(x) and Q(x) possess these properties. For the proof of linear independence,
ee Appendix A.
4
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Fig. 2. Blending of the mixed smoothness quadratic B-splines B(x) in (a) with the quadratic Bernstein basis functions Q(x) in (b). The
on-uniform open knot vector for the B-splines B(x) has repeated knot values at the boundaries and at the extraordinary point at the centre
f the physical domain Ω . In (a) the B-splines in blue are C0 continuous at the extraordinary point. The blending domain ΩQ is shaded
n grey. The weight function wB (x) in (a) is the sum of the B-spline basis functions which are C1 smooth at the extraordinary point. Its
omplement to one is the weight function wQ (x) in (b). (For interpretation of the references to colour in this figure legend, the reader is
eferred to the web version of this article.)

As a concrete example, Fig. 2 illustrates the blending of mixed smoothness quadratic B-splines B(x) with
uadratic Bernstein basis functions Q(x). The physical domain Ω has at its centre an extraordinary point with C0

ontinuity, introduced using a non-uniform open knot vector for B(x). Except at the extraordinary point the quadratic
-spline basis B(x) is C1 smooth. The weight function wB(x) is assembled from B-splines Bi (x) by excluding the
nes which are at most C0 smooth at the extraordinary point. Hence, the weight function wB(x) and, in turn, its
omplement wQ(x) = 1 − wB(x) are intrinsically C1 smooth. The blending domain Ω Q is equal to the support
f the weight function wQ(x). After determining the weight functions it is straightforward to compute the basis
unctions Ni (x) depicted in Figs. 2(c) and 2(d), which are all C1 smooth. We stress that a key aspect of our
onstruction is that the weight function wB(x) is assembled from the smooth B-splines B(x). As apparent in
ig. 2(a), outside the blending region Ω Q the weight function wB(x) is equal to one so that the SB-splines are
qual to the standard B-splines.

Evidently, the proposed construction can be applied to B-splines of any degree. Fig. 3 illustrates the blending of
ixed smoothness cubic B-splines and cubic Bernstein basis functions. The SB-splines depicted in Figs. 3(c) and

(d) are C1 continuous. In the next sections, we restrict our attention to pB = pQ = 2.

. Two-dimensional quadratic SB-splines

We are given an unstructured quadrilateral mesh describing a domain Ω ⊂ R2. The mesh consists of elements,
.e. quadrilateral faces, and their edges and vertices. We assume that all the vertices on the boundary of the mesh
re regular, i.e. are incident to two elements, and all the extraordinary vertices within the mesh, i.e. vertices with
ther than four incident elements, are sufficiently separated as to be specified. If not the case, this can be achieved
y successive quadrisection refinement of the mesh. The new vertices introduced during refinement are all regular

o that the extraordinary vertices become more and more separated. In the following, without loss of generality, we

5
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Fig. 3. Blending of the mixed smoothness cubic B-splines B(x) in (a) with the cubic Bernstein basis functions Q(x) in (b). The non-uniform
pen knot vector for the B-splines B(x) has repeated knot values at the boundaries and at the extraordinary point at the centre of the physical
omain Ω . In (a) the B-splines in blue are C0 continuous at the extraordinary point. The blending domain ΩQ is shaded in grey. The
eight function wB (x) in (a) is the sum of the B-spline basis functions which are at most C1 smooth at the domain centre. Its complement

o one is the weight function wQ (x) in (b). (For interpretation of the references to colour in this figure legend, the reader is referred to
he web version of this article.)

ocus on bi-quadratic B-splines and assume that the mesh has a single extraordinary vertex of valence v ̸= 4. In
he (locally) structured regions of the mesh standard smooth tensor-product bi-quadratic B-splines can be defined.
t is impossible to define such B-splines in the 1-neighbourhood of an extraordinary vertex due to the lack of a
ensor-product mesh structure. A 1-neighbourhood of a vertex is formed by the union of the elements incident to
he vertex. The n-neighbourhood is defined recursively as the union of all 1-neighbourhoods of all the vertices in
he (n − 1)-neighbourhood. With this definition at hand, we require that the 3-neighbourhoods of the extraordinary
ertices in the considered mesh are disjoint.

.1. Review of mixed B-splines

Although it is not possible to define a standard tensor-product B-spline basis on an unstructured mesh, it is
ossible to construct a B-spline basis of mixed smoothness, see Toshniwal [61]. The mixed B-splines are C1

ontinuous away from the 1-neighbourhood of extraordinary vertices and are C0 continuous along mesh edges
ncident to extraordinary vertices. That is, away from the 1-neighbourhood of extraordinary vertices the mixed B-
plines are identical to tensor-product B-splines. On structured meshes there is a one-to-one correspondence between
he bi-quadratic B-splines and elements (away from the boundaries). This is also the case for mixed B-splines.
ence, we can assign a control vertex to each element. The support of a mixed B-spline consists of all elements

haring a vertex with the respective element.
We represent the non-zero mixed B-splines within an element with bi-quadratic Bézier basis functions. The

ontrol vertices of the mixed B-splines are denoted with xi ∈ R2 and the ones of the Bézier basis functions
ith c j ∈ R2. The numbering of both sets of control vertices is given in Fig. 4(a). We define the mixed B-splines by

´
rst establishing the map from the control vertices xi to c j . To this end, the Bezier control vertices are expressed as

6
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Fig. 4. Averaging masks for computing the bi-quadratic Bézier control vertices c j . The empty circles denote the mixed B-spline control
vertices xi and the solid circles the Bézier control vertices c j . The corner mask (c) for extraordinary vertices is a straightforward generalisation
of the corner mask for ordinary vertex with v = 4. The masks (b) and (c) describe a bi-quadratic B-spline when an element’s all vertices
re regular.

inear combinations of the mixed B-spline control vertices. The corresponding weights can be graphically visualised
ith the masks shown in Figs. 4(b) and 4(c). The edge Bézier control vertices c2, c6, c8 and c4 are determined
sing the mask in Fig. 4(b) and the corner Bézier control vertices c1, c3, c9 and c7 using the mask in Fig. 4(c). The
entre Bézier control vertex c5 has the same value as the mixed B-spline control vertex x5. Finally, the mapping
f the mixed B-spline control vertices xi to the Bézier control vertices c j is given by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1
c2
c3
c4
c5
c6
c7
c8
c9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
4

1
4 0 1

4
1
4 0 0 0 · · · 0

0 1
2 0 0 1

2 0 0 0 · · · 0
0 1

4
1
4 0 1

4
1
4 0 0 · · · 0

0 0 0 1
2

1
2 0 0 0 · · · 0

0 0 0 0 1 0 0 0 · · · 0
0 0 0 0 1

2
1
2 0 0 · · · 0

0 0 0 1
4

1
4 0 1

4
1
4 · · · 0

0 0 0 0 1
2 0 0 1

2 · · · 0
0 0 0 0 1

v
1
v

0 1
v

· · ·
1
v

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6
x7
x8
...

x9+v−4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⇒ c j =

∑
i

M j i xi . (8)

Combining the Bézier basis functions Q j (η) of an element with the map (8) from the control vertices xi to c j ,
e can define both a (local) parametrisation of the physical domain Ω and the mixed B-splines Bi (x). Note that

he Bézier basis functions Q j (η) are local to each element. Specifically, with the mixed B-spline control vertices xi
iven in Fig. 4(a) and the map (8) the geometry parametrisation within the element corresponding to the control
ertex x5 is given by

x(η) =

9∑
j=1

Q j (η)c j =

9∑
j=1

9+v−4∑
i=1

Q j (η)M j i xi with η = (η1, η2) ∈ □ := [0, 1] × [0, 1] . (9)

his description also defines the mixed B-spline B5(x) associated to control vertex x5. According to (9), its preimage
n the parametric domain is given by

B5(η) =

9∑
j=1

Q j (η)M j5 (10)

uch that

B5(x) = B5(η) ◦ x(η)−1 . (11)

he B-splines Bi (x) associated to the other control vertices in the mesh are obtained in the same way. See [61] for
ther properties of the mixed B-splines.
7
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Fig. 5. Unstructured quadrilateral mesh with only one extraordinary vertex with valence v = 5, its parametrisation and the graph of one of
the corresponding basis functions. The thin lines in (b) and (c) indicate the parameter lines with either η1 = const. or η2 = const. In the
-neighbourhood of the extraordinary vertex across the element edges, i.e. the blue edges in (b), the parametrisation is only C0 continuous
nd everywhere else it is C1 smooth. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
ersion of this article.)

As an example, the parametrised domain, i.e. Bézier mesh corresponding to the unstructured mesh in Fig. 5(a)
ith an extraordinary vertex with v = 5 is visualised in Fig. 5(b). The parametrisation is C1 smooth in most parts of

he domain as is suggested by the plotted parameter lines with either η1 = const. or η2 = const. It is C0 continuous
cross the edges incident to the extraordinary vertex. For a control vertex in the 1-neighbourhood of the extraordinary
ertex we obtain the basis function shown in Fig. 5(c). This basis function is only C0 continuous across the edges
ncident to the extraordinary vertex, as can be inferred from the plotted parameter lines.

.2. Construction of SB-splines

The construction of the blended C1 smooth basis functions is analogous to 1D. First, we choose a weight
unction wB(x) and its complement to one wQ(x) = 1 − wB(x). The weight function wB(x) is assembled from
he smooth mixed B-splines defined on the unstructured mesh. Importantly, the blending of the basis functions
akes place in the physical domain Ω rather than the parametric domain of the basis functions. It is impossible
o map every multi-dimensional physical domain with arbitrary topology onto a single parametric domain. This
an be achieved only by introducing an atlas consisting of several charts with respective parametric domains and
ransition functions [48–50]. The definition of such smooth transition function on unstructured meshes is usually
ery challenging. Instead, constructing the weight functions on the physical domain sidesteps the need for an atlas
nd smooth transition functions.

As discussed in the preceding section smooth mixed B-splines Bi (η) are defined only away from the
-neighbourhood of an extraordinary vertex. Furthermore, the mixed B-splines Bi (x) on the physical domain are
btained by mapping Bi (η) from the reference element via the mapping x(η)−1, see (11). According to the chain
ule of differentiation the smoothness of Bi (x) relies both on the smoothness of Bi (η) and x(η)−1. This implies that
eyond the 1-neighbourhood of an extraordinary vertex most of the control vertices in its 2-neighbourhood belong
o non-smooth mixed B-splines Bi (x) as well, see Fig. 6(a).

We assemble the weight function wB(x) from the mixed B-splines Bi (x) by excluding the ones belonging to the
ontrol vertices in the 2-neighbourhood of the extraordinary vertex, i.e. by excluding the mixed B-splines associated
o all control vertices marked with a cross or a tick in Fig. 6(a). Although only the non-smooth mixed B-splines must
e excluded, for ease of implementation we exclude some of the smooth mixed B-splines as well. The so-obtained
mooth weight function wB(x) and its complement to one wQ(x) = 1 − wB(x) are depicted in Figs. 6(b) and 6(c),
espectively. Evidently, both weight functions are C1 smooth, bi-quadratic on the reference element domain □ and
upp wQ(x) is comprised of the 3-neighbourhood of the extraordinary vertex.

Next, we choose a bi-quadratic Bernstein basis {Q j (x)}9
j=1 as the second basis for blending. These are defined on
different domain than the ones in (9); indeed, considering that the blending takes place in the physical domain Ω

8
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Fig. 6. Smoothness of the mixed B-splines Bi (x) and weight functions wB (x) and wQ (x). In (a) the mixed B-splines Bi (x) are represented by
the respective control vertices (empty circles). In addition, Bi (x) that are C1 and C0 continuous across element edges in the 1-neighbourhood
of the extraordinary vertex (blue edges) are labelled with ticks (✓) and crosses (×), respectively. In (b) the weight function wB (x) is
assembled by excluding the mixed B-splines Bi (x) belonging to the control vertices within the 2-neighbourhood of the extraordinary vertex.
Its complement to one wQ (x) = 1 − wB (x) is shown in (c). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 7. Three of the obtained SB-splines Ni (x). The SB-splines in (a) and (b) correspond to the non-smooth mixed B-splines Bi (x)
elonging to the control vertices in the 1- and 2-neighbourhoods, respectively. The SB-spline in (c) corresponds to one of the Bézier basis
unctions Q j (x).

he basis {Q j (x)} is defined in the physical domain with x ∈ Ω . To guarantee the positivity of the SB-splines, the
omain of the Bernstein basis {Q j (x)} must enclose the blending domain Ω Q , but can be chosen freely otherwise.
s in 1D, the SB-splines are then defined by

N(x) =
(
wB(x)B(x)T wQ(x) Q(x)T

)T (12)

ith

B(x) =
(
B1(x) . . . BnB (x)

)T
, Q(x) =

(
Q1(x) . . . Q9(x)

)T
. (13)

he obtained basis functions N(x) are C1 smooth. In Figs. 7(a) and 7(b) two of the basis functions wB(x)Bi (x)
nd in Fig. 7(c) one of the basis functions wQ(x)Q j (x) are plotted.

In usual finite element implementations integrals are evaluated in a reference element domain □ := [0, 1] × [0, 1].
o facilitate the element-based implementation of the proposed blended approach, we consider a sector-wise
onstruction of the weight functions wB(x) and wQ(x). The process is outlined in Fig. 8. The 3-neighbourhood
f the extraordinary vertex is partitioned into v sectors. Each sector consisting of 3 × 3 elements is parametrised
ith ξ = (ξ1, ξ2) ∈ Ω̂ := [0, 1] × [0, 1], see Fig. 8(a). The elements on the parametric domain Ω̂ are mapped using
mapping η(ξ ) composed of a translation and a scaling to the reference element □ for integration.
With the extraordinary vertex located at the origin ξ = (0, 0) of Ω̂ , the implementation of the weight functions

s identical on all the ν sectors. Therefore, it is sufficient to detail the implementation only one of the sectors.
s illustrated in Fig. 8(b), the weight function wQ(x) is constructed by first defining wQ(ξ ) on the parametric
omain Ω̂ . We define wQ(ξ ) as the tensor product of univariate weight functions wI(ξ1) and wI(ξ2),

wQ(ξ ) = wI(ξ ) ⊗ wI(ξ ) . (14)
1 2

9
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Fig. 8. Construction of the weight function wQ (x) on one of the v sectors in the 3-neighbourhood of an extraordinary vertex. The
weight function wQ (ξ ) on the parametric domain Ω̂ is defined as the product of the univariate weight functions wI(ξ1) and wI(ξ2) in (a).
Formally, wQ (x) on each element on the domain Ω in (b) is given by wQ (x) = wQ (ξ ) ◦ η(ξ )−1

◦ x(η)−1.

irst, we assemble along the ξ1 and ξ2 axes the univariate weight functions for wB(ξ1) and wB(ξ2) by excluding
he univariate B-splines which are not C1 smooth at the origin ξ = (0, 0), see Fig. 8(a). Then, their complements
o one yield

wI(ξi ) = 1 − B2(ξi ) − B3(ξi ) , i = 1, 2 . (15)

For evaluating the finite element integrals the weight function values at the quadrature points in the reference
lement □ are required, which are obtained from

wQ(η) = wQ(ξ ) ◦ η(ξ )−1 . (16)

ere, the mapping η(ξ ) is, as mentioned above, composed of a translation and scaling and can be easily inverted.

. Three-dimensional quadratic SB-splines

The proposed construction of SB-splines can also be extended to unstructured hexahedral meshes describing a
omain Ω ⊂ R3. A mesh consists of elements, i.e. hexahedral cells, their quadrilateral faces, edges and vertices.
n 3D there are in addition to extraordinary vertices also extraordinary edges, see Fig. 1(c). Extraordinary edges
re incident to two extraordinary vertices and regular edges to two regular vertices. In this paper, we assume that
here are no edges with one ordinary and one extraordinary vertex and that all edges on the boundary of the domain
re regular, i.e. are incident to two elements. Furthermore, the valence of an edge e is defined as the number of
lements that share the same two vertices like the edge.

Well-designed hexahedral finite element meshes consist of a small number of chains of extraordinary edges.
here are usually only a few extraordinary vertices with more than two incident extraordinary edges [17,20]. As

n 2D, only the 3-neighbourhood of the extraordinary vertices and extraordinary edges is relevant for the proposed
onstruction. In 3D, the union of the 3-neighbourhoods of all the extraordinary vertices in the mesh form a 6-
lement wide chain of elements as depicted in Fig. 9(a). We split the chain into several disjoint sets and refer
o them as extraordinary prisms or extraordinary joints as illustrated in Figs. 9(b) and 9(c). Joints consist of the
-neighbourhood of extraordinary vertices where more than two extraordinary edges meet. The remaining elements
n the chain form the prisms. Each prism is connected to either a joint or the domain boundary.

In practice, the possible number of extraordinary edges meeting at an extraordinary vertex is limited. For the
ake of clarity and conciseness, without loss of generality, we consider in this section only a joint with four incident
risms, i.e. v = 4, each of which has valence e = 3. The arbitrary v and e case can be similarly elaborated upon

s is briefly discussed in Appendix D.

10
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Fig. 9. Extraordinary features in the unstructured hexahedral sphere mesh in Fig. 1. The 3-neighbourhood of the extraordinary vertices (a)
are decomposed into twenty extraordinary prisms (b) and eight extraordinary joints (c). For illustration purposes, only twelve of the twenty
extraordinary prisms are depicted in (b). The extraordinary vertices corresponding to the joints have v = 4 and the extraordinary edges
corresponding to the prisms have e = 3.

4.1. Review of mixed B-splines

We now outline the extension of the mixed B-spline construction in Section 3.1 to an unstructured hexahedral
mesh. The resulting tri-quadratic mixed B-splines are C1 continuous away from the 1-neighbourhood of extraor-

inary edges and are only C0 continuous along mesh faces incident to extraordinary vertices. Again, there is a
ne-to-one correspondence between the tri-quadratic mixed B-splines and the elements in the mesh (away from
he boundaries) so that we assign a control vertex to each element. The support of the respective mixed B-spline
onsists of all elements sharing a vertex with the element.

As before, we first represent the non-zero mixed B-splines within an element with tri-quadratic Bézier basis
unctions. Subsequently, the corresponding Bézier control vertices are expressed as linear combinations of the mixed
-spline control vertices using the masks depicted in Fig. 10, the labelling of the vertices has been omitted for

implicity. The face Bézier control vertices are determined using the mask in Fig. 10(a), the edge Bézier control
ertices using the mask in Fig. 10(b) and the corner Bézier control vertices using the mask in Fig. 10(c). The masks
or edge and corner Bézier control vertices depend on the valence of the edge e and the valence of the vertex v,
espectively. The centre Bézier control vertex has the same value as the element’s respective mixed B-spline control
ertex.

As in the two-dimensional case, combining the obtained Bézier basis control vertices with Bézier basis functions
e can define a (local) parametrisation of the physical domain Ω as well as mixed B-splines. Recall that the
arametrisation for the quadrilateral mesh in Section 3.1 was C0 continuous across all edges incident to the
xtraordinary vertex. For hexahedral meshes the parametrisation is C0 continuous across all faces incident to the
xtraordinary edge.

.2. Construction of SB-splines

The construction of the blended C1 smooth basis functions on unstructured hexahedral meshes follows the
D and 2D constructions with only slight modification. The key idea is again to consider all the smooth mixed
-splines Bi (x) to define the weight function wB(x) and its complement to one wQ(x) = 1 − wB(x). A naive

mplementation of this idea leads on hexahedral meshes to a single weight function wQ(x) with a support covering
ll the connected extraordinary prisms and joints in the mesh. Clearly, such a construction will lead to an overly
ense stiffness matrix and adversely affect the approximation properties of the SB-splines. Therefore, as will
e detailed in the following, the weight function wQ(x) is partitioned into two sets of locally supported weight
unctions wP

k,ℓ(x) and w J
ℓ (x) such that

wQ(x) =

n P∑ nk∑
wP

k,ℓ(x) +

n J∑
w J

ℓ (x) , (17)

k=1 ℓ=1 ℓ=1

11
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Fig. 10. Averaging masks for computing the tri-quadratic Bézier control vertices. The empty circles denote the mixed B-spline control
vertices xi and the solid circles the Bézier control vertices c j . The averaging masks for the edge Bézier control vertex in (b) and corner
Bézier control vertex in (c) depend on the valence of the edge e and the valence of the vertex v, respectively.

where n P is the number of extraordinary prisms, nk is the number of weight functions defined along the extraordinary
rism k and n J is the number of extraordinary joints. In other words, there is one weight function for each
xtraordinary joint and several weight functions for each extraordinary prism. The construction of the prism weight
unctions wP

k,ℓ(x) are introduced in Section 4.2.1 and the joint weight functions w J
ℓ (x) in Section 4.2.2.

After the weight functions are determined, for blending we assign a tri-quadratic Bernstein basis Q(x) to each
weight function. In the following, the domain of each tri-quadratic Bernstein basis Q(x) is assumed to be a cuboid
enclosing the support of the corresponding weight function it is assigned to. We index the Bernstein basis similarly
to the associated weight functions. Hence, analogous to 1D and 2D, the SB-splines are defined by

N(x) =

(
wB (x)B(x)T wP

1,1(x) Q1,1(x)T
· · · wP

n P ,nn P
(x) Qn P ,nn P

(x)T w J
1 (x) Q1(x)T

· · · w J
n J

(x) Qn J
(x)T

)T
.

(18)

4.2.1. Weight functions for extraordinary prisms
The weight functions for one extraordinary prism are obtained as illustrated in Figs. 11 and 12. The two ends

of the prism are either incident to an extraordinary joint or the boundary of the domain Ω . The centre of the
prism consists of nee extraordinary edges of valence e = 3. For constructing the weight functions the prism is
partitioned into e sectors, see Fig. 11(a). Each sector consists of 3 × 3 × nee elements and is parametrised using
ξ = (ξ1, ξ2, ξ3) ∈ Ω̂ with the parametric domain Ω̂ := [0, 1] × [0, 1] × [0, 1]. The extraordinary edges are located
along the parametric axis ξ = (0, 0, ξ3). The elements on Ω̂ are mapped to the reference element □ for integration
using a mapping η(ξ ) composed of a translation, rotation and scaling.

On a given sector of the k-th prism, we define nk univariate weight functions wII
k,ℓ(ξ3) from the available quadratic

univariate B-splines Bi (ξ3). The number of weight functions nk can be chosen flexibly, as long as

– each wII
k,ℓ(ξ3) is the sum of a certain number of consecutive B-splines,

– each wII
k,ℓ(ξ3) has vanishing derivatives at the endpoints of its support,

– each B-spline is used to build exactly one wII
k,ℓ(ξ3), cf. Fig. 11(b),

– and the sum of all wII
k,ℓ(ξ3) is equal to 1.

For instance, in Fig. 11(b) the univariate weight functions wII
k,ℓ(ξ3) are defined as

wII
k,1(ξ3) =

4∑
Bi (ξ3) , wII

k,2(ξ3) =

8∑
Bi (ξ3) , wII

k,3(ξ3) =

12∑
Bi (ξ3) . (19)
i=1 i=5 i=9

12
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Fig. 11. Construction of the weight functions for an extraordinary prism. The two ends of the prism are either incident to an extraordinary
joint or the boundary of the domain Ω . In (a) only two of the e sectors are shown for visualisation purposes. Each sector consists of 3×3×nee
lements and has a corresponding (cuboidal) parametric domain Ω̂ as illustrated in (b). The weight functions wP

k,ℓ(ξ ) for one of the e sectors
re defined as the tensor product of the bivariate weight function wI(ξ1)⊗wII(ξ2) and the three univariate weight functions wII

k,1(ξ3), wII
k,2(ξ3)

nd wII
k,3(ξ3).

Fig. 12. Weight functions for the extraordinary prism. The weight functions wP
k,1(x), wP

k,2(x) and wP
k,3(x) are obtained by choosing three

nivariate weight functions wII
k,1(ξ3), wII

k,2(ξ3) and wII
k,3(ξ3) along the centre of the extraordinary prism as depicted in Fig. 11(b). The weight

unction wB (x) is their complement to one, i.e. wB (x) = 1 − wP
k,1(x) − wP

k,2(x) − wP
k,3(x). The scalar field ranges between 0 (blue) and 1

red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

he isocontours of the three weight functions and their complement to one wB(x) on two of the three sectors are
epicted in Fig. 12. Note that choosing a large nk ensures that the SB-splines have small support sizes.

Following the above, the trivariate weight functions wP
k,ℓ(ξ1, ξ2, ξ3) are defined as the tensor product of the

ivariate weight function wI(ξ1)⊗wI(ξ2), introduced in Section 3.2, and the nk univariate weight functions wII
k,ℓ(ξ3),

wP
k,ℓ(ξ ) = wI(ξ1) ⊗ wI(ξ2) ⊗ wII

k,ℓ(ξ3) , ℓ = 1, . . . , nk . (20)

he construction is repeated for all prisms to obtain weight functions for all k.

.2.2. Weight functions for extraordinary joints
Without loss of generality, we consider a single extraordinary joint with valence v = 4 shared by four

xtraordinary prisms each of which has valence e = 3, see Fig. 9, and describe the construction of its associated
eight function. To simplify the construction of the extraordinary joint weight function w J

ℓ (x) we require that the
upport of the already defined prism weight functions wP

k,ℓ(x) do not overlap at the joint. Recall from Figs. 11 and
2 that the support of the prism weight functions wP

k,ℓ(x) corresponds in the ξ1ξ2-plane to the 3-neighbourhood of
he extraordinary vertex. Hence, we choose the 3-neighbourhood of the extraordinary vertex at the centre of the joint
or constructing the weight function w J

ℓ (x) as illustrated in Fig. 13(a). At the boundary of the 3-neighbourhood, the
oint meets different prisms. The intersection of the joint with each prism is composed of 3 × 3 × e quadrilateral
aces, with e the valence of the prism’s extraordinary edge. We require across each of the 3 × 3 × e faces that the

J
alue and derivatives of the weight function wℓ (x) match those of the unique non-zero prism weight function. For

13
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Fig. 13. Construction of the extraordinary joint weight function w J
ℓ (x) on one of the v = 4 sectors. Each sector consists of the 3 × 3 × 3

elements shown in (a). The weight function w J
ℓ (ξ ) is obtained using the univariate weight functions wIII(ξ1), wIII(ξ2) and wIII(ξ3) shown in

b) which are simply the complement to one of wI(ξi ) = 1 − wIII(ξi ) with i = 1, 2, 3 shown earlier in Fig. 11(b). The result is depicted at
he top right of (b) with the scalar field ranging between 0 (blue) and 1 (red). (For interpretation of the references to colour in this figure
egend, the reader is referred to the web version of this article.)

nstance, in the already discussed example in Fig. 11(b) the weight functions wP
k,1(x) and wP

k,3(x) corresponding
o wII

k,1(ξ3) and wII
k,3(ξ3) have to smoothly connect to the respective joint weight functions.

To construct the joint weight function w J
ℓ (x) we follow once more a sector-wise approach as outlined in Fig. 13.

he joint is partitioned into v = 4 sectors each consisting of 3 × 3 × 3 elements. Each sector is parametrised
sing ξ = (ξ1, ξ2, ξ3) ∈ Ω̂ on the parametric domain Ω̂ := [0, 1] × [0, 1] × [0, 1]. The extraordinary edges of the
ttached four prisms meet at the origin ξ = (0, 0, 0) of the domain Ω̂ . We define the joint weight function w J

ℓ (ξ )
s

w J
ℓ (ξ ) = 1 − wIII(ξ1) ⊗ wIII(ξ2) ⊗ wIII(ξ3) −

(
1 − wIII(ξ1)

)
⊗ wIII(ξ2) ⊗ wIII(ξ3)

− wIII(ξ1) ⊗
(
1 − wIII(ξ2)

)
⊗ wIII(ξ3) − wIII(ξ1) ⊗ wIII(ξ2) ⊗

(
1 − wIII(ξ3)

)
,

(21)

here the univariate weight functions wIII(ξi ) are, as depicted in Fig. 13(b), assembled from the smooth quadratic
-splines defined along the ξ1, ξ2 or ξ3 axes. That is,

wIII(ξi ) = B2(ξi ) + B3(ξi ) i = 1, 2, 3 . (22)

n Fig. 14 the isocontours of the obtained joint weight function w J
ℓ (x), the weight functions wP

k,ℓ(x) of the attached
our prisms and their complement to one wB(x) are shown. In Appendix D we briefly demonstrate that the joint and
rism weight functions for arbitrary vertex and edge valences v and e can be constructed following same approach.

. Examples

We proceed to establish the finite element convergence properties and accuracy of the SB-splines in solving
oisson and biharmonic problems. The respective weak forms and the details of the finite element discretisation
re summarised in Appendix B. In all the examples we use sufficiently smooth manufactured solutions and focus
n quadratic basis functions, except in 1D where we also consider cubic basis functions. As known from the
sogeometric analysis literature the optimal convergence rates for the Poisson problem discretised with standard
uadratic B-splines are 3 in the L2 norm and 2 in the H 1 seminorm [68]. In contrast, the optimal convergence rates
or the biharmonic problem discretised with quadratic B-splines are 2 in the L2 norm and the H 1 seminorm and 1
n the H 2 seminorm [69].
14
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Fig. 14. Extraordinary joint weight function w J
ℓ (x), extraordinary prism weight functions wP

k,ℓ(x) and their complement to one wB (x). The
calar field ranges between 0 (blue) and 1 (red). (For interpretation of the references to colour in this figure legend, the reader is referred
o the web version of this article.)

Fig. 15. One-dimensional Poisson–Dirichlet problem. Finite element convergence and condition number of the stiffness matrices for the C1

ontinuous SB-splines N(x) and the mixed smoothness B-splines B(x), consisting of C0 and C pB −1 continuous basis functions.

.1. One-dimensional Poisson problem

As a first example we consider the solution of a one-dimensional Poisson–Dirichlet problem − d2u/ dx2
= f on

he domain Ω = (0, 1). The body force f (x) is chosen such that the solution is

u(x) = sin (3πx) . (23)

he domain is parametrised using non-uniform B-splines of degree pB = 2 and pB = 3 in turn. The knot vector and
ontrol points xi are selected so that each element has the same size h. We intentionally introduce a C0 continuous
ink at the midspan x = 1/2 by setting the knot multiplicity to pB therein. In addition, we use an open knot vector
hich allows the Dirichlet boundary condition to be imposed strongly.
In the following we compare the finite element convergence and the condition number of the stiffness matrices

or the SB-splines N(x) with the ones for the mixed B-splines B(x), consisting of C0 and C pB−1 continuous
asis functions. The C1 continuous SB-splines N(x) are constructed by blending B-splines B(x) with Bernstein
asis Q(x) of same polynomial degree pQ = pB . In comparison to B-splines B(x) the SB-splines N(x) have the
dditional degrees of freedom nQ = pQ + 1. We begin with an initial coarse mesh of ne = 8 elements and obtain
ner meshes using knot insertion. Figs. 15(a) and 15(b) show that the SB-splines N(x) yield optimal convergence
ates for both polynomial degrees pB = 2 and pB = 3. In addition, the approximation error remains in the same
rder of magnitude with or without blending. The condition number of the respective stiffness matrices is plotted
n Fig. 15(c). When the mesh size h is relatively large the SB-splines lead to significantly larger condition numbers
han the B-splines. Interestingly, the condition numbers for SB-splines are almost independent of mesh size. Overall,
he SB-splines condition numbers compare favourably with the B-splines condition numbers.
15
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Fig. 16. Initial semi-structured coarse mesh of the square domain. The 32 elements in the eight blending domains are shown shaded.

5.2. Poisson and biharmonic problems on a square domain

We consider next the Poisson–Dirichlet and biharmonic problems on a square domain Ω = (0, 1) × (0, 1).
Fig. 16 shows the initial semi-structured coarse mesh with 8 extraordinary vertices. The boundary of the square
domain is parametrised using open, uniform bi-quadratic B-splines. For the Poisson–Dirichlet problem, the Dirichlet
boundary condition is imposed using Nitsche’s method with the stabilisation parameter chosen as γ = 10/h2,
see Appendix B. For the biharmonic problem, we use the penalty approach with the stabilisation parameter chosen
as γ = 1/h2. In comparison to mixed B-splines B(x), for the SB-splines N(x) the additional degrees of freedom
are nQ = 8 × 9 = 72. We refine the mesh using a refinement scheme described in Appendix C, so that the number
of extraordinary vertices remains constant and the blending domains become increasingly smaller. In all meshes
there are 8 extraordinary vertices and in total 32 elements in the respective blending domains.

We approximate the finite element integrals using the Gauss–Legendre quadrature rule. In order to examine
the effect of the number of quadrature points ngp on the finite element convergence, for the SB-splines N(x),
we vary ngp for the domain integrals and use always 3 quadrature points for the boundary integrals. For the mixed
B-splines B(x), we use for the domain integrals and boundary integrals 3 × 3 and 3 quadrature points, respectively.

For the two-dimensional Poisson–Dirichlet problem, the body force f (x) is chosen so that the solution is equal
to

u(x) = sin (6x1) sin (8x2) . (24)

Fig. 17 confirms that the SB-splines are optimally convergent provided that at least ngp = 3×3 quadrature points are
used. For ngp = 3 × 3, as the mesh is refined the approximation error remains in the same order of magnitude with
or without blending. We conjecture that the number of quadrature points ngp for the SB-splines N(x) to achieve
the optimal convergence rate is relatively small because the weight functions wB(x) and wQ(x) are assembled from
smooth piecewise quadratic B-splines.

For the two-dimensional biharmonic problem, the body force f (x) is chosen so that the solution is equal to

u(x) =
sin (πx1) sin (πx2)

4π4 . (25)

s the mixed B-splines B(x) are not globally C1 continuous on the considered semi-structured quadrilateral mesh,
e examine only the finite element convergence using the C1 continuous SB-splines N(x). Fig. 18 shows that the
B-splines N(x) are optimally convergent for the biharmonic problem provided that a minimum of ngp = 2 × 2 is
sed for the quadrature. However, note that the relative H 2-seminorm of error improves when ngp = 3 × 3 is used.

In addition to the convergence rate, we examine the finite element solution uh(x) for the biharmonic problem
ualitatively. Fig. 19 shows the finite element solution uh(x) and its first and second partial derivatives with respect
16
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Fig. 17. Poisson–Dirichlet problem on a square domain. Convergence of the mixed B-spline B(x) and SB-spline N(x) solutions.

Fig. 18. Biharmonic problem on a square domain. Convergence with SB-splines N(x).

to x1 for the initial coarse mesh. Since the SB-splines N(x) are globally C1 continuous, both the finite element
solution uh(x) and its first partial derivative with respect to x1 are continuous as visible in Figs. 19(a) and 19(b),
respectively. Furthermore, as known the spatial derivatives of uh(x) often exhibit short-wavelength oscillations near
he extraordinary vertices. Similarly, we observe such oscillations specifically for the second spatial derivatives in
17
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Fig. 19. Biharmonic problem on a square domain. The finite element solution uh and its first and second partial derivatives with respect
to x1 for the initial coarse mesh. All plots have been warped in the out-of-plane direction using the stated scale factors. In (a) and (b) all
elements are shown whereas in (c) only elements in the blending domain ΩQ are shown.

the blending domain ΩQ as depicted in Fig. 19(c). However, there are no oscillations in the 1-neighbourhood of
the extraordinary vertices.

5.3. Biharmonic problem on v-gon domains

In some smooth basis function construction techniques, the respective finite element convergence rates are known
to deteriorate when the valence v is increased, see the discussion in [29]. Therefore, we investigate next the
convergence rate of the SB-splines N(x) for different valences. To this end, we consider the biharmonic problem
on the five v-gon domains with v ∈ {3, 5, 6, 7, 8} shown in Fig. 20. For each domain, the extraordinary vertex is
located at the origin x = (0, 0). The boundary is parametrised with open, uniform bi-quadratic B-splines. To impose
the boundary conditions, we use the penalty approach with the stabilisation parameter chosen as γ = 1000/h2.
As shown to be sufficient for the biharmonic problem in Section 5.2, we use 3 × 3 and 3 quadrature points for
approximating the domain and boundary integrals, respectively. Similarly, we refine the mesh using the refinement
scheme described in Appendix C. The body force f (x) is chosen such that the solution is equal to

u(x) = sin (3x1) cos (3x2) . (26)

Fig. 21 shows the finite element convergence using the SB-splines N(x). Although the convergence rates for
the first few coarse meshes are slightly fluctuating, overall the SB-splines N(x) are optimally convergent. In other
words, the convergence rate is identical for the considered valences v ∈ {3, 5, 6, 7, 8}. The increase of the valence
leads, however, to a small increase in the convergence constants. This finding suggests that the SB-splines N(x)
are robust since the studied valences v ∈ {3, 5, 6, 7, 8} are the most prevalent in well-designed meshes.

5.4. Poisson and biharmonic problems on a spherical domain

As a final example, we consider the Poisson–Dirichlet and biharmonic problems on the spherical domain
in Fig. 1. The spherical domain has a radius of 2.55 and is centred at the global origin x = (0, 0, 0). As
an approximation to the spherical domain, the parametrised hexahedral mesh in Fig. 1(b) has an average mesh
size h = 0.4228 and consists of 20 extraordinary prisms of valence e = 3 and 8 extraordinary joints. The boundary
of the spherical domain is parametrised using open, uniform tri-quadratic B-splines. For the Poisson–Dirichlet
problem, the Dirichlet boundary condition is imposed using Nitsche’s method with the stabilisation parameter chosen
as γ = 10/h2. For the biharmonic problem, we use the penalty approach with the stabilisation parameter chosen
as γ = 1000/h2. The numbers of degrees of freedom for the mixed B-splines B(x) and the SB-splines N(x)
are 6413 and 6413 + (20 + 8) × 27 = 7169, respectively.

For the three-dimensional Poisson–Dirichlet problem, the body force f (x) is chosen so that the solution is equal
o

u(x) = sin
( x1

2

)
sin

( x2

2

)
sin

( x3

4

)
. (27)

e compare numerically the finite element solution uh(x) between B(x) and N(x). The relative L2-norms of error
or B(x) and N(x) are 4.9111 × 10−4 and 3.9034 × 10−4, respectively, whereas the relative H 1-seminorms of error
18
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Fig. 20. Initial coarse meshes for the v-gon domains. For each initial coarse mesh the blending domain ΩQ is shaded in pink. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 21. Biharmonic problem on v-gon domains. Convergence with SB-splines N(x).

or B(x) and N(x) are 5.1337××10−3 and 3.5630×10−3, respectively. Therefore, the approximation error has the
ame order of magnitude with and without blending. Fig. 22 illustrates the first partial derivative of the finite element
olution with respect to x1. As can be seen, both B(x) and N(x) yield an accurate approximation to the first partial
erivative of the analytical solution with respect to x1. In addition, Fig. 23 ascertains that the SB-splines N(x) are
lobally C1 continuous. For instance, the mixed B-splines B(x) yield C0 continuous finite element solution uh(x)
ear the extraordinary edges as inferred from the discontinuity of the first partial derivative of uh with respect to x1
19
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Fig. 22. Poisson–Dirichlet problem on a spherical domain. Isocontours of the first partial derivative of the finite element solution with respect
o x1 on the spline surface. The scalar field ranges between −0.18 (blue) and 0.18 (red). (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

Fig. 23. Poisson–Dirichlet problem on a spherical domain. Isocontours of the first partial derivative of the finite element solution with respect
o x1 near the extraordinary edges. For consistency, the scalar field herein has the same scale as Fig. 22.

n Fig. 23(a). In contrast, the first partial derivative of uh with respect to x1 using N(x) is continuous in the same
subdomains as shown in Fig. 23(b).

For the three-dimensional biharmonic problem, the body force f (x) is chosen so that the solution is equal to

u(x) =
1

8π
sin

(πx1

8

)
sin

(πx2

8

)
sin

(πx3

8

)
. (28)

sing the SB-splines N(x), the relative L2-norm of error, relative H 1-seminorm of error and relative H 2-seminorm
f error are 9.8943 × 10−4, 3.7825 × 10−3 and 6.4669 × 10−2, respectively. Fig. 24 shows that the SB-splines N(x)
ield a satisfactory finite element approximation to the analytical solution.

. Conclusions

We introduced the SB-splines, i.e. a smooth blended B-spline construction, for semi-structured quadrilateral and
exahedral meshes and demonstrated their optimal convergence in the case of quadratic basis function. We assemble
he smooth weight functions required for blending from the smooth mixed B-splines defined on the regular regions
f the unstructured mesh. The weight functions multiplied with the available mixed B-splines and additionally
ntroduced Bernstein basis functions yield the new basis functions. As shown numerically, the SB-splines can be
fficiently integrated using standard Gauss–Legendre quadrature with a very small number of quadrature points.
n the blending region, the new basis functions have slightly larger support close to the extraordinary features. For

nstance, in 2D the support consists of the 3-neighbourhood of the extraordinary vertex. Remarkably, the numerically

20
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Fig. 24. Biharmonic problem on a spherical domain. Isocontours of the finite element solution on the spline surface. The scalar field ranges
etween −0.43 (blue) and 0.43 (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

determined convergence rates in 2D are optimal for both Poisson and biharmonic problems and are independent of
the valence of the extraordinary vertex. However, the convergence constants show a slight increase with an increase
in valence, which may be explained by the short-wavelength oscillations, or ripples, in the higher-order derivatives at
the blending region. As discussed, on unstructured hexahedral meshes, the extraordinary edges and vertices usually
form a connected network. The respective weight functions obtained from the available smooth mixed B-splines
may not have compact support. Therefore, we decompose the weight functions so that the resulting weight functions
and basis functions have a compact support and are still polynomials in the parameter space.

In closing, we stress that the proposed construction can be applied to mixed B-splines of arbitrary degrees,
lthough we have studied only quadratic mixed B-splines so far. To this end, it is necessary to extend the introduced
esh refinement scheme for quadratic mixed B-splines to arbitrary degree. In our experience, the details of this

efinement are essential for achieving optimal convergence rates. For cubic SB-splines the mixed C0/C1/C2 B-
plines introduced in Wei et al. [56] appear particularly promising. Moreover, while we presented some mathematical
nalyses (e.g., proof of linear independence in 1D), further analysis is needed to prove the numerically observed
roperties of SB-splines. In principle, the proposed construction can also be applied to non-uniform B-splines
nd extended to surfaces with arbitrary topology, i.e. 2-manifolds in R3. Non-uniform constructions can, amongst
thers, significantly simplify the enforcement of essential boundary conditions. In the case of surfaces with arbitrary
opology, the SB-splines have to be constructed on a set of intermediate parametric domains corresponding to each of
he extraordinary vertices. The so-obtained SB-splines on parametric domains can be subsequently mapped to R3.
astly, to make the presented construction useful in geometric design, the introduced new degrees of freedom
round the extraordinary features must be associated with control vertex positions. Following related constructions
n geometric modelling, see [46,48,64,65,67], this may be achieved by projecting the new degrees of freedom to
he existing or possibly some new control vertex positions in the mesh.
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Appendix A. Linear independence

We provide in this appendix a proof for the linear independence of the one-dimensional SB-splines. We consider
s in Figs. 2 and 3 a 1D setup with nB mixed B-splines Bi (x) of degree pB ≥ 2. As discussed in Section 2, we

assume that the prescribed B-spline smoothness is C0 at a single breakpoint and C pB−1 at all others. In general, the
mixed B-splines Bi (x) will be non-polynomials in physical space because of the isoparametric mapping, see (2).

et B denote the set of nB mixed B-splines Bi (x), P the set of nQ = pQ + 1 Bernstein polynomials and N the set
f nN = nB + nQ SB-splines. The set B is split into the two non-intersecting sets

BB
=

{
Bi | supp Bi ⊂ Ω Q}

and BC
= B \ BB . (A.1)

he set N is composed of the three non-intersecting sets

N B
=

{
wB Bi | Bi ∈ BB}

, N Q
=

{
wQ Qi | Qi ∈ P

}
and N C

= N \
(
N B

∪ N Q)
. (A.2)

s implied by the choice of weight function in (6), ∄Bi ∈ BB such that wB
|supp Bi = 0, and similarly ∄Qi ∈ P

uch that wQ
|supp Qi = 0. We want to prove that the functions in N are linearly independent.

Linear independence requires that∑
Ni ∈N

Ni (x)αi = 0 ∀x ∈ Ω , (A.3)

s satisfied only when the coefficients αi = 0. Observe that outside the blending domain, (A.3) reduces to∑
Ni ∈NC

Ni (x)αi =

∑
Bi ∈BC

Bi (x)αi = 0 ∀x ∈ Ω \ Ω Q . (A.4)

herefore, due to the linear independence of B-splines, we obtain αi = 0 for all Ni (x) ∈ N C . The remaining terms
n (A.3) correspond to splines with a support inside the blending region Ω Q . We prove by contradiction that the
oefficients of the non-vanishing terms must be zeros. Assume that the SB-splines are linearly dependent such that

∑
Ni ∈N B

Ni (x)αi =

∑
N j ∈N Q

N j (x)α j ∀x ∈ Ω Q , (A.5)

r equivalently that

wB(x)
∑

Bi ∈BB

Bi (x)αi =
(
1 − wB(x)

) ∑
Q j ∈P

Q j (x)α j . (A.6)

ext, observe that there are two elements Ωk1,Ωk2 ⊂ Ω Q such that on each there is only one function from N B that
s non-zero, e.g., the leftmost or the rightmost element in the grey region in Fig. 2 or Fig. 3. Let the corresponding
on-zero functions be Ni1, Ni2, respectively. Then, we have wB

|Ωkℓ
= (1 − Biℓ) and wQ

|Ωkℓ
= Biℓ, ℓ = 1, 2, thus

(1 − Biℓ(x))αiℓ =

∑
Q j ∈P

Q j (x)α j ∀x ∈ Ωkℓ ⊂ Ω Q , ℓ = 1, 2 . (A.7)

ote that the right hand side is a polynomial function.

– Case 1: Let Biℓ|Ωkℓ
be non-polynomial. Then, the equality in (A.7) can be satisfied only if both sides are equal

to 0.
– Case 2: Let the isoparametric mapping be such that both Ωk1,Ωk2 are obtained by affinely mapping the

associated element in parameter space. Thus, Biℓ|Ωkℓ
are degree pB polynomials for both ℓ = 1, 2. This

has two implications. First, for equality, both the left and right hand sides in (A.7) need to represent the same
polynomial, say f , of degree p = min{pB, pQ}. Note that f is thus a global polynomial on Ω Q . Second, by
the end-point vanishing property of B-splines, Biℓ vanishes pB times on one of the endpoints of Ωkℓ, ℓ = 1, 2.

This imposes 2pB constraints on the polynomial f , thus implying f = 0.
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Both the above cases imply that the right hand side in (A.7) is zero and, in particular, all coefficients of Qi are thus
ero by their linear independence. As a result, the right hand side in (A.6) is zero, thus implying that all coefficients
f Bi ∈ BB are zero by their linear independence.

ppendix B. Finite element discretisation

.1. Poisson equation

The Poisson equation is given by

−∆u = f in Ω ,

u = ū on ΓD ,

∇u · n = t̄ on ΓN ,

(B.1)

where u is the solution field in the domain Ω due to the body force f , ū is the prescribed solution field on the
irichlet boundary ΓD , t̄ is the prescribed flux on the Neumann boundary ΓN with the outward unit normal n, ∇

s the gradient operator and ∆ = ∇ · ∇ is the Laplacian operator. The weak formulation of the Poisson equation
an be stated as [70,71]: Find u ∈ H 1(Ω ) such that

a(u, v) = l(v) , (B.2)

or all v ∈ H 1(Ω ) with

a(u, v) =

∫
Ω

∇u · ∇v dΩ + γ

∫
ΓD

uv dΓ −

∫
ΓD

(
u (∇v · n) + v (∇u · n)

)
dΓ , (B.3a)

l(v) =

∫
Ω

vs dΩ +

∫
ΓN

vt̄ dΓ + γ

∫
ΓD

vū dΓ −

∫
ΓD

(∇v · n) ū dΓ , (B.3b)

nd the positive stabilisation parameter γ .

.2. Biharmonic equation

The biharmonic equation is given by

∆2u = f in Ω ,

u = ū, ∇u · n = t̄ on ΓD ,

∆u = κ̄, ∇(∆u) · n = λ̄ on ΓN ,

(B.4)

here κ̄ and λ̄ are respectively the bending moment and shear force prescribed on the Neumann boundary ΓN . The
eak formulation of the biharmonic equation can be stated as [72]: Find u ∈ H 2(Ω ) such that

a(u, v) = l(v) , (B.5)

or all v ∈ H 2(Ω ) where

a(u, v) =

∫
Ω

∆u ∆v dΩ + γ

∫
ΓD

uv dΓ + τ

∫
ΓD

(∇u · n) (∇v · n) dΓ +

∫
ΓD

(
u (∇ (∆v) · n) + v (∇ (∆u) · n)

)
dΓ

−

∫
ΓD

(
∆u (∇v · n) + ∆v (∇u · n)

)
dΓ , (B.6a)

l(v) =

∫
Ω

vs dΩ −

∫
ΓN

vλ̄ dΓ +

∫
ΓN

(∇v · n) κ̄ dΓ + γ

∫
ΓD

vū dΓ + τ

∫
ΓD

(∇v · n) t̄ dΓ

+

∫
(∇ (∆v) · n) ū dΓ −

∫
(∆v) t̄ dΓ . (B.6b)
ΓD ΓD
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B.3. Finite element discretisation

We discretise the trial and test functions with the SB-splines as

uh(x) =

nN∑
i=1

Ni (x) αi and vh(x) =

nN∑
i=1

Ni (x) βi . (B.7)

Introducing the interpolation equation (B.7) into the weak form of Poisson equation (B.2) or biharmonic equa-
tion (B.5) yields a system of linear equations with the unknowns αi . For instance, the bilinear form a(uh, vh) for
the Poisson equation becomes after discretisation

a(uh, vh) =

nN∑
i=1

nN∑
j=1

αi

(∫
Ω

∇Ni∇N j dΩ + γ

∫
ΓD

Ni N j dΓ −

∫
ΓD

(
Ni

(
∇N j · n

)
+ N j (∇Ni · n)

)
dΓ

)
β j .

(B.8)

As usual, the domain integral is evaluated numerically after splitting it into nel element contributions

a(uh, vh) =

nel∑
k=1

⎛⎝ nN∑
i=1

nN∑
j=1

αi

(∫
Ωk

∇Ni∇N j dΩk + γ

∫
(ΓD )k

Ni N j dΓk −

∫
(ΓD )k

(
Ni

(
∇N j · n

)
+ N j (∇Ni · n)

)
dΓk

)
β j

⎞⎠
(B.9)

ppendix C. Mesh refinement

We use for the unstructured quadrilateral mesh the non-nested refinement scheme by Toshniwal [61]. Given a
et of mixed B-spline control vertices from the coarse Bézier mesh, the objective is to obtain a new set of mixed
-spline control vertices for defining the refined Bézier mesh. Away from the 1-neighbourhood of an extraordinary
ertex, that is, where a tensor product structure is locally present, the knot insertion algorithm is used. The refinement
f the 1-neighbourhood of an extraordinary vertex of valence v consists of three steps shown in Fig. C.25. First,
he v × 3 mixed B-spline control vertices at the 2-neighbourhood of the refined Bézier mesh are obtained from the
not insertion algorithm as shown in Fig. C.25(a). As a result, only the v mixed B-spline control vertices at the
-neighbourhood of the refined Bézier mesh remain to be selected. In particular, the remaining v mixed B-spline
ontrol vertices are selected such that the v midpoints of the edges at the 1-neighbourhood of the coarse Bézier
esh are interpolated. Therefore, the second step is to estimate the midpoints shown in Fig. C.25(b) using, for

nstance, a root-finding algorithm together with a parametrisation for the edge length. Subsequently, in the third
tep a v × v linear system of equations is solved for the v mixed B-spline control vertices at the 1-neighbourhood
f the refined Bézier mesh shown in Fig. C.25(c).

The v × v linear system is invertible for the case of odd valences v = 3, 5, . . . but not the case of even
alences v = 6, 8, . . . . For even valences, the v × v linear system has a rank of v − 1. For the case of even
alences, following [61] we constrain 1 of the v mixed B-spline control vertices so that the v × v linear system
as a unique solution. Evidently, the choice of the constrained mixed B-spline control vertex is not arbitrary. For
nstance, choosing to constrain a mixed B-spline control vertex that is far away from the extraordinary vertex can
istort the refined Bézier mesh. To avoid any mesh distortion, in this paper, we first select 1 of the v extraordinary
lements from the coarse Bézier mesh. After that, assuming that the extraordinary vertex is located at the reference
lement origin η = (0, 0) of the selected extraordinary element, we constrain the mixed B-spline control vertex at
= (η1, η2) where η1 and η2 are decided case by case, i.e. depending on the coarse Bézier mesh. For example, in

ection 5.3, we observe that the choice of η1 = η2 with 0.125 ≤ η1 ≤ 0.25 generally preserves the mesh quality
fter refinement.

ppendix D. Arbitrary joint and prism valences

We briefly demonstrate that the approach discussed in Section 4.2.2 applies to an extraordinary joint with arbitrary
dge valences e and vertex valence v. As a concrete example, Fig. D.26 illustrates the construction of weight
unctions for an unstructured hexahedral mesh of a truncated box domain with a spherical cavity. The unstructured
24
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Fig. C.25. Refinement of the 1-neighbourhood of an extraordinary vertex with valence v = 5. The element boundaries of the coarse and
the refined Bézier meshes are depicted as solid line and dashed line, respectively. The refinement scheme consists of three steps. First, the
2-neighbourhood mixed B-spline control vertices of the refined Bézier mesh shown in (a) are obtained using tensor-product knot insertion.
Second, we compute the midpoints such that the curve lengths of the 1-neighbourhood edges of the coarse Bézier mesh are approximately
bisected shown in (b). Third, the 1-neighbourhood mixed B-spline control vertices of the refined Bézier mesh shown in (c) are computed
such that the midpoints determined in (b) are interpolated.

Fig. D.26. Truncated box domain with a spherical cavity and (a) its discretisation with an unstructured hexahedral mesh, (b) extraordinary
dges and vertices of the mesh, (c) extraordinary hexahedra, (d) extraordinary prisms and (e) extraordinary joint and the attached prisms. In
b) the four sets of extraordinary edges of valence e = 3 and e = 5 are coloured in red and blue, respectively. (For interpretation of the
eferences to colour in this figure legend, the reader is referred to the web version of this article.)

exahedral mesh shown in Fig. D.26(a) consists of one set of extraordinary edges of valence e = 3 and three
ets of extraordinary edges of valence e = 5 shown in Fig. D.26(b). The valences of the extraordinary edges
an be verified from the extraordinary hexahedra of the mesh shown in Fig. D.26(c). Overall, the unstructured
exahedral mesh consists of an extraordinary joint where the extraordinary edges of valence e = 3 and e = 5 meet
t a vertex of valence v = 10. As discussed in Section 4.2.2, we first require that the support of the prism weight
unctions do not overlap at the extraordinary joint, see Fig. D.26(d) depicting the union of the prism weight function
upports. Subsequently, the extraordinary joint weight function is defined over the set of hexahedra in Fig. D.26(e).
25
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Conceptually, the extraordinary joint weight function defined over the set of hexahedra in Fig. D.26(e) resembles
that shown in Fig. 14(a).
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[27] T. Nguyen, K. Karčiauskas, J. Peters, C1 finite elements on non-tensor-product 2D and 3D manifolds, Appl. Math. Comput. 272 (2016)

148–158.
[28] A. Collin, G. Sangalli, T. Takacs, Analysis-suitable G1 multi-patch parametrizations for C1 isogeometric spaces, Comput. Aided Geom.

Design 47 (2016) 93–113.
[29] D. Toshniwal, H. Speleers, T.J.R. Hughes, Smooth cubic spline spaces on unstructured quadrilateral meshes with particular emphasis

on extraordinary points: Geometric design and isogeometric analysis considerations, Comput. Methods Appl. Mech. Engrg. 327 (2017)
411–458.

[30] D. Toshniwal, H. Speleers, R.R. Hiemstra, T.J.R. Hughes, Multi-degree smooth polar splines: A framework for geometric modeling
and isogeometric analysis, Comput. Methods Appl. Mech. Engrg. 316 (2017) 1005–1061.

[31] M. Kapl, F. Buchegger, M. Bercovier, B. Jüttler, Isogeometric analysis with geometrically continuous functions on planar multi-patch
geometries, Comput. Methods Appl. Mech. Engrg. 316 (2017) 209–234.

[32] M. Kapl, G. Sangalli, T. Takacs, Construction of analysis-suitable G1 planar multi-patch parameterizations, Comput. Aided Des. 97

(2018) 41–55.

26

http://refhub.elsevier.com/S0045-7825(22)00481-9/sb1
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb1
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb1
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb2
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb2
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb2
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb3
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb3
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb3
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb4
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb4
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb4
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb5
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb5
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb5
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb6
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb6
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb6
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb7
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb7
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb7
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb8
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb8
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb8
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb9
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb9
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb9
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb10
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb10
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb10
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb11
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb11
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb11
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb12
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb12
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb12
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb13
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb14
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb14
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb14
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb15
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb15
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb15
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb16
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb17
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb18
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb19
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb20
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb21
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb21
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb21
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb22
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb22
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb22
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb23
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb23
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb23
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb24
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb24
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb24
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb25
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb26
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb27
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb27
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb27
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb28
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb28
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb28
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb29
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb29
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb29
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb29
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb29
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb30
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb30
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb30
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb31
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb31
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb31
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb32
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb32
http://refhub.elsevier.com/S0045-7825(22)00481-9/sb32


K.J. Koh, D. Toshniwal and F. Cirak Computer Methods in Applied Mechanics and Engineering 399 (2022) 115438
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