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A B S T R A C T

The high cost of data acquisition makes Automatic Speech Recognition (ASR) model training
problematic for most existing languages, including languages that do not even have a written
script, or for which the phone inventories remain unknown. Past works explored multilingual
training, transfer learning, as well as zero-shot learning in order to build ASR systems for these
low-resource languages. While it has been shown that the pooling of resources from multiple
languages is helpful, we have not yet seen a successful application of an ASR model to a
language unseen during training. A crucial step in the adaptation of ASR from seen to unseen
languages is the creation of the phone inventory of the unseen language.

The ultimate goal of our work is to build the phone inventory of a language unseen during
training in an unsupervised way without any knowledge about the language. In this paper, we
(1) investigate the influence of different factors (i.e., model architecture, phonotactic model,
type of speech representation) on phone recognition in an unknown language; (2) provide an
analysis of which phones transfer well across languages and which do not in order to understand
the limitations of and areas for further improvement for automatic phone inventory creation;
and (3) present different methods to build a phone inventory of an unseen language in an
unsupervised way. To that end, we conducted mono-, multi-, and crosslingual experiments on a
set of 13 phonetically diverse languages and several in-depth analyses. We found a number of
universal phone tokens (IPA symbols) that are well-recognized cross-linguistically. Through a
detailed analysis of results, we conclude that unique sounds, similar sounds, and tone languages
remain a major challenge for phonetic inventory discovery.

. Introduction

Automatic Speech Recognition (ASR) is one of the technologies deployed on a massive scale with the highest impact of the
1st century. It has achieved enormous advancement during the past fifteen years (Zhang et al., 2020), enabling automatic
ranscription, translation, and the ubiquitous appearance of digital assistants, among other applications. Combined with spoken
anguage understanding, ASR has the potential to automate numerous processes that require spoken communication, such as requests
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Acronyms

AM Acoustic Model
AoA Age of Acquisition
AoS Apraxia of Speech
ASR Automatic Speech Recognition
AUC Area Under the Curve
CTC Connectionist Temporal Classification
d.o.f. Degree of Freedom
DNN Deep Neural Network
E2E End-to-End
FN False Negative
FP False Positive
G2P Grapheme-to-Phone
GMM Gaussian Mixture Model
HMM Hidden Markov Model
IPA International Phonetic Alphabet
JSD Jensen–Shannon divergence
LF-MMI Lattice-Free Maximum Mutual Information
LM Language Model
MA Main Aim
MFCC Mel-Frequency Cepstral Coefficient
NLP Natural Language Processing
NMI Normalized Mutual Information
P Phone
PER Phone Error Rate
PL Pronunciation Lexicon
PT Phone Token
PTER Phone Token Error Rate
RQ1 Research Question 1
RQ2 Research Question 2
RQ3 Research Question 3
T-SNE T-distributed Stochastic Neighbor Embedding
TDNNF Factorized Time-Delay Neural Network
TP True Positive
UMAP Uniform Manifold Approximation and Projection
WER Word Error Rate

for support and knowledge. Typically, the development of ASR systems requires hundreds to thousands of hours of speech recordings
and their correspondent transcriptions. Unfortunately, only a small number of the world’s languages is sufficiently resourced to build
speech processing systems, while the amount of transcribed speech data for most of the 7000 spoken languages in the world (Austin
and Sallabank, 2011) is very limited or nonexistent (Scharenborg et al., 2020). This results in digital divides (Morrell and Rowsell,
2020) that can only be fixed with large investments in speech resources, if considering only traditional ways to develop ASR models
for new languages.

One method that is often used to reduce the data requirements for under-resourced languages is to build word-level ASR out of
hone models. The word ‘‘phone’’ was coined in Lamel et al. (1989) as an abbreviation for ‘‘phonetic symbol’’, defined in Leung
nd Zue (1984) as an element of a phonetic transcription corresponding to at most one phoneme, whose boundary times in the
coustic signal can be reliably identified using automatic forced alignment. Such language-dependent ASR segment inventories
ay be expressed using the language-independent symbols of the IPA (Association et al., 1999), and their set union defines a

anguage-independent phone inventory, which may be trained using multilingual data (Schultz and Waibel, 1998); alternatively,
anguage-dependent phone models may be trained using far less data than language-dependent word models, because the number
f phones in a language is far fewer than the number of words (Barnard et al., 2009). In order to use phone-based acoustic models,
owever, it is necessary to discover the phone inventory of the unseen language. Past research has addressed this problem and
roposed knowledge transfer from high-resource to low-resource languages using ASR adaptation technologies. For instance, studies
n Schultz and Waibel (1998), Lööf et al. (2009), Swietojanski et al. (2012), Huang et al. (2013a) and Li et al. (2020) propose
2

ultilingual (i.e., using training material from multiple languages including that of the target language) or crosslingual (i.e., using
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Fig. 1. An overview of the basic phonetic units used in our study — phones, which include modifiers such as tones as a part of the symbol, and phone tokens,
where the modifiers are modeled separately. Both variants leverage IPA symbols.

material from multiple languages excluding that of the target language) ASR systems, trained with several languages and targeting
a low-resource target language. The reasoning behind the use of models that are trained with data from other languages is that
sounds in different languages share phonetic representations due to similarities in articulatory and acoustic patterns. The phones
of the target language are then assumed to be part of one or more of the training languages. However, this is not always the
case, in which case those phones in the target language cannot be found. In some cases when a phone is not found in the training
languages, it may be a subtle variant of some corresponding phones in the training languages, that could be used instead to form a
phone system.

Most past research reports performance on the task of a phone or word transcription task in the unseen, target language. In this
ork, we go one step further and focus on the task of automatic, unsupervised phone inventory creation without any knowledge
bout the target language. To the best of our knowledge, we are the first to do so.

Below, we present our main aim and research questions. We will refer to them throughout the paper like this: [MA].
Main Aim [MA]. Our main research question is: Can the phone inventory of an unseen language be discovered in an

nsupervised manner employing cross-lingual ASR systems trained with several languages? Word Error Rate (WER) when going
rom monolingual (low-resource languages) to multilingual training (Knill et al., 2013; Huang et al., 2013a; Li et al., 2020; Dalmia
t al., 2018; Swietojanski et al., 2012; Swietojanski et al., 2012). Here, in addition to reporting PER, we investigate various factors
hat influence crosslingual ASR and automatic phone inventory creation for an unseen language, and investigate what the ASR
odels are learning in order to understand the limitations of and areas for further improvement for building ASR systems for

ow-resource languages, and particularly the creation of the phone inventory of an unseen language.
Research Question 1 [RQ1]. Firstly, we investigate what types of speech representations to use to train our models. Phonemes

re language-dependent sound categories whose substitution may change the meaning of a word (Swadesh, 1934). Phones are
he acoustic realizations of phonemes whose boundary times in the acoustic signal can be reliably identified using automatic forced
lignment. The number of non-phonemic contrasts in the ASR segment inventory is small in some languages, e.g., a typical American
nglish ASR distinguishes a few allophones of /t/, such as [R] and [t] (Lee and Hon, 1989). In other ASR segment inventories, the
umber of suprasegmental contrasts may be quite large, e.g., a typical ASR segment inventory for Mandarin Chinese distinguishes
mong all possible tonally-marked syllable finals (Lin et al., 1993): [aĂ

£], [aĂ£
Ă
£], [aĂ£Ă£Ă£], [aĂ

£Ă£], and the neutral-tone vowel [a] are
ll distinct. Such language-dependent ASR segment inventories may be expressed using the language-independent symbols of the
PA (Association et al., 1999), and their set union defines a universal (language-independent) phone inventory. We define the goal
f our research to be the discovery of the language-dependent ASR segment inventory as a subset of a larger, multilingual phone
nventory. Defining our goal in this way, however, creates some ambiguity: if Mandarin ASR uses [aĂ£Ă£Ă£] as an element in its standard
SR segment inventory, but our phonetic inventory discovery system discovers only the phoneme /a/, should that be considered a
orrect, incorrect, or partially correct result? The ambiguity is solved, in this paper, by defining two levels of language-independent
nnotation. Our phone inventory is the strict set union of the language-dependent ASR segment inventories, expressed in IPA notation.
ur phone token inventory is the set of all unicode characters used to express the phone inventory. Thus for example, the phone

nventory includes the distinct phones {…, a, a
Ă
£, aĂ£

Ă
£, aĂ£Ă£Ă£, a

Ă
£Ă£, …}, while the phone token inventory includes the distinct phone

okens {… , a, Ă£, Ă£, Ă£, Ă£, Ă
£, …}. We distinguish two types of phone tokens: symbols that describe acoustic segments (base phones such

s [a]), and symbols that modify the base phone in order to produce a different phone (diacritics, including secondary articulations,
engthening, lexical stress, and lexical tone, such as [Ă£]). Diacritics such as the high tone symbol [Ă£] have no sound unless coupled
ith a base phone such as [a], but perhaps cross-lingual ASR can be learned more effectively by a system that decomposes [aĂ

£]
nto its component phone tokens, i.e., a system where [a] and [Ă£] are modeled separately (Fig. 1). Therefore, we aim to answer the
uestion: Can phone-based or phone-token-based acoustic models, trained using data from several languages coded with the same
nternational Phonetic Alphabet (IPA) symbols, be used to detect the presence of a phone coded with the same IPA symbol(s) in the
SR segment inventory of a different language?
[RQ2]. Secondly, we know that the speech models learn phonetic representations (Nagamine et al., 2015), however, it is unclear:

hich phones’ representations are the most, and the least, amenable to crosslingual transfer? We also look for the factors that may
elp in explaining the findings. Using several in-depth analyses we answer these questions.
[RQ3]. Thirdly, it is not possible to have a complete picture on how multilingual representations can be used in zero-shot

cenarios without studying to what degree the mismatch of phonotactics1 between training and target languages affect the overall

1 Phonotactics define restrictions in a language on the permissible combinations of phonemes.
3
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phone recognition results of the target language. Consequently, our third research question is: How do phonotactic constraints
influence phone recognition in multilingual and crosslingual scenarios? Is this influence also visible in phonetic inventory discovery
performance?

Proposed solution. To answer these questions, we trained two architectures with different properties, i.e., an End-to-End (E2E)
hone-level ASR and a hybrid DNN-HMM ASR, using training data from 13 languages from 8 language families and with vastly
ifferent phonetic properties. This experimental protocol is based on the preliminary exploration we have performed before —
n Żelasko et al. (2020), we looked into E2E ASR phonetic representation transfer across languages, and in Feng et al. (2021a) we
nvestigated the effect of phonotactics on zero-shot ASR transfer.

Hybrid ASR systems explicitly factorize the acoustic and language models into independent modules, which allows us to quantify
he influence of the language phonotactics on phone recognition performance in multilingual and zero-shot scenarios ([RQ3]).

To measure the effect of phonotactic information, phonotactic LMs of different capacities were trained and compared alongside
the hybrid ASR. In our ASR experiments, we used both IPA phones and phone tokens as our speech representations ([RQ1]).
In our experiments, we use three scenarios: monolingual, as a baseline; multilingual, to investigate the usefulness of pooling all
languages together; and crosslingual, or zero-shot ASR. In each scenario, we evaluate the degree to which the confusion matrix
rows corresponding to different phones, phone tokens, or classes of phones are helped or harmed by multilingual or cross-lingual
modeling ([RQ2]). Finally, in order to address theMain Aim [MA] of the paper, we employed the best E2E and hybrid architectures
in a crosslingual scenario, and propose and compare several methods for automatic phone inventory discovery.

2. Related work

Phonetic inventory discovery. The language-dependent categorical perception of phonemes was strongly argued in a series of
thought experiments by linguists including Trubetzkoy (1929) and Sapir (1925). While trying to define the phoneme inventory of
the native American language Chitimacha, Swadesh provided one of the clearest published definitions of a phoneme: ‘‘The phoneme
is the smallest potential unit of difference between similar words recognizable as different to the native. Given a correct native word,
the replacement of one or more phonemes by other phonemes (capable of occurring in the same position) results in a native word
other than that intended, or a native-like nonsense word’’ (Swadesh, 1934). During the following twenty years, the Swadesh principle
was used to propose phoneme inventories for hundreds of languages, including English (Trager and Bloch, 1941), Russian (Trager,
1934), Amahuaca (Osborn, 1948), Cashibo (Shell, 1950), Huasteco (Larsen and Pike, 1949), Totonaco (Aschmann, 1946), and
Zoque (Wonderly, 1951). The PHOIBLE database (PHOIBLE, 2019) lists 3020 phoneme inventories that have been published as
descriptions of 2186 languages.

There is a great deal of research on the automatic discovery of phone inventories for downstream technological tasks. Four types
of system evaluation are prevalent. First, systems participating in the zero resource speech recognition challenges (Versteegh et al.,
2015), including (Tjandra et al., 2019; Pellegrini et al., 2017; Heck et al., 2017; Shibata et al., 2017; Ansari et al., 2017a,b; Hermann
and Goldwater, 2018; Hermann et al., 2021; Wu et al., 2018; Renshaw et al., 2015; Heck et al., 2016b,c,a; Tsuchiya et al., 2018;
Bhati et al., 2017) are evaluated using an ABX task similar to the Swadesh minimal-pairs test (Swadesh, 1934), but are not asked to
propose a phone inventory whose speech sound clusters match to any human-annotated ground truth. Second, unsupervised phone
discovery systems may be evaluated as components of zero-resource keyword spotting (Menon et al., 2019; Levin et al., 2015;
Wiesner et al., 2019; Siu et al., 2010; Wang et al., 2015; Siu et al., 2014; Ni et al., 2016). Third, unsupervised phone discovery
systems may be evaluated for the purpose of developing automatic speech synthesis in a zero-resource language (Muthukumar and
Black, 2014; Baljekar et al., 2015; Müller et al., 2017; Dunbar et al., 2019; Yu et al., 2016). Fourth, unsupervised phone discovery
can be used as a component in unsupervised lexicon discovery (Lee et al., 2015; Bacchiani and Ostendorf, 1999; Kamper et al.,
2016) or unsupervised speech-to-text (Baevski et al., 2021). Unsupervised speech-to-text may be evaluated on the basis of word
error rate or phone error rate, but has not, to our knowledge, been evaluated in the task of phone inventory discovery.

Comparison of an automatically discovered phone inventory to a ground-truth, human annotated phone inventory has been
performed in certain limited ways. Kempton and Moore (2014) force-aligned human-annotated fine phonetic transcriptions to
audio in an under-resourced language (Kua-nsi), and then evaluated the degree to which the force-aligned transcriptions could
be clustered to compute the true phoneme inventory of the language. Results indicated the need for further improvements for any
particular phonetic class, e.g., active articulator was correctly classified with only 0.745 Area Under the Curve (AUC). Following up
on their study, several researchers have attempted unsupervised clustering of acoustic spectra using Bayesian (Lee and Glass, 2012),
variational (Ondel et al., 2016) or hidden Markov models (Ondel et al., 2019; Ebbers et al., 2017), in order to directly estimate
the phone inventory of an unknown language. The cardinality of the resulting pseudo-phone set is usually ten times larger than the
cardinality of the true phone inventory, but by associating each pseudo-phone to its most highly overlapped ground-truth phone,
it is possible to evaluate the pseudo-phone inventory using metrics such as F1 and normalized mutual information (NMI, Estévez
et al., 2009). Finally, several recent studies have attempted a combination of Kempton’s approach with the unsupervised clustering
approach: cross-lingual ASR is used to annotate the articulatory features of an unknown language, which are then clustered to
form unsupervised phone-like units (Muthukumar and Black, 2014; Baljekar et al., 2015). To our knowledge, only two of these
papers (Yusuf et al., 2021; Feng et al., 2021b) directly evaluated phone inventory NMI or F1; using oracle cluster combination
strategies that are standard in the field of unsupervised phone discovery, Feng et al. (2021b) achieved F1 = 64.14% for cross-lingual
automatic phone inventory estimation.

Crosslingual ASR. We call an ASR system that may recognize more than one language as multilingual; when the target language
4

is not seen during training, then the system becomes crosslingual. Multilingual ASR models have been a point of interest even before
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Deep Neural Network (DNN) became the state-of-the-art acoustic modeling technique (Schultz and Waibel, 1998). Pooling multiple
languages into the training set – with or without architectural changes in the neural network-based acoustic models – is known
to be effective for improving ASR (Schultz and Waibel, 1998, 2001; Niesler, 2007; Swietojanski et al., 2012; Knill et al., 2013;
Huang et al., 2013a; Ghoshal et al., 2013; Dalmia et al., 2018; Toshniwal et al., 2018; Kannan et al., 2019; Li et al., 2020). Note
that both monolingual and multilingual systems can be applied crosslingually, although multilingual systems can be expected to
provide a more universal phonetic representation (Żelasko et al., 2020). Two major challenges specific to crosslingual ASR are
mismatched outputs, as both graphemic and phonemic symbols are usually different across languages; and mismatched inputs, as
he new languages might consist of sounds unseen in the training languages. Past works address this challenge with attempts to
dapt the training vocabularies to new languages (Byrne et al., 2000; Bruguier et al., 2017; Patel et al., 2018), convert the lexicons
f other languages to the target language (Yu et al., 2009; Wiesner et al., 2019), or extend the vocabulary and fine-tune on the
arget language’s data (Tong et al., 2017, 2018; Inaguma et al., 2019). Another recent direction is pre-training the models to learn
ord-level acoustic representations (Hu et al., 2020, 2021; Jacobs et al., 2021). Apart from our proposed ASR systems, any ASR

ystem attempting to recognize language-independent (i.e., phonetic) units, such as the multilingual allophone approach proposed
n Li et al. (2020), would be suitable for performing phonetic inventory discovery.
Analysis of learned representations. Most of the mentioned studies do not perform a detailed analysis of which phones,

anner and place of articulation classes, or language families can benefit more from multilingual and crosslingual training. This
nowledge could be essential to build better ASR systems for languages with low or no resources. Finally, to our knowledge, no
tudy performs IPA phone inventory discovery of unknown languages by exclusively employing cross-lingual ASR systems, without
dditional acoustic clustering based on audio in the target language. By studying this problem, we are able to make statements
bout the degree to which phonemes and phones may be approximated by universal, language-independent categories.

. Methods

In this section we present the details of our approach to phonetic inventory discovery. We start with a brief revision of the
rchitectures of two ASR system types used in our study: the hybrid ASR in Section 3.1, and the end-to-end ASR in Section 3.2.
e use two ASR toolkits: Kaldi2 and ESPnet.3 In Section 3.3 we propose a novel method of discovering which phones are similar

o each other across languages, based on clustering and projection of the ASR phonetic confusion matrix. Finally, we describe our
ethod of discovering phonetic inventories from ASR transcripts in Section 3.4.

.1. Hybrid DNN-HMM ASR

A hybrid ASR system allow us to inspect the impact of phonotactics on the crosslingual system performance and phonetic
nventory discovery [RQ3]. The hybrid system consists of three independent modules. The first is the Acoustic Model (AM), which
redicts the posterior likelihood 𝑝(𝑿|𝑺) of phones or phone HMM states 𝑺 = {𝑠0, 𝑠1,… , 𝑠𝑁} given the acoustic feature frames

𝑿 = {𝑥0, 𝑥1,… , 𝑥𝑁}. Modern acoustic models are usually implemented with deep neural networks. The second module is the
Pronunciation Lexicon (PL) that maps sequences of phones into words. The third module is the Language Model (LM), which
predicts the conditional likelihood 𝑝(𝑤𝑖+1|𝑤0, 𝑤1,… , 𝑤𝑖) of the next word 𝑤𝑖+1 given the previous words. All these components
are incorporated together in a weighted finite-state transducer framework (Mohri et al., 2002), and the most likely word sequence
is retrieved using graph search methods, such as beam search. For more details, we refer the reader to Mohri et al. (2002) and the
documentation of the Kaldi ASR toolkit.4

The above description concerns word-level hybrid ASR systems. The modifications we apply to this framework are the following:

1. The PL is only applied during training to convert the word-level transcripts into phone sequences. During decoding, we are
only interested in knowing phonetic transcripts.

2. For decoding, we replace the word-level LM with a phone-level LM when converting the AM posteriors into a sequence of
phones. We further refer to the phone-level LM as the phonotactic LM, or the phonotactic model.

Note that we do not experiment with phone-token hybrid ASR systems [RQ1]. Hybrid ASR depends on high quality frame-level
alignments during its training. We believe that the task of aligning symbols such as tone modifiers is ill-defined, as they are a
property of the base phone and not a separate sound that follows the base phone. However, the same limitation is not shared by
another class of ASR systems we are about to discuss.

2 https://github.com/kaldi-asr/kaldi.
3 https://github.com/espnet/espnet.
4 https://kaldi-asr.org/doc/.
5

https://github.com/kaldi-asr/kaldi
https://github.com/espnet/espnet
https://kaldi-asr.org/doc/


Computer Speech & Language 74 (2022) 101358P. Żelasko et al.

s
c

d

t

3

r
c
t
d

s
s
c
d
u
r

m
—
t
f
e
c
[
s
w
p
a
u

3.2. End-to-end ASR

In the recent years, another class of ASR systems, popularly called End-to-End (E2E), has grown as an alternative to the hybrid
ystems. These systems will help us investigate which output label type, phones or phone tokens, could be more beneficial for
rosslingual ASR [RQ1].

Whereas the exact definition of E2E is not clear, typically this term describes models that perform graphemic transcription
irectly, i.e., they require neither an additional pronunciation lexicon, nor even an external language model to transcribe.5 These

systems are trained without using a forced or ground-truth alignment — often using a Connectionist Temporal Classification (CTC)
loss, or an attention encoder–decoder architecture. The CTC objective is frame-synchronous (i.e., each frame is assigned a label) and
maximizes the likelihood of observing the correct transcript given the acoustic frames over all possible alignments corresponding
to the ground truth text (Graves et al., 2006).

The encoder–decoder attention model consists of two modules: an encoder, and a decoder with attention. The encoder first
encodes the input frame sequence (possibly sub-sampling it first), and produces a sequence of intermediate representations that are
used as decoder inputs. The decoder is autoregressive — it models the conditional probability of the next output token, conditioned
on the previous output token and the intermediate representations provided by the encoder. The first decoding step is initialized with
a special [𝐵𝑂𝑆] symbol (beginning-of-sentence), and it stops once the decoder recognizes a special [𝐸𝑂𝑆] symbol (end-of-sentence). For
each prediction step, the encoder’s activations are aggregated via a weighted sum, with the weights determined by the source-target
attention mechanism (Chorowski et al., 2015). The decoder’s output sequence is typically much shorter than the vector of acoustic
frames, making encoder–decoder a frame-asynchronous model. While the encoder–decoder attention model has the advantage of
modeling the acoustics and language jointly, it is susceptible to misalignment due to noise or convergence issues. Hence, Watanabe
et al. (2017) and Hori et al. (2017) proposed to combine the CTC and encoder–decoder attention model to take advantage of both
systems’ capabilities. Going forward, in this work we will refer to this joint CTC and attention system as E2E. Note that whereas
usually E2E means a system that performs graphemic transcription, we are specifically using the same approach to generate an
IPA phonetic transcription, using units of either phone tokens (each decoder output generates one IPA character) or phones (each
decoder output generates one or more IPA characters).

Note that the E2E system does not allow us to inspect the impact of the phonotactics [RQ3] as they are learned jointly with
he acoustic representations (even when we do not use an external LM).

.3. Visualizing phonetic confusions

We aim to learn which phones’ representations are the most amenable to crosslingual transfer and which phones are hard to
ecognize crosslingually [RQ2]. To that end, we analyze the patterns in the zero-shot systems’ phone confusions. A phone (token)
onfusion can be interpreted as: a given target-language phone (token) resembled a different source-language phone (token) more
han it resembled the same source-language (‘‘correct’’) phone (token). The cross-lingual confusion matrix therefore represents the
egree to which each phone or phone token fails to transfer well across languages.

Our approach is visualized in Fig. 2. We compute the edit distance alignments between the reference and hypothesized phone
equences and use them to estimate the phone confusion matrix. Unfortunately, the confusion matrix is quite large due to the
ize of the IPA symbol vocabulary, making a direct inspection of it hardly feasible. Instead, inspired by some of the methods of
onfusion matrix re-ordering (Behrisch et al., 2016), we transform it to the following two representations: a hierarchical clustering
endrogram, and a 2-D Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2018). The dendrogram allows
s to easily view specific phone token clusters, whereas the projection hints at the global structure of the confusion space and the
elationships between different symbols and clusters.

The clustering and projection algorithms both depend on the estimation of a distance matrix with a carefully selected distance
etric. In order to obtain meaningful visualization, we propose to view the confusion matrix as a set of probability distributions
for each phone token (row), what is the probability of confusing it with another phone token (column). The intuition behind

his approach is that when two symbols tend to be confused with the same set of classes, they must be similar to each other. We
ind it helpful to first zero out the confusion pairs that occurred less than 50 times, and then remove the phone symbols that have
mpty (all zero) rows or columns. Using this threshold, we reject about 5.3% of all confusions (452 202 out of 8 536 116 symbols
onfused in the transcripts), which account for approx. 37% of all confusion types (e.g., we understand confusing [a] with [e] and
a] with [o] as a different confusion type; we discard 21 168 out of 57 120 confusion types). Without any thresholding, the patterns
upported by most of the data are obfuscated by a long tail of noisy patterns after the occurrence counts are normalized. Then,
e preprocess the confusion matrix with row-normalization, so that each row is converted from occurrence counts to a categorical
robability distribution of confusing a ground truth phone 𝑃 with another phone 𝑃 ′. We are going to interpret these distributions
s feature vectors, describing the similarity between symbol pairs. Representing each phone as a probability distribution provides
6

s a sound motivation to select the Jensen–Shannon divergence (JSD) as the distance metric.
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Fig. 2. High-level workflow illustrating how the phone confusion matrix is obtained and mapped into phone similarity visualizations.

3.4. Phonetic inventory discovery

The ultimate goal of our works is to automatically discover the phone inventories of an unknown language [MA]. Note that in
this paper, we usually mention phonetic inventories. We use that term, in a slight abuse of terminology, to refer to any of the two
different types of inventories – a phone inventory and a phone token inventory. The phone inventory of a language is the set
of phones generated by a language-dependent Grapheme-to-Phone (G2P). The phone token inventory is the set of IPA characters
that make up those phones.

5 Note that a fusion with an external language model can still improve E2E system’s performance.
7
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Fig. 3. High-level workflow illustrating how a crosslingual (zero-shot) ASR is applied to phone inventory discovery of an unknown language.

Table 1
Speech data used in the experiments. Train and Eval columns are presented in the number of hours. Vow and Con indicate the
number of distinct phones used to describe vowels and consonants, respectively. Uniq denotes the number of IPA phones only
existing in that language. The symbol ‡ indicates tone languages.
Corpus Language Train Eval Vow Con Uniq

GlobalPhone

Czech 24.0 3.8 10 25 5
French 22.8 2.0 19 26 9
Spanish 11.5 1.2 6 24 4
Mandarin‡ 14.9 1.6 60 33 41
Thai‡ 22.9 0.4 108 35 17

Babel

Cantonese‡ 126.6 17.7 110 25 88
Bengali 54.5 9.8 19 33 13
Vietnamese‡ 78.2 10.9 204 25 130
Lao‡ 58.7 10.5 106 61 83
Zulu‡ 54.4 10.4 15 54 19
Amharic 38.8 11.6 8 52 9
Javanese 40.6 11.3 11 23 1
Georgian 45.3 12.3 5 30 2

Frequency-based inventory discovery. To probe the zero-shot system’s usefulness in phonetic inventory discovery, we propose
a straightforward approach: we assume that all symbols that occur ‘‘frequently enough’’ in the zero-shot system’s output for a given
target language together constitute the target language’s phonetic inventory. But what is ‘‘frequently enough’’? Here, we simply
count the number of occurrences of each symbol in the recognized transcripts of an unseen language and set a threshold, where
any symbol with a frequency above the threshold is considered to be part of the language’s phonetic inventory. To ensure that the
approach is not strongly dependent on the amount of available test data, we convert the absolute occurrence counts into relative
frequencies, dividing each count by the total number of recognized symbols for that language.

Phone inventory discovery cannot be performed using a phone-token ASR: there are many different ways in which the phone
tokens generated by an ASR could be recombined into phones, and the different combination methods have different phone discovery
accuracies. Both types of inventory discovery (phone inventory and phone token inventory) can be performed using phone-based
ASR: the only difference between them is that, for phone token discovery, the phones in the ASR output are split into phone tokens
prior to application of the process in Fig. 3.

4. Experimental setup

This section presents the details of our experiments. We start by introducing the corpora and languages used in our study in
Section 4.1. Section 4.2 describes the setup of our monolingual, multilingual and crosslingual ASR experiments. Finally, we describe
the phonetic inventory experiments in Section 4.3.

4.1. Corpora

We selected 13 languages for this study which are shown in Table 1, identical to those used in our previous work (Żelasko
et al., 2020; Feng et al., 2021a). These languages were chosen for the diversity of their phoneme inventories. For instance, Bengali
was chosen as a representative language with voiced aspirated stops, Javanese for its slack-voiced (breathy-voiced) stops, Zulu has
clicks, and Mandarin, Cantonese, Vietnamese, Lao, and Thai are tone languages with very different tone inventories (Zulu also
has lexical tones, but our grapheme-to-phoneme transducer for Zulu does not label the tones of each syllable). Table 1 reports the
number of distinct phones in the ASR segment inventory for that language. Each phone consists of a base phone (a speech sound
8
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Fig. 4. Three ASR experimental scenarios in our study: monolingual, multilingual, and crosslingual. 𝐿𝑘 indicates 𝑘th language in our experimental dataset.

associated with a temporal segment), possibly modified by diacritics marking secondary articulation, lengthening, lexical stress, or
lexical tone, e.g., the high-, rising-, dipping- and falling-tone /i/ in Mandarin are described by four different phones [iĂ£], [iĂ£Ă£],
[iĂ£Ă£Ă£], and [iĂ£Ă£], respectively. Phones may be affricates if affricates are phonemic in the source language, e.g., the five Amharic
phones /t/,/t’/,/S/,/tS/,/tS’/ are coded using only three IPA symbols: [t], [S], and [’]. Note that the high number of vowels in tone
languages is due to different combinations of tone modifiers (e.g., Vietnamese and Cantonese each have six tones per vowel). We
obtained the IPA phonetic transcripts by leveraging the LanguageNet Grapheme-to-Phone (G2P) models (Hasegawa-Johnson et al.,
2020).

Speech data for these languages were obtained from the GlobalPhone (Schultz, 2002) and IARPA Babel corpora. GlobalPhone
has a small number of recording hours for each language – about 10 to 25 h – and represents a simpler scenario with limited noise
and reverberation. On the other hand, Babel languages have more training data, ranging from 40 to 126 h, but these databases
are significantly more challenging due to the recordings having been made in a larger variety of acoustic environments. We used
standard train, development, and evaluation splits for Babel. For GlobalPhone languages, whenever the documentation provides
standard split information, we use these — otherwise, we chose the first 20 speakers’ recordings for development and evaluation
sets (10 speakers each), and train on the rest. Table 1 gives an overview of the number of hours of training and test (Eval) material
for each language.

4.2. ASR experiments

The ultimate aim of our work is to discover phonetic inventories [MA]. In order to be able to assess the strengths and weaknesses
of the crosslingual ASR approach, we also need baseline systems that have learned a robust phonetic representation of the target
language. They will serve as oracles for evaluating phonetic inventory discovery. Hence, our ASR experiments are divided into three
scenarios (mimicking our previous setups (Żelasko et al., 2020; Feng et al., 2021a); see also Fig. 4):

1. monolingual (mono) — 13 different ASR systems are trained and tested each on the same language;
2. multilingual (multi) — a single ASR is trained and tested on all languages; and
3. crosslingual (cross) — 13 different ASR systems are each trained on 12 languages and tested on a held-out language. We also

refer to this system as a zero-shot ASR, as the target language is never seen in training.

E2E ASR experiments. We used an E2E ASR system whose inputs were combined filterbank and pitch features (Ghahremani
et al., 2014) with a frame length of 25 ms and a frame shift of 10 ms. The ASR was trained with joint CTC and attention
objectives (Kim et al., 2017), employing the ESPnet toolkit (Watanabe et al., 2018). The setup is based on the system described
in Karita et al. (2019) that uses a transformer architecture. Transformer-based models have been shown to produce state-of-the-art
results on several Natural Language Processing (NLP) tasks (Vaswani et al., 2017; Devlin et al., 2019), and has recently been adopted
in speech processing (Karita et al., 2019). We use 12 transformer layers for the encoder and 6 for the decoder. Each transformer layer
consists of 4 attention heads with a dimension of 256 and 2048-dimensional feed-forward layer. Prior to the transformer layers, the
encoder uses 2 2D convolutional layers with a stride of 2 each to sub-sample the signal with a factor of 4. We use label smoothing
with a factor of 0.1. To accommodate the transformer’s 𝑂(𝑛2) memory requirements, we discard all training and test utterances
which exceed 30 s of speech (about 1.7% of utterances).

Two types of E2E experiments were carried out, one using IPA phones as speech representation (E2E P) and one which used
phone tokens as speech representation (E2E PT) [RQ1]. The E2E P output alphabet is the union of IPA phones in all training
languages, hence it cannot recognize novel target-language phones in a crosslingual setting. The E2E PT output alphabet is the
union of all unique unicode characters representing IPA base phones or diacritics in any training language. It is not always clear
9
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how we should segment the output of the E2E PT system in order to measure phone error rate. We take this phenomenon into
account during the evaluation, by measuring Phone Token Error Rate (PTER) rather than Phone Error Rate (PER). PTER treats
every modifier symbol as a separate token. That means that if the reference transcript has a vowel with a tone symbol, and the ASR
recognized the vowel correctly but omitted the tone, we would count this as one correct token and one deletion instead of a single
substitution.6

Hybrid ASR experiments. The hybrid ASR was implemented using the Kaldi toolkit (Povey et al., 2011). It consisted of a
actorized Time-Delay Neural Network (TDNNF) AM (Povey et al., 2018), with 12 layers, where the hidden layers had a dimension of

1024, and bottleneck dimension of 128. Resnet-style bypass connections were made between each pair of consecutive TDNNF layers.
This TDNNF AM was trained with the Lattice-Free Maximum Mutual Information (LF-MMI) criterion (Povey et al., 2016) for 4 epochs.
The frame-level phone alignments used as supervision for the AM model training were obtained by forced-alignment with a GMM-
HMM AM trained beforehand. The input features were 40-dimension high-resolution MFCCs, 3-dimension pitch features (Ghahremani
et al., 2014) and 100-dimension i-vectors (Saon et al., 2013). We used the frame length of 25 ms and frame shift of 10 ms. In
TDNNF training, we used Kaldi’s Wall Street Journal recipe7 standard hyperparameters without further tuning in our experiments.
An identical TDNNF structure was used for each of the experiments in this study.

The LM in the hybrid ASR system was an n-gram phonotactic LM estimated using the SRILM toolkit (Stolcke, 2002). IPA phonetic
transcripts converted from the GlobalPhone and Babel training graphemic transcripts are used to train the phonotactic LM. We
implemented uni-gram, bi-gram, and tri-gram LMs to investigate the effect of imposing different amounts of phonotactic constraint
on a hybrid ASR system in recognizing phone sequences. To study the systems behavior under an upper bound of phonotactic
constraint, we also decoded using a word-level tri-gram LM and converted the word lattices to phone lattices before scoring.

The hybrid system allows us to combine AM and LM trained on a different mix of languages. We leverage that possibility by
combining a monolingual target language model with crosslingual AM, which shows the effect of adding oracle-level phonotactic
knowledge to an otherwise zero-shot system [RQ3]. This demi-oracle experiment helps us to better understand the degree of
universality of AM representations. We also decode using multilingual AM and monolingual LM to understand the effect of the
phonotactic model on an AM that has learned the target language phonetic representation.

4.3. Phonetic inventory discovery

Our phonetic inventory discovery method is based on counting the phone tokens or phones, in crosslingual ASR transcripts. To
convert the occurrence counts into frequencies, we divide the number of observed phone tokens by the total number of phone tokens
in the transcripts. We checked the range of relative frequency threshold values between 1e−4 and 1e−2 and select the ones that
give best performance with crosslingual ASR systems. We report the final threshold values in Section 5.3.x The optimal threshold
selection might be somewhat language-dependent: in languages with a large number of phones (e.g., Cantonese) the relative phone
frequencies will necessarily be lower (in expectation) than in languages with a smaller phone vocabulary. As we do not know the
inventory size when discovering inventories, we select the threshold based on the best overall performance across the 13 languages.

We test four crosslingual systems: the E2E P system; E2E PT system; and two hybrid systems with crosslingual LMs — uni-
gram (weaker phonotactic constraint) and tri-gram (stronger phonotactic constraint). To put the crosslingual ASR performance
in perspective, we also check the performance of four other systems that have either full or partial oracle knowledge about the
target language. The first three are the best performing systems of each kind: multilingual E2E P, multilingual E2E PT, and the
monolingual hybrid system with a tri-gram word-level LM. Additionally, we test the hybrid system with a crosslingual AM, but
using a monolingual LM trained on the target language. The last system allows us to probe the significance of knowing the target
language’s phonotactics in the task of phone inventory discovery — since in actual applications we would never know them a priori,
it also reveals the limitations of this phone discovery method, as ASR depends on language model for accurate recognition.

We perform the phonetic inventory discovery for all thirteen languages presented in Section 4.1 [MA].

5. Results

In this section we present the experimental results. We start with monolingual, multilingual and crosslingual (zero-shot) ASR in
Section 5.1. Then, we cast more insight on what the crosslingual system has learned by visualizing its phonetic confusion matrix in
Section 5.2. Finally, we show the results for phonetic inventory discovery in Section 5.3.

5.1. ASR experiments

To provide the basis for answering [RQ1] and [RQ3], we collect the results from all our ASR experiments in Table 2. Each row
represents the aggregated scores over the 13 test languages. For each system we show PTER, and for the phone-level systems also
the PER. Additionally, we provide a breakdown of the percentage of insertion, deletion, and substitution errors in PTER. Note that

6 Note that we introduced PTER in our best effort to make P and PT systems comparable. The only alternative we see is imposing a decoding constraint on
he E2E PT system that forces it to choose paths that only contain allowed phone token sequences that correspond to phones in an inventory known up-front.
hat is however equivalent to introducing a language model and FST decoding. We decided not to pursue LM integration with E2E models for the sake of
voiding additional complexity.
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Table 2
Comparison of all ASR systems trained in this study. The results are aggregated across all 13 languages. For E2E systems, P
stands for phone symbols as recognition units, and PT for phone tokens (individual IPA symbols). For hybrid systems, ug, bg,
and tg indicate (phone) uni-gram, bi-gram, or tri-gram LM; and wtg stands for word tri-gram LM. For each system, we provide
the phone token error type distribution (insertion, deletion, substitution) as the percentage of the total number of phone token
errors. We do not report PER for PT systems, as it cannot be computed in a straight-forward manner due to ambiguities in
decoding phone tokens into phones.
System AM LM PER PTER INS% DEL% SUB%

Systems with knowledge of the target language

E2E P multi – 31.8 29.3 19.2 29.0 51.8
E2E PT multi – – 32.4 17.8 31.7 50.5
Hybrid P mono wtg-mono 33.6 44.1 26.6 28.8 44.6

multi wtg-mono 37.2 48.8 26.8 26.3 47.0
wtg-multi 37.3 48.2 27.7 24.9 47.5

mono tg-mono 38.1 36.7 11.3 44.4 44.3
multi tg-mono 41.0 39.9 12.9 38.8 48.3
mono bg-mono 43.5 41.0 8.5 52.1 39.5
multi tg-multi 43.5 40.9 9.7 44.9 45.4

E2E P mono – 43.9 39.4 16.1 28.2 55.7
Hybrid P multi bg-mono 45.4 43.4 9.1 45.9 45.0
E2E PT mono – – 47.1 14.7 29.3 56.0
Hybrid P multi bg-multi 51.9 49.4 4.2 63.2 32.7

mono ug-mono 54.9 52.6 3.9 70.3 25.8
multi ug-multi 63.9 62.6 1.9 77.5 20.6

ug-mono 64.0 52.6 3.1 72.4 24.5
cross tg-mono 72.9 74.2 2.3 68.2 29.5

ug-mono 80.9 82.0 1.1 79.6 19.3

Zero-shot systems

E2E PT cross – – 81.9 7.9 21.8 70.3
E2E P cross – 82.1 83.2 9.7 20.9 69.4
Hybrid P cross bg-cross 83.2 83.6 1.8 59.4 38.8

ug-cross 85.3 84.6 1.2 72.5 26.3
tg-cross 86.1 93.6 5.2 40.0 54.7

the E2E PT and hybrid P results are based on our previous experiments in Żelasko et al. (2020) and in Feng et al. (2021a), but our
previous publications did not aggregate scores across all languages. E2E P results have not been previously published.

Below, we present the high-level insights that we learned from performing the ASR experiments.
Phones are generally preferable to phone tokens in mono- and multilingual models [RQ1]. In order to understand whether

phones or phone tokens are preferable, we have to analyze their performance across mono-, multi-, and crosslingual scenarios. We
first compare the E2E systems indicated with P and PT in Table 2. In the group of systems that have seen the target language during
training (mono, multi), we observe that in terms of PTER, the best overall system is multi E2E P, closely followed by multi E2E PT.
The relative improvement of E2E P vs E2E PT system is consistent when we compare the mono variants of the E2E P and E2E PT
systems. We conclude that the E2E P system outperforms the E2E PT system. Possibly, the lower number of errors of the E2E P
system is due to a larger constraint on its output token space — the number of recognized symbol combinations is restricted due to
larger vocabulary units. Therefore, it seems that phone-level modeling is beneficial when the test language is in-domain.

Phone tokens might be generally preferable to phones in crosslingual models [RQ1]. Turning to the zero-shot systems
section of Table 2, we see that the phone-token E2E scored the best at PTER across all crosslingual systems, with phone E2E as
a second and hybrid as a close third. We find that the PTER is consistently smaller in the phone-token system than in the phone
system for all but two languages: Mandarin and Bengali. Whereas the error differences are small (81.9% vs. 83.2% and 83.6%), this
result suggests that the flexibility provided by smaller vocabulary units is helpful in crosslingual recognition.

Strong phonotactic model hurts crosslingual ASR [RQ3]. Ultimately, we want to understand the effect of phonotactics on
phonetic inventory discovery. For this reason, we include and assert our previous finding from Feng et al. (2021a) here. The summary
in Table 2 clearly shows that the tg-cross LM has the worst scores all the systems in this study. Interestingly, the E2E systems scored
slightly better both in terms of PER and PTER, which suggests that the E2E systems might have a certain degree of robustness
towards phonotactics mismatch. The best performance for cross AM is observed when we introduce target language phonotactic
tg-mono LM – it approximates the lower bound of PER/PTER for a crosslingual model.

Phone tokens are preferable in most tone languages that we studied [RQ1]. We present a per-language, side-by-side
comparison of E2E PT systems PTER and E2E P systems PER in Table 3. While PER and PTER cannot be directly compared, we can
analyze whether they have the same trends across different languages and different training scenarios. Most monolingual systems
trained on tone languages tend to have lower PER than PTER (Mandarin, Thai, Cantonese, Vietnamese, Lao), indicating that the
phone-based system is more adequate, while the reverse is true for some non-tonal language systems (Czech, French, Spanish). This
suggests that IPA recognition of tone languages benefits from the additional constraint on the possible IPA symbol sequences in
a low resource scenario. Looking at the differences between the multilingual E2E and monolingual E2E, phone systems generally
follow the same trend as phone-token systems, but the improvements in PER (vs. the improvements in PTER) are relatively smaller.
11
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Table 3
E2E recognition results for all 13 languages separately, for each of the 3 evaluation scenarios: Mono(lingual), Cross(lingual),

Multi(lingual). Two systems are evaluated: phone-token system (†) for which we report PTER, and phone system (◊) for which
we report PER. Besides the differences in label set construction, the systems are otherwise identical.
Language Mono Cross Multi

PTER† PER◊ PTER† PER◊ PTER† PER◊

Czech 26.4 36.4 65.8 71.5 8.1 12.5
French 29.5 30.5 61.7 62.8 11 11.5
Spanish 27.6 35.8 76.3 69.1 9.1 11.6
Mandarin 46.3 40.9 85.9 80.3 17.2 18.1
Thai 46 39.1 76.2 115.8 18.1 18.8

Cantonese 36.6 30.6 76.9 78.7 29.8 28.3
Bengali 41.2 34.7 81.4 74.0 34.6 34.0
Vietnamese 52.3 37.4 75 78.6 35.4 30.0
Lao 58.6 37.4 77.9 74.2 34.1 31.3
Zulu 41.7 43.3 77.3 77.5 35.8 35.4
Amharic 52.1 51.9 75.2 74.0 33.9 33.2
Javanese 53 51.4 99.6 76.1 41 38.3
Georgian 43.9 43.9 76.4 77.5 32.4 30.4

It seems that larger units (phones) impose a constraint on the network (i.e., an inductive bias) that helps monolingual systems
perform better in many languages, reducing the opportunities for improvement with multilingual data.

Both phone and phone token crosslingual systems may confuse tonal and non-tonal vowels [RQ1]. Our thirteen test
anguages are naturally divided into four categories, according to two binary variables: (1) Globalphone corpus versus Babel corpus,
nd (2) tonal versus non-tonal. The Globalphone corpora (Czech, French, Spanish, Mandarin, and Thai) are read speech, recorded
ith little acoustic noise; the Babel corpora are a mixture of read and spontaneous speech, in a mixture of recording conditions.
he tonal languages include those from the Sino-Tibetan, Kra-Dai, Austronesian, and Niger-Congo language families (Mandarin,
antonese, Thai, Lao, Vietnamese, and Zulu), while the non-tonal languages include those from the Indo-European, Afro-Asiatic,
ustronesian, and Kartvelian families (Czech, French, Spanish, Bengali, Amharic, Javanese, and Georgian). Among the Globalphone

anguages, Indo-European languages have considerably lower PTER and PER than tonal languages, under Monolingual, Cross-lingual,
nd Multilingual settings. Thai is a particular outlier, with 115.8% cross-lingual PER. Post-hoc evaluation of ASR transcripts suggests
hat the system incorrectly assumed that Thai is a non-tonal language, and exclusively recognized non-tonal phones; but note that
he phone-token ASR did not make this mistake. Among the Babel languages, Javanese is an outlier, with 99.6% cross-lingual PTER.
nalysis of the phonetic transcript output of the phone-token ASR showed that the phone-token ASR mistakenly treated Javanese as
tone language, appending tone modifiers to vowels, where there should be none; but note that the phone ASR did not make this
istake. We know of no reason why the system should choose to mis-identify the language families of these two languages under

hese two particular test conditions. We can note only that we have one example of a phone-based ASR that deleted lexical tone
ross-lingually, and one example of a phone-token ASR that inserted lexical tone cross-lingually.

.1.1. General remarks
Below, we present observations that we found interesting when analyzing the ASR experimental results, but not directly related

o our core research questions.
Monolingual hybrid system is more robust than multilingual hybrid system. We observe the best performance with mono

M and word-level mono LM. We expected that adding multilingual phonetic transcripts to n-gram LM training would not help
i.e., we expect that it acts as noise and ‘‘steals’’ the probability mass from target language n-grams during pruning). However, the
coustic model’s degradation in multi is not consistent with other works that have attempted multilingual training: we suspect this
s due to the model sharing all the parameters (especially the output layer) between all languages; whereas (Huang et al., 2013b;
eselý et al., 2012; Kilgour et al., 2014) observed multilingual improvements when each language had its own output layer.
The distribution of error types shifts with training setups and the phonotactic model’s strength. E2E multi systems are

omewhat ‘‘balanced’’ with about 50% substitutions, 30% deletions, and 20% insertions. The three best hybrid systems have
strong phonotactic constraint (i.e., they use a word-level LM) and produce a similar error distribution, but with insertions and

eletions equally likely. As the phonotactic constraint weakens, we observe that the share of deletions drastically increases in the
ybrid systems, achieving a 70%–80% share of all error types when unigram phone LMs are used. The differences between the E2E
nd hybrid models are very pronounced in the cross scenario: in E2E, there are relatively many more substitutions than insertions
nd deletions, while for the hybrid systems, the share of deletions is dominant at 40–72.5%, depending on the phone LM’s order.
hese findings mean that even if the error rates of the E2E and hybrid models are similar, the transcripts will look rather different,
ith generally much shorter transcripts for the hybrid model.
Multilingual E2E is significantly more robust than monolingual E2E. We previously found that multilingual E2E provides

ignificant gains with respect to mono in Żelasko et al. (2020). Here, we observe the same trend in the E2E P system measured with
12
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Fig. 5. The results of the hierarchical clustering of the phone confusion matrix, presented as dendrograms. The height of each bar corresponds to a distance
score (i.e., a lower bar indicates a higher similarity). We selected the threshold for cluster coloring to highlight some of the more meaningful similarities found
between phones.

5.2. Visualizing phonetic confusions

The dendrograms resulting from the hierarchical clustering of the phone token confusions of the multilingual phone E2E system
re shown in Fig. 5a and for the zero-shot phone E2E system in Fig. 5b [RQ2]. The hierarchies in the figure can be understood as

groups of phone tokens that tend to have similar patterns of confusions — the symbols that are clustered ‘‘lower’’ in the Y axis of
the figure have more similarity (smaller JSD).

At a glance we see that a much higher threshold is required to cluster phone tokens in the multi system (Fig. 5a) than in the zero-
shot system (Fig. 5b); this is because there are fewer recognition errors in the multi system, and the clustering algorithm therefore
considers its phone tokens to be more distinct. The high error rates obtained in the zero-shot ASR experiments (see the Zero-shot
systems section of Table 2) could suggest that the systems’ outputs are close to random. However, we observe the patterns in the zero-
shot system’s confusions to be quite meaningful from an articulatory feature point of view (as indicated by different phones within
a cluster of the same color) and similar to the multilingual system’s patterns. For instance, both the multilingual and the zero-shot
systems cluster vowels separately from consonants. The phone tokens in the zero-shot system are further clustered, with a clustering
threshold of about 0.55, into approximately eight categories defined by articulatory features, with meaningful sub-categories. Moving
from left to right through Fig. 5b, we find that the first group contains voiced fricatives /B,Ð/, a voiced plosive /g/, and the three
licks /|,!,{/. The next group contains coronal laterals, taps, trills, plosives, and non-sibilant fricatives /ó,r,l,R,D,é,ô,â,z,c,t,ú,d,ã/. The

third group contains coronal sibilant fricatives /Z,C,ù,s,S,ì/. The fourth group contains the nasal consonant (/m,N,n,ñ/). The fifth
group contains the vowels; these are further subdivided into non-low back rounded vowels /u,U,O,o/, the non-low front vowels and
glides /i,y,I,j,1,@,3,E,e/, the non-low back unrounded vowels /7,W/, the low vowels /œ,5,A,a,æ/, and two glottal consonants /P,h/.
The sixth group contains the non-coronal obstruents, further subdivided into the pharyngeal stop /q/, the unvoiced labials /f,p/,
the unvoiced velars /x,k/, the voiced velars /G,g,ä/, and the voiced labials /v,w/. The seventh group contains glottal and uvular
fricatives and trills /H,ö,K/. The last group contains a set of palatal and retroflex phones: two approximants /4,õ/, a vowel /efi/, and
an affricate /č/ that are apparently sufficiently different from the other phones to be separately clustered.

The UMAP projection of the crosslingual ASR confusion matrix is shown in Fig. 6, with each phone represented as a data point
(projected from a vector describing the label categorical probability distribution) and colored/shaped with its corresponding manner
of articulation. The 2-D projection allows to further inspect the learned similarities between various phones [RQ2], and UMAP –
unlike other projection methods such as T-SNE – attempts to preserve the global (in addition to local) structure in the projection.
In principle, the phones that are frequently confused together should lie close to each other on the projected surface. Indeed, this
display shows the same local clustering structure that is visible in Fig. 5b, but enhanced with global relationships: vowels are on the
lower right-hand side of the plot; moving towards left and top, there are tongue body and labial consonants, tongue-blade consonants
are on the left-hand side, nasals are in the lower center, and clicks are at the top. Among the vowels, back rounded vowels are at
the top, low vowels are in the center, and the high vowels and back unrounded vowels are towards the bottom.
13
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Fig. 6. UMAP projection of the phone confusion matrix for the cross-lingual E2E P system. Each manner of articulation class has a unique tick and a unique
color to help discriminate them visually.

Table 4
Phone token inventory discovery performance of various ASR systems. The phone level systems transcripts were tokenized into
phone tokens for fair comparison. All systems discover phone tokens at their relative frequency of 0.004.
System Precision Recall F1

Zero-shot systems

Hybrid, cross AM, cross phone 3-g 65.7 67.6 66.7
E2E, phone tokens, cross AM 70.1 65.1 67.5
E2E, phones, cross AM 69.7 65.6 67.6
Hybrid, cross AM, cross phone 1-g 69.7 67.4 68.6

Systems with oracle knowledge

Hybrid, cross AM, mono phone 3-g 100.0 69.2 81.8
E2E, phone tokens, multi AM 99.5 81.9 89.8
E2E, phones, multi AM 99.7 82.1 90.1
Hybrid, mono AM, mono word 3-g 100.0 82.8 90.6

The results in Section 5.1 show that in general the phone recognition results of the crosslingual model are rather poor. However,
s these analyses of the phone confusions show, many of the phones in the target language are confused with phones that are
ighly similar to the target phone: phones that share many articulatory features, e.g., the vowels or nasals, are clustered together
see Fig. 6). This finding resembles that of a foreign language learner, for whom one of the tasks is to learn new phonemes that
re not part of their native language and consequently often not getting the articulation entirely right (yet). It also explains the
assive difference between the zero-shot and multilingual systems’ performance — while the zero-shot system is able to learn some
honetic representations, the presence of the target language’s data closes the gap between the learned articulation styles.

.3. Phonetic inventory discovery

The phonetic inventory discovery results, aggregated over all test languages, are presented in Table 4 for phone token inventory
iscovery and in Table 5 for phone inventory comparison [MA]. To score the systems, we used precision, recall, and F1-score
easures: to compute them, we count the number of True Positive (TP): the symbols correctly assigned to the phone inventory;

alse Positive (FP): the symbols that were incorrectly indicated as being part of the target language’s phone inventory; and False
egative (FN): the symbols that were not assigned to the predicted inventory, but should have been as they are present in the true
14
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Table 5
Phone inventory discovery performance of various ASR systems, depending on the minimum relative frequency threshold needed
for discovery. min indicates the frequency of the least frequent phone in the transcripts of the target language.
System Threshold Precision Recall F1

Zero-shot systems

E2E, phones, cross AM min 14.1 32.9 19.7
0.0001 20.3 31.3 24.7
0.001 35.6 27.6 31.1
0.002 43.2 25.8 32.3
0.004 52.4 22.4 31.4

Hybrid, cross AM, cross phone 1-g min 12.0 34.1 17.8
0.0001 17.5 32.4 22.7
0.001 36.9 27.9 31.7
0.002 47.9 25.6 33.4
0.004 59.9 22.3 32.5

Systems with oracle knowledge

Hybrid, cross AM, mono phone 3-g min 98.0 43.7 60.4
0.0001 98.1 42.1 59.0
0.001 99.0 37.0 53.9
0.002 99.0 34.3 51.0
0.004 98.8 30.3 46.3

E2E, phones, multi AM min 55.8 85.5 67.5
0.0001 89.6 80.3 84.7
0.001 99.9 62.7 77.1
0.002 100.0 53.2 69.5
0.004 100.0 42.9 60.1

Hybrid, mono AM, mono word 3-g min 99.3 94.6 96.9
0.0001 99.5 85.9 92.2
0.001 100.0 64.0 78.0
0.002 100.0 54.0 70.2
0.004 100.0 43.5 60.6

phone inventory. The cumulative size of phone token inventories was 448, and the cumulative size of phone inventories was 1127
(see Table 6 for per-language details).

We start with the analysis of phone token inventory discovery in Table 4. We observe that both E2E crosslingual ASR systems
re on par with 67.5% and 67.6% F1-score, suggesting that phone and phone-token distinction is not relevant for discovering the
honetic inventory of a language [RQ1]. Interestingly, we see that the hybrid system with a weak phonotactic model performs

best (68.6%), and the one with a strong phonotactic model performs worst (66.7%). This finding is consistent with our previous
hypothesis that learning non-target languages’ phonotactics is harmful for a zero-shot ASR system (Feng et al., 2021a) [RQ3]. If
the phonotactic model had perfect knowledge of the phonotactics of the target language, the F1-score raises to 81.8%, which is
mostly due to a perfect precision score of 100%. The reason for the high precision is that the monolingual phonotactic model has
no knowledge of those IPA symbols present in the other training languages but not present in the target language. So even though
the AM can predict these phones, they are never selected as a part of the shortest lattice path during ASR decoding.

If we train multilingual E2E ASR models with knowledge of the target language, we again observe very high precision scores, and
a substantial increase in recall scores as well. So, despite lack of explicit constraint on the phonotactic information, we see an increase
in F1 scores for the E2E ASR multi models. This is consistent with the hypothesis of Feng et al. (2021a) that the encoder–decoder
transformer systems are learning a representation of the target languages’ phonotactics [RQ3]. Finally, the best result of 90.6%
F1-score is obtained by a fully monolingual hybrid system with a word-level tri-gram LM, likely due to its stronger phonotactic
constraint imposed by the presence of a decoding graph. Interestingly, even this system fails to recall about 17% of the IPA symbols
in all languages due to ASR errors. This suggests that some phone tokens are not well modeled in the AM and/or are still so rare in
the test material that they do not occur [MA].

We move onto phone inventory discovery in Table 5 [MA]. This task is more difficult than phone token discovery, as indicated
y generally lower F1 scores achieved by the zero-shot systems. This is explained by much larger sizes of the inventories, in which
e expect there to be even more rare symbols than in the phone token case. The hybrid ASR again outperforms E2E with higher
1 scores, boosted mostly by a higher precision.

Table 5 presents the results for different discovery threshold values, which reveals interesting differences between the behavior
f the E2E and hybrid ASR. Had we fixed the best crosslingual phone discovery threshold at 0.002 for the systems with the oracle
nowledge, we would have observed a lower phone inventory discovery performance at 70.6% for the best oracle system (i.e., the
ybrid mono AM with mono word 3-g). However, that threshold is too high and filters out a significant portion of the phones.
ndeed, as we gradually lower the threshold towards the frequency of the rarest phone in the true inventory, we observe an F1
core that gradually increases to a maximum of 96.9% F1.

The role of phonotactics [RQ3] in phone inventory discovery is even more pronounced than in phone token inventory discovery.
he hybrid system with a crosslingual AM and an oracle 3-g phone LM has an F1-score almost twice that of the same hybrid system
15
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Table 6
Per-language breakdown of phone token inventory discovery performance for the zero-shot hybrid system with
1-g LM (threshold = 0.004).

TP FP FN Precision Recall F1

Cantonese 29 7 4 80.6 87.9 84.1
Bengali 26 14 7 65.0 78.8 71.2
Vietnamese 29 9 13 76.3 69.0 72.5
Lao 27 9 5 75.0 84.4 79.4
Zulu 26 12 19 68.4 57.8 62.7
Amharic 24 14 7 63.2 77.4 69.6
Javanese 25 8 8 75.8 75.8 75.8
Georgian 22 16 6 57.9 78.6 66.7
Czech 24 11 6 68.6 80.0 73.8
French 19 7 23 73.1 45.2 55.9
Mandarin 15 7 21 68.2 41.7 51.7
Spanish 19 12 11 61.3 63.3 62.3
Thai 17 5 16 77.3 51.5 61.8
ALL 302 131 146 69.7 67.4 68.6

Table 7
Per-language breakdown of phone inventory discovery performance for the zero-shot hybrid system with 1-g
LM (threshold = 0.002).

TP FP FN Precision Recall F1

Cantonese 19 44 116 30.2 14.1 19.2
Bengali 30 25 22 54.5 57.7 56.1
Vietnamese 13 27 216 32.5 5.7 9.7
Lao 22 30 145 42.3 13.2 20.1
Zulu 29 23 40 55.8 42 47.9
Amharic 29 14 31 67.4 48.3 56.3
Javanese 27 51 7 34.6 79.4 48.2
Georgian 26 28 9 48.1 74.3 58.4
Czech 23 18 12 56.1 65.7 60.5
French 21 7 24 75 46.7 57.5
Mandarin 16 13 77 55.2 17.2 26.2
Spanish 19 20 11 48.7 63.3 55.1
Thai 15 14 128 51.7 10.5 17.4
ALL 289 314 838 47.9 25.6 33.4

using crosslingual LM. We also see that the oracle E2E P system scores worse than the oracle hybrid system due to false positives,
which are nearly impossible for the oracle hybrid system, because of its strong phonotactic LM.

To investigate whether the task of automatic phonetic inventory discovery is dependent on the language and language
haracteristics, we investigated the phonetic inventory discovery performances per language in more detail [MA]. Table 6 shows the

True Positive (TP), False Positive (FP), False Negative (FN)), precision, recall, and F1 scores on the phone token inventory discovery
task for the crosslingual hybrid system with 1-g phone LM, i.e., the best system from Table 4, for each of the 13 languages. As
Table 6 shows, there are large performance differences between languages: the difference in F1 scores between the lowest scoring
language Mandarin and the highest scoring language Cantonese is 32.4%.

Comparing these results to Table 1 shows that many of the best performing languages are, surprisingly, the languages with
the highest number of unique phones (in decreasing order of number of unique phones: Vietnamese, Cantonese, Lao), with the
exception of Mandarin which has the 4th highest number of unique phones; while those languages with only a few unique phones
(in increasing order of number of unique phones: Georgian, Spanish, Czech) typically perform worse, but with the exception of
Javanese which has only 1 unique phone but has an F1 score of 75.8%.

Turning to Table 7, we observe that the five languages with the worst phone inventory discovery rates are the tone languages
Vietnamese, Thai, Cantonese, Lao, and Mandarin. The low F1 scores of the tone languages are primarily caused by large false
negative counts, specifically, by the inability of a cross-lingual ASR to recognize most tone-marked vowels. Our phone notation
treats the lexical tone as a diacritic modifier of the vowel. About two thirds of the lexical tone contours occur in only one language
each, therefore about two thirds of the vowels in a tone language cannot be discovered using cross-lingual ASR. Non-tone languages
are generally characterized by higher recall than precision (Bengali, Javanese, Georgian, Czech, Spanish) due to more false positives.
The exceptions are French and Amharic, which tend to have the least number of false positives (along with Mandarin and Thai).
In fact, French is the only language which achieves a higher F1 score in phone inventory discovery than in phone token inventory
discovery.

The differences between languages are potentially due to some sounds being easier to recognize cross-linguistically than others.
Phoneme inventories of languages are not created in a ‘‘random’’ fashion, rather phoneme inventories are build up in an ‘‘ordered’’
fashion (Gussenhoven and Jacobs, 2011). For instance, all languages have at least two of the three voiceless plosives /p, t, k/; these
16
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Table 8
Top 20 IPA symbols that are successfully discovered with the hybrid crosslingual ASR system. Phoible = % of 3183
phoneme inventories containing this symbol as a phoneme (PHOIBLE, 2019). AoS = articulation errors produced by patients
with apraxia of speech, % of all errors (Romani et al., 2017). AoA = age of acquisition rank (Romani et al., 2017).
Symbol TP FP FN Count Prec. [%] Recall [%] F1 [%] Phoible [%] AoS [%] AoA Rank

m 13 0 0 13 100.0 100.0 100.0 96 3.6 2
i 13 0 0 13 100.0 100.0 100.0 92 – –
j 13 0 0 13 100.0 100.0 100.0 90 7.0 4
k 13 0 0 13 100.0 100.0 100.0 90 5.6 1
u 13 0 0 13 100.0 100.0 100.0 88 – –
p 13 0 0 13 100.0 100.0 100.0 86 4.5 2
n 13 0 0 13 100.0 100.0 100.0 78 3.7 2
l 13 0 0 13 100.0 100.0 100.0 68 6.6 1
t 13 0 0 13 100.0 100.0 100.0 68 2.2 1
s 13 0 0 13 100.0 100.0 100.0 67 5.8 2
a 12 1 0 12 92.3 100.0 96.0 86 – –
o 12 1 0 12 92.3 100.0 96.0 60 – –
b 11 2 0 11 84.6 100.0 91.7 63 15.8 3
d 11 2 0 11 84.6 100.0 91.7 46 16.4 3
h 8 0 2 10 100.0 80.0 88.9 56 – –
e 10 2 1 11 83.3 90.9 87.0 61 – –
w 10 2 1 11 83.3 90.9 87.0 82 5.9 4
z 7 0 3 10 100.0 70.0 82.4 30 8.4 6
r 8 5 0 8 61.5 100.0 76.2 44 9.3 3
S 6 2 2 8 75.0 75.0 75.0 37 13.9 5

Table 9
Top 20 IPA symbols that are falsely discovered with the hybrid crosslingual ASR system (false positives). Phoible = %
of 3183 phoneme inventories containing this symbol as a phoneme (PHOIBLE, 2019).
Symbol TP FP FN Count Prec. [%] Recall [%] F1 [%] Phoible [%]
Ă
£ 3 8 2 5 27.3 60.0 37.5 3
A 0 8 3 3 0.0 0.0 0.0 7
Ă£ 3 8 2 5 27.3 60.0 37.5 10
Ă£ 2 8 2 4 20.0 50.0 28.6 18
I 3 7 1 4 30.0 75.0 42.9 15
1 0 6 3 3 0.0 0.0 0.0 16
Ă£ 3 6 2 5 33.3 60.0 42.9 2
" 0 5 1 1 0.0 0.0 0.0 –
U 2 5 0 2 28.6 100.0 44.4 14
: 5 5 0 5 50.0 100.0 66.7 –
r 8 5 0 8 61.5 100.0 76.2 44
E 7 4 2 9 63.6 77.8 70.0 37
P 3 4 2 5 42.9 60.0 50.0 37
@ 5 4 2 7 55.6 71.4 62.5 22
N 6 4 3 9 60.0 66.7 63.2 63
h 6 4 2 8 60.0 75.0 66.7 –
R 0 3 1 1 0.0 0.0 0.0 26
c 1 3 3 4 25.0 25.0 25.0 14
O 7 3 3 10 70.0 70.0 70.0 35
7 0 2 2 2 0.0 0.0 0.0 3

definitions, but one definition that is common in the literature is age of acquisition (expressed in months): It has been suggested
that a phoneme’s typical age of acquisition is a measure of its articulatory complexity (Kent, 1992). It has been demonstrated
that age of acquisition is a better predictor of articulation errors in dysarthria than is either manner or place of articulation (Kim
et al., 2010), and a similar ranking of the difficulty or simplicity of phones can be observed in the transcription errors of non-
native transcribers (Jyothi and Hasegawa-Johnson, 2015). Romani et al. (2017) compared the phonemes of Italian using three
metrics: the rank-ordered age of acquisition, the frequency of articulation errors in a population of 11 patients with apraxia of
speech, and the frequency of occurrence of the phoneme cross-linguistically. They found strong correlations, suggesting that, despite
language-dependent variation, there are universal tendencies for some phones to be easier to learn and produce than others despite
language-dependent variation in the list of which phones are easier to learn and produce than others. We therefore investigated
whether or not phones that are easier for humans to learn and produce are also easier for a cross-linguistic automatic speech
recognizer to correctly detect in the phone inventory of an unknown language.

In our analyses we focused on those phone tokens (IPA symbols) that are the most and least accurately recognized symbols by the
ybrid crosslingual ASR system with a uni-gram phone LM. Table 8 shows the top 20 phone tokens that are successfully discovered
i.e., the true positives). Table 9 shows the top 20 phone tokens that are falsely discovered (i.e., the false positives). Table 10
hows the top 20 phone tokens that are missed (i.e., the false negatives). In these tables, the columns labeled ‘‘Count’’ show the
umber of our 13 languages that contain this phone symbol in their phoneme inventory. The columns labeled TP, FP, and FN show
17
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Table 10
Top 20 IPA symbols that are missed with the hybrid crosslingual ASR system (false negatives). Phoible = % of 3183 phoneme
inventories containing this symbol as a phoneme (PHOIBLE, 2019). AoS = articulation errors produced by patients with apraxia
of speech, % of all errors (Romani et al., 2017). AoA = age of acquisition rank (Romani et al., 2017).
Symbol TP FP FN Count Prec. [%] Recall [%] F1 [%] Phoible [%] AoS [%] AoA Rank

f 6 0 7 13 100.0 46.2 63.2 44 8.5 4
v 1 2 6 7 33.3 14.3 20.0 27 18.3 3
x 0 2 5 5 0.0 0.0 0.0 19 – –
ñ 4 1 4 8 80.0 50.0 61.5 42 23.8 5
˜ 0 0 3 3 N/A 0.0 0.0 – – –
1 0 6 3 3 0.0 0.0 0.0 16 – –
N 6 4 3 9 60.0 66.7 63.2 63 – –
Z 4 1 3 7 80.0 57.1 66.7 16 – –
O 7 3 3 10 70.0 70.0 70.0 35 – –
c 1 3 3 4 25.0 25.0 25.0 14 – –
C 0 1 3 3 0.0 0.0 0.0 4 – –
W 0 0 3 3 N/A 0.0 0.0 6 – –
y 0 0 3 3 N/A 0.0 0.0 6 – –
z 7 0 3 10 100.0 70.0 82.4 30 – –
ú 0 0 3 3 N/A 0.0 0.0 16 – –
G 0 0 3 3 N/A 0.0 0.0 14 – –
A 0 8 3 3 0.0 0.0 0.0 7 – –
H 0 1 2 2 0.0 0.0 0.0 4 – –
g 0 1 2 2 0.0 0.0 0.0 57 29.5 5
ã 0 0 2 2 N/A 0.0 0.0 9 – –

Table 11
Pearson’s correlation of cross-language phone token recognition scores (Precision, Recall, and F1) with extrinsic
measures of phone token universality. Phoible = % of phoneme inventories containing the symbol (PHOIBLE,
2019), AoS = articulation errors produced by patients with apraxia of speech, AoA = age of acquisition rank
(Romani et al., 2017).

Phoible AoS AoA

Prec 0.76** −0.34 −0.16
Rec 0.67** −0.52* −0.52*
F1 0.83** −0.47 −0.38

Two-sided t-test:
*𝑝 < 0.05, with 39(Phoible) or 15(AoS,AoA) degrees of freedom.
**𝑝 < 0.01, with 39(Phoible) or 15(AoS,AoA) degrees of freedom.

the number of languages in which the IPA symbol was correctly detected (true positives; TP), incorrectly detected (false positives;
FP), or incorrectly not discovered (false negatives; FN) from the inventory by a cross-language speech recognizer, respectively. The
columns labeled ‘‘Prec’’, ‘‘Rec’’, and ‘‘F1’’ show the token-level precision, recall, and F1 score of each phone, using cross-linguistic
ASR. The three remaining columns show extrinsic measures of the universality of each phone. The column labeled ‘‘Phoible’’ shows,
as a percentage, the fraction of the 3183 phoneme inventories at PHOIBLE (2019) that contain each phone symbol as a phoneme.
The columns labeled AoS and AoA, both copied from Romani et al. (2017), show the frequency of each phone’s articulation errors in
the speech of people with Apraxia of Speech (AoS), and the rank-ordered Age of Acquisition (AoA) of this phone by Italian children,
respectively; these two columns are blank for the phones (including all phones but /r/ in Table 9) that do not appear in Romani
et al. (2017).

Before we go deeper into the findings, first some general observations [MA]. There are 10 symbols that have 100% phone token
inventory discovery F1-score; 18 symbols that have ≥80% discovery F1, and 30 symbols with ≥60% discovery F1 (see also Table 8).
For reference, there are 96 unique IPA symbols, of which 56 symbols have 0% F1. Of those, 36 symbols are present exclusively in a
single language, making their discovery impossible with this method; 11 are present in 2-3 languages and never hypothesized (pure
false negatives; see also Table 10); 8 are present in 2-3 languages and are hypothesized, but never correctly (mix of false negatives
and false positives). Finally, there is one symbol that has 0% F1 and is present in more than 3 languages, i.e., /x/ in 5 languages,
where it is a false negative (see also Table 10) and it is also recognized as a false positive in two languages.

Now looking more closely at the individual phone tokens [RQ2]. Table 8 shows the phone tokens with the highest TP rates.
ot surprisingly, these include the three ‘‘simple’’ sounds /p, t, k/, which occur in all 13 languages. Also the two nasals /m, n/
nd the two approximants /l, j/, which occur in all 13 languages have a precision of 100%. Overall, particularly, plosives, nasals,
nd alveolar fricatives (/s, z/) have a very high precision. This suggests that the pronunciation of these sounds, or in fact, the
ronunciation of these IPA symbols, is similar across the 13 languages in our dataset.

Table 10 shows the phone tokens with the highest FN rates. Interestingly, fricatives are dominant among the phone tokens with
igh FN rates (/f,z,v,x,G,Z/); this point is also visible in Table 12, which shows that non-sibilant fricatives and labiodentals have
ower recall than the phones of any other articulatory feature category. Across the rows of Tables 8 and 10, the degree to which ASR
erformance correlates with extrinsic measures of phoneme universality is striking. Table 11 shows the Pearson’s-R correlations of
18



Computer Speech & Language 74 (2022) 101358P. Żelasko et al.

o

A
c
c
c
t
o

Table 12
A break-down of phone token inventory discovery performance by different articulatory features. The ‘‘Languages’’ column
indicates the minimum and maximum number of languages that share any symbol in a given category – e.g., in the back
vowels category, every sound exists in at least 2 languages and at most 13 (all) languages. The ‘‘Count’’ column shows how
many symbols there were across all languages.

Languages Count Prec. [%] Recall [%] F1 [%]

Backness Front 1 - 13 55 85.7 76.4 80.8
Back 2 - 13 56 76.3 80.4 78.3
Central 1 - 7 20 40.0 50.0 44.4
Near-back 2 - 2 2 28.6 100.0 44.4
Near-front 4 - 4 4 30.0 75.0 42.9

Height Close-mid 1 - 12 26 81.5 84.6 83.0
Close 3 - 13 51 86.7 76.5 81.3
Open 3 - 12 15 57.1 80.0 66.7
Open-mid 1 - 10 22 63.6 63.6 63.6
Mid 1 - 7 15 55.6 66.7 60.6
Near-close 2 - 4 6 29.4 83.3 43.5
Near-open 1 - 1 2 0.0 0.0 0.0

Manner Lateral-approximant 1 - 13 14 100.0 92.9 96.3
Approximant 1 - 13 28 92.0 82.1 86.8
Nasal 1 - 13 44 87.8 81.8 84.7
Plosive 1 - 13 87 83.3 80.5 81.9
Sibilant-fricative 2 - 13 43 88.2 69.8 77.9
Trill 8 - 8 8 61.5 100.0 76.2
Non-sibilant-fricative 1 - 13 45 75.0 33.3 46.2
Click 1 - 1 2 0.0 0.0 0.0
Flap 1 - 1 2 0.0 0.0 0.0
Implosive 1 - 2 4 0.0 0.0 0.0
Lateral-click 1 - 1 1 0.0 0.0 0.0
Lateral-fricative 1 - 1 2 0.0 0.0 0.0

Place Bilabial 1 - 13 40 90.2 92.5 91.4
Alveolar 1 - 13 88 88.6 88.6 88.6
Labio-velar 11 - 11 11 83.3 90.9 87.0
Palatal 1 - 13 28 81.8 64.3 72.0
Palato-alveolar 7 - 8 15 76.9 66.7 71.4
Glottal 2 - 10 17 68.8 64.7 66.7
Velar 1 - 13 40 72.7 60.0 65.8
Labio-dental 1 - 13 21 77.8 33.3 46.7
Alveolo-palatal 3 - 3 3 0.0 0.0 0.0
Dental 1 - 1 2 0.0 0.0 0.0
Labio-palatal 2 - 2 2 0.0 0.0 0.0
Pharyngeal 1 - 1 1 0.0 0.0 0.0
Retroflex 1 - 3 9 0.0 0.0 0.0
Uvular 1 - 2 3 0.0 0.0 0.0

Roundness Rounded 1 - 13 59 83.9 79.7 81.7
Unrounded 1 - 13 78 58.5 70.5 64.0

Voicing Voiceless 1 - 13 111 86.4 68.5 76.4
Voiced 1 - 13 169 81.0 70.4 75.3

cross-linguistic ASR Precision, Recall, and F1 score, respectively, with the frequency of each phone token in the languages of the
world (column ‘‘Phoible’’), the frequency of phone token error in patients with Apraxia of Speech (column ‘‘AoS’’), and the phone
token’s Age of Acquisition among Italian children (column ‘‘AoA’’). All three ASR measures are correlated with cross-linguistic phone
frequency at 𝑝 < 0.01 (two-sided t-test, 39 d.o.f.). Cross-linguistic phone token recall is also correlated with articulation errors by
patients with Apraxia of Speech, and with Age of Acquisition (𝑝 < 0.05, two-sided t-test, 15 d.o.f.).

The symbols that are most frequently falsely assigned to inventories (i.e., the highest FP rates) are shown in Table 9. Almost half
f the symbols in this table are suprasegmentals (tone symbols, the primary stress symbol /"/, and the gemination symbol /:/). The

frequency of suprasegmentals in this table suggests that a crosslingual ASR system might not be the right tool to automatically assess
the prosodic or lexical tone attributes of a language. The remaining symbols in this table are segments that commonly appear as
allophones of phonemes written using other IPA symbols. For example, the vowels /a/ and /i/, two of the most common vowels in
the languages of the world (PHOIBLE, 2019), may be implemented in many languages by their allophones /A,@/ and /1,I/ without
loss of intelligibility; similarly /k/ may be implemented as /c/ or even /ch/ (as in the English words ‘‘skit’’ and ‘‘kit’’, respectively).

Table 12 analyzes performance in the discovery of base phones, as a function of the articulatory features of the base phone.
rticulatory features are assigned to each symbol according to the IPA standard (Association et al., 1999): vowel symbols are
haracterized by backness, height, and rounding, consonant symbols by manner, place, and voicing. For each category, the Count
olumn is the sum, across the inventories of all thirteen languages, of the number of symbols of that category. The Languages
olumn specifies the minimum and maximum number of languages possessing any of the symbols in that category, e.g., there are
hree distinct symbols in the [implosive] manner category, one of which occurs in two languages, and two of which occur in just
ne language each, for a total Count of 4. Recall is the number of true positive detections of symbols in that category, summed
19
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across all languages, divided by the reference number of symbols in that category, also summed across languages. Precision is the
number of true positives divided by the number of detected symbols; precision is set to zero if there are no detections. F1 is the
harmonic mean of recall and precision.

Five manner categories, six place categories, and one vowel height category are never detected. All of these twelve categories are
nfrequent, both in the number of distinct symbols, and in the number of languages in which they occur: clicks, lateral clicks, and
ateral fricatives occur only in Zulu. Other than these twelve never-detected categories, frequency of a category is not a certain pre-
equisite for high accuracy. For example, rounded vowels are better-detected than unrounded vowels, despite being less frequent.
here is some tendency for categories with low articulatory complexity to be better-detected than those with high articulatory
omplexity, e.g., the best-detected manner of articulation (lateral-approximant) is exemplified in Table 8 by the phone /l/, which

has a very early age of acquisition, while the poorly-detected non-sibilant fricative category is exemplified in Table 10 by the
phones /f,v/ that have higher ages of acquisition. Many of the smaller-scale performance disparities are surprising, and perhaps
worthy of further study. For example, close and close-mid vowels are detected with significantly better F1 scores than are open and
open-mid vowels; we know of no theory of phonological organization that would explain this finding.

6. Conclusion

To the best of our knowledge, the presented study is the first to address the problem of automatic phonetic inventory discovery
using IPA symbols with an application of ASR systems. It concludes a series of works that began with the exploratory analysis of the
universality of phonetic representations in E2E ASR (Żelasko et al., 2020), and then moved onto studying the effect of phonotactic
models strength on the performance of crosslingual (zero-shot) hybrid ASR (Feng et al., 2021a). These works have laid the ground
for addressing our ultimate goal – i.e., phonetic inventory discovery.

We compared the performance of two E2E ASR systems which used phones and phone tokens as the output labels [RQ1] in
Section 5.1. We found that the phone system performs better in multi- and monolingual conditions, whereas the phone token system
is preferable for crosslingual recognition. We did not find a strong effect of either label type on the F1 score performance of phone
token inventory discovery. However, we found that it is significantly easier to discover phone tokens than to discover phones.

We wanted to find out empirically which phones would be easier or more difficult to automatically discover in a new language
[RQ2]. To that end, we first analyzed the confusions of the crosslingual phone E2E ASR systems using Levenshtein alignments,
confusion matrices, hierarchical clustering and a 2-D UMAP projection in Section 5.2. We presented clusters of IPA symbols that
are very likely to be confused with each other by a crosslingual system, and found that these clusters have a clear phonological
interpretation. Furthermore, we looked closely into which phones tend to be frequently discovered, falsely hypothesized, or
undiscovered in Section 5.3. Our findings correlate well with extrinsic indicators such as phoneme frequency in PHOIBLE (2019)
or the age of acquisition (Romani et al., 2017).

We previously claimed that the inability to model target language phonotactics inhibits crosslingual ASR performance (Feng
et al., 2021a), and here we extended this claim to also involve phonetic inventory discovery with crosslingual ASR in Section 5.3
[RQ3]. In particular, we found that a hybrid ASR system with a crosslingual AM (i.e., one that has never seen the target language)
could exhibit much stronger phonetic inventory discovery performance if an oracle phonotactic LM is available. Ideally, an acoustic
model alone would be able to recognize the sounds with no phonotactic information, although that seems unlikely given the strong
reliance of ASR systems (whether hybrid or E2E) on the language model.

Is it possible to discover phonetic inventories with crosslingual ASR [MA]? We show that to some extent, the answer is ‘‘yes’’. Our
best zero-shot system has an F1 score of 68.6% for phone token inventory discovery, but only 33.4% for phone inventory discovery,
which presents clear continuing challenges. Most of the true positive detections are sounds that are common among many languages.
However, a widespread presence is not sufficient, as common fricatives such as /f/, /v/, or /z/ tend to be harder to discover. Some
sounds tend to be confused with others that differ by just a single articulatory feature, consistently with our past findings (Żelasko
et al., 2020). We also observe that the crosslingual ASR struggles with determining the lexical tonality and the prosody of phones.
Rare sounds, which are arguably the most interesting to discover, and languages with large inventories (especially tone languages)
remain as the largest challenge for the task of automatic phonetic inventory discovery, at least for our, arguably simple, proposed
method (if they can be automatically discovered at all). We believe that these challenges are adequate future work candidates.

An interesting future direction is the assessment of discovered inventory quality by training and testing an ASR system using
the discovered inventory. This would help assess better how different error types (substitutions, insertions, and deletions) affect the
downstream task performance. We would also like to see what patterns are observed with a larger diversity of languages — to what
extent could it reduce the number of unique phones, making their discovery possible?

We publicly share the code to reproduce our Kaldi8 and ESPnet9 ASR experiments.
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