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Abstract. Quantitative MRI (qMRI) of the heart has become an impor-
tant clinical tool for examining myocardial tissue properties. Because
heart is a moving object, it is usually imaged with electrocardiogram
and respiratory gating during acquisition, to “freeze” its motion. In real-
ity, gating is more-often-than-not imperfect given the heart rate vari-
ability and nonideal breath-hold. qMRI of the heart, consequently, is
characteristic of varying image contrast as well as residual motion, the
latter compromising the quality of quantitative mapping. Motion cor-
rection is an important step prior to parametric mapping, however, a
long-standing difficulty for registering the dynamic sequence is that the
contrast across frames varies wildly: depending on the acquisition scheme
some frames can have extremely poor contrast, which fails both tradi-
tional optimization-based and modern learning-based registration meth-
ods. In this work, we propose a novel framework named DisQ, which
Disentangles Quantitative mapping sequences into the latent space of
contrast and anatomy, fully unsupervised. The disentangled latent spaces
serve for the purpose of generating a series of images with identical con-
trast, which enables easy and accurate registration of all frames. We
applied our DisQ method to the modified Look-Locker inversion recov-
ery (MOLLI) sequence, and demonstrated improved performance of T1

mapping. In addition, we showed the possibility of generating a dynamic
series of baseline images with exactly the same shape, strictly registered
and perfectly “frozen”. Our proposed DisQ methodology readily extends
to other types of cardiac qMRI such as T2 mapping and perfusion.

Keywords: Quantitative magnetic resonance imaging · T1 mapping ·
Unsupervised disentangled representation · Motion correction

1 Introduction

Quantitative magnetic resonance imaging (qMRI) has become an important clin-
ical tool for noninvasive evaluation of tissue integrity [23]. In qMRI, quantitative
information of tissue is derived from a dynamic sequence of baseline images
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Fig. 1. (a) An example of MOLLI T1 mapping sequence with 11 baseline images
(denoted by f). (b) The 3-parameter signal model for T1 fitting. (c) The computed
T1 map. Colorbar in the range of 0–2000 ms. (d) The corresponding standard devia-
tion (SD) error map of T1 mapping with colorbar 0–200 ms.

acquired with modulated MR imaging parameters. Based on the underlying
physics, quantification of tissue properties is obtained by fitting a parametric
signal model, under the assumption that the series of baseline images are aligned
anatomically. However, this assumption is often violated in cardiac qMRI where
the object is constantly moving. Even with careful electrocardiogram and respi-
ratory gating, the baseline images often contain residual motion, which compro-
mises the quality of quantitative mapping and undermines the value of qMRI.

Quantification of myocardial T1 relaxation time is among the most impor-
tant applications of qMRI in current radiology practice [6]. A widely used MRI
sequence is the modified Look-Locker inversion (MOLLI) recovery [13], normally
with 11 baseline images, governed by the following 3-parameter function:

s (tinv) = A − B · exp
(

− tinv
T ∗
1

)
(1)

where s is the signal intensity at tinv, the inversion time during acquisition (11
in total), and A, B and T ∗

1 are the three parameters. The true T1 is calculated
as T1 = (B

A − 1) · T ∗
1 . Figure 1 illustrates an example of MOLLI T1 baseline

images (a) and parametric mapping (b-d). In this example, we can appreciate
the dynamic change in baseline images and poor myocardium-blood contrast in
some of them, e.g. the 3rd image in (a), as well as the residual motion in (b).

To realize accurate quantitative mapping, motion correction by image regis-
tration is an important step prior to parametric mapping. Popular registration
methods include traditional optimization-based methods and modern learning-
based methods. Xue et al. [22] proposed to use synthetic image estimation for
myocardial motion correction, iteratively improved mapping accuracy. PCA-
based method was proposed at [7,21] for groupwise registration. Learning-based
methods explode [1,16,17] with the potential of deep learning, can be divided
into two categories: supervised [18] and unsupervised (VoxelMorph [1]).

A fundamental difficulty for registering the dynamic sequence is that the con-
trast across frames varies wildly: depending on acquisition scheme some frames
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can have extremely poor contrast (e.g. near the signal nulling point), which
can fail both traditional optimization-based and modern learning-based regis-
tration methods. In this work, we propose a novel solution to this problem by
first addressing the issue of contrast, inspired by the recent success of unsu-
pervised disentangled representation learning in computer vision [4,9,12] and
medical imaging [5,14,17,24]. Our rationale is as follows: according to the under-
lying physics, an MR image can be modeled as an function of anatomical tissue
property and acquisition parameters. Therefore, when appropriately formulated,
cardiac qMRI images can be disentangled to their anatomical representation
and contrast representation. With such disentanglement, we may unify baseline
images either in terms of contrast (for easy image registration), or anatomy (for
direct quantitative mapping).

For the problem to be well-posed, existing methods for anatomy and shape
disentanglement in medical imaging normally requires the dataset to share at
least one common factor, i.e. multiple contrast of the same anatomy, or same con-
trast of different anatomy. As such, most work focused on brain MRI as the same
anatomy requirement can be easily satisfied. However, for a moving object, car-
diac qMRI is characteristic of varying image contrast as well as residual motion.
In this work, we propose a framework named “Disentangling Quantitative MRI”
(DisQ) to decompose the dynamic cardiac images under the condition of simul-
taneous anatomy and contrast change. We validated the method on MOLLI T1

mapping, the most popular qMRI application of heart, but the methodology can
be extended to other quantitative sequences. Our contributions include:

– This is among the first work to address cardiac qMRI analysis from an
anatomy-contrast disentanglement perspective;

– We propose a novel network architecture and a number effective bootstrap-
ping strategies, dedicate to cardiac qMRI (characteristic of simultaneous con-
trast and anatomy change), evaluate on the clinical T1 mapping data;

– We demonstrate the possibility of generating strictly registered baseline
images for cardiac qMRI, beyond any existing registration methods.

2 Methodology

2.1 Overall Framework: Disentangling Latent Spaces

A schematic plot of our proposed method is shown in Fig. 2. Let fs
t ∈ FS

T

denote the input baseline MOLLI image of t-th inversion time of the s-th
subject. As shown in Fig. 2(a), we aim to decompose an image pair {fs

i , fs
j }

of the same subject to their anatomical representations {as
i = EA(fs

i ), as
j =

EA(fs
j )} by an anatomical encoder EA and separate contrast representations

{cs
i = EC(fs

i ), cs
j = EC(fs

j )} by a contrast encoder EC . The generator G then
reconstructs the images from their anatomical and contrast representations. As
in prior work [3,14], we optimize the self-reconstruction and cross-reconstruction
losses to learn the disentangled latent spaces. With a pair {as

i , c
s
j} derived from
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Fig. 2. (a) DisQ: the overview of network architecture to disentangle anatomy and
contrast of paired baseline images fi and fj . The a and c decomposed from each
image will be selected one at a time for reconstruction. See text for Projector p and
architecture details. (b) Two ways DisQ can potentially be used in analyzing cardiac
qMRI: (1) unify the contrast for motion correction, (2) unify the anatomy for direct
quantitative mapping.

images of any two baseline images, G can synthesize an image f̃s
ji, which should

be similar to the image fs
j with contrast cs

j .

Lself−recon =
1

ST

S∑
s=1

T∑
i=1

Efs
i ∼FS

T

∥∥∥f̃s
ii − fs

i

∥∥∥
1
, (2)

Lcross−recon =
1

ST (T − 1)

S∑
s=1

T∑
i=1

T∑
j=1,j �=i

Efs
i ,fs

j ∼FS
T

∥∥∥f̃s
ji − fs

j

∥∥∥
1
, (3)

where f̃s
ji = G(EC(fs

j ), EA(fs
i )). Under this generic framework, we present fur-

ther technical novelties that enable disentanglement of cardiac qMRI.

2.2 Bootstrapping Disentangled Representations

Anatomy Encoder. Our shared anatomical encoder EA is built from the basic
architecture of the U-Net [20], to extract anatomical information a. It is desir-
able that the extracted a is limited in capacity (with minimal information on
contrast), but at the same time captures the anatomy. We therefore design a to
be a one-hot encoded multi-channel map through a straight-through Gumbel-
softmax (STGS) layer [5,24]. Consequently, the generator G cannot reconstruct
images without extra information of contrast since the one-hot encoding strictly
restricts the capacity of a.

For the same subject, the learned multi-channel anatomical representations
as

i , a
s
j should share similarity, but are not exactly identical due to the residual
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motion of the heart. Instead of enforcing identity of anatomy, we consider the
the two anatomies similar, as two weak augmentations of the true “frozen” shape
of the subject. We formulate this into an anatomical similarity loss to encourage
loosely similar a between the two learned anatomy representations:

Lanatomy = 1 − 〈as
i , a

s
j〉

‖as
i ‖2 · ‖as

j‖2
. (4)

which promotes the two anatomy representation as
i and as

j to be as close as pos-
sible, while allowing minor deviations (residual motion). We will present ablation
study to validate this loss.

Contrast Encoder. The second latent space is the contrast representations c
capturing the contrast information in different baseline images. Given that the
underlying T1 relaxation function (Eq. 1) is simple, the latent space of contrast
should be intrinsically low-dimensional. We encode the contrast information into
a low-dimensional vector by a shared encoder EC . We employ an information
bottleneck loss [2,19] here to limit the information capacity of c and avoid infor-
mative leakage:

Lcontrast =
∥∥∥‖c‖22 − C

∥∥∥
1
, (5)

where C is the bottleneck capacity controlling the amount of information in
the latent contrast representation. The choice of C will be presented in section
Implementation.

Projector. The input for DisQ is two qMRI frames {fs
i , fs

j } of the same sub-
ject, but with different acquisition parameters (in the case of MOLLI at different
tinv). Feeding them into the DisQ network, we can obtain {as

i , a
s
j} and {cs

i , c
s
j}

respectively, to represent their anatomies and contrasts. Consequently, by com-
bining a and c in pairs, we can generate four synthetic images. Two of them are
self-reconstruction, with c broadcasted to the same height and width as a. A
code z is obtained after the broadcasted c being concatenated with the selected
a in the channel dimension, and is sent to the generator G for reconstruction.
The other two are cross-reconstruction, where we adopt a different concatenated
mechanism. As one-hot encoding of STGS tends to have high variance with this
gradient estimator, we proposed to reduce the variance of STGS inspired by Rao-
Blackwellization [15]. We thereby introduce bias here to counteract the variance
of STGS, which is realized by a projector p, expressed by:

zs
ji = pσ(cs

j) · as
i + pμ(cs

j), (6)

where pσ and pμ are two fully connected layers constructing the projector p.

Overall Loss. Our overall loss function is defined as Loverall = λ1Lrecon +
λ2Lper + λ3Lanatomy + λ4Lcontrast, where Lrecon sums up Lself−recon (Eq. 2) and
Lcross−recon (Eq. 3), Lper is the perceptual loss introduced in [8]: ‖VGG(f̃) −
VGG(f)‖1, where f is the original image, f̃ is the reconstructed image.
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3 Experiments

3.1 Dataset

In total 102 MOLLI T1 acquisitions were included in this study. The images were
acquired by a 3.0T Ingenia MR-scanner (Philips Healthcare,Best, The Nether-
lands), in three short-axis slices: apical, mid, and basal. Both native and post-
contrast T1 mapping were performed using the same 3-3-5 scheme provided by
the manufacturer. Each data has a dimension of 256×256×3×11. We randomly
split the dataset into 80 for training, 11 for validation, and 11 for testing. The
myocardium of left ventricle were manually annotated as the region of interest.

3.2 Implementation

Training. The four hyperparameters for our objective function Loverall were set
to λ1 = 2, λ2 = 0.03, λ3 = 0.02, λ4 = 10−8. The hyperparameter C in Eq. 5 was
increased per epoch: 1000×e0.002i. The channel numbers of a and c in DisQ were
set to 3 and 2, and our model was trained for 300 epochs by the Adam optimizer
with learning rate of 3×10−4. During training, we randomly selected two baseline
images from the same MOLLI sequence, but at two different inversion time. Our
codes are released at https://github.com/Changchun-Yang/DisQ.

Evaluation. For every MOLLI data, we choose the t-th baseline image ft as the
reference, then all other frames i ∈ {1...T}, i �= t along with ft are fed into the
DisQ to get all the reconstructed results. We then generate two new sequence
of images with reference to ft: {f̃t1, ..., ft, ..., f̃tT }, and {f̃1t, ..., ft, ..., f̃Tt}. The
first sequence share the same contrast with ft, but retains the anatomy of the
original baseline images. This sequence of images (with the same contrast) is
then used for residual motion correction. The derived deformation field is then
applied to the original baseline image series for a motion-corrected MOLLI. The
second sequence keeps the original contrast of baseline images while sharing
the same anatomy, hence with cardiac motion perfectly “frozen”. This sequence
of generated images can be directly used for T1 mapping. Quantitative metrics
include the value and standard deviation (SD) error of the T1 map as in [10]. The
unsupervised registration network is adopted from the baseline VoxelMorph [1].
We set t as 5 in our experiments, but our results were not sensitive to its choice.

Comparative and Ablation Study. We evaluated the proposed bootstrap-
ping strategies by comparative and ablation studies. In particular, we performed
ablation study for the proposed anatomy loss Lanatomy and projector p. As a base-
line, we implemented the same network architecture, by substituting Lanatomy

with the common MAE loss, and removing the projector p. This baseline is
denoted as Dis. The proposed anatomy loss and projector were then integrated
in this baseline model one by one to create ablation models. All models in com-
parison however carried the contrast loss Lcontrast, which is important for rea-
sonable disentanglement of contrast. In addition, the T1 mapping results of the

https://github.com/Changchun-Yang/DisQ
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originally acquired data (with residual motion) was denoted as Org. The T1

mapping results after VoxelMorph registration is denoted as Morph. We further
implemented the PCA-based groupwise registration [7,21] using the traditional
elastix toolbox [11] as another method in comparison, denoted as Groupwise.

3.3 Results

Quantitative Analysis. We first present and analyze our quantitative results.
As shown in Table 1, we calculated the mean and standard deviation (std) of SD
error within the myocardium region for all listed methods. We see that the accu-
racy of fitting is the lower on the uncorrected original MOLLI data, while the
mapping results of learning-based Morph and optimization-based Groupwise
were both significantly improved compared with Org. When using the disen-
tanglement framework Dis, the T1 mapping based on the generated dataset
of Dis achieved the worst results. This implies sub-optimal disentanglement,
i.e., information leakage between a and c in Dis. The results improved when
adding Lanatomy and p. Specifically, the former improved mean and the latter
std. This confirms that Lanatomy guarantees anatomy disentanglement in pres-
ence of residual motion, and that the proposed projector p is efficient in reducing
variance. Our DisQ achieved further improved results in both mean and std.
The mean SD error of ours was still slightly higher than Groupwise, however
latter demanded lengthy optimization.

Table 1. The mean and standard deviation of fitting quantitative T1 maps. (Unit: ms)

Method Org Morph Dis Dis+Lanatomy Dis+p Dis+Lanatomy+
p (Our DisQ)

Groupwise

Mean 47.9 39.1 57.9 41.2 43.8 36.6 32.2

Standard
deviation

24.6 22.5 26.3 25.9 21.3 19.9 21.0

Qualitative Analysis. We select 11 baseline images of one subject from our
test MOLLI sequence, and original 11 frames are shown in Fig. 1(a). Then we
show the generated cross-reconstructed data using DisQ in Fig. 3, which is unified
through two strategies, either in terms of contrast (for easy image registration,
Fig. 3(a)), or anatomy (for direct quantitative mapping, Fig. 3(b)). They share
the contrast or anatomy from the selected inversion time respectively. We also
show the quantitative native and post-contrast T1 maps and their SD in Fig. 4,
it can be seen that compared with DisQ, the SD of Org is very obvious at the
motion boundary, and Morph is affected by drastic changes in contrast and
may locally produce large errors.
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Fig. 3. Utilizing DisQ to analyze cardiac qMRI: (a) all images have the same contrast
(sc, from the 5th frame), respective anatomies, (b) all images share the same anatomy
(sa, also from the 5th frame), while preserving their respective contrasts. f̃ij represents
contrast from frame i, anatomy from j.
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Fig. 4. The resulting quantitative T1 maps and corresponding SD error maps of (a)
native and (b) post-contrast MOLLI sequences. Colorbar in the unit of ms. (Color
figure online)

Computational Time. The training time for our disentanglement architec-
ture is ∼10 h on one 3090Ti GPU, and ∼300 ms for inference on a pair of cross
reconstructed images. For the registration network, we use the original Voxel-
morph, and training time is ∼6 h and evaluation time is ∼400 ms for pairwise
registration. For Groupwise registration by Elastix toolbox, the inference time
is ∼9000 s. In comparison, our pipeline only takes ∼7 s for disentangling and
registering of one MOLLI sequence.

4 Conclusion

In this work, we propose a novel image disentanglement framework DisQ (Dis-
entangling Quantitative MRI) to discompose cardiac qMRI images into their
anatomical representation and contrast representation in the latent space. This is
among the first work to address cardiac qMRI analysis from an anatomy-contrast
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disentanglement perspective, with effective bootstrapping strategies proposed
to tackle simultaneous changes of contrast and anatomy in cardiac qMRI. We
applied DisQ to analyze the clinical MOLLI sequences (both native and post-
contrast), and demonstrated improved precision for the final cardiac T1 map.
Our proposed DisQ methodology is generic, which readily extends to other types
of cardiac qMRI such as T2 mapping and perfusion. Future work is warranted to
investigate its generalizability to other qMRI sequences with different underlying
physics.

Acknowledgement. The authors gratefully acknowledge TU Delft AI Initiative for
financial support.
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