

Delft University of Technology

Deep Learning-Based Side-Channel Analysis Against AES Inner Rounds

Swaminathan, Sudharshan ; Chmielewski, Łukasz; Perin, Guilherme; Picek, Stjepan

DOI
10.1007/978-3-031-16815-4_10
Publication date
2022
Document Version
Final published version
Published in
Applied Cryptography and Network Security Workshops - ACNS 2022 Satellite Workshops, AIBlock,
AIHWS, AIoTS, CIMSS, Cloud S and P, SCI, SecMT, SiMLA, Proceedings

Citation (APA)
Swaminathan, S., Chmielewski, Ł., Perin, G., & Picek, S. (2022). Deep Learning-Based Side-Channel
Analysis Against AES Inner Rounds. In J. Zhou, S. Chattopadhyay, S. Adepu, C. Alcaraz, L. Batina, E.
Casalicchio, C. Jin, J. Lin, E. Losiouk, S. Majumdar, W. Meng, S. Picek, Y. Zhauniarovich, J. Shao, C. Su,
C. Wang, & S. Zonouz (Eds.), Applied Cryptography and Network Security Workshops - ACNS 2022
Satellite Workshops, AIBlock, AIHWS, AIoTS, CIMSS, Cloud S and P, SCI, SecMT, SiMLA, Proceedings
(pp. 165-182). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics); Vol. 13285). Springer. https://doi.org/10.1007/978-3-031-
16815-4_10
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-16815-4_10
https://doi.org/10.1007/978-3-031-16815-4_10
https://doi.org/10.1007/978-3-031-16815-4_10

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Deep Learning-Based Side-Channel
Analysis Against AES Inner Rounds

Sudharshan Swaminathan1, �Lukasz Chmielewski2,3(B), Guilherme Perin1,
and Stjepan Picek1

1 Delft University of Technology, Delft, The Netherlands
2 Radboud University Nijmegen, Nijmegen, The Netherlands

3 Riscure, Delft, The Netherlands

lukchmiel@gmail.com

Abstract. Side-channel attacks (SCA) focus on vulnerabilities caused
by insecure implementations and exploit them to deduce useful infor-
mation about the data being processed or the data itself through leak-
ages obtained from the device. There have been many studies exploiting
these leakages, and most of the state-of-the-art attacks have been shown
to work on AES implementations. The methodology is usually based on
exploiting leakages for the outer rounds, i.e., the first and the last round.
In some cases, due to partial countermeasures or the nature of the device
itself, it might not be possible to attack the outer rounds. In this case,
the attacker needs to resort to attacking the inner rounds.

This work provides a generalization for inner round side-channel
attacks on AES and experimentally validates it with non-profiled and
profiled attacks. We formulate the computation of the hypothesis values
of any byte in the intermediate rounds. The more inner the AES round is,
the higher is the attack complexity in terms of the number of bits to be
guessed for the hypothesis. We discuss the main limitations for obtaining
predictions in inner rounds and, in particular, we compare the perfor-
mance of Correlation Power Analysis (CPA) against deep learning-based
profiled side-channel attacks (DL-SCA). We show that because trained
deep learning models require fewer traces in the attack phase, they also
have fewer complexity limitations to attack inner AES rounds than non-
profiled attacks such as CPA. This paper is the first to propose deep
learning-based profiled attacks on inner rounds of AES to the best of
our knowledge.

1 Introduction

In the past twenty years, much academic and industrial research provided meth-
ods to attack and protect the Advanced Encryption Standard (AES) implemen-
tations. Among these attacks, side-channel analysis (SCA) targets unintentional
leakages from software and hardware implementations. The aim can be twofold:
from the designer’s perspective (the defensive side), a side-channel analysis indi-
cates a potential source of leakages in the implemented algorithm. Additionally,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Zhou et al. (Eds.): ACNS 2022 Workshops, LNCS 13285, pp. 165–182, 2022.
https://doi.org/10.1007/978-3-031-16815-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16815-4_10&domain=pdf
https://doi.org/10.1007/978-3-031-16815-4_10

166 S. Swaminathan et al.

the analysis provides important directions to design countermeasures to miti-
gate such attacks. On the other hand, an evaluator (offensive side) is interested
in verifying the worst-case security to advise the manufacturer or certify the
implementation against specific types of SCAs and applications. Besides dif-
ferent perspectives, one must consider different types of side-channel attacks.
One common division is into non-profiled and profiled attacks. New forms of
non-profiled and profiled SCA encounter in AES a suitable target to validate
proposed methods. In this sense, most works concentrate on attacking the first
and last AES (encryption or decryption) rounds, leaving the attacks on inner
rounds out of scope.

The reason stems from the attack complexities and assumptions: attacking
the outer rounds requires a minimal effort in terms of key guessing and the num-
ber of measurements. On the other hand, several design reasons could limit a
side-channel attack application on the outer (i.e., first and last) rounds. Coun-
termeasures (as they add costs overheads to the design) could be applied only
to these outer rounds, leaving inner rounds unprotected. In this case, the only
side-channel attack mitigations are the inherent sources of noise and misalign-
ments. Additionally, it is common to implement several AES rounds within a
single clock cycle for faster encryption or decryption processes, which is a highly
adopted mechanism for hardware-based implementations. This limits the leak-
ages of the AES intermediate bytes that do not coincide with the clock cycles
edges.

The past (and not very recent) literature already proposed various differential
power analysis (DPA) attacks on inner AES rounds. In [11], the authors described
a DPA attack on round 2, requiring the same attack complexity (8 bits) as
attacking round 1 and with an overhead in the required number of measurements
due to the chosen-input nature of the attack. Lu et al. investigated how many
rounds of an AES implementation should be protected to be secure against power
analysis attacks [13]. They provided two main conclusions: attacking the inner
rounds of AES is possible at the cost of increasing the data complexity, and any
attack requiring a DPA on more than 32 bits is considered infeasible.

In this work, we extend the formulation of [13] and provide a theoretical gen-
eralization of such an attack on the inner rounds of AES-128. This generalization
provides the designers with a comprehensive understanding of the complexity of
the attack at each round and the threat profile that the attacker needs to have
to make a successful attack. We assume that inner rounds are not protected
by specific countermeasures (e.g., first-order masking or multiple rounds within
a single clock cycle) but only by inherent noise and misalignment. Under this
assumption, we run both non-profiled attacks (CPA) and profiled attacks (deep
learning-based SCA) and show that deep learning-based SCA reaches signifi-
cantly better attack performance and succeeds in scenarios where CPA does not
indicate a successful key recovery.

Our Contributions.

1. Based on related works, we first analyze the computation of the hypothesis
for any byte in the intermediate rounds for AES-128 in the encryption mode

Deep Learning-Based Side-Channel 167

with some predefined conditions in mind and use the same to determine the
relative difficulty of such attacks. Due to the non-linear substitutions in each
AES round, targeting any intermediate byte after n S-boxes requires an attack
complexity of 8×n bits. The attack complexity in terms of the number of bits
represents the bit-length of guessed hypothesis. This introduces significant
time and memory overheads to mount such a complex attack.

2. To make our analysis more realistic, we consider potential countermeasures
(such as Gaussian noise and misalignment) to power traces collected from an
unprotected AES.

3. The training phase of a deep learning-based profiled attack on inner rounds is
not affected by the increased attack complexity. Consequently, we show that
the attack phase from the deep learning-based approach is a considerable
improvement over limitations faced by non-profiled CPA due to the added
countermeasures, especially when the attack complexity is higher than 16
bits. In this case, the attacker faces strong time and memory limitations in
processing attack traces.

4. In scenarios when CPA cannot succeed due to implicit countermeasures
(which is a practical case shown in this paper on encryption round 3), a
convolutional neural network-based profiled attack can easily recover the key
even with a very limited number of attack traces.

2 Preliminaries

2.1 Correlation Power Analysis (CPA)

CPA is a statistical method used to correlate the side-channel traces with the
observed leakage [3]. There, an attacker has to perform numerous encryption-
s/decryptions and collect the traces. A hypothesis for each key guess can then
be obtained by using a leakage model. CPA uses Pearson Correlation for differ-
entiating between the modeled and the actual power traces.

2.2 Deep Learning Methodologies

Deep learning-based SCA (DL-SCA) provides an improvement over other pro-
filed attacks such as template attacks [5] in terms of efforts during pre-processing
of traces and effectiveness of the attack. Deep learning methodologies take the
traces along with their labels in the profiling phase across the selected data
points in time, run them through the defined model, and determine the weights
according to the defined criteria such as high accuracy and minimal loss. The
labels here depend on the leakage function and the key hypotheses. The input
layer of the DL model contains the measurements of the traces across the data
points in time, and the output layer contains output nodes for each of the classes
defined by the leakage model. These trained weights are then used in the attack
phase to determine the probabilities of each of the classes given by the interme-
diate value corresponding to each key guess. The key guess having the highest
probability values would indicate the most likely secret key.

168 S. Swaminathan et al.

In this work, we use convolutional neural networks (CNNs) to conduct deep
learning-based SCA. We employ CNN with VGG-like architecture as it is a
prominent model used for SCA, see, e.g., [1,10]. The original model was devel-
oped for image classification, where the input signal has multiple input dimen-
sions starting from 2. As SCA has only one spatial dimension considering its data
points in time, the main difference that VGG-like architectures introduce is how
it handles 1-dimension signal on each of its convolution and pooling operations.

2.3 Attack Evaluation Methodology

The most commonly used metric for evaluating the performance of a side-channel
attack is key rank. We use the same for evaluating the performance of the attacks
carried out in this work. An average key rank (denoted guessing entropy) rep-
resents the average number of keys the attacker needs to go through during the
attack to reveal the actual key successfully [20]. As seen in the above sections,
we obtain a posterior distribution of probabilities for each of our defined classes
as the output of the attacks. The key guess contributing the most to the highest
probable predicted class across the attack traces is predicted to be the key byte
being used. Consequently, the output vector that is obtained during the attack
is of the form k = [k0, k1, k2, ..., k|K|−1], where |K| is the size of the keyspace.
These key guesses contained in the vector k are then ordered in the decreasing
order of probability, that is, k0 is the most probable key guess, also known as the
best guess, and k|K|−1 is the least probable key guess. We then check the posi-
tion at which the actual key byte resides in this ordered list, and this position
of the actual key byte is termed the key rank.

3 Related Work

The first and the last rounds, being dependent on a relatively small fraction of
the key, are more vulnerable and are therefore primary targets of side-channel
attacks. As we go into the inner rounds, every intermediate byte would depend
on an increasing number of key bytes due to the diffusion properties of AES,
thereby increasing the data complexity of the attack. The trade-off, therefore,
focuses on protecting the first and the last rounds and leaving other intermediate
rounds unprotected or with very simple countermeasures [7,21]. In some cases of
hardware implementation, it is also possible that multiple rounds are executed
within one clock cycle. This would result in the inner rounds being exposed, i.e.,
it would then be possible to capture traces corresponding to the inner rounds.
In such cases, the hypothesis built for the first round would not correlate to
the captured traces, and the attack would not work. Such cases, along with
the hindrance caused by the partial countermeasures, raise the need to look into
attacks on unprotected or even partially protected inner rounds and understand
the resources that the attacker would need to launch such attacks.

While Jaffe et al. already described a DPA attack after the SubBytes of
round 2 [11], Lu et al. answered an important question about how many rounds

Deep Learning-Based Side-Channel 169

of an AES implementation should be protected for it to be secure against power
analysis attacks [13]. To this end, they show that it is possible to attack the
inner rounds of AES at the cost of increasing the data complexity of the attack.
They define the feasibility of an attack by the number of bits required to launch
the DPA/CPA and set this threshold to 32 bits. Consequently, any DPA attack
requiring more than 32 bits is considered infeasible and, as such, not investigated.

We extend on the same and formulate a generalization of such an attack on
the inner rounds. We also analyze the feasibility of such generalization.

Many approaches have been developed in SCA, from statistical methods such
as CPA/DPA to template attacks and machine learning-based approaches. While
the former has been studied extensively, attacks based on profiling involving
machine learning and deep learning are still developing. Already studies appear-
ing one decade ago showed that machine learning could be used to mount success-
ful side-channel attacks that are also more effective than template attacks [8,9].
Machine learning methods such as SVM have also been used to defeat masked
implementations, as shown by Lerman et al. [12]. Extending on the same,
Gilmore et al. showed that neural networks could also be used to tackle the mask-
ing countermeasure and are more effective than the other machine learning-based
approaches [6]. However, these implementations depend on a crucial assumption
that the random masks are available to the attacker during the profiling phase,
which as mentioned by [6] is an impractical assumption. As discussed before,
most of the practical and efficient countermeasure implementations involve only
the outer rounds [7,21]. Therefore, we can bypass these countermeasures if we
attack the inner rounds directly, which would also not necessitate having the
random masks used by the target implementation.

Deep learning (more precisely, convolutional neural networks and multilayer
perceptrons) has been successfully used to attack AES implementations, as first
shown by Maghrebi et al. [15]. Next, Cagli et al. showed that convolutional
neural networks could break implementations protected with the jitter coun-
termeasure, especially if the attack is augmented with synthetic data obtained
from data augmentation techniques [4]. Kim et al. discussed the VGG-like archi-
tecture that showed good attack performance for several datasets, where some
were using masking or hiding countermeasures [10]. Benadjila et al. introduced
the ASCAD dataset, which is a dataset used in most of the SCA studies today,
and also investigated the hyperparameter tuning to find architectures leading to
successful attacks [1]. Picek et al. showed that metrics commonly indicating the
performance of machine learning algorithms are not appropriate to assess the
SCA performance [17]. Zaid et al. proposed a methodology to design convolu-
tional neural network architectures that have a small number of trainable param-
eters and that result in efficient attacks [24]. Wouters et al. further discussed the
methodology perspective, providing even smaller neural network architectures
that perform well [23]. Perin et al. explored how deep learning-based SCA gen-
eralized to previously unseen examples and showed that ensembles of random
neural networks could outperform even state-of-the-art neural network archi-

170 S. Swaminathan et al.

tectures [16]. Rijsdijk et al. introduced the reinforcement learning approach for
designing neural networks that perform well and are as small as possible [18].

These studies represent only a fraction of works exploring machine learning-
based side-channel attacks, but to the best of our knowledge, none of those works
consider attacking inner rounds of AES.

4 First-Order Non-profiled Attacks on AES Inner Rounds

Lu et al. [13] give five general principles for attacking bytes in the inner rounds
of AES using first and second-order DPA. These principles consider the attack
to be feasible as long as the attack is on less than 32 bits. We focus on the
following two principles listed by [13] that are based on the first-order DPA:

1. Attacking from input: any intermediate byte before the MixColumns opera-
tion of round 3 can be exploited by conducting a first-order DPA attack and
will depend on the part of the plaintext bytes being fixed.

2. Attacking from the output: any intermediate byte resulting from the
AddRoundKey operation of round 7 can be exploited to conduct a first-order
DPA attack and will depend on some of the ciphertext bytes being fixed.
Note: Although Lu et al. [13] consider any byte after the AddRoundKey
operation of round 7, we noticed that it was also possible to attack from out-
put before the AddRoundKey of round 7 while considering single bit DPA
attacks.

In this section, we briefly analyze these attacks and comment on possible
extensions or lack of them.

4.1 Notations

Before describing the attacks, we present the notations that we use in this section.

– Plaintext bytes are denoted by pi, where i is the index of the byte. Similarly,
ciphertext bytes are denoted by ci.

– The output byte of an S-box in any round is denoted by vn
i , where i is the

index of the byte and n indicates the round. For example, v1
0 is the first byte

obtained after the S-box in round 1. Similarly, bytes after the MixColumns
operation are denoted using un

i , while the output bytes of a round, i.e., bytes
after the AddRoundKey are denoted by wn

i .
– The key bytes are denoted by kn

i and the round key they belong to is denoted
by Kn. The initial key would then be {k0

0, k
0
1, ..., k

0
15} ∈ K0, while the last

round key would be {k10
0 , k10

1 , ..., k10
15} ∈ K10

– S-box in round n is denoted as Sn and we denote its application on an input
byte u as Sn(u). The inverse of the S-box is denoted as S−1

n .
– Terms such as γ, δ, θ are used to denote 8-bit constants.

Deep Learning-Based Side-Channel 171

4.2 On the Attack Feasibility After the S-box at Rounds 2, 3, and 4

The attack on rounds 2 and 3 are presented in Lu et al. [13], and due to space
constraints, we omit them here. Here, we consider attacking a byte immediately
after the S-box in round 4 (S4). Let this be the first byte v4

0 . Let w3
0 denote a

byte obtained after round 3 and u3
0 a byte after the MixColumns of round 3.

Then with k3
0 ∈ K3, we have:

v4
0 = S4(w3

0) and w3
0 = u3

0 ⊕ k3
0. (1)

The byte u3
0 results from MixColumns in round 3 and can be written as:

u3
0 = 02 ∗ v3

0 ⊕ 03 ∗ v3
5 ⊕ 01 ∗ v3

10 ⊕ 01 ∗ v3
15, (2)

where (v3
0 , v

3
5 , v

3
10, v

3
15) are bytes resulting from the S-box operation of this same

round 3. Consider θ = 03 ∗ v3
5 ⊕ 01 ∗ v3

10 ⊕ 01 ∗ v3
15 ⊕ k3

0. Now, using Eq. (2) and
deriving the value of v3

0 from1

v3
0 = S3(02 ∗ S2(02 ∗ S1(p0 ⊕ k0

0) ⊕ δ) ⊕ γ), (3)

we can rewrite the byte v4
0 as:

v4
0 = S4(02 ∗ S3(02 ∗ S2(02 ∗ S1(p0 ⊕ k0

0) ⊕ δ) ⊕ γ) ⊕ θ). (4)

Here, θ depends on (v3
5 , v

3
10, v

3
15). From Eq. (3), it can be observed that each

of these bytes depend on the set (δ, γ, pi), where pi is some plaintext byte not
included in either δ or γ. Combining the plaintext bytes that this set depends
on, it can be concluded that (v3

5 , v
3
10, v

3
15) depend on 16 bytes of plaintext each.

Thus, θ effectively depends on all 16 plaintext bytes. This way, implementing an
attack to recover k0

0 by predicting v4
0 requires fixing the 16 plaintexts for each

side-channel measurement. Also, we would have to guess the variables of the set
(k0

0, δ, γ, θ) in this case, that is, the attack would have to guess 32 bits in order
to find one key byte. Therefore, this turns this statistical DPA attack infeasible
in practice. On the other hand, a profiled attack can still vary k0

0 (and keeping
all remaining key bytes from K0 fixed), which allows collecting profiling traces
with at most 256 different intermediate values for v4

0 . Although the profiling
phase allows larger variability, the attack phase is still restricted to a single
plaintext-key combination.

4.3 Attacking a Byte Before AddRoundKey at Round 7

Since this attack is not presented by Lu et al. [13], we list it here. We formulate
an attack on round 7 from the output in encryption mode, which would require
an adaptive chosen-ciphertext attack. The process is similar to that noticed in
the case of encryption. Attacking the byte u7

0 we have:

u7
0 = k7

0 ⊕ S−1
8 (v8

0), (5)
1 Equation (3) is derived from: v3

0 = S3(02 ∗S2(u0 ⊕ k1
0)⊕ γ) =⇒ v = S3(02 ∗S2(02 ∗

v1
0 ⊕ δ) ⊕ γ).

172 S. Swaminathan et al.

where v8
0 is a byte from after S8 and k7

0 ∈ K7. The byte v8
0 affects 4 bytes of the

resultant state after the MixColumns of round 8.
The value v8

0 can be expressed as follows:

v8
0 = 0e ∗ u8

0 ⊕ 0b ∗ u8
1 ⊕ 0d ∗ u8

2 ⊕ 09 ∗ u8
3, (6)

where (u8
0, u

8
1, u

8
2, u

8
3) are bytes from the state after the MixColumns operation

of round 8. These 4 bytes can then be written in terms of another 4 bytes from
after S9. That is, for (v9

0 , v
9
1 , v

9
2 , v

9
3) being bytes after S9 and k8

0, k
8
1, k

8
2, k

8
3 being

bytes of K8, we have:

u8
0 = S−1

9 (v9
0)⊕k8

0, u
8
1 = S−1

9 (v9
1)⊕k8

1, u
8
2 = S−1

9 (v9
2)⊕k8

2, and u8
3 = S−1

9 (v9
3)⊕k8

3.
(7)

Consider 0b ∗ u8
1 ⊕ 0d ∗ u8

2 ⊕ 09 ∗ u8
3 ⊕ k8

0 = γ. Plugging the value of u8
0 into

Eq. (6), and subsequently, the value of v8
0 into Eq. (5), we obtain:

u7
0 = k7

0 ⊕ S−1
8 (0e ∗ S−1

9 (v9
0) ⊕ γ). (8)

Expanding v9
0 , which affects 4 bytes after MixColumns of round 9, we get:

v9
0 = 0e ∗ u9

0 ⊕ 0b ∗ u9
1 ⊕ 0d ∗ u9

2 ⊕ 09 ∗ u9
3, (9)

where u9
0, u

9
1, u

9
2, u

9
3 are the first 4 bytes from after the MixColumns operation

of round 9. Each of these bytes go through the S-box and ShiftRows of round
10 and the last AddRoundKey before giving out ciphertext bytes. Therefore, u9

i

can be represented as:

u9
0 = S−1

10 (c0 ⊕ k10
0) ⊕ k9

0, u9
1 = S−1

10 (c13 ⊕ k10
13) ⊕ k9

1,

u9
2 = S−1

10 (c10 ⊕ k10
10) ⊕ k9

2, u9
3 = S−1

10 (c7 ⊕ k10
7) ⊕ k9

3,
(10)

where (c0, c7, c10, c13) are ciphertext bytes. Considering 0b ∗ u9
1 ⊕ 0d ∗ u9

2 ⊕ 09 ∗
u9
3 ⊕ k9

0 = δ, we can rewrite Eq. (8) as:

u7
0 = k7

0 ⊕ S−1
8 (0e ∗ S−1

9 (0e ∗ S−1
10 (c0 ⊕ k10

0) ⊕ δ) ⊕ γ). (11)

The term δ depends on the bytes u9
1, u

9
2, u

9
3, which in turn depend on one cipher-

text byte each, as seen above. γ depends on (u8
1, u

8
2, u

8
3) which in turn depend on

(v9
1 , v

9
2 , v

9
3) that are similar to v9

0 . We can observe from Eq. (9) that v9
0 would be

affected by four ciphertext bytes, which would actually be the case with v9
1 , v

9
2 ,

and v9
3 as well. We can conclude that γ would depend on 12 ciphertext bytes.

A statistical attack on the S-box in this case, such as DPA, would therefore
include an attack on 32 bits of the set (k7

0, k
10
0 , δ, γ) and require 15 ciphertext

bytes to be constant. An improvement can be achieved here by performing a
bitwise attack such as a single-bit DPA as indicated in [13]. Here, k7

0, being
XORed, would not affect the magnitude of the difference but would only affect
the sign. Performing a single-bit DPA attack and taking the absolute of the
difference would therefore cancel out the influence of k7

0. A similar observation
can be made for CPA attacks as well. This would bring the attack complexity
down to 24 bits as then we would have to attack only (k10

0 , δ, γ).
As we see, based on the analysis of the attacks on round 4, the approach

considered by us is not feasible for further rounds (e.g., round 5).

Deep Learning-Based Side-Channel 173

5 Experimental Results

5.1 Setup

We use a general setup for capturing the power traces for all of our experiments.
The traces contain power measurements collected from a Piñata development
board2 based on a 32-bit STM32F4 microcontroller with an ARM-based archi-
tecture, running at the clock frequency of 168 MHz. We acquired power traces
from a standard unprotected AES-128 look-up table implementation running on
the target device. The setup consisted of a Riscure current probe3, a Lecroy
Waverunner 610Zi oscilloscope, and a computer to communicate with the equip-
ment and store the acquired traces. The power traces were measured at a sam-
pling frequency of 1GS/sec and consisted of 220 000 samples. We perform power
acquisitions specifically for rounds 2 and 3 and use the chosen plaintext strategy
for the attacks as was discussed in Sect. 4.

For round 2, we need four acquisitions to attack all the key bytes since it
is possible to attack 4 bytes at once. We collect 10 000 traces per acquisition,
with 20% of the traces having a fixed key which is also the target key. We use
Gaussian noise as a test against countermeasure while attacking both rounds 2
and 3. The mean and the standard deviation of the original traces dataset have
been used to generate the Gaussian noise that is added to each trace. That is,
the new traces with the noise were computed as follows,

X∗ = X + N (μx, σ2
x), (12)

where N (μx, σ2
x) is the Gaussian distribution formed using the mean μx and the

variance σ2
x of the original traces X itself. For round 3, we have to perform 16

acquisitions for attacking all key bytes since only one key byte can be attacked
at a time. We collect 3 000 traces per acquisition for round 3, with all the traces
having the fixed target key. The traces collected were misaligned during the time
of acquisition, and we use this misalignment for an additional countermeasure
in this case. That is, we first align the traces and perform the attacks, followed
by attacking the original dataset to compare the results in the presence of mis-
alignment. We employ a standard pattern-based approach to do the alignment.

5.2 The Deep Learning Model Architecture

We use the benchmarked model architecture CNNbest, which has been proven to
outperform other models such as VGG-16 and MLPbest as shown by Benadjila
et al. [1]. The architecture CNNbest contains five convolutional blocks to begin
with, where each block is made up of 1 convolutional layer and one average
pooling layer. Each convolutional layer has filters for each block as (64, 128, 256,
512, 512), the kernel size as 11 (effectively indicating same padding), and uses
ReLU as the activation function. The convolutional blocks are followed by two

2 Piñata Board: https://www.riscure.com/product/pinata-training-target/.
3 Current probe: https://www.riscure.com/product/current-probe.

https://www.riscure.com/product/pinata-training-target/
https://www.riscure.com/product/current-probe

174 S. Swaminathan et al.

fully connected layers, each containing 4 096 units. Finally, the output layer uses
Softmax and gives the probabilities for all the classes, which in our case would
be the probabilities for each of the 9 Hamming Weight classes. The model uses
categorical cross-entropy as the loss function, which is the most prominent of
the loss function used in such case scenarios, as has been mentioned in Sect. 2.2.

For hyperparameter tuning, CNNbest works with the RMSprop backpropa-
gation optimizer, a learning rate of 10−5, and trains for 75 or 100 epochs for
a batch size of 200. While we do not change the optimizer and the learning
rate, Benadjila et al. [1] also showed CNNbest has an equally good performance
with 50 epochs as well. We observed that while 50 epochs give better results for
round 3, 100 epochs worked better while attacking a byte at round 2. Further, we
also noticed better performance in the attack phase (w.r.t. the number of traces
taken to guess the correct key byte) when using a smaller batch size, which is
then fixed to be 64 in our experiments. Accordingly, the input layer then has the
shape of (2 960 × 64) where 2 960 is the number of PoIs (or features) selected.
The number of PoIs selected in this case correspond to the traces of the S-box
computation of the third round. Table 1 shows the benchmarked values used for
CNNbest and the values that we consider for this work.

We also test randomized CNN architectures with up to 4 convolutional layers
each having the kernel size ranging from 10 to 20 and a stride of either 5 or 10,
followed by 3 dense layers each having up to 1 000 neurons and a layer weight ini-
tializer randomly picked from (random uniform, glorot uniform, he uniform).
The activation function for all layers was randomly selected from (relu, selu,
elu, and tanh). We observed that most of these random architectures also
showed good results in breaking the inner rounds.

Table 1. Summary of the benchmarked values of the hyperparameters.

Hyperparameters Benchmarked choice Our setup

Training hyperparameters

Epochs Up to 100 50 (R3)/100(R2)

Batch size 200 64

Architecture hyperparameters

Blocks 5 5

CONV layers 1 1

Filters 64 64

Kernel size 11 11

FC layers 2 2

ACT function ReLU ReLU

Pooling layer Average Average

Padding With zeros With zeros

Deep Learning-Based Side-Channel 175

5.3 Attacking a Byte After Round 2 S-box

To attack a byte after the S-box of round 2, each target byte needs three plaintext
bytes to be fixed in the target dataset, allowing us to target four key bytes with
each acquisition of power traces. For example, to target key bytes (0, 4, 8, 12), we
need to have the other 12 plaintext bytes fixed. Therefore, trace set acquisition is
made accordingly, where these 4 bytes of the plaintext are randomly defined, and
the others remain fixed. An attack to find all the 16 key bytes would therefore
require four such acquisitions in total. We chose to attack the 0th key byte for
showcasing our results. We compute the hypothesis for attacking key byte 0 as:

hyp = HW [S(02 ∗ S(p0 ⊕ k0) ⊕ δ)], (13)

where δ = 03 ∗ S(p5 ⊕ k5) ⊕ 01 ∗ S(p10 ⊕ k10) ⊕ 01 ∗ S(p15 ⊕ k15) ⊕ k1
0. As can

be seen here, we need to keep the plaintext bytes (5, 10, 15) fixed in order to
make the attack possible, and the hypothesis hyp itself depends on only p0 and
k0 of the input trace. For DL-SCA, we label the traces during the profiling phase
using the hypothesis and then guess the bytes (k0, δ) during the attack phase.
We set the hyperparameters as discussed in Sect. 5.2. Training and validation
are done for 7 500 and 500 traces, respectively, and on variable keys that do
not consist of the target key bytes while having the constant plaintext bytes as
0x00 for simplicity. The attack is performed on a set of 2 000 traces with a fixed
key. In the case of DL-SCA, we observe that the attack yields the key after 238
traces, as shown in Fig. 1 when the rank becomes 0. We generalize the term to
rank here since we are guessing another byte apart from the key byte itself, and
therefore, it is of the order 104 denoting roughly the 65 536 possibilities while
guessing 16 bits (216 possibilities). We can then deduce that the attack takes
238 traces to start recognizing the correct trend from profiling, thereby leading
to correct guesses thereafter, which we can see from the drop of the rank to 0.

We then launch CPA on a set of 2 000 traces with a fixed key derived from
the same dataset used above. We first compute the hypothesis for all the 216

guesses and as given in Eq. (13). The correlation is then computed for all the
guesses per trace, and the guess with the highest value is chosen to be the most
likely guess as in any CPA attack. This experiment is then repeated 100 times for
each batch of shuffled traces, and the highest correlation value is then averaged
out, resulting in an average rank for each batch. The results of this attack are
shown in Fig. 1. The average rank achieved by CPA is six after 2 000 traces. As
we notice a decreasing trend in the average ranks, we believe that CPA would
eventually find the key if given more traces during the attack.

Now we add Gaussian noise as described in Sect. 5.1 and observe the per-
formance of the attacks. With the added noise, DL-SCA finds the key after 139
traces as seen in Fig. 2, while CPA does not find the key even with 2 000 traces
despite a downward trend, as visible in Fig. 2. The average rank for CPA is 352
after 2 000 traces while it attempts to recover 16 bits of information.

176 S. Swaminathan et al.

Fig. 1. DL-SCA and CPA for key byte 0 after S-box on encryption round 2.

Fig. 2. DL-SCA and CPA for key byte 0 with adding Gaussian Noise.

5.4 Attacking a Byte After Round 3 S-box

Round 3 requires the attacker to acquire a separate trace set per each key byte.
Here we specifically target k0 and we then compute the hypothesis as follows,

hyp = HW [S(02 ∗ S(02 ∗ S(p0 ⊕ k0) ⊕ δ) ⊕ γ)], (14)

where hyp is the 8-bit hypothesis computed for one input trace while p0 and k0
are the first bytes of plaintext and key for that input trace, respectively. Since
this depends on p0, we gather the acquisition set with the first byte as variable
and the rest of the bytes as constant, which we set as 0x00 for simplicity. As
discussed in Sect. 5.1, we first perform the attacks on aligned traces, followed
by attacks on the misaligned ones. For DL-SCA on the aligned set of traces,
since we have only 3 000 traces collected per acquisition in our dataset, we use

Deep Learning-Based Side-Channel 177

the first 2 000 traces for the profiling phase, the following 500 for validation and
attack the next 500 traces. The model used is as described in Sect. 5.2. As done
for round 2, the label for each trace is computed using Eq. (14) for profiling,
where (δ, γ) can be set to any constant including 0x00. During the attack we
attempt to guess 3 bytes (k0, δ, γ). On performing the attack in this case, we
successfully attain the key byte k0 along with the correct values of δ and γ after
11 traces. The result is shown in Fig. 3 (here too, we generalize the term to rank
since we are guessing 3 bytes in total). Similar to the result seen for round 2, the
rank is of the order 106, indicating the 224 possible guesses (approximately 16
million possibilities) for 24 bits of data. The attack takes just 11 traces to start
recognizing the trend and guessing the correct key.

For CPA, we compute the hypothesis and subsequently the correlation for
all the 224 guesses, similar to what was done for round 2. The result of this
attack is then shown in Fig. 3. The correct key converges towards the highest
correlation value as expected from a successful CPA attack, and the correct
key is obtained after 50 traces and again at 110 traces. Here, we restrict the
computation of key ranks to only 1 experiment instead of 100 as done in the
case of round 2. Therefore, the results for CPA on round 3 are given as a proof
of concept for the attack. This is because of the CPU-intensive operations done
while brute-forcing 24 bits on a standard personal computer. The experiments
were done using Intel Core i9 8-core processor and 16GB RAM. Computation of
hypothesis for 500 traces takes approximately 27 min, followed by an average of
9 min for computing the key rank for each batch of traces. With an increment of
10 traces per batch, completing 1 experiment for all the batches ranging from 10
to 500 traces (50 batches) takes approximately 7.35 h. Multi-processing can be
used to speed up the experiments, but storing 224 possibilities for each trace is
memory intensive, thereby making the use of multiple processes more expensive
(in terms of speed-memory trade-off) for a standard personal computer.

Fig. 3. DL-SCA and CPA on aligned traces for byte 0 after S-box in round 3.

178 S. Swaminathan et al.

We now use the misaligned traces to compare the performance of DL-SCA
and CPA in the presence of such an implicit countermeasure. We use the same
DL model (along with the hyperparameters) and the samples interval to perform
DL-SCA on the misaligned traces. The attack reveals the key after ten traces.
The comparison of DL-SCA and CPA on the misaligned traces is shown in Fig. 4.
As expected, a CPA attack fails in this case due to misalignment.

Fig. 4. DL-SCA and CPA on misaligned traces for byte 0 after S-box in round 3.

We further compare the performance of DL-SCA with CPA by adding Gaus-
sian noise to the misaligned traces. The results can be seen in Fig. 5. While
DL-SCA finds the key after 34 traces, CPA is unable to do so even after going
through our entire attack set of 500 traces.

Fig. 5. DL-SCA and CPA on misaligned traces with Gaussian noise added for key byte
0 after S-box in round 3.

Deep Learning-Based Side-Channel 179

While DL-SCA successfully finds the key in all the above cases, CPA is
successful only when the traces are aligned. The effectiveness of DL-SCA is
further proven when attacking misaligned traces since it succeeds with as few as
ten traces, while CPA is unsuccessful. We can therefore conclude that DL-SCA
outperforms CPA by a significant margin when attacking the inner rounds.

5.5 Attacking a Byte After Round 4 S-box

To attack the byte after the round 4 S-box, we need to guess 32 bits comprising
the set of (k0, δ, γ, θ), as can also be seen from Eq. (4). Although attacking 32
bits is still feasible, the usage of the aforementioned three constants implies that
all the 16 bytes of plaintext and the key need to be fixed for this particular
attack to work. However, profiling using the same plaintexts and the same key
would result in the same labels and consequently would result in the overfitting
of the model.

Fig. 6. DL-SCA on round 4 S-box with different plaintexts used for training and con-
stant one for attacking. A fixed key was used both for profiling and for attack.

Another case scenario would involve profiling using different plaintext but a
constant key. This would mean calculating the exact values of δ, γ, and θ, which
in turn leads to a properly trained model. However, the assumption in the attack
phase while computing the four target bytes is that these 4 bytes are constant
during the profiling as well and, by extension, should ideally have different Ham-
ming Weights as labels than what was computed. As an example, two plaintexts
having the same first byte should have the same label and, therefore, similar
traces. However, since we are using different plaintexts for each trace during
profiling, the training factor that the constants bring in is totally eliminated.
This effectively means that the training phase and the attacking phase are car-
ried out on data that are completely different from each other, thereby rendering
the attack unsuccessful. The results for the same are shown in Fig. 6, and it can

180 S. Swaminathan et al.

be observed that the rank never converges to a correct guess and does not show
a decreasing trend either. A similar result was also seen while using the same
plaintext but different keys. This is because the values of δ, γ, and θ not only
depend on the plaintext but also on the keys and the subsequent round keys.
As of now, we conclude that an attack on any byte after the round 4 S-box is
infeasible within the boundaries considered by our work.

6 Conclusions and Future Work

In this work, we proposed general formulations to attack any intermediate byte
in AES encryption mode. Results indicated that attacks on rounds 2 and 3 are
practical besides the increased complexity in the hypothesis guessing (16 and 24
bits, respectively). We demonstrated in practice that because profiled attacks
are less restricted from fixed plaintext limitations in the profiling phase, DL-
SCA can easily succeed in recovering the key in scenarios without or with (noise
and misalignment) countermeasures. On the other hand, non-profiled attacks,
such as CPA, becomes highly constrained by time and memory limitations as
a consequence of the increased complexity to guess intermediates from inner
rounds. As mentioned by several related works, for several targets, DL-SCA
shows easier key recovery in comparison to non-profiled attacks if the profiling
phase is done appropriately. Therefore, as shown in this paper, DL-SCA becomes
a strong candidate to attack (not properly protected) inner rounds from AES.

Moreover, we observed that the results from Sect. 5 have certain limitations.
Most notably, the presented approach fails at attacking further than round 3.
Therefore, the most interesting open question is whether it is possible to attack
rounds between 4 and 6. We believe that this goal should be achievable using
deep learning. The first, more straightforward approach would be to attack both
S-box input and output using multi-label DL [14]. We envision that in this
approach, attacking the Hamming Weight of both intermediates would be the
most efficient. By targeting these two intermediate states at once, the attack
would be able to recover the key in a similar way to [2,19,22]. Note that such
method can be applied even without requiring access to input and output for
AES4.

The second approach would be to attack a combination of S-box input and
output. For example, we envision that it might be sufficient to use an XOR of
S-box input and output as a label. The traces might not be directly leaking that
XOR value, but the neural network might be able to combine S-box input and
output leakages and classify the XORed value correctly, in a similar way to which
neural networks were shown to combine leakages in masked AES traces [12].

Acknowledgements. �Lukasz Chmielewski is partially supported by the Technology
Innovation Institute (TII), https://www.tii.ae/, and by European Commission through
the ERC Starting Grant 805031 (EPOQUE) of Peter Schwabe.

4 Similar results might be achievable using template attacks, but our choice is deep
learning as it has been shown to outperform template attacks multiple times.

https://www.tii.ae/

Deep Learning-Based Side-Channel 181

References

1. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Study of deep learn-
ing techniques for side-channel analysis and introduction to ASCAD database.
ANSSI, France and CEA, LETI, MINATEC Campus, France. Online verfügbar
unter https://eprint.iacr.org/2018/053.pdf, zuletzt geprüft am 22 (2018)

2. Le Bouder, H., Lashermes, R., Linge, Y., Thomas, G., Zie, J.-Y.: A multi-round
side channel attack on AES using belief propagation. In: Cuppens, F., Wang, L.,
Cuppens-Boulahia, N., Tawbi, N., Garcia-Alfaro, J. (eds.) FPS 2016. LNCS, vol.
10128, pp. 199–213. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
51966-1 13

3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

4. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmen-
tation against Jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66787-4 3

5. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

6. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked
implementation of AES. In: 2015 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pp. 106–111. IEEE (2015)

7. Herbst, C., Oswald, E., Mangard, S.: An AES smart card implementation resistant
to power analysis attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006.
LNCS, vol. 3989, pp. 239–252. Springer, Heidelberg (2006). https://doi.org/10.
1007/11767480 16

8. Heuser, A., Zohner, M.: Intelligent machine homicide. In: Schindler, W., Huss, S.A.
(eds.) COSADE 2012. LNCS, vol. 7275, pp. 249–264. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29912-4 18

9. Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I., Vandewalle, J.:
Machine learning in side-channel analysis: a first study. J. Cryptogr. Eng. 1(4),
293 (2011). https://doi.org/10.1007/s13389-011-0023-x

10. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. Unleash-
ing the power of convolutional neural networks for profiled side-channel analysis.
IACR Trans. Cryptographic Hardware Embed. Syst. 148–179 (2019)

11. Kocher, P.C., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power
analysis. J. Cryptogr. Eng. 1(1), 5–27 (2011). https://doi.org/10.1007/s13389-011-
0006-y

12. Lerman, L., Bontempi, G., Markowitch, O.: A machine learning approach against
a masked AES. J. Cryptogr. Eng. 5(2), 123–139 (2015). https://doi.org/10.1007/
s13389-014-0089-3

13. Lu, J., Pan, J., den Hartog, J.: Principles on the security of AES against first
and second-order differential power analysis. In: Zhou, J., Yung, M. (eds.) Applied
Cryptography and Network Security, 8th International Conference, ACNS 2010,
Beijing, China, 22–25 June 2010. Proceedings. Lecture Notes in Computer Science,
vol. 6123, pp. 168–185 (2010). https://doi.org/10.1007/978-3-642-13708-2 11

14. Maghrebi, H.: Deep learning based side-channel attack: a new profiling method-
ology based on multi-label classification. IACR Cryptol. ePrint Arch. 436 (2020).
https://eprint.iacr.org/2020/436

https://eprint.iacr.org/2018/053.pdf
https://doi.org/10.1007/978-3-319-51966-1_13
https://doi.org/10.1007/978-3-319-51966-1_13
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/11767480_16
https://doi.org/10.1007/11767480_16
https://doi.org/10.1007/978-3-642-29912-4_18
https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.1007/s13389-011-0006-y
https://doi.org/10.1007/s13389-011-0006-y
https://doi.org/10.1007/s13389-014-0089-3
https://doi.org/10.1007/s13389-014-0089-3
https://doi.org/10.1007/978-3-642-13708-2_11
https://eprint.iacr.org/2020/436

182 S. Swaminathan et al.

15. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49445-6 1

16. Perin, G., Chmielewski, L., Picek, S.: Strength in numbers: Improving gen-
eralization with ensembles in machine learning-based profiled side-channel
analysis. IACR Trans. Cryptographic Hardware Embed. Syst. (4), 337–364
(2020). https://doi.org/10.13154/tches.v2020.i4.337-364, https://tches.iacr.org/
index.php/TCHES/article/view/8686

17. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class
imbalance and conflicting metrics with machine learning for side-channel eval-
uations. IACR Trans. Cryptographic Hardware Embed. Syst. 2019(1), 209–
237 (2018). https://doi.org/10.13154/tches.v2019.i1.209-237, https://tches.iacr.
org/index.php/TCHES/article/view/7339

18. Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement learning for hyper-
parameter tuning in deep learning-based side-channel analysis. IACR Trans.
Cryptographic Hardware Embed. Syst. (3), 677–707 (2021). https://doi.org/10.
46586/tches.v2021.i3.677-707, https://tches.iacr.org/index.php/TCHES/article/
view/8989

19. Saha, S., Bag, A., Basu Roy, D., Patranabis, S., Mukhopadhyay, D.: Fault template
attacks on block ciphers exploiting fault propagation. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 612–643. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1 22

20. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

21. Tillich, S., Herbst, C., Mangard, S.: Protecting AES software implementations
on 32-Bit processors against power analysis. In: Katz, J., Yung, M. (eds.) ACNS
2007. LNCS, vol. 4521, pp. 141–157. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-72738-5 10

22. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Soft analytical side-channel
attacks. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
282–296. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-
8 15

23. Wouters, L., Arribas, V., Gierlichs, B., Preneel, B.: Revisiting a methodology for
efficient CNN architectures in profiling attacks. IACR Trans. Cryptographic Hard-
ware Embed. Syst. (3), 147–168 (2020). https://doi.org/10.13154/tches.v2020.i3.
147-168, https://tches.iacr.org/index.php/TCHES/article/view/8586

24. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN
architectures in profiling attacks. IACR Trans. Cryptographic Hardware Embed-
ded Systems 2020(1), 1–36 (2019). https://doi.org/10.13154/tches.v2020.i1.1-36,
https://tches.iacr.org/index.php/TCHES/article/view/8391

https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.13154/tches.v2020.i4.337-364
https://tches.iacr.org/index.php/TCHES/article/view/8686
https://tches.iacr.org/index.php/TCHES/article/view/8686
https://doi.org/10.13154/tches.v2019.i1.209-237
https://tches.iacr.org/index.php/TCHES/article/view/7339
https://tches.iacr.org/index.php/TCHES/article/view/7339
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2021.i3.677-707
https://tches.iacr.org/index.php/TCHES/article/view/8989
https://tches.iacr.org/index.php/TCHES/article/view/8989
https://doi.org/10.1007/978-3-030-45721-1_22
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-540-72738-5_10
https://doi.org/10.1007/978-3-540-72738-5_10
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.13154/tches.v2020.i3.147-168
https://doi.org/10.13154/tches.v2020.i3.147-168
https://tches.iacr.org/index.php/TCHES/article/view/8586
https://doi.org/10.13154/tches.v2020.i1.1-36
https://tches.iacr.org/index.php/TCHES/article/view/8391

	68738adf-24aa-4df6-af30-696bd37cafc7.pdf
	Deep Learning-Based Side-Channel Analysis Against AES Inner Rounds
	1 Introduction
	2 Preliminaries
	2.1 Correlation Power Analysis (CPA)
	2.2 Deep Learning Methodologies
	2.3 Attack Evaluation Methodology

	3 Related Work
	4 First-Order Non-profiled Attacks on AES Inner Rounds
	4.1 Notations
	4.2 On the Attack Feasibility After the S-box at Rounds 2, 3, and 4
	4.3 Attacking a Byte Before AddRoundKey at Round 7

	5 Experimental Results
	5.1 Setup
	5.2 The Deep Learning Model Architecture
	5.3 Attacking a Byte After Round 2S-box
	5.4 Attacking a Byte After Round 3S-box
	5.5 Attacking a Byte After Round 4S-box

	6 Conclusions and Future Work
	References

