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ABSTRACT
A key challenge of evolutionary game theory and multi-agent learn-

ing is to characterize the limit behavior of game dynamics. Whereas

convergence is often a property of learning algorithms in games

satisfying a particular reward structure (e.g., zero-sum games), even

basic learning models, such as the replicator dynamics, are not guar-

anteed to converge for general payoffs. Worse yet, chaotic behavior

is possible even in rather simple games, such as variants of the

Rock-Paper-Scissors game. Although chaotic behavior in learning

dynamics can be precluded by the celebrated Poincaré-Bendixson

theorem, it is only applicable to low-dimensional settings. Are

there other characteristics of a game that can force regularity in the

limit sets of learning? We show that behavior consistent with the

Poincaré-Bendixson theorem (limit cycles, but no chaotic attractor)

can follow purely from the topological structure of the interaction

graph, even for high-dimensional settings with an arbitrary num-

ber of players and arbitrary payoff matrices. We prove our result

for a wide class of follow-the-regularized leader (FoReL) dynamics,

which generalize replicator dynamics, for binary games character-

ized interaction graphs where the payoffs of each player are only

affected by one other player (i.e., interaction graphs of indegree

one). Since chaos occurs already in games with only two players

and three strategies, this class of non-chaotic games may be con-

sidered maximal. Moreover, we provide simple conditions under

which such behavior translates into efficiency guarantees, imply-

ing that FoReL learning achieves time-averaged sum of payoffs at

least as good as that of a Nash equilibrium, thereby connecting the

topology of the dynamics to social-welfare analysis.
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Replicator Dynamics; Follow-the-Regularized Leader; Polymatrix
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1 INTRODUCTION
Dynamical systems and evolutionary game theory have been in-

strumental in modern research on multi-agent learning [8, 11, 20,

46, 52, 53, 55]. In particular, characterizing the convergence and

limit sets of learning trajectories is vital for understanding the

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent

Systems (www.ifaamas.org). All rights reserved.

long-term behavior of multi-agent systems. However, even in sim-

ple games, such as Rock-Paper-Scissors [44, 51], models of evolu-

tion and learning are not guaranteed to converge; even beyond

cycles, long-term behavior may lead to chaotic behavior, known

to the dynamical systems community from, e.g., weather mod-

els [35]. Not only does chaos manifest itself even in simple games

with two players, but moreover, a string of recent results suggests

that such chaotic, unpredictable behavior may indeed be the norm

across a variety of simple low-dimensional game dynamics [4–

6, 12, 15, 17, 19, 42, 49, 56]. Importantly, these results are persistent

even for the well-known class of Follow-the-Regularized-leader

(FoReL) dynamics [13, 38], despite the fact that FoReL dynamics

include some of the most widely studied learning dynamics such

as replicator dynamics [26, 54], which is the continuous-time ana-

logue of the Multiplicative Weights Update meta-algorithm [3],

well known for its optimal regret properties. Finally, the emergence

of chaotic behavior has been connected with increased social in-

efficiency, which shows that chaotic dynamics can lead to highly

inefficient outcomes [14, 47]. Such profoundly negative results raise

the following questions:

• Do simple, robust conditions exist under which learning

behaves well?

• Which types of games lie at the “edge of chaos”?

• Does dynamic simplicity translate to high-efficiency and

social welfare?

Traditionally, a lot of work has focused on showing that, in spe-

cific classes of games (e.g., zero-sum or potential games), learning

dynamics can lead to convergence and equilibration, see [11, 18,

50, 59] and references therein. Few results span over to general

sum games and games of arbitrary payoff structures; however, such

general approaches are arguably essential in modern research on

multi-agent learning. For instance, unstructured payoffs can oc-

cur naturally when stochastic extensive form games are used to

create empirical normal form games, by averaging payoffs from

simulations for combinations of strategies [34, 39, 57]. Unstruc-

tured payoffs also arise in many real-world applications, such as,

e.g., modeling the impact of investing strategies of large funds on

the stock market. While equilibration may not always be possible

in such cases, one can still wish to ensure a regularity of sorts in

the learning outcomes of the multi-agent system. In particular, the

famous Poincaré–Bendixson theorem (Theorem 1) ensures that

two-dimensional continuous learning and adaptation dynamics

never form truly chaotic outcomes. However, this comes at a cost:

although no specific payoff structure is needed, the underlying

learning dynamics must be at most two dimensional.

Our approach and results. Rather than bymaking assumptions on

the reward structure or on the dimensionality, we explore a differ-

ent type of constraint in games. We show that the limit behavior of
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learning can be determined solely by the topological-combinatorial

structure of the game, regardless of the number of players, or al-

gebraic correlations between the payoffs (e.g., zero-sum). Firstly,

we restrict ourselves to binary games [9, 37, 60], where players

have two strategies. Secondly, we assume that every player can

be affected by the behavior of up to one other player. Finally, we

add a technical restriction that the game is connected, meaning

that it cannot be decomposed into two subgames that are com-

pletely independent of each other. Such games encompass, among

others, all 2 × 2 games [22], Jordan’s game [21, 24, 28], and eas-

ily identifiable subclasses of real-world systems where the graph

structure is evident, such as certain traffic networks [1, 33], supply

chains [10], or problems of water allocation in deltas [2, 30]. Under

these assumptions, we prove in Section 3 our main contribution in

the form of Theorems 3 and 4, which say that the limit behavior

of FoReL learning of these games is always consistent with the

Poincaré–Bendixson theorem.

Having excluded the presence of chaos, we further analyze quan-

titative properties of binary games, which admit cyclic interaction

graphs. In Section 4 we show that, under additional but structurally

robust assumptions on the payoff matrices (i.e., assumptions that

remain valid after small perturbations of the payoff matrices and

so are suitable, for example, for empirical payoff matrices), one can

derive positive results about the efficiency of the time-averaged be-

havior of the dynamics regardless of whether they are convergent.

As is typically the case in the price of anarchy (PoA) literature [32],

we focus on the measure of social welfare, which is the sum of

individual payoffs. Whereas the typical PoA literature argues that

regret-minimizing dynamics (such as FoReL) are at most a constant

factor worse than the behavior of the worst-case Nash equilib-

rium [47, 48], we instead show that FoReL dynamics are always

at least as efficient as the worst-case Nash equilibrium. Finally,

Section 5 provides examples of games satisfying our assumptions

and their possible limit behavior, as well as a counterexample in

the form of a simple binary game that breaks our assumptions and

induces chaotic learning dynamics.

Related work. First of all, we consider several papers containing
complementary results in the form of examples of simple FoReL

systems with chaotic dynamics. In addition to the papers men-

tioned in the introduction, we highlight a chaotic example of Sato

et al. [51] that involves a two-player, three-action game and two

complex/chaotic examples in three-player binary games without

structured interactions [43, 45]. Comparing these with our assump-

tions (i.e., binary games and previous-neighbor interactions), we

see that our results establish a maximal class of games for which

such regularity results on limit sets are possible.

Research that considers non-convergence but focuses on non-

chaoticity is scarce. In the closest works to ours, [16, 40, 41], the

authors leverage the Poincaré–Bendixson theorem to show that the

limit behavior of bounded learning trajectories in certain learning

systems can be either convergent or cyclic, and in particular no

chaotic attractor is possible. However, they do so by assuming low

dimensionality (three-player limit) or a nongeneric structure on the

set of allowable games, which allows for dimensionality reduction

(i.e., a network of 2×2 zero-sum, or coordination games). In terms of

connections between cyclic behavior and the efficiency of learning

dynamics, [31] shows that, for a class of three players, two strategy

games with a cyclic attractor can result in social welfare (sum

of payoffs) that can be better than the Nash equilibrium payoff;

however, the result is once again constrained to the exact game

theoretic model.

2 PRELIMINARIES
2.1 Normal form games
A finite game in normal form consists of a set of 𝑁 players, each

with a finite set of strategies A𝑖 . The preferences of each player

are represented by the payoff function 𝑢𝑖 :
∏

𝑖 A𝑖 → R. To model

the behavior at scale or probabilistic strategy choices, one assumes

that players use mixed strategies, namely, probability distributions

(𝑥𝑖𝛼𝑖 )𝛼𝑖 ∈A𝑖
∈ Δ(A𝑖 ) =: X𝑖 . With a slight abuse of notation, the

expected payoff of player 𝑖 in the profile (𝑥𝑖𝛼𝑖 )𝑖,𝛼𝑖 is denoted 𝑢𝑖 and
given by

𝑢𝑖 (𝑥) = Σ𝛼1∈A1,...𝛼𝑁 ∈A𝑁
𝑢𝑖 (𝛼1, . . . , 𝛼𝑁 )𝑥1𝛼1

. . . 𝑥𝑁𝛼𝑁
. (1)

Amixed strategy 𝑥 is aNash equilibrium iff∀ 𝑖 and ∀𝑥 : 𝑥 𝑗 = 𝑥 𝑗 , 𝑗 ≠

𝑖 we have 𝑢𝑖 (𝑥) ≤ 𝑢𝑖 (𝑥). In other words, no player can unilaterally

increase their payoff by changing their strategy distribution. The

minimax value for player 𝑖 is given by min𝑥−𝑖 max𝑥𝑖 𝑢𝑖 (𝑥), where
𝑥−𝑖 := (𝑥 𝑗 )𝑗≠𝑖 . This is the smallest possible value that player 𝑖 can

be forced to attain by other players, without them knowing the

strategy of player 𝑖 . We call a game binary iff |A𝑖 | = 2 for all 𝑖 .

2.2 Graphical polymatrix games
To model the topology of interactions between players, we restrict

our attention to a subset of normal form games, where the struc-

ture of interactions between players can be encoded by a graph

of two-player normal form subgames, leading us to consider so-

called graphical polymatrix games (GPGs) [27, 29, 58]. A simple

directed graph is a pair (V, E), where V = {1, . . . , 𝑁 } is a finite
set of vertices (representing the players), and E is a set of ordered

vertex pairs (edges), where the first element is called the predeces-

sor, and the second is called the successor. Each edge (𝑖, 𝑘) has an
associated two-player normal form game, where only the succes-

sor 𝑘 is assigned payoffs. These are represented by a matrix 𝐴𝑖,𝑘

with rows enumerating the strategies of player 𝑘 , and columns

enumerating the strategies of player 𝑖 . For a given strategy profile

𝑠 = {𝑠𝑖 }𝑖 ∈
∏

𝑖 A𝑖 , the payoffs for player 𝑘 in the full game are then

determined as the sum

𝑢𝑘 (𝑠) =
∑

𝑖:(𝑖,𝑘) ∈𝐸
𝐴𝑖,𝑘 (𝑠𝑖 , 𝑠𝑘 ) . (2)

The payoffs can be extended to mixed strategies in a standard

multilinear fashion:

𝑢𝑘 (𝑥) =
∑

𝑖:(𝑖,𝑘) ∈𝐸

∑
𝑥𝑠𝑖 ,𝑥𝑠𝑘

𝐴𝑖,𝑘 (𝑠𝑖 , 𝑠𝑘 )𝑥𝑠𝑖𝑥𝑠𝑘 . (3)

A situation where both the successor 𝑘 and the predecessor 𝑖

obtain a reward can be modeled by including both edges (𝑖, 𝑘) and
(𝑘, 𝑖) in the graph.

We say that a simple directed graph is weakly connected if any

two vertices can be connected by a set of edges, where the direction

of the edges is not considered. This is a weaker condition than
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strong connectedness, where each pair of vertices must be con-

nected by a path (i.e., a sequence of edges together with associated

vertices, where the successor in one edge is the predecessor in the

next). The indegree of a vertex is the number of edges for which

the vertex is the successor (i.e., the number of predecessors). The

outdegree is the number of edges for which the vertex is the prede-

cessor (i.e. the number of successors). A cycle is a path where the

predecessor in the first edge is the successor in the last edge. For

our exposition we identify cycles modulo shifts, i.e., if two paths

consist of the same edges in shifted order, then they form the same

cycle. In this paper we consider two types of weakly connected

GPGs:

(1) First, cyclic games, where the interaction between the play-

ers forms a cycle, where each player interacts only with the

previous neighbor. We observe that in such a cyclic game the

indegree and outdegree of each vertex is one. For simplic-

ity, we label the nodes of such 𝑁 -player games by natural

numbers 𝑖 = 0, 1, . . . , 𝑁 and use the convention that node 𝑖

is the successor to node 𝑖 − 1, and that node 0 is identified

with node 𝑁 .

(2) Second, a more general class of graphical games, where each

player’s payoffs depend on at most one other player (i.e., the

indegree of each vertex is at most one). For a vertex 𝑖 ∈ V ,

we denote the predecessor vertex by 𝑖 , if it exists. For cyclic

games we have 𝑖 = 𝑖 − 1.

Below, we state and prove a simple lemma that characterizes

the one-predecessor assumption in terms of graph topology and

clarifies the relation between cyclic and indegree-one graphs (cf.

Figure 1).

Lemma 1. Let (V, E) be a weakly connected, simple, directed
graph. If the indegree of each vertex is at most one, then the graph
can have at most one cycle. If the graph has no cycle, then it has at
most one root vertex (i.e., a vertex of indegree zero), such that all other
vertices are connected to it by a unique directed path.

Proof. For the first part of the lemma, we assume the contrary:

that 𝑎1, 𝑎2 are nodes of two distinct cycles within the same weakly

connected component. The edges between 𝑎1 and 𝑎2 must form a

path (otherwise there would be a vertex with two predecessors).

Assume the path leads from 𝑎1 to 𝑎2 and let 𝑎0 be the first vertex

which is both on the path and on the cycle of 𝑎2. Then 𝑎0 has two

predecessors, which leads to a contradiction.

For the second part of the lemma we argue as follows. If any

vertex has a sequence of predecessors that does not form a cycle,

and does not have a root node, then by backtracking through the

predecessors we could identify an infinite collection of distinct

vertices. Therefore, there must be at least one root node for each

vertex. The path from such a root node to the given vertex must be

unique, otherwise one could identify a vertex along the path with

two predecessors. Finally, it is impossible to have two distinct root

nodes, as connectedness imposes that there would have to exist a

node with two predecessors between them. □

Remark 1. Under the assumptions of Lemma 1, if the graph has a
cycle, then the cycle enjoys properties similar to those of a root node:
no paths go from outside the cycle to the cycle (otherwise one vertex
in the cycle would have two predecessors), and all vertices outside the

Figure 1: A weakly connected graph where each vertex is at
most of indegree one.

cycle must be connected by a path from one of the vertices of the cycle
(a unique path, up to the starting point within the cycle). Later, we
shall refer to such cycle as the root cycle.

2.3 Follow-the-regularized-leader equations
Denote by 𝑣𝑖𝛼𝑖 (𝑥) := 𝑢𝑖 (𝛼𝑖 ;𝑥−𝑖 ) and 𝑣𝑖 (𝑥) = (𝑣𝑖𝛼𝑖 (𝑥))𝛼𝑖 ∈A𝑖

. To

model the dynamics of learning we use a class of learning systems

known as follow-the-regularized-leader systems (FoReL) [11, 52].

This class encompasses a variety of models ranging from gradient to

replicator dynamics, and allows for natural description of learning

as regularized maximization of individual payoffs.

FoReL dynamics for player 𝑖 are defined by evolution of utilities
𝑦𝑖 = {𝑦𝑖𝛼𝑖 }𝛼𝑖 ∈A𝑖

∈ R |A𝑖 |
– that is real numbers representing

a score each player assigns to each respective strategy – by the

integral equation

𝑦𝑖 (𝑡) = 𝑦𝑖 (0) +
∫ 𝑡

0

𝑣𝑖 (𝑥 (𝑠))𝑑𝑠,

𝑥𝑖 (𝑡) = 𝑄𝑖 (𝑦𝑖 (𝑡)),
(4)

where the choice map 𝑄 = (𝑄1, . . . , 𝑄𝑁 ), 𝑄𝑖 : R
|A𝑖 | → X𝑖 , which

determines the evaluated strategy profile 𝑥 (𝑡) is given on each

coordinate by:

𝑄𝑖 (𝑦𝑖 ) = argmax𝑥𝑖 ∈X𝑖
{⟨𝑦𝑖 , 𝑥𝑖 ⟩ − ℎ𝑖 (𝑥𝑖 ) }. (5)

In the aboveℎ𝑖 : X𝑖 → R∪{−∞,∞} is a convex regularizer function,
representing a regularization/exploration term. The equation (4)

represents how players adapt their mixed strategies to changing

utility values. Observe, that without the regularization term, the

map𝑄𝑖 would simply put all weight on the strategy with the highest

utility.

In binary games, each player has only two strategies at his dis-

posal, say𝛼0, 𝛼1. The variable 𝑥𝑖 denotes then the proportion of time

player 𝑖 plays strategy 𝛼0, and the proportion of 𝛼1 is given by 1−𝑥𝑖 .
Following [38], we introduce new variables 𝑧𝑖 := 𝑦𝑖𝛼0

− 𝑦𝑖𝛼1
∈ R,

representing the difference in utilities between playing strategy

𝛼0 and 𝛼1. It is intuitively clear, and it was proved formally e.g.

in [38] that𝑄𝑖 (𝑧𝑖 + 𝑐, 𝑐) is constant in 𝑐 , and therefore, without loss
of generality, we can set 𝑐 := 0, and restrict our considerations to

a 𝑧-dependent choice map �̂�𝑖 (𝑧𝑖 ) := 𝑄𝑖 (𝑧𝑖 , 0). Provided that 𝑄 is

sufficiently regular (e.g. continuous), the integral equation (4) can

be converted to a system of differential equations

¤𝑧 = 𝑉 (𝑧), (6)
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given coordinate-wise by

𝑉𝑖 (𝑧) := 𝑣𝑖𝛼0
(�̂� (𝑧)) − 𝑣𝑖𝛼1

(�̂� (𝑧)), (7)

for details again see [38].

Remark 2. An intuitively obvious, but technically important ob-
servation is that evolution of 𝑖th coordinates of the system (4), and,
in turn (7) depends solely on the values of 𝑥 𝑗 or 𝑧 𝑗 , respectively, for
nodes 𝑗 that influence the payoffs of 𝑖 . In particular, for GPGs we
have 𝜕𝑉𝑖/𝜕𝑧 𝑗 ≠ 0 implies that there is an edge from 𝑗 to 𝑖 in the
game graph; and for GPGs with up to one predecessor, without loss of
generality we can rewrite (6) as

¤𝑧𝑖 = 𝑉𝑖 (𝑧𝑖 ) = 𝑣𝑖𝛼0
(�̂�𝑖 (𝑧𝑖 )) − 𝑣𝑖𝛼1

(�̂�𝑖 (𝑧𝑖 )) . (8)

As previously hinted, for equation (7) to be well-posed, we need

to enforce certain conditions on the regularizer. The following

lemma determines desirable properties ofmonotonicity and smooth-

ness of the choice map, when a player has exactly two strategies at

disposal (so X𝑖 = [0, 1]).

Lemma 2. Assume that the regularizer ℎ𝑖 satisfies the following
conditions:

(1) ℎ𝑖 ∈ 𝐶2 ((0, 1)) ∩𝐶0 ( [0, 1]) (smoothness),
(2) ℎ′

𝑖
(𝑥𝑖 ) → −∞ as 𝑥𝑖 → 0 and ℎ′

𝑖
(𝑥𝑖 ) → ∞ as 𝑥𝑖 → 1

(steepness),
(3) ℎ′′

𝑖
(𝑥𝑖 ) > 0 for 𝑥 ∈ (0, 1) (strict convexivity).

Then �̂�𝑖 ∈ 𝐶1 (R) and �̂� ′
𝑖
(𝑧𝑖 ) > 0.

Proof. For a given 𝑧𝑖 , �̂�𝑖 (𝑧𝑖 ) is defined as the maximizer of

⟨(𝑧𝑖 , 0), (𝑥𝑖 , 1 − 𝑥𝑖 )⟩ − ℎ𝑖 (𝑥𝑖 ) over 𝑥𝑖 ∈ [0, 1]. We have

⟨(𝑧𝑖 , 0), (𝑥𝑖 , 1 − 𝑥𝑖 )⟩ − ℎ𝑖 (𝑥𝑖 ) = 𝑧𝑖𝑥𝑖 − ℎ𝑖 (𝑥𝑖 ) . (9)

From steepness, continuity and strict convexity it follows that

ℎ𝑖 (0) = ℎ𝑖 (1) = ∞ so the maximum cannot be attained there.

A necessary condition for maximum to be attained in (0, 1) is

𝑧𝑖 = ℎ′𝑖 (𝑥𝑖 ). (10)

From steepness and strict convexivity it follows that equation (10)

has a unique solution 𝑥𝑖 =: �̂�𝑖 (𝑧𝑖 ) for any 𝑧𝑖 ∈ R. From the inverse

function theorem we have

𝜕𝑥𝑖

𝜕𝑧𝑖
= �̂� ′

𝑖 (𝑧𝑖 ) = 1/ℎ′′𝑖 (𝑥𝑖 ) > 0, (11)

which also implies that �̂�𝑖 is 𝐶
1
. □

Perhaps the best known example of a FoReL learning system are

the replicator equations [54], where the regularizer is given by

ℎ𝑖 (𝑥𝑖 ) :=
∑
𝛼𝑖

𝑥𝑖𝛼𝑖 log𝑥𝑖𝛼𝑖 . (12)

In particular, such regularizer satisfies the assumptions of Lemma 2,

and yields the following equations for a binary GPG with up to one

predecessor:

¤𝑧𝑖 =
∑

𝑗,𝑘∈{0,1}
(−1) ( 𝑗+𝑘)𝐴𝑖,𝑖 (𝛼 𝑗 , 𝛼𝑘 )

exp(𝑧𝑖 )
1 + exp(𝑧𝑖 )

−𝐴𝑖,𝑖 (𝛼1, 𝛼1) +𝐴𝑖,𝑖 (𝛼1, 𝛼0), 𝑖 = 1, . . . , 𝑁

(13)

which translates to the following system in original (𝑥 ) coordinates:

¤𝑥𝑖 = 𝑥𝑖 (1 − 𝑥𝑖 )
∑

𝑗,𝑘∈{0,1}
(−1) ( 𝑗+𝑘)𝐴𝑖,𝑖 (𝛼 𝑗 , 𝛼𝑘 )𝑥𝑖

− 𝑥𝑖 (1 − 𝑥𝑖 )
(
𝐴𝑖,𝑖 (𝛼1, 𝛼1) −𝐴𝑖,𝑖 (𝛼1, 𝛼0)

)
, 𝑖 = 1, . . . , 𝑁 .

(14)

2.4 Limit sets, periodic orbits and chaos
A differential equation ¤𝑥 = 𝐹 (𝑥) given by a 𝐶1

vector field 𝐹 :

Ω → R𝑛 on a domain Ω ⊂ R𝑛 admits a unique solution on a

maximal open interval 𝐼 = (𝐼𝑙 , 𝐼𝑟 ), 𝐼𝑙 , 𝐼𝑟 ∈ R ∪ {±∞}, denoted by

𝑥 (𝑡) : 𝐼 → R𝑛 , for any initial condition 𝑥 (0) = 𝑥0 ∈ Ω. Among

possible solutions to such equation, we distinguish particular types

of solutions defined by their qualitative properties: we say that

a solution 𝑥 (𝑡) is an equilibrium iff 𝑥 (𝑡) = const for all 𝑡 ∈ 𝐼 . A

solution is periodic iff 𝑥 (𝑡) = 𝑥 (𝑡 +𝑇 ) for some 𝑇 > 0 and all 𝑡 ∈ 𝐼 ;

and it is a connecting orbit between equilibria 𝑥1 and 𝑥2 (allowing

𝑥1 = 𝑥2), iff 𝑥 (𝑡) → 𝑥1 as 𝑡 → ∞ and 𝑥 (𝑡) → 𝑥2 as 𝑡 → −∞.

A set 𝜔 (𝑥0) ⊂ Ω is a limit set for an initial condition 𝑥0 ∈ Ω,
if ∀𝑥 ∈ 𝜔 (𝑥0) there exists an unbounded, increasing sequence

{𝑡𝑛}𝑛 ⊂ R+, such that 𝑥 (𝑡𝑛) → 𝑥, 𝑛 → ∞. Limit sets are invariant
– they are formed by unions of solutions of the differential equation

on maximal intervals. They are also compact – bounded as subsets

of R𝑛 , and closed under the limit operation on sequences from itself.

Fundamental research has been devoted to study the properties

of solutions within limit sets, as they offer a qualitative description

of long-term behavior of the system [23]. Since the discovery of

chaotic attractors [35], it has become known that in the general

setting, these solutions can have arbitrarily complicated shapes and

exhibit seemingly random behavior, a clearly undesirable feature

from the point of view of applications; and engineering systems

with simple 𝜔-limit sets became of particular interest.

Definition 1. We say that a differential equation ¤𝑥 = 𝐹 (𝑥), 𝑥 ∈
Ω has the Poincaré-Bendixson property iff for all 𝑥 ∈ Ω, such that the
solution 𝑥 (𝑡) is bounded, each limit set 𝜔 (𝑥) such that 𝜔 (𝑥) ⊂ Ω is
either:

• an equilibrium;
• a periodic solution;
• a union of equilibria and connecting orbits between these equi-
libria.

A well known result from the qualitative theory of differential

equations shows that planar systems exhibit this trait.

Theorem 1. The Poincaré-Bendixson Theorem [7]. Let 𝐹 = 𝐹 (𝑥),
𝑥 ∈ Ω ⊂ R2 be a 𝐶1 vector field with finitely many zeroes. Then, the
differential equation ¤𝑥 = 𝐹 (𝑥) has the Poincaré-Bendixson property.

Already in R3 there are known examples of systems having

complicated, chaotic attractors [35]. However, dimensionality is

not the only factor which could determine potential shapes of limit

sets. In particular, for certain systems of arbitrary dimension, with

structured “previous-neighbor” interactions between the variables,

the limit sets can be as as simple as in planar systems.

Theorem 2. Mallet-Paret & Smith [36]. Let 𝑥 = (𝑥1, . . . , 𝑥𝑛),
(𝑓𝑖 (𝑥𝑖−1, 𝑥𝑖 ))𝑛𝑖=1, be a 𝐶

1 vector field on an open, convex set 𝑂 ⊂ R𝑛 ,
and let 𝑥0 := 𝑥𝑛 . Assume that 𝜕𝑓𝑖

𝜕𝑥𝑖−1
≠ 0 for all 𝑥 ∈ 𝑂 . Then, the
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system of differential equations

¤𝑥𝑖 = 𝑓𝑖 (𝑥𝑖−1, 𝑥𝑖 ), 𝑖 = 1, . . . , 𝑛, 𝑥 ∈ 𝑂, (15)

has the Poincaré-Bendixson property.

The above theorem is key to proving our further results.

3 THE POINCARÉ-BENDIXSON THEOREM
FOR GAMES

In this section we state and prove our main results on the topology

of limit sets in Follow-the-regularized-Leader learning. We will first

state and prove the Poincaré-Bendixson theorem for cyclic games:

Theorem 3. Let ¤𝑧 = 𝑉 (𝑧) be a system of differential equations
given by the vector field (7) – the follow-the-regularized-leader learn-
ing dynamics – for a binary, cyclic game. For any smooth, steep,
strictly convex collection of regularizers {ℎ𝑖 }𝑖 such system possesses
the Poincaré-Bendixson property.

Proof. Since 𝑢𝑖 depends only on 𝑄𝑖 and 𝑄𝑖−1, we have

𝑉𝑖 (�̂� (𝑧)) = 𝑉𝑖 (�̂�𝑖−1 (𝑧𝑖−1))
= 𝑣𝑖𝛼0

(𝑄𝑖−1 (𝑧𝑖−1, 0)) − 𝑣𝑖𝛼1
(𝑄𝑖−1 (𝑧𝑖−1, 0)) .

(16)

Our goal is to employ Theorem 2. Therefore, we would like to

establish under which conditions

𝜕𝑉𝑖

𝜕𝑧𝑖−1
≠ 0. (17)

for all 𝑖 . We have:

𝜕𝑉𝑖

𝜕𝑧𝑖−1
=

𝜕𝑣𝑖𝛼0

𝜕𝑥𝑖−1

𝜕𝑥𝑖−1
𝜕𝑧𝑖−1

−
𝜕𝑣𝑖𝛼1

𝜕𝑥𝑖−1

𝜕𝑥𝑖−1
𝜕𝑧𝑖−1

. (18)

Moreover, differentiation of mixed strategy payoffs yields

𝜕𝑣𝑖𝛼1

𝜕𝑥𝑖−1
−

𝜕𝑣𝑖𝛼0

𝜕𝑥𝑖−1
= 𝐴𝑖,𝑖 (𝛼0, 𝛼0) −𝐴𝑖,𝑖 (𝛼1, 𝛼0)

+𝐴𝑖,𝑖 (𝛼1, 𝛼1) −𝐴𝑖,𝑖 (𝛼0, 𝛼1) .
(19)

From Lemma 2 we have
𝜕𝑥𝑖−1
𝜕𝑧𝑖−1

> 0, so the necessary condition to

satisfy inequality (17) is:

𝐴𝑖,𝑖 (𝛼0, 𝛼1) +𝐴𝑖,𝑖 (𝛼1, 𝛼0)

≠ 𝐴𝑖,𝑖 (𝛼0, 𝛼0) +𝐴𝑖,𝑖 (𝛼1, 𝛼1) .
(20)

Now let’s consider the edge case, where𝐴𝑖,𝑖 (𝛼0, 𝛼1)+𝐴𝑖,𝑖 (𝛼1, 𝛼0) =
𝐴𝑖,𝑖 (𝛼0, 𝛼0)+𝐴𝑖,𝑖 (𝛼1, 𝛼1) for some 𝑖 . Then 𝜕𝑣𝑖𝛼0

/𝜕𝑥𝑖−1 = 𝜕𝑣𝑖𝛼1
/𝜕𝑥𝑖−1.

Consequently, 𝜕𝑉𝑖/𝜕𝑧𝑖−1 = 0, and hence 𝑖-th coordinate of all solu-

tions has the form 𝑧𝑖 (𝑡) = 𝑎𝑖𝑡 + 𝑏, for some 𝑎𝑖 , 𝑏𝑖 . If 𝑎𝑖 ≠ 0, then all

solutions diverge to infinity. If, however 𝑎𝑖 = 0, then 𝑧𝑖 (𝑡) = 𝑐𝑜𝑛𝑠𝑡 .

Since𝑉𝑖+1 depends only on 𝑧𝑖 , and 𝑧𝑖+1 = 𝑎𝑖+1𝑡 +𝑏𝑖+1; the argument

continues, until all coordinates of solutions are constant, or one

coordinate diverges for all solutions. □

We are now ready to state and prove the theorem for GPGs with

nodes of indegree at most one.

Theorem 4. Let ¤𝑧 = 𝑉 (𝑧) be a system of differential equations
given by the follow-the-regularized leader dynamics of a binary,
weakly connected, graphical polymatrix game, where each player
has up to one predecessor. Then, for any smooth, steep, strictly convex
collection of regularizers {ℎ𝑖 }𝑖 , such system possesses the Poincaré-
Bendixson property.

First, we state the following lemma on inheritance of the Poincaré

Bendixson property for augmented systems.

Lemma 3. Consider the following 𝑦-augmented system of differen-
tial equations

¤𝑥 = 𝑓 (𝑥),
¤𝑦 = 𝑔(𝑥𝑖 ),
𝑥 = {𝑥1, . . . , 𝑥𝑛} ∈ R𝑛, 𝑦 ∈ R.

(21)

for smooth 𝑓 , 𝑔. If the original system

¤𝑥 = 𝑓 (𝑥) (22)

has the Poincaré-Bendixson property, then the augmented system (21)

also has the Poincaré-Bendixson property.

Proof. Let 𝑍 be an 𝜔-limit set corresponding to some solution

(𝑥 (𝑡), 𝑦 (𝑡)) to the system (21). Consider 𝑋 – an 𝜔-limit set to solu-

tion 𝑥 (𝑡) of (22).
From invariance of𝜔-limit sets it follows set𝑍 consists of a union

of solutions of (21). For any solution {𝑥∗ (𝑡), 𝑦∗ (𝑡) : 𝑡 ∈ R} ⊂ 𝑍 ,

we have {𝑥∗ (𝑡)} ⊂ 𝑋 . By the Poincaré-Bendixson property of the

original system, we can distinguish three cases:

(1) 𝑥∗ (𝑡) is an equilibrium of (22),

(2) 𝑥∗ (𝑡) is a periodic orbit of (22),
(3) 𝑥∗ (𝑡) is a connecting orbit of (22) – a part of a cycle of

connecting orbits.

In the rest of the proof we will frequently use the integral form

of solutions 𝑦 (𝑡) to (21), given by 𝑦 (𝑡) = 𝑦 (0) +
∫ 𝑡

0
𝑔(𝑥𝑖 (𝑠))𝑑𝑠 .

Case (1): We prove that (𝑥∗ (𝑡), 𝑦∗ (𝑡)) is stationary for (21). It

is enough to show 𝑔(𝑥∗
𝑖
) = 0. Assume otherwise. Then |𝑦∗ (𝑡) | =

|𝑦 (0) +
∫ 𝑡

0
𝑔(𝑥∗

𝑖
)𝑑𝑠 | = |𝑦 (0) + 𝑡𝑔(𝑥∗

𝑖
) | → ∞ as 𝑡 → ±∞. This

contradicts the boundedness of an 𝜔-limit set.

Case (2) Let𝑇 be the period of 𝑥∗ (𝑡). We show that (𝑥∗ (𝑡), 𝑦∗ (𝑡))
is a periodic solution of (21) of the same period. We have:

𝑑

𝑑𝑡
(𝑦∗ (𝑡 +𝑇 ) − 𝑦∗ (𝑡)) = 𝑑

𝑑𝑡

∫ 𝑇+𝑡

𝑡

𝑔(𝑥∗𝑖 (𝑠))𝑑𝑠

= 𝑔(𝑥∗𝑖 (𝑇 + 𝑡)) − 𝑔(𝑥∗𝑖 (𝑡))
= 0,

(23)

hence 𝑦∗ (𝑡 +𝑇 ) −𝑦∗ (𝑡) = 𝑐𝑜𝑛𝑠𝑡 . If this quantity would be non-zero,

the diameter of the set {𝑦∗ (𝑡) : 𝑡 ∈ R} would be infinite. However,

the set 𝑍 is bounded, and therefore 𝑦∗ (𝑡 +𝑇 ) = 𝑦∗ (𝑡).
Case (3): We show that (𝑥∗ (𝑡), 𝑦∗ (𝑡)) is a connecting orbit be-

tween two equilibria for the full system (21). We shall only prove

convergence with 𝑡 → ∞, the very same argument holds for 𝑡 →
−∞ and 𝛼-limit sets. The orbit (𝑥∗ (𝑡), 𝑦∗ (𝑡)) is bounded and there-

fore it has an accumulation point as 𝑡 → ∞ given by (𝑥∗∗, 𝑦∗∗) ∈
𝜔 (𝑥∗ (0), 𝑦∗ (0)). The point 𝑥∗∗ is an equilibrium for (22). We will

show that (𝑥∗∗, 𝑦∗∗) is an equilibrium. It is enough to show that

𝑔(𝑦∗∗) = 0. Assume otherwise. Then 𝑦∗∗ (𝑡) = 𝑦∗∗ + 𝑡𝑔(𝑥∗∗
𝑖
) which

is unbounded. However, it is also a part of 𝜔 ((𝑥∗ (0), 𝑦∗ (0))), since
𝜔-limit sets are invariant. Boundedness of 𝜔 ((𝑥∗ (0), 𝑦∗ (0))) leads
to a contradiction. The same process, repeated for all connecting

orbits of (22), creates a cycle of connecting orbits for (21). □

Now, we can proceed to the proof of Theorem 4.
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Proof. By Lemma 1, and Remark 1, we know that the graph

of the system has either a root vertex or a root cycle. We will

first address the case of a root vertex. We will see that this case

is somewhat degenerate. Without loss of generality let us assume

that it is labelled as the 1st vertex, and that the other vertices are

numbered in order of increasing path distance from vertex 1 (i.e.

𝑗 < 𝑖 implies that the path from 1 to 𝑗 is shorter than the path from

1 to 𝑖) – this is possible by Lemma 1.

The payoffs of the root node are only affected by its own choice

of strategy. Therefore, we can write ¤𝑧1 = 𝑢1 (𝛼0) − 𝑢1 (𝛼1), and,
consequently, 𝑧1 (𝑡) = 𝑡 (𝑢1 (𝛼0) − 𝑢1 (𝛼1)) + 𝑧1 (0). This system

constitutes an autonomous ODE, which trivially has the Poincaré-

Bendixson property (as it is either completely stationary, or is

divergent). From then on, we can add nodes, starting from vertices

connected to the root vertex, and then continuing in an inductive

fashion. Then, either one of the nodes diverges, or they are all

stationary, and trivially satisfy the Poincaré-Bendixson property.

It should be noted that "divergence" in practice means that 𝑧𝑖 (𝑡)’s
approach in the limit 𝑡 → ∞ to either∞ or −∞; the former implies

that the player 𝑖 is placing almost all probability mass on strategy

𝛼0, and the latter – on 𝛼1.

The more interesting scenario arises for the root cycle, where pe-

riodic limit sets are possible. Enumerate these vertices by 1, . . . , 𝑁0,

with 𝑁0 ≤ 𝑁 , and assume that the vertices from 𝑁0 + 1 to 𝑁 are

arranged in the order of increasing path distance from vertices of

the cycle (possible by Remark 1). Observe that the system

¤𝑧𝑖 = 𝑉𝑖 (𝑧𝑖 ),
𝑖 = 1, . . . , 𝑁0,

(24)

is an autonomous system of differential equations (as there are no

edges with successors in {1, . . . , 𝑁0}, and predecessors outside of

this set), and forms a binary, cyclic game in the sense of Theorem 3.

As such, this subsystem possesses the Poincaré-Bendixson property.

From then on, the proof continues similarly as for the root vertex.

We add a vertex 𝑁0 + 1 which has an incoming edge from the root

cycle, and, by Lemma 3 observe that the system

¤𝑧𝑖 = 𝑉𝑖 (𝑧𝑖 ),
𝑖 = 1, . . . , 𝑁0 + 1,

(25)

again has the Poincaré-Bendixson property. The proof continues

inductively w.r.to the vertices, until we conclude that the full system

¤𝑧 = 𝑉 (𝑧) has the Poincaré-Bendixson property. □

Remark 3. Theorems 3, 4 apply to dynamics of fully mixed ini-
tial strategy profiles bounded away from pure strategies, as FoReL
learning (4) is ill-defined for pure strategies. For some learning models
such as as the replicator equations (14) the theorems can be applied to
subsystems arising when certain players assume a pure strategy pro-
file, as in these models pure strategy profiles define invariant learning
spaces.

4 FROM GEOMETRY TO EFFICIENCY: SOCIAL
WELFARE ANALYSIS

The following result shows that for cyclic, binary games, under

additional but structurally robust assumptions on the payoff matri-

ces (i.e., assumptions that remain valid after small perturbations of

the payoff matrices), the time-average social welfare of our FoReL

dynamics is at least as high, as the social welfare 𝑆𝑊 =
∑
𝑖 𝑢𝑖 of the

worst Nash equilibrium. The proof crucially relies on the interplay

of the optimal regret properties of FoReL dynamics combined with

structural characterizations of the set of Nash equilibria of these

games.

Theorem 5. In any binary, cyclic game with the property that for
any player 𝑖 , the payoff entries are distinct and

[𝐴𝑖−1,𝑖 (𝛼0, 𝛼0)−𝐴𝑖−1,𝑖 (𝛼1, 𝛼0)] [𝐴𝑖−1,𝑖 (𝛼0, 𝛼1)−𝐴𝑖−1,𝑖 (𝛼1, 𝛼1)] < 0,

the time-average of the social welfare of FoReL dynamics is at least
that of the social welfare of the worst Nash equilibrium. Formally,

lim inf

1

𝑇

∫ 𝑇

0

∑
𝑖

𝑢𝑖 (𝑥 (𝑡))𝑑𝑡 ≥
∑
𝑖

𝑢𝑖 (𝑥𝑁𝐸 ), (26)

where 𝑥𝑁𝐸 the worst case Nash equilibrium, i.e., a Nash equilibrium
that minimizes the sum of utilities of all players.

In other words, the Nash equilibrium is the worst imaginable

outcome for all players; and the dynamical, regret minimization

approach yields superior payoffs.

Proof. Lets consider the payoff matrix of each player 𝑖 . Recall,

that by the cyclicity assumption, there is at most one player 𝑘 such

that 𝐴𝑘,𝑖
is a non-zero matrix, i.e., the unique predecessor of 𝑖 ,

that for simplicity of notation we call 𝑖 − 1. By assumption, the

four entries will be considered distinct. Next, we break down the

analysis into two cases. As a first case, we consider the scenario

where there exists at least one player with a strictly dominant

strategy. The FoReL dynamics of that player strategy profile will

trivially converge to playing the strictly dominant strategy with

probability one. Similarly, all players reachable from player 𝑖 will

similarly best respond to it. This is clearly the unique NE for the

binary cyclic game, so in this case the limit behavior of FoReL

dynamics exactly corresponds to the unique Nash behavior and the

theorem follows immediately.

Next, let’s consider the case where no player has a strictly domi-

nant strategy. In this case, we will construct a specific Nash equilib-

rium for the cyclic game (although it may have more than one). In

this Nash equilibrium every player 𝑖−1 plays the uniquemixed strat-

egy that makes its successor (player 𝑖) indifferent between its two

strategies. Such a strategy exists for each player, because otherwise

there would exist a player with a strictly dominant strategy. In fact

by the assumption [𝐴𝑖−1,𝑖 (𝛼0, 𝛼0) −𝐴𝑖−1,𝑖 (𝛼1, 𝛼0)] [𝐴𝑖−1,𝑖 (𝛼0, 𝛼1) −
𝐴𝑖−1,𝑖 (𝛼1, 𝛼1)] < 0 such a strategy would be the 𝑖−1st player’s min-

max strategy if they participated in a zero-sum game with player 𝑖

defined by the payoff matrix of player 𝑖 . Indeed, this assumption,

along with the fact that player 𝑖 does not have a dominant strat-

egy, exactly encodes that the zero-sum game (defined by payoff

matrix𝐴𝑖−1,𝑖
) has an interior Nash. Given its predecessors behavior,

player 𝑖 will be receiving exactly its max-min payoff no matter

which strategy they select, therefore this strategy profile where

each player 𝑖 − 1 just plays the strategy that makes player 𝑖 indiffer-

ent between their two options is a Nash equilibrium, where each

player receives exactly their max-min payoffs. However, by [38]

(Lemma C.1), continuous-time FoReL dynamics are no-regret with

their time-average regret converging to zero at an optimal rate of
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O(1/T), i.e. there exists an Ω𝑖 > 0, such that for all players 𝑖 we

have:

max

𝑝𝑖 ∈X𝑖

1

𝑇

∫ 𝑇

0

(𝑢𝑖 (𝑝𝑖 ;𝑥−𝑖 (𝑡)) − 𝑢𝑖 (𝑥 (𝑡)) 𝑑𝑡 ≤
Ω𝑖

𝑇
. (27)

However, the left hand side is greater or equal to

𝑢𝑖 (𝑥𝑁𝐸 ) −
1

𝑇

∫ 𝑇

0

𝑢𝑖 (𝑥𝑖 (𝑡))), (28)

since the mixed Nash equilibrium consists of max-min strategies.

Therefore, the sum over 𝑖 of the time-average performance is at

least the sum of the max-min utilities minus a quickly vanishing

term O(1/T) and the theorem follows. □

5 EXAMPLES
To illustrate our theoretical results, we analyze the replicator dy-

namics (14) of two classes multidimensional binary cyclic games

that exhibit non-convergence and therefore non-trivial limit be-

havior. The goal of the examples is to show that all possible limit

sets indicated in the Poincaré–Bendixson property (i.e., an equi-

librium, a periodic solution, and a cycle of connecting solutions)

are attainable for systems satisfying our assumptions. In addition,

we plot the social welfare of simulated trajectories, relating them

to the results of Theorem 5. Finally, we provide a counterexample

in the form of a three-dimensional replicator system that violates

the assumptions of our theorems and exhibits chaos. To determine

the limit sets, we numerically integrate the initial-value problems

with various starting conditions via the lsoda differential equation
integrator [25].

5.1 Matched-mismatched pennies game
First, we analyze a four-dimensional game of matched-mismatched

pennies. Each player has a choice of two strategies, 𝛼0 and 𝛼1. The

payoffs for players 0 and 2 are given by

𝐴3,0 = 𝐴1,2 =

[
−1 1

1 −1

]
(29)

and the payoffs for players 1 and 3 are given by

𝐴0,1 = 𝐴2,3 =

[
1 −1
−1 1

]
. (30)

Simply put, players 0 and 2 try to mismatch the strategy with

players 1 and 3, and players 1 and 3 try to match them.

The system possesses three Nash equilibria, which correspond to

the following strategy profiles: (0, 0, 1, 1), (1, 1, 0, 0), (0.5, 0.5, 0.5, 0.5),
out of which the pure Nash equilibria are attracting, and the mixed

Nash equilibrium has two center directions: one repelling and one

attracting. We denote the mixed Nash equilibrium by 𝑥𝑀𝑁𝐸 . Given

the symmetry of the system, the plane {(𝑡, 𝑠, 𝑡, 𝑠), 𝑡, 𝑠 ∈ [0, 1]} is
invariant, consists purely of periodic orbits, and forms the center

manifold to the mixed Nash equilibrium.

The numerical results are consistent with Theorems 3 and 4. The

only limit sets observed by the numerical simulations are the mixed

Nash equilibrium 𝑥𝑀𝑁𝐸 itself (along a single-dimensional attracting

set) and the limit cycles around it, which also appear to be of saddle

nature and have a single attracting direction, see Figure 2. Most

crucially, more complicated behavior, such as chaos or invariant tori,

Figure 2: Limit sets in thematched-mismatched pennies sys-
tem: an orbit converging to an equilibrium (left) and an orbit
converging to a limit cycle (right).

does not emerge, despite the system being nontrivially embedded

in four dimensions.

The mixed Nash equilibrium yields the minimax payoff vector

(0, 0, 0, 0) for each player and the social welfare of 0. The payoff

matrices satisfy the assumptions of Theorem 5, and the average

payoffs along solutions are therefore at least non-negative. In fact,

almost all (a set of full measure) initial conditions appear to con-

verge to the pure equilibria at the boundary, with their time-average

payoffs exceeding that of the Nash equilibrium and converging to

the maximal welfare of 4, see Figure 3.

5.2 Asymmetric N-penny game
Our second system is a system of 𝑁 -player asymmetric mismatched

pennies, previously introduced in [31]. There are three players, and

each can choose between two strategies: 𝛼0 and 𝛼1. The payoffs for

player 𝑖 with respect to player 𝑖 − 1 are given by the matrix

𝐴𝑖−1,𝑖 =
[
0 1

𝑝 0

]
. (31)

with 𝑝 > 0.

For odd 𝑁 , there is no Nash equilibrium in pure strategies. In

the replicator system, the pure strategy profiles are saddle-type

stationary points of the ordinary differential equation, linked by

connecting orbits of mixed strategies. The system has a unique

mixed Nash equilibrium defined by 𝑥𝑖 =
1

𝑝+1 , 𝑖 ∈ {1, . . . , 𝑁 }, where
each player obtains payoff of

𝑝
𝑝+1 .

The system was thoroughly analyzed in [31], and the main result

given therein was that, for 𝑁 = 3 and 𝑝 > 7, all mixed strategies

except for the diagonal converge to a sequence of orbits connecting

boundary stationary points. Moreover, the social welfare attained

close to the boundary exceeds the social welfare at the Nash equi-

librium. We extend these results. From Theorem 3 we deduce that,

for all 𝑁 and for all 𝑝 ≠ −1, the only limit sets in the interior are

equilibria, periodic orbits, and cycles of connecting orbits to equi-

libria. The payoff matrices satisfy the assumptions of Theorem 5,

and, in particular, for all 𝑝 > 0, the mixed equilibrium yields the

minimax payoff for each player, and time averages of payoffs along

other orbits must exceed the minimax payoffs. For almost all initial
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Figure 3: Time-average payoffs and social welfare of a sam-
ple learning trajectory in the matched-mismatched pennies
game (top), and in the asymmetric 5-penny game with 𝑝 = 3

(bottom, projection onto first three variables).

conditions, the dynamics is attracted to the boundary cycle of aver-

age payoff (𝑝 + 1) 𝑁−1
2

(see, e.g., Figure 3), and indeed no chaotic

emergent behavior appears.

5.3 A chaotic polymatrix replicator
Our last system serves as a counterexample; it shows that even in

a binary three-player game, but without structured interactions

(i.e., no cyclicity, all possible connections in the game graph), the

learning trajectories of replicator dynamics can approach complex

chaotic limit sets. The payoff matrices are given by

𝐴1,1 =

[
` 14

0 0

]
, 𝐴2,1 = −𝐴1,2 =

[
−10 10

0 0

]
,

𝐴3,1 = 𝐴3,2 = 𝐴3,3 = −𝐴2,2 =

[
−2 2

0 0

]
,

𝐴1,3 =

[
−25 29

0 0

]
, 𝐴2,3 =

[
0 −11
0 0

]
.

(32)

After some transformations (for details, see [43]), we arrive at the

following one-parameter system of differential equations:

¤𝑥0 = 𝑥0 (1 − 𝑥0) (12 − ` + (` − 14)𝑥0 − 20𝑥1 − 4𝑥2),
¤𝑥1 = 𝑥1 (1 − 𝑥1) (−10 + 20𝑥0 + 4𝑥1 − 4𝑥2),
¤𝑥2 = 𝑥2 (1 − 𝑥2) (27 − 54𝑥0 + 11𝑥1 − 4𝑥2),

(33)

where 𝑥𝑖 is the probability that player 𝑖 plays strategy 𝛼0, and

1 − 𝑥𝑖 is the probability that player 𝑖 plays 𝛼1. This system was

recently introduced by Peixe and Rodrigues [43], who formally

showed by combined theoretical and numerical approaches that the

system contains a persistent strange (chaotic) attractor for a range

of parameter values ` ∈ [1.4645, 9.5055]. We replicate their findings

by integrating a sample trajectory and observing its approach to the

Figure 4: A learning trajectory approaching a chaotic at-
tractor in the polymatrix replicator [43] (left) and a plot of
values of its coordinates (right). The game is characterized
by unstructured interactions between payoffs and therefore
breaks the assumptions of Theorems 3 and 4.

chaotic attractor for ` = 2.8, see Figure 4. Due to lack of cyclicity, the

game does not guarantee the payoff structure given by Theorem 5.

6 CONCLUSIONS
Numerous recent results regarding learning in games have estab-

lished a clear separation between the idealized behavior of equilibra-

tion and the erratic, unpredictable, and typically chaotic behavior

of learning dynamics even in simple games and domains. At a first

glance, this realization might seem to be a setback, but when viewed

from the correct perspective it unveils a new way of understanding

learning dynamics, namely, by examining solution concepts from

the topology of dynamical systems. Our results showcase the pos-

sibility of establishing links between the topological-combinatorial

structure of multi-agent games (e.g., game graph, number of actions)

to understand and constrain the topological complexity of game

dynamics (Poincaré–Bendixson property) and finally link back to

more traditional game theoretic analyses, such as calculating the

efficiency of the system via social welfare. These connections show-

case the promising advantages of this approach, which we hope

will lead to more work along these lines in the future.
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