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Abstract—Quadratic unconstrained binary optimization
(QUBO) has become the standard format for optimization using
quantum computers, i.e., for both the quantum approximate
optimization algorithm (QAOA) and quantum annealing (QA).
We present a toolkit of methods to transform almost arbitrary
problems to QUBO by (i) approximating them as a polynomial
and then (ii) translating any polynomial to QUBO. We showcase
the usage of our approaches on two example problems (ratio
cut and logistic regression).

Index Terms—quadratic unconstrained binary optimization,
QUBO, quantum computing, approximation

I. INTRODUCTION

Optimization using quantum computing is usually based

on one of two major algorithms: the quantum approximate

optimization algorithm (QAOA) [1] for gate-based quantum

computers or quantum annealing (QA) [2] for adiabatic

quantum computers. Both have in common that they can be

applied directly to problems given in the form of quadratic

unconstrained binary optimization (QUBO). Subsequently,

producing QUBO formulations for well-known to little-known

problem classes has become an active part of research; exam-

ples of such applications originate from machine learning [3]–

[6], scheduling [7], [8], routing [9]–[12], energy distribution

[13], and many others.

Most authors consider a single application given via a single

objective function [13]–[20] while some provide approaches

for several different problems [21]–[23]. Finally, there are

few overview articles in which best practices for modeling

well-known theoretical problem classes are proposed [24],

[25]. However, problem modeling and problem transformation

mostly remain non-generalizable, manual steps.

In this paper we focus on the generalization of the first

transformation step. We present a list of methods to convert

an arbitrary objective function into a polynomial (Sec. II-A).

Then we describe a method to transform this polynomial in

such a way that it will have the form of a quadratic uncon-

strained optimization problem (Sec. II-B). Thus, the original

objective function can be minimized using QAOA or quantum

annealing. We demonstrate the application and feasibility of

our proposed methods using two separate problems, namely

ratio cut and logistic regression (Sec. III). Finally, we conclude

with remarks on future work (Sec. IV).

II. APPROACHES

Solving a QUBO problem can be defined as minimizing

xTQx for a symmetric matrix Q ∈ R
n×n and x ∈ B

n

returning

min
x∈Bn

n
∑

i=1

n
∑

j=1

Qijxixj (1)

Quantum annealing is an optimization method for QUBO

problems using quantum phenomena [2], whereas a physical

implementation is provided by D-Wave Systems [26], [27].

However, there also exist many classical solvers for QUBO

problems [28]–[31].

However, objective functions occurring “in the wild” may be

of any structure, i.e., they can be represented by mathematical

functions of any complexity. This also means that translating

or approximating them as a QUBO formulation may become

arbitrarily complex, both to the developer figuring out the

approach and to the machine running a huge problem instance

that is bloated from lots of translation overhead. The goal of

this paper is to transform arbitrarily shaped objective functions

into a QUBO representation as efficiently as possible. For this

purpose we identify two main steps:

(A) Translate an objective function into a polynomial

(B) Translate the polynomial into QUBO form

For the better part of this paper, we present approaches that

help developers follow through with these two steps in praxis

and thus open up a new range of problem domains for quantum

optimization.

A. Translate an objective function into a polynomial

No general procedure can be given to create a polyno-

mial or polynomial approximation from an arbitrary objective

function. There are different approaches for special classes

of functions, each with advantages and disadvantages. The

usability depends, among other things, on the domain of the

objective function to be transformed (e.g., B vs. R or [−∞,∞]
vs. [−10, 10]) and also on the type (e.g., ln(x) or ex are much

easier to approximate than the cost function of an artificial

neural network).

In the following we will present a collection of recom-

mended actions, whereby the specific choice of action(s) —
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and, if necessary, the order of application — remains with the

user. The list below serves as an overview and is sorted from

more generic choices to more specific ones. In the upcoming

subsubsections we will explain when and how each of these

transformations should be applied.

(A1) Approximate function via Lagrange polynomials

(A2) Approximate function via splines

(A3) Reduce complexity via additional constraints or

changed function

(A4) Apply bijective monotone functions

(A5) Approximate periodic behavior via Fourier series

(A6) Approximate differentiable function via Taylor series

expansion

1) Approximate function via Lagrange polynomials: As-

sume that we know the function values at some points of

the otherwise unknown objective function. This can be the

case, for example, for a given differential equation where the

exact solution is not known, but that has been numerically

approximated at some points.

Now Lagrange polynomials can be used to interpolate the

objective function’s known data points using polynomials.

One advantage is that an arbitrary or unknown function can

approximately be converted into a polynomial. For example,

given points (1, 2), (2, 6), (3, 12), a polynomial of degree 2

extrapolating these points is P (x) = 2 · (x−2)(x−3)
(1−2)(1−3) + 4 ·

(x−1)(x−3)
(2−1)(2−3) +9 · (x−1)(x−2)

(3−1)(3−2) = x+x2. A huge disadvantage is

that the degree of the polynomial used increases linearly with

the number of data points involved in the interpolation. This

means that this very generic approach should only be used if

all other options fail.

Summary:

• Use case: Objective function is unknown or very com-

plex.

• Input: Few data points of the objective function.

• Output: Polynomial that approximates the objective func-

tion through given data points.

2) Approximate function via splines: Suppose that the given

objective function is again unknown, only known in some

intervals, or very complex. But this time Lagrange polynomials

should not be used, because too many data points for interpo-

lation and accordingly too many ancillary variables would be

needed. Instead, we presume that the given objective function

can be approximated at different intervals using multiple

polynomials having low degree (usually degree 1 or 3) instead

of one high-degree polynomial. Examples to this are stepwise

defined functions or those with many data points known in

some intervals.

In such cases splines can be used, i.e., functions that

are piece-wise composed of polynomials. By means of such

splines, polynomial approximations can be created for certain

regions of a function, which are then joined together to

obtain a continuous or even differentiable approximation of

the original objective function. When using splines, however,

it is important to ensure that they are limited to the objective

function’s exact intervals they are supposed to approximate.

An example shall clarify this: an objective function f exists,

which is to be interpolated in the intervals I1, . . . , In (each

containing a finite set of known data points) by polynomials

P1, . . . , Pn. Now we can represent f by the following approx-

imated objective function f ′ to be minimized:

f ′(x) =

n
∑

i=1

(Pi(x)(
∑

j∈Ii

yj)) +
∑

j∈I

yj(j − x)2 + (
∑

j∈I

yj − 1)2

(2)

with I := ∪n
i=1Ii being the union of intervals and j are

points of one particular interval or the union. Note that js

represent potential solutions and that they are dependent on the

chosen accuracy of the intervals, i.e., they might be integers

but also floating point numbers with two decimal places, for

example. Furthermore, yj are binary slack variables that equal

1 if j = x, otherwise 0. To some extent, these slack variables

create an if-then-else construct, as they are used to identify

the interval the given point x resides in. The first term in

Eq. 2 effects that exactly that polynomial is evaluated which

approximates the interval in which x is located. If we consider

the correct interval/polynom in which x is located, then one of

the slack variables yj is set to 1, resulting in a multiplication

with the value of the polynomial. If we are not in the correct

interval, then the second sum of the first term is 0 and so is

the multiplication. The remaining terms are needed to activate

the correct yj (and only that), since depending on the given

polynomials that are potentially defined on the whole domain,

it might be the case that all or none will be chosen. For this, the

second term effects that only the slack variable is activated for

which x = j and the third term assures that only a single yi,

and thus interval/polynomial, is chosen. In a nutshell: all three

constraints implement that the correct polynomial is taken for

the considered value of x.

Summary:

• Use case: Objective function is unknown, defined in

intervals or very complex.

• Input: Data points of objective function.

• Output: Function defined in intervals with each interval

approximated by a polynomial based on the correspond-

ing data points given.

3) Reduce complexity via additional constraints or changed

function: Sometimes it is worth considering whether the

objective function has to be used in given form or whether

it can be simplified without (major) loss of quality. There are

different use cases where this might be possible.

First, checks that would otherwise be made after an op-

timization may be coded into the objective function as an

additional explicit constraint. An example could be the re-

quirement that at least one of the function’s variables x, y, z

must be equal to 0. In this case, instead of a subsequent check,

the term (xyz)2 can be added to the objective function to be

minimized, which always imposes a penalty value unless at

least one of the variables is equal to 0, as desired.

Another possibility is at hand if a condition is implicitly

contained in a given objective function. Then there is the

1250

Authorized licensed use limited to: TU Delft Library. Downloaded on January 19,2023 at 12:53:21 UTC from IEEE Xplore.  Restrictions apply. 



opportunity that adding an explicit constraint might simplify

the function. An example of this may be objective function

f(x, y, z) = 10(x−y)2+zx+zy with x, y, z ∈ [−10, 10]∩Z

that we want to minimize. It can be seen that the first term

10(x− y)2 will take its minimum of 0 if x = y holds. Since

x �= y makes the cost function grow much more than the effect

that zx+zy = z(x+y) has, we can apply the explicit condition

x = y. Doing this simplifies function f to f ′(x, z) = 2zx.

Finally, various modifications can be made to the objective

function itself to reduce its complexity and thus to improve the

possibility of approximation using polynomials. These trans-

formations include reducing discontinuities (e.g., replacing a

step function by a sigmoid function), replacing an iterative

optimization procedure by a single objective function (e.g.,

in the context of least square optimization), or changing the

metric used (e.g., using l2 metric instead of l4 metric in the

context of activation functions in artificial neural networks).

Summary:

• Use case: Function contains implicit or explicit con-

straints or other possibilities for simplification.

• Input: Complex objective function, possibly with implicit

constraints.

• Output: Simplified objective function.

4) Apply bijective Monotone Functions: Bijective mono-

tone increasing or decreasing functions have a special prop-

erty: if applied to another function, the second function

changes, but not the argument of its global optimum (if it

exists). The derivation of this is quickly sketched using the ex-

ample of a function to be minimized: Let f : X → R be a min-

imization function and let g : R → R be a bijective monotone

increasing function. If x∗ = argminx∈X f(x), then ∀x ∈ X :
f(x∗) ≤ f(x) ⇐⇒ ∀x ∈ X : g(f(x∗)) ≤ g(f(x)) applies,

because g is both bijective and monotone increasing. In turn,

this means that argminx∈X f(x) = argminx∈X g(f(x)),
because x∗ is the minimal argument for both sides of the

equation.

Two examples of bijective monotone functions are ex and

ln(x). They can be used to transform a multiplication into

an addition and vice versa without changing the argument

of the global optimum. Assume a polynomial optimization

function of degree 4, namely f(x) = x4. If we now apply

the natural logarithm, we receive ln(f(x)) = 4 · ln(x), thus a

linear function with identical argument of the global minimum

(x = 0). Another example is objective function
f(x)
g(x) . If we

apply the natural logarithm again, we get ln(f(x))−ln(g(x)),
which can then be converted into a polynomial using Taylor

series expansion (see subsection II-A6), as an example.

Summary:

• Use case: Objective function has high degree, contains

division/multiplication or other possibilities to be simpli-

fied by further function.

• Input: Complex objective function.

• Output: Simplified objective function.

5) Approximate periodic behavior via Fourier Series: With

Fourier series there is a possibility to approximate a periodic

Fig. 1: Approximation of periodic behavior using Fourier

series. Red: exemplary objective function. Blue: approximation

using Fourier series. Black: further approximation using Taylor

series expansion.

function by a sum of sine and cosine functions. Thus, com-

plex periodic functions can be reduced into simpler periodic

functions, which can then be approximated by polynomials in

the interval of a single period.

As an example, objective function f(x) = ((x −
1) mod 2)−1 is given (see Fig. 1, red line). Now this function

can be approximated by sine and cosine functions using

Fourier series resulting in f ′(x) =
∑+∞

n=1 2 ·
(−1)1+n·sin(πnx)

πn
.

With respect to a accuracy-complexity trade-off, we just

utilized the first three terms (see Fig. 1, blue line). Af-

terwards, this term can be converted into polynomials us-

ing Taylor series (see subsection II-A6). In our example,

we performed a Taylor series expansion on the sinus func-

tions of degree 5 (see Fig. 1, black line). Putting these

steps together, the approximated function is now f ′′(x) =

∑3
n=1 2 ·

(−1)1+n·

(

πnx−
(πn)3

6 x3+
(πn)5

120 x5

)

πn
. Note that the per-

formed steps (and in particular the Taylor series expansion)

provide a good approximation only locally; one needs to apply

these transformations carefully.

Summary:

• Use case: Periodic objective function that cannot be

approximated by Taylor series.1

• Input: Periodic objective function.

• Output: Objective function consisting of sum of sine and

cosine functions.

6) Approximate differentiable function via Taylor series

expansion: If the given objective function is completely or

partially differentiable, then the differentiable parts can be

transformed into polynomials using Taylor series approxima-

tion. In doing so, however, there is a risk of introducing a

potentially large error. Taylor series truncated after a finite

set of terms, however, provide a good local approximation

(see ln(x + 1) ≈ x − x2

2 in Fig. 2, here in particular region

[−0.5, 0.5]).
Thus, there is a trade-off between the approximation’s

quality and the number of qubits eventually needed, because

1Note: If it can be approximated using Taylor series (e.g., sin(x) or
cos(x)), then this should be preferred to using Fourier series.
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Fig. 2: Approximation of the natural logarithm (ln(x+1), red)

using Taylor series (x−x2

2 , green). Note that the approximation

is only locally good, see range [−0.5, 0.5].

more terms in the Taylor series lead to higher precision, which

in turn results in a polynomial of higher degree and finally in

more qubits required. Since, as described earlier, Taylor series

provide only locally good approximations of a function, there

should be a test whether the region in which the optimization is

performed lies in the interval for which the approximation is of

high quality. If this is not the case, a modification can be per-

formed by addition or multiplication with constants in order to

match search range with approximation interval. For example,

if the Taylor approximation provides a good approximation for

interval [0, 1], but the given objective function is defined on

[0, 10], then scaling may help. Note, however, that this does

not apply to all functions, as it may shift the function values. In

Fig. 2, for example, the global maximum was shifted because

the approximation has not been constrained to [−0.5, 0.5].
As another example for the approximation by means of

Taylor series, consider an objective function that involves a

division: f(x, y) = x
y

. Applying the natural logarithm results

in ln(f(x, y)) = ln(x) − ln(y). If we now approximate the

natural logarithm using Taylor series up to order 2, then

ln(z) = ln((z − 1) + 1) ≈ (z − 1) − (z−1)2

2 follows. This

in turn can be used to approximate objective function f(x, y)

as f ′(x, y) = (x− 1)− (x−1)2

2 − (y − 1) + (y−1)2

2 , while the

minimum’s argument does not change (in range [−0.5, 0.5]).
Summary:

• Use case: Completely or partially differentiable objective

function.

• Input: Differentiable objective function.

• Output: Polynomial objective function.

B. Translate the polynomial into QUBO form

Having generated a polynomial P : R
n → R from our

original problem formulation, we now need to translate that

polynomial to a polynomial P ′′′ : Bn′

→ R that (as given

by its signature) only uses binary variables and only uses

them within quadratic terms. Note that during the translation

process, we usually end up with n′ > n but, of course, try to

keep the resulting overhead minimal. As polynomials have no

means of containing hard constraints anyway, this polynomial

P ′′′ is then in QUBO form. For the construction we are going

to present, Theorem 1 holds; however, we omit the proof here

and instead refer the interested reader to the appendix.

Theorem 1. Let P be a polynomial and P ′′′ the corresponding

QUBO form produced according to the procedure we describe

in Section II.B, then it holds that

min
x∈L

P (x1, ..., xn) = min
z∈Bn′

P ′′′(z1, ..., zn′) (3)

where L = {(x1, ..., xn) | xi ∈ Λi} is the set of all possible

solution candidates of P . Furthermore, there is a function

f : Bn′

→ L such that

∀z∗ ∈ argmin
z∈Bn′

P ′′′(z1, ..., zn′) : f(z∗) ∈ argmin
x∈L

P (x1, ..., xn).

(4)

The intuition behind this step is as follows: As we consider

the minimization of a polynomial P : Rn → R using QUBO,

in the first step we translate each continuous variable in

P into a weighted sum of binary variables. In the second

step, we introduce new variables to replace products of these

binary variables. By doing this, we reduce the degree of

multiplications and thus obtain the required quadratic form.

In this case, these steps need to be applied in order:

(B1) Re-scope to binary variables

(B2) Restrict to quadratic terms

1) Re-scope to binary variables: The currently available

quantum annealing hardware is still very limited, so the

polynomial P : R
n → R should be represented as effi-

ciently as possible, i.e., using as few decision variables as

possible. Therefore, we restrict ourselves to minimizing the

problem only with respect to a finite number of points, i.e.,

we reduce the search space for finding the minimum from

R
n = R×R×· · ·R to Λ1×Λ2×· · ·×Λn, where each Λi ⊂ R

and |Λi| ∈ N. Thus, each of the polynomial’s n variables

xi can only take values from the corresponding countable

and finite set Λi. For example, a polynomial with n = 2
variables might have domains Λ1 = {2, 4, 6} with |Λ1| = 3
and Λ2 = {−2,−1, 0, 1, 2} with |Λ2| = 5.

Now the question arises how to minimally map elements k

of sets Λi to corresponding binary decision variables qi,k. A

naive approach would be to represent each element by exactly

one variable; thus xi =
∑

k∈Λi
k · qi,k holds. With respect

to the example above, we gain x1 = 6 if q1,3 = 1 since

x1 = 2 · 0 + 4 · 0 + 6 · 1 = 6. However, it should be noted

that a given value of a variable can also be composed as

a sum of values, e.g., 6 = 2 + 4. To avoid this, the term
∑

i(
∑

k∈Λi
qi,k − 1)2 is added to the QUBO problem. This

causes that exactly one value will be chosen, since otherwise

a penalty term would be added. It is easy to see that this

naive approach is quite inefficient, since one decision variable

is needed for each variable value to be examined.

Instead of this one-hot encoding, a binary representation of

the elements in Λi can be used. By means of xi =
∑rmax

j=0 2
j ·

qi,j and rmax ∈ N we can represent elements of λi from 0 up

to a maximum number 2rmax+1 − 1. If, for example, x1 = 6
is to be represented again, this is possible using rmax = 2
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and x1 = 20 · q1,0 + 21 · q1,1 + 22 · q1,2 = 20 · 0 + 21 · 1 +
22 · 1 = 6. Obviously, this representation is only suitable for

positive natural numbers, whereas real numbers can only be

approximated (the sum of natural numbers is always a natural

number). To remedy this, we now represent variables as xi =
∑rmax

j=−rmin
2j · qi,j with rmin ∈ N. For example, value 6.5 can

be constructed as 2−1+21+22. Now, in order to also include

negative numbers, another term is needed so that variables are

finally represented by

xi =

rmax
∑

j=−rmin

2j · qi,j −
rmax
∑

j=−rmin

2j · qi,j+(rmax+rmin) (5)

Although this term introduces some inefficiency as certain

numbers may have multiple representations (e.g., 20 = 1, but

also 20 + 21 − 21 = 1), it allows us to represent all numbers

in ([−2rmin+rmax+1 + 1, 2rmin+rmax+1 − 1] ∩ N)× 2−rmin .

Abstractly formulated, we can now state that each variable

xi no longer belongs to R, but Λi = {
∑r

k=1(Bi)k · tk | t ∈
{0, 1}r}, where we call Bi the base, with cardinality r = |Bi|,
and t the binary mask. Note that with our example from above

(x1 = 20 · 0 + 21 · 1 + 22 · 1 = 6), base B1 would consist of

[20, 21, 22] with binary mask t = [0, 1, 1]. Consequently, each

element of Λi is represented as a weighted binary sum over

the elements of Bi. Finally, the polynomial’s variables are

represented by xi =
∑

b∈Bi
b · qi,b using elements b of bases

Bi and binary masks represented by binary decision variables

qi,b.

In conclusion we consider polynomials of the form P ′ :
Λ1 × · · · × Λn → R with degree p ∈ N and coefficients

a ∈ R
(p+1)n and represent them as follows:

P ′(x1, ..., xn) =
∑

i1,...,in∈0,1,...,p

ai1...in · xi1
1 · · ·xin

n (6)

An initial estimate on the number of binary decision

variables needed in the following QUBO generation step is

as follows: Given a polynomial with degree p, number of

variables n, maximum multiplication degree q, and search

range r = rmin+rmax, the value is upper bounded by (n·2r)m

with m = ⌈pq
2 ⌉. As an example, with P ′(x1, x2, x3) =

x3
3 + x1x2 − 1 and r = 2 + 2 = 4, it follows p = 3,

n = 3, q = 2, m = 3, and consequently an upper bound

of (n · 2r)m = (3 · 8)3 = 13824 variables. The worst case is

thus given if q variables to the p-th power are multiplied with

each other in the polynomial (example: x3
1x

3
2). However, this

is not necessarily the case, which is why the number of binary

decision variables required can be much lower. In the given

case, the actual number is 2 · 8 + 82 = 80.

2) Restrict to quadratic terms: In the previous section,

every (continuous) variable in P was transformed into a

sum of binary variables. Thus, from the original polynomial

P : R
n �→ R we derived polynomial P ′ : B

n′

�→ R with

n′ ∈ N. Now, P ′ is brought into QUBO form, which means

that we ensure that it only consists of at most square terms.

If no more than two binary variables are multiplied with

each other in polynomial P ′, a QUBO form is already given

and nothing more needs to be done. If this is not the case,

two new variables are introduced for every term in which

more than two variables are multiplied with one another. These

will each represent one of the two halves of the multiplied

variables. For example, if

P ′(x1, x2, x3, x4) = −x1x2x3x4 + x4 (7)

is given, two new variables q1, q2 with q1 = x1x2 and q2 =
x3x4 are introduced. The previously cubic polynomial P ′ is

thus transformed into the quadratic polynomial:

P ′′(q1, q2, x4) = −q1q2 + x4 (8)

Note that it does not matter how we split up the original

variables as long as we end up with q1q2 as our new factor.

The global minimum of P ′′, however, is not necessarily

identical to the global minimum of P ′. This is based on the

fact that, from the optimization function’s point of view, the

new variables qi have no relation to the original variables xj .

This can be seen in the example above, because with q1 =
1, q2 = 1, x4 = 0 a global minimum is given for P ′′, but this

constellation of variables constitutes a contradiction: q2 = 1
implies x3 = 1 and x4 = 1, but we had set x4 = 0. For this

reason, the new variables qi must be connected back to the

old variables xj .

This is achieved by including the constraint

q = x1 · x2 · ... · xn (9)

into the QUBO form to be minimized. In the following, we

will explain that using the special case q = q1q2, which can

be generalized by introducing variables q1 = x1 · · ·x⌊n

2 ⌋ and

q2 = x⌊n

2 ⌋+1 · · ·xn. Constraint q = x1x2 is met iff penalty

term

4q − 3qx1 − 3qx2 + 2x1x2 (10)

has a global minimum of 0. This term is added to the QUBO

form and weighted with

A = 1 +
∑

a∈P ′

2|a| (11)

where a ∈ P ′ denotes all the coefficients of polynomial P ′.

This weighting ensures that whatever value the polynomial

takes when minimized, the constraint is always maintained and

thus the introduction of the new variables remains consistent.

With respect to the example (see Eq. 7), weighting A =
1 + 2 + 2 = 5 follows for polynomial P ′′. For the two

newly introduced variables we get penalty terms 4q1−3q1x1−
3q1x2+2x1x2 and 4q2−3q2x3−3q2x4+2x3x4 and eventually

the final polynomial in QUBO form:

P ′′′(x1, x2, x3, x4, q1, q2) = −q1q2 + x4

+ 5(4q1 − 4q1x1 − 3q1x2 + 2x1x2)

+ 5(4q2 − 4q2x3 − 3q2x4 + 2x3x4) (12)

We see that P ′′′ (see Eq. 12) is a polynomial of binary

variables with a maximum of two variables being multiplied

with each other.
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III. EXAMPLES

We demonstrate the feasibility of our approach using two

separate optimization problems.

A. Ratio Cut

In graph theory, a cut denotes a partition of the set of the

graph’s vertices. In this example, we search for an optimal

ratio cut, i.e., given a graph G = (V,E) with vertices V

and edges E we search for two vertex sets A,B ⊂ V with

A ∪B = V and A ∩B = ∅ so that

rcut(A,B) =
cut(A,B)

|A|
+

cut(A,B)

|B|
(13)

becomes minimal. Here, cut(A,B) denotes the number of

edges between partitions A and B. |A| and |B| indicate the

number of vertices in A and B, respectively.

Eq. 13 clearly shows that it contains divisions of terms that

cannot be represented as a polynomial. This is the case because

the terms are not constant, but depend on variables A,B.

According to our proposal, the addition of constraints or

modification of cost function (Sec. II-A3), the application

of bijective monotonic functions (II-A4), or the realization

of Taylor series expansion (II-A6) comes into question. In

the given case we decide to modify the cost function (Sec.

II-A3) by combining the fractions and obtaining a common

denominator. Since |A|+|B|= |V | and therefore constant, it

follows:

rcut(A,B) ≈
cut(A,B)(|A|+|B|)

|A||B|
≈

cut(A,B)

|A||B|
(14)

With this initial step we have received a single division,

which will now be transformed into an addition using a

logarithm (Sec. II-A4). Here we use the natural logarithm,

since its Taylor expansion (Sec. II-A6) is easy to calculate.

Thus, it follows:

rcut(A,B) ≈ ln(cut(A,B))− (ln(|A|) + ln(|B|)) (15)

By using the natural logarithm, the division was replaced

by a subtraction, which is why the next step to perform is

a Taylor series expansion (Sec. II-A6). Using the constants

C1, C2, C3, D1, D2, D3 ∈ R, the approximation of ln can now

be improved, because the following applies:

ln(x) = ln(C) + ln
( x

C

)

(16)

= ln(C) + ln
(( x

C
−D

)

+D
)

(17)

≈ ln(C) + ln(D) +
x
C
−D

D
−

( x
C
−D)2

2D2
(18)

≈
x
C
−D

D
−

( x
C
−D)2

2D2
(19)

Note, that in last line of Eq. 16 the constant terms have been

dropped, as they are irrelevant in the context of optimization.

These constants influence the transformation of variable x

from the range [x0, x1] into range [x0

C
− D, x1

C
− D]. Thus,

C1, C2, C3, D1, D2, D3 ∈ R are parameters that can be

changed in order to “shift” the range of x to another range

in which the Taylor expansion of the natural logarithm is

(more) appropriate for our given application. The values of the

constants can be determined either empirically or by analyzing

the variable ranges and calculating the target ranges. The

following example should clarify this: If the variables are of

interest in the range [−100, 200] and the corresponding Taylor

approximation is appropriate in range [0.5, 1.5], then constants

C = 200, D = −1 result in a meaningful transformation.

It follows:

rcut(A,B) ≈ ln

((

cut(A,B)

C1
−D1

)

+D1

)

− ln

((

|A|

C2
−D2

)

+D2

)

− ln

((

|B|

C3
−D3

)

+D3

)

(20)

rcut(A,B) ≈
2cut(A,B)

D1C1
−

cut(A,B)2

2D2
1C

2
1

−
2|A|

D2C2
+

|A|2

2D2
2C

2
2

−
2|B|

D3C3
+

|B|2

2D2
3C

2
3

(21)

Resulting Eq. 21 now shows that by using a Taylor ex-

pansion there is no longer a logarithm, no division by a

variable takes place, and thus a polynomial for the original

cost function rcut(A,B) was found.

Now, |A|, |B| and cut(A,B) have to be represented using

binary variables. To do this, we introduce variables xi,j , where

xi,j = 1 means that vertex i belongs to partition j. This results

in the following translations:

|A|=

|V |
∑

n=1

xn,0, |B|=

|V |
∑

n=1

xn,1 (22)

cut(A,B) =

|V |
∑

n,m=1

xn,0xm,1 (23)

Finally, an additional constraint is required (Sec. II-A3),

which enforces that each vertex of the graph is assigned to

exactly one partition. This is achieved with

A

|V |
∑

n=1

(xn,0 + xn,1 − 1)2 (24)

where weighting A ∈ R
+ ensures that this constraint is

prioritized within the minimization of the cost function.

If we now insert Eqs. 22, 23 into Eq. 21 and also add the

constraint from Eq. 24, then we get a representation of the cost

function from Eq. 13 as a polynomial consisting only of binary

variables. However, this polynomial is not yet in QUBO form

as cut(A,B)2 incorporates terms in which up to four binary
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Fig. 3: Graph used for demonstration. Partitions A =
[0, 1, 2, 3] and B = [4, 5, 6, 7] were determined, which cor-

responds to the global optimum.

Fig. 4: Example of a regression problem. Points with label

0 shown in blue, points with label 1 shown in green. The

separating line is shown in black.

variables are multiplied. Thus, the last necessary step is the

application of the method presented in Sec. II-B2 in order

to retrieve the final QUBO form. This step is not explicitly

demonstrated here, since the resulting polynomial will hardly

be readable.

To demonstrate the general functionality of this whole

translation, the graph from Fig. 3 has been examined. The

values of the constants, determined by analytical analysis

followed by a heuristic search, are set to D1 = 1, C1 =
2, D2 = 1, C2 = 8, D3 = 1, C3 = 8, A = 100. Solving this

particular problem instance returned partitions A = [0, 1, 2, 3]
and B = [4, 5, 6, 7] as the global optimum.

B. Logistic Regression

The problem of logistic regression in d-dimensional space

consists of a set of data points (x1, y1), ..., (xn, yn), n ∈ N,

where xi ∈ R
d and yi ∈ {0, 1} for all i < n. The goal is

to find a function f : Rd → {0, 1} so that yi = f(xi) holds

for as many xi as possible, i.e., f can predict the label of

an input xi. Usually, there exist some tight constraints on the

structure of f so that simply looking up the labels in the data

set is not feasible. Fig. 4 shows an example for d = 2 and

f(x) = (mx > t) with parameters m, t, i.e., f is a separating

line in 2-dimensional space.

We now translate a more general instance of logistic regres-

sion to QUBO as an additional showcase for our toolkit for

QUBO translations. We choose a sigmoid separation function

p µ σ

1.0 0.97 0.01

0.9 0.86 0.02

0.8 0.76 0.02

0.7 0.66 0.03

0.6 0.56 0.03

0.5 0.50 0.03

Fig. 5: Test results for logistic regression. p is the run

parameter as described in text, µ is the average ratio of correct

predictions, and σ is the corresponding standard deviation.

σθ(x) =
1

1+e−θT x
so that f(x) = (σθ(x) > 0.5) for a single

parameter vector θ ∈ R
d.

We derive our optimization goal from the binary cross-

entropy between the correctly and incorrectly classified sets:

n
∑

i=1

−yi · ln

(

1

1 + e−θT xi

)

− (1− yi) · ln

(

1−
1

1 + e−θT xi

)

(25)

Through application of Taylor series expansion (Sec. II-A3)

and simplification we can transform Eq. 25 into:

n
∑

i=1

ln
(

1 + e−θT xi

)

+ (1− yi)θ
Txi (26)

With Taylor expansion ln (1 + e−x) ≈ ln 2− 1
2x+ 1

8x
2 we

derive:

n
∑

i=1

(1− yi)θ
Txi −

1

2
θTxi +

1

8
(θTxi)

2 (27)

Note that it is easy to expand this example to more multi-

dimensional labels, i.e., yi ∈ {0, 1}g for some g ∈ N; all we

need to do is use a corresponding matrix for θ instead of a

vector.

To evaluate our method we produced a data set for linear

regression in the following way: We sampled parameters b, c

for a function f : Rd−1 → R with f(x) =
∑n

i=0 xi·ci+b. This

function separates Rd into to partitions, i.e., Rd = {x | f(x) ≤
0} ∪ {x | f(x) > 0}. We also sampled n data points

x1, ..., xn ∈ R
d. Each test run was defined by a probability

p ∈ [0; 1] given as a parameter, which described how likely we

were to assign — to a data point xi — a label yi that matches

the separation performed by f : If xi ∈ {x | f(x) ≤ 0} we

assign yi = 0 with probability p and yi = 1 otherwise; if

xi ∈ {x | f(x) > 0} we assign yi = 1 with probability p and

yi = 0 otherwise.

For various settings of p, we performed 200 test runs for a

setting with 10 input and 10 output dimensions. Each test run

consisted of sampling one function f and 1000 data points,

out of which 600 were used for optimizing θ and 400 were

used as a test set to produce the evaluation results shown in

Fig. 5.

As this example shows, logistic regression can be translated

to QUBO for execution on quantum hardware. This poses an
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especially interesting application as the function we considered

can also be used to encode the behavior of a single neuron

within a neural network. However, multiple Taylor approxi-

mations deteriorate the results when we want to extend our

approach to larger neural networks. Nonetheless, harvesting

the power of quantum computing for the optimization of neural

networks remains an important challenge for the field [32].

IV. CONCLUSION

Our goal is to simplify the manual process of formulating

and transforming a given problem to QUBO form. To this

end we have presented a two-step process to generate a

QUBO formulation from a general objective function. First, as

described in Sec. II-A, multiple approaches like Taylor series

expansion can be used to transform an optimization function

into a polynomial. Then, as described in Sec. II-B, a specific

approach to transform that polynomial into QUBO form

can be used: This method consists of replacing real-valued

variables with sums of binary variables and introducing new

variables to reduce the amount of variables being multiplied.

We have modeled ratio cut (Sec. III-A) and logistic regression

(Sec. III-B) as QUBO problems, hoping that these examples

motivate trying out our approaches and help conquering new

problems for quantum computing.

Even though we show that our translations conserve the

global optimum of the objective functions (cf. the proof of

Theorem 1 in the appendix, e.g.) that does not necessarily

mean that other properties of the search space are retained.

Future work should thus analyse how the newly generated

problem formulations fit various solving mechanisms includ-

ing (most importantly) QAOA and QA.

Naturally, our list of suggested approaches and methods is

not complete and can be expanded in further research. We

suspect that more wide-spread interest might bring forth the

consolidation of a more concise and closed toolkit, which

helps developers transform their problem definitions and might

support this process with automated procedures as well.
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In this appendix, we provide the proof for Theorem 1 in the

accompanying paper.

Theorem 1. Let P be a polynomial and P ′′′ the corresponding

QUBO form produced according to the procedure we describe

in Section II.B, then it holds that

min
x∈L

P (x1, ..., xn) = min
z∈Bn′

P ′′′(z1, ..., zn′) (3)

where L = {(x1, ..., xn) | xi ∈ Λi} is the set of all possible

solution candidates of P . Furthermore, there is a function

f : Bn′

→ L such that

∀z∗ ∈ argmin
z∈Bn′

P ′′′(z1, ..., zn′) : f(z∗) ∈ argmin
x∈L

P (x1, ..., xn).

(4)

Proof. In the following we will show the correctness of Eq. 3

using a proof by cases (≥ and ≤), where at the same time

case ≤ also proves correctness of Eq. 4.

Case ≥: Let x ∈ L be an arbitrary solution within

the domain of the minimization problem of P . Using the

method presented in Section II.B of the main paper, an

equivalent binary representation yx can be constructed, which

thus corresponds to a solution of P ′′′, i.e., the problem in

QUBO form. yx fulfills the consistency of the variables (a)

by construction and (b) due to known x, which is why the

constraints introduced in Eq. 9 are automatically fulfilled and

corresponding penalty values (Eq. 10) do not apply. Thus

P (x1, ..., xn) = P ′′′(yx1 , ..., yxn′
) ≥ min

z∈Bn′

P ′′′(z1, ..., zn′)

(28)

applies, since the transformation from P to P ′′′ leaves the

given minimum unchanged, because only the representation of

existing variables is changed and new variables are introduced.

In particular, the following holds:

min
x∈L

P (x1, ..., xn) ≥ min
z∈Bn′

P ′′′(z1, ..., zn′) (29)

Case ≤: Let z ∈ B
n′

be an arbitrary solution of P ′′′. Two

cases are now considered: Either z violates the constraints for

maintaining consistency between the variables (see Eq. 9 or z

fulfills these constraints and thus the consistency is given.

Let us in the first case assume that z violates the implicit

constraints. Then the penalty term from Eq. 10 takes a value

of at least 1 and it is also multiplied by weighting factor A

(Eq. 11). Since A is constructed using all the coefficients of

polynomial P ′, it holds ∀x ∈ L : A > 2P (x1, ..., xn) and —

because P ′′′ is composed of P ′ plus the penalty values — in

particular

P ′′′(z1, ..., zn′) >
A

2
> min

x∈L
P (x1, ..., xn) (30)

Let us now assume for the second case that z actually fulfills

the constraints for maintaining consistency. Then it is possible

to extract the information for restoring a solution xz ∈ L

directly from z. In order to do this, the binary representations

of the different variables of xz must first be read out directly

from the binary variables of z and finally be transferred into

real numbers. This can be done using a procedure that converts

solutions of QUBO problem P ′′′ into solutions of original

problem P , which exactly reflects the task of function f

sought. In particular the following applies to such solutions:

P ′′′(z1, ..., zn′) = P (xz1 , ..., xzn) ≥ min
x∈L

P (x1, ..., xn) (31)

From Eq. 30 and Eq. 31 it now follows

min
x∈L

P (x1, ..., xn) ≤ min
z∈Bn′

P ′′′(z1, ..., zn′) (32)

In summary, we have now shown by means of cases ≤
and ≥ that the minima of original polynomial P are identical

to those of polynomial P ′′′ in QUBO form and thus Eq. 3

applies. In addition, we have shown within case ≤ that every

minimal solution of P ′′′ can be transformed into a minimal

solution of P and thus Eq. 4 holds.
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