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Abstract—To guarantee a successful deployment of a droop-
based control strategy to mitigate overvoltage problems caused
by solar photovoltaic (PV) generation, Distribution System Op-
erators (DSOs) will need to estimate the amount of active power
curtailed by the PV inverters for billing purposes. This paper
provides a structural elaboration on the development of data-
driven approaches in Python to estimate the PV curtailed power
as a provision of voltage support services by residential users
using droop-based voltage control strategies. The use of the total
input data, available for a DSO, would be impractical for an all-
regression approach for the estimation of the PV curtailed power.
Since in the majority of the data no active power is curtailed,
the data-driven models would in this case partly be trained and
fitted for situations where there is no active power curtailment.
The regression models for the curtailed power prediction are
therefore preceded by a classification model. The developed
combined classification-regression model was able to estimate the
PV curtailed power with an error of less than 4%, for test data
from the network on which the model was trained.

Index Terms—Low voltage distribution systems, overvoltage,
droop control, PV curtailment, machine learning

NOMENCLATURE

η Explained variance POC Point of Connection
σ Standard deviations model accuracy PV Solar photovoltaic
ACC Model accuracy PVcapacity Capacity of the PV installation
APC Active Power Control RPC Reactive Power Control
DSO Distribution System Operator Ta Ambient temperature
GT Solar irradiance Vdroop Voltage magnitude at the POC
KNMI Royal Dutch Meteorological Institute VthP APC voltage threshold
LV Low Voltage y Actual output value
n Number of data instances ŷ Predicted output value
p Probability value yerror Difference between y and ŷ
Pcurtail Active power curtailment z Z-score
Pnet Net consumer power

I. INTRODUCTION

A. Motivation and Background

The introduction of decentralized generation, such as so-
lar photovoltaics (PV), in the low voltage (LV) distribution
networks, has a considerable influence on voltage regulation.
Most of the LV distribution networks today were not designed
for the significant increase in reverse power flows due to
PV production. During moments of low consumption and
high PV generation, the power will not be used by the
consumer, but will instead be fed into the network, possibly
leading to overvoltage problems. The control of decentralized
generation units seems to be the most promising technique

Fig. 1. Droop-based Active Power Control and Reactive Power Control
strategies [3].

to deal with these challenges, due to the distributed and easy
implementation features of overvoltage strategies which are
locally implemented at the PV inverters [1]. Furthermore, since
the control of the decentralized generation is only used when
it is actually needed, when the voltage level in the network
becomes too high, the amount of power that is regularly cur-
tailed is minimized [2]. Dutch Distribution System Operators
(DSOs) have started to develop and implement voltage control
strategies based on well-known droop control, which could be
installed locally at the PV inverters [1]. Standard droop control
strategies run continuously using only local measurements,
which is why Active Power Control (APC) and Reactive Power
Control (RPC) strategies can be implemented in the control
system of the PV inverter. Fig. 1 shows the droop-based APC
and RPC strategies, where it can be seen that the active and
reactive power of the PV installation are plotted as a function
of the voltage magnitude at the point of connection (POC)
with the network. For the APC, the active power output of
the inverter will be set to the current maximum power point
when the voltage at the POC is lower than the APC voltage
threshold (VthP ). In the case of an overvoltage, the PV inverter
will reduce the active power injection proportionally to the
voltage increase at the POC.

Although in general both strategies are effective to mitigate
voltage problems, this paper only focuses on APC. The APC
strategy would be beneficial from a DSO perspective, as this
strategy raises fewer concerns regarding the possible over-
loading of distribution transformers due to the reactive power
consumption of the PV inverters within coordinated APC-RPC
strategies. Although the droop-based control strategy is shown
to be effective, the DSOs will be expected to pay a fee to
the respective PV owner for the amount of active power that
is curtailed by the PV inverter. Therefore, to guarantee the
successful deployment of such a control strategy, the DSOs978-1-6654-0557-7/22/$31.00 ©2022 IEEE
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will need to estimate the amount of active power curtailed by
the PV inverters for billing purposes. This estimation must be
based only on operational data that the DSO has access to, as
well as other open-source data, such as weather measurements.

B. Relevant Literature

Within the literature, numerous studies elaborate on the im-
plementation and modeling of PV curtailment and the effects
on distribution networks problems [1], [3]–[5]. However, only
a few studies focus specifically on the data-driven estimation
of PV curtailment approaches [5]–[7]. Within these studies, the
PV curtailment is estimated based on only part of the available
data (e.g. only smart meter voltage data and the rated power
of the PV installation) and/or based on operational data for
the PV generation, which is more detailed than a DSO would
normally have direct access to. Additionally, these studies only
evaluate a limited selection of data-driven approaches based
on curve fitting, whereas this study will evaluate on more data-
driven machine learning approaches as well as the importance
of the different types of available data.

C. Contributions and Organization

Within this paper, a structural elaboration is given on the
development of multiple data-driven approaches to estimate
the PV curtailed power as a provision of voltage support
services by residential users using droop-based voltage control
strategies. This work will contribute to the estimation of PV
curtailed power purely based on operational data, as well as
other open-source data such as weather measurements that a
DSO would have access to. Additionally, the developed data-
driven models are evaluated and compared using different
performance measures and an evaluation of the importance
and selection of the available features is given. Finally, a
conclusion will be given on the best-performing developed
model to estimate curtailed PV power.

II. METHODOLOGY

The intended data-driven tools could be used by DSOs
to estimate the amount of active power curtailed by the PV
inverters for billing purposes. In this sense, this estimation
must be based on operational data that the DSO already has
access to, such as voltage magnitude at the POC (Vdroop),
the net consumer power (Pnet) and the capacity of the PV
installation (PVcapacity), as well as open-source data, such
as weather measurements for solar irradiance (GT ) and tem-
perature (Ta) from the Royal Dutch Meteorological Institute
(KNMI). Within this study, the operational data was obtained
from multiple power flow simulations. To realistically model
the effects of droop control on voltage problems in LV
networks, these power flow simulations are performed using a
network model representative for a typical Dutch LV network
adapted from [8]. For the initial simulation, the uncurtailed PV
production data is used together with the consumer load data
obtained from anonymized smart meter data. Whenever the re-
sulting bus voltage for a certain time-step is above the voltage
threshold (VthP = 1.08 [pu]), the PV production for this time

Fig. 2. Operational voltage and active power curtailment output data shown
for all data instances and only data instances where active power is curtailed.

ClassifierModel Input

Model Output
(Pcurtail)

RegressionClass = 0

Class = 1 → Pcurtail = 0

Fig. 3. Flow of data for the machine learning models approach.

step for the corresponding bus is recalculated for the second
power flow simulation. The outcome of this second simulation
is representative of the situation in which APC droop control is
applied to prevent or mitigate voltage magnitude problems. To
analyze the applicability of the machine learning approaches,
it is specified that the approaches must be applicable with a
margin of error of no greater than 5% and a fair and balanced
distribution of the error between the consumer and DSO.
The machine learning models are developed based on three
techniques, namely: linear regression models, gradient boosted
trees models, and neural network models.

As shown in Fig. 2, the use of all available input data
would be impractical for an all-regression approach, since the
relationships between the estimated active power curtailment
(Pcurtail) and the input variables, in this case, would partly
be fitted for situations where there is no active power curtail-
ment (Pcurtail = 0). The regression models in the different
approaches were therefore preceded by a classifier model, as
shown in Fig. 3. Within the linear regression model techniques,
for classification, this paper elaborates on a logistic regres-
sion model. For regression, this paper elaborates on a linear
regression model as well as a polynomial regression model.
The linear regression models were trained, optimized, and
tested using the Scikit-learn package in Python [9]. Within the
gradient boosted trees models, this paper elaborates on both a
gradient boosted trees classification and regression model. The
gradient boosted trees models were trained, optimized, and
tested using the XGBoost package in Python [10]. Regarding
the neural network models, this paper will elaborate on both a
deep neural network classification and regression model. The
neural network models were trained, optimized, and tested
using the Tensorflow Keras package in Python [11].

A. Data preparation

Within the different machine learning approaches, the avail-
able data set is prepared using the following steps:

1) Splitting the data: To evaluate how well a model per-
forms on new data instances, the total data set is split into two
parts: the training set and the test set. The models are first
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trained using the training set of the data, after which the test
set is used to evaluate the performance. The instances which
appear in the different sets are picked randomly so that the
individual sets will still resemble the full variety of the data,
even when the total data set is sorted. To ensure that both data
sets contain an equal proportion of the data to represent the
different classes, the ratio of the different classes and the ratio
of the different capacities of the PV installations are stratified
within the random splitting of the data in a 80% training set
and a 20% test set.

2) Feature scaling: Due to the different units of the input
features, the magnitude of the data from the different features
can differ significantly. Most machine learning algorithms
do not perform well when using input features on different
scales. Therefore, for the linear regression models and the
neural network models, standardization is used to scale the
input features and new input data. No scaler is used for the
XGBoost models since the predictions in these models are
based on splitting of the data in decision thresholds where the
performance is not affected by the scaling of the data.

B. Model optimization

Within this study, different optimization approaches are used
in the development of the machine learning models:

1) Hyperparameter tuning: The optimization of the ma-
chine learning models is done using hyperparameter tuning.
In this process, a randomized search approach is used as
a pre-selection of the best performing values for each of
the concerning hyperparameters. Based on a parameter grid,
containing the hyperparameters and the values to be evaluated,
a grid search is used to evaluate all possible combinations
using cross-validation to find the best performing combination
of hyperparameter settings for the concerning model.

2) Balancing the training data: For the classification mod-
els, an additional optimization approach is used to balance
the training data, since there are more instances where no
active power was curtailed compared to instances with active
power curtailment in the total data set. Within this optimiza-
tion, the aim is to create a more balanced performance of
the classification models, balancing the burden for both the
DSO and the consumer for the instances of misclassification.
This balancing approach is analyzed using undersampling,
oversampling, combined under- and oversampling, and weight
scaling techniques, from which the best performing technique
is used for the individual classification models.

3) Feature importance and selection: For the initial models,
all available features for a DSO are included as input data for
the machine learning algorithms. However, from a practical,
computational, and data acquisition point of view, it may be
beneficial to have a model with the least number of data
features necessary. Additionally, models which are fitted to
the input data, like linear regression models, will include
every parameter in the prediction of the output of the model
which can reduce the overall effectiveness and accuracy of the
models [12]. Therefore the importance of the input features is
evaluated for each of the machine learning models, followed

by a feature selection approach to give more insight into the
performance of the different models and their dependence
on the different input features. For the linear regression and
logistic regression models, the importance of the input fea-
tures is analyzed from their corresponding fitted coefficients.
However, the feature importance for the polynomial regression
and neural network models can not directly be derived. For
these models, the feature importance is determined using a
permutation importance approach. In this approach, one of
the input features is sequentially shuffled in the total data set,
keeping the other input features unaffected. The shuffling of
an important feature will result in a significant decrease in
the models’ performance, whereas the shuffling of a relatively
unimportant feature will result in less decrease in the model
performance [13]. Within the XGBoost models, the prediction
is obtained using data split decisions, the estimates of feature
importance can therefore automatically be analyzed using the
XGBoost package library [10].

C. Performance measures

The performance of a classifier model can be evaluated
using a confusion matrix. From the confusion matrix, the
precision and the recall metrics can be determined. To further
clarify the naming and meaning of the different predictions in
the confusion matrices, the instances of true negative resemble
the part of the data where power curtailment takes place which
is correctly classified by the classifier model. The instances
of true positives resemble the part of the data where no
power curtailment takes place which is correctly classified
by the classifier model. The false positive instances resemble
the part of the data where power curtailment takes place,
however, the classifier model classifies these instances as if no
power is curtailed. On a more practical approach, this means
that consumers will have curtailed active power, however, the
model used by the DSO will not predict this and therefore the
DSO will not compensate for this amount of curtailed power.
The burden of the false positive instances is therefore on the
consumers. The false-negative instances resemble the part of
the data where no power curtailment takes place, however,
the classifier model classifies these instances as if power is
curtailed. On a more practical approach, this means that the
DSO, based on the prediction of the classifier, will compensate
the consumer for power that has not been curtailed. The burden
of the false-negative instances is therefore for the DSO. The
accuracy for the regression models is calculated based on
the so-called explained variance, using Equation 1. In this
equation, yerror is the difference between the true output value
y and the predicted output value ŷ, ȳerror and ȳ represent the
average of the respective values and n represents the number
of instances. Since the regression model is only trained on
the part of the training set which is labeled for active power
curtailment, it is also only evaluated using the part of the test
set labeled for active power curtailment.

η = 1−
1
n

∑n
i=1(yerror − ȳerror)

2

1
n

∑n
i=1(y − ȳ)2

· 100% (1)
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D. Model selection and statistical analysis

To provide a significant conclusion with regard to the best
performing model, in addition to the test set performance,
a so-called z-score test is performed. The z-score test first
formulates a hypothesis, which in this case is chosen to
resemble the situation where the performance of two models
is the same. This z-score test will thereafter determine if the
95% confidence intervals of the accuracy of the two models are
not overlapping, either confirming or rejecting the hypothesis
that the performance of both models is equal at a significance
level of 5%. The z-score for the different comparisons of the
models is calculated using Equation 2, in which ACC1 and
ACC2 resemble the model accuracies and σ1 and σ2 resemble
the standard deviations of the model accuracy’s [14]. Using
this z-score as a threshold, the area under the standard normal
cumulative distribution is computed to obtain the probability
p-value. If this p-value is smaller than the significance level
of 5%, the hypothesis that the performance of the two models
is the same can be rejected, meaning that the performance of
the model with the highest accuracy is also significantly better
[14].

z =
ACC1 −ACC2√

σ2
1 + σ2

2

(2)

The accuracy and standard deviation of the different models
are obtained using k-fold cross-validation. The idea of cross-
validation is not to evaluate the model on a pre-defined test
set, but to create the opportunity to test the model on all parts
of the data set. To do this, the data set is split up into k parts,
one of the parts is used for validation, the validation fold, and
the other k−1 parts are combined into a training subset for the
evaluation of the model [14]. Within this study, the data set is
split up in ”k = 10” parts. The cross-validation results give an
estimate of the performance of the machine learning models
with less deviation compared to a single test set performance
and are said to be more reliable to estimate the performance
of the algorithms on new unseen data [15].

III. RESULTS

A. Test set performance

Fig. 4 shows the confusion matrices for the performance of
the different classification models on the test set data. Table I
shows the corresponding accuracy, precision, and recall scores
for the class predictions of the classification models. It can be
seen that the XGBoost model leads to the best performance. In
total this XGBoost model leads to the lowest overall instances
of misclassification, whilst also leading to the lowest amount
of instances of misclassification of an instance of active power
curtailment as if no active power is curtailed.

Table II shows the accuracy of the curtailed power esti-
mation of the different regression models on the data in the
test set labelled for regression. It can be seen that the neural
network model performs slightly better than the XGBoost
model, whilst both these models outperform the linear and
polynomial regression models.

0 1

0

1

350 123

45 17304

Logistic Regression

0 1

419 54

65 17284

XGBoost

0 1

409 64

63 17286

Neural Network

Predicted

A
ct

ua
l

Fig. 4. Confusion matrices of the classification models on the test set data.

TABLE I
PERFORMANCE OF CLASSIFICATION MODELS ON THE TEST SET DATA

Logistic Regression XGBoost Neural Network
Accuracy 0.9906 0.9933 0.9929
Precision 0.9929 0.9969 0.9963
Recall 0.9975 0.9963 0.9964

TABLE II
PERFORMANCE OF REGRESSION MODELS ON THE TEST SET DATA

Linear Regression Polynomial Regression XGBoost Neural Network
Accuracy 95.42 % 95.75 % 98.14 % 98.32%

TABLE III
PERFORMANCE OF THE COMBINED CLASSIFICATION-REGRESSION

MODELS ON THE TEST SET DATA

Linear Polynomial Gradient Neural
Regression Regression Boosted Trees Network

Accuracy total model 91.82% 92.35% 96.26% 95.71%
Accuracy regression incl. wrong classified 77.59% 79.04% 90.55% 89.29%
Accuracy regression only right classified 91.11% 92.41% 97.75% 98.01%

However, due to the classification error, the regression
model will also be used in instances where no active power
is curtailed. Table III therefore shows the total combined
classification-regression model performance which consists of
the three different accuracy values for the curtailed power
estimation for the total model, namely: the accuracy for the
total combined classification-regression models, the accuracy
of the regression models including the misclassified instances
and the accuracy of the regression models including only the
correctly classified instances. A visualization of the combined
classification-regression model performance showing the true
(blue) and predicted (red) values of the active power curtail-
ment is depicted in Fig. 5. It can be seen that the XGBoost
model performs slightly better than the neural network model,
whilst both these models outperform the linear and polynomial
regression models on the accuracy of the total model. When
only looking at the instances which were classified for the
regression model, including wrongly classified instances, the
XGBoost model still slightly outperforms the neural network
model. Regarding the instances which were correctly classified
for the regression model, it can be seen that similar to
individual regression performances, the neural network model
performs slightly better than the XGBoost model.

B. Model selection and statistical analysis

Since the individual performance of the models on the
defined test set does not provide a significant and unambiguous
conclusion concerning the best performing model, a so-called
z-score test has been performed. The accuracy and standard
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Fig. 5. Performance visualisation showing the true (blue) and predicted
(red) values of the active power curtailment for the different combined
classification-regression models.
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Fig. 6. Boxplot for the cross-validation performances of the different
classification models.

deviation of the different models are obtained using the 10-
fold cross-validation performances, which would give a better
estimate of the performance of the machine learning models
compared to the previous shown test set performances. Fig.
6 shows a boxplot for the cross-validation performances of
the different classification models. It can be seen that the
mean accuracy of the XGBoost model is higher than the mean
accuracy of the logistic regression and neural network model.
Evaluating the resulting probability p-values for the z-score
test, it can be stated that the probability of obtaining these
results, assuming the hypothesis where the performance of
the logistic regression model and the neural network model
is the same as that of the XGBoost model, is 1.7% and 2.4
% respectively. Since the obtained p-values are both well
below the predefined significance level of 5%, it can therefore
be stated that the XGBoost classification model performs
significantly better than the other discussed models.

Fig. 7 shows a boxplot for the cross-validation performances
of the different regression models. It can be seen that the
mean accuracy of the XGBoost model is higher than the mean
accuracy of the linear regression, polynomial regression, and
neural network models. Evaluating the resulting probability p-
values for the z-score test, it can be stated that the probability
of obtaining these results, assuming the hypothesis where the
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Fig. 7. Boxplot for the cross-validation performances of the different
regression models.
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Fig. 8. Feature importance for the different classification models.

performance of the linear regression model, the polynomial
regression model, and the neural network model is the same as
that of the XGBoost model, is 1.4 %, 1.5 %, and 0.7% respec-
tively. Since this is all well below the predefined significance
level of 5%, it can be stated that the XGBoost regression model
performs significantly better than the other discussed models.

C. Feature importance and selection

Fig. 8 shows the relative feature importance for the different
classification models. It can be seen that for all classification
models, the global irradiance, GT , is the most important
feature for the class prediction. Fig. 9 shows the cross-
validation performance of the classifier models for the different
feature selections, based on the relative feature importance.
It can be seen that the performance of the model decreases
with the decreasing number of selected features. However,
the performance of the XGBoost and neural network classifier
models remains quite stable when only the two most important
features are included in the selection.

Fig. 10 shows the relative feature importance for the differ-
ent regression models. It can be seen that for all regression
models, the net consumption of active power by the con-
sumer, Pnet, is significantly the most important feature for
the prediction. Fig. 11 shows the cross-validation performance
of the regression models for the different feature selections.
Similar to the classification models, it can be seen that the
performance of the models decreases with the decreasing
number of selected features. However, apart from the neural
network model, the performance of the regression models is
quite stable, even with a decreasing number of features.
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The required parameters for the modeling, training, and
optimization of the data-driven approaches, and the impor-
tance of each feature depends on the respective data-driven
approach. However, it can be stated that if the ambient
temperature data, Ta, is not available, the overall decrease in
performance of all the models is minimal and remains under
0.3%. This indicates that even if this data would be missing or
unavailable at times, the DSO would still be able to implement
the different models to estimate the amount of curtailed PV
power without decreasing the accuracy significantly. Nonethe-
less, a combination of all discussed parameters (Vdroop, Pnet,
PVcapacity , GT and Ta) results in the highest performance for
all data-driven approaches.

IV. CONCLUSIONS

Regarding the training and optimization of the data-driven
approaches, the study shows that the use of the total input data

available for a DSO would be impractical for an all-regression
approach for the estimation of the PV curtailed power. Since
in the majority of the data no active power is curtailed, the
data-driven models would in this case partly be trained and
fitted for situations where there is no active power curtailment.
The regression models for the curtailed power prediction are
therefore preceded by a classification model. Regarding the
classification models, a combination of a confusion matrix
together with the precision, recall, and accuracy metrics, as
well as the z-score model selection on the cross-validation
performance, results in an unambiguous conclusion on the best
performing classification approach. For the regression models,
the conclusion on the best performing data-driven approach
on the used data set is based on the test set performance, as
well as the z-score model selection on the cross-validation
performance. Based on these performance measures, it can
be concluded that, from the developed models, the choice
for a combined classification-regression gradient boosted trees
approach, as used in the XGBoost models, for the estimation
of curtailed PV power is sufficiently substantiated for data of
the network on which the model is trained. This approach
meets the specified requirements with an error of less than
4% and is shown to perform significantly better than the other
options while looking at the cross-validation performance.
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