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Satellite observation scheduling plays a significant role in im-
proving the efficiency of Earth observation systems. To solve the
large-scale multisatellite observation scheduling problem, this article
proposes an ensemble of metaheuristic and exact algorithms based
on a divide-and-conquer framework (EHE-DCF), including a task
allocation phase and a task scheduling phase. In the task allocation
phase, each task is allocated to a proper orbit based on a metaheuristic
incorporated with a probabilistic selection and a tabu mechanism
derived from ant colony optimization and tabu search, respectively. In
the task scheduling phase, we construct a task scheduling model for
every single orbit and solve the model by using an exact method (i.e.,
branch and bound, B&B). The task allocation and task scheduling
phases are performed iteratively to obtain a promising solution. To
validate the performance of the EHE-DCF, we compare it with B&B,
three divide-and-conquer-based metaheuristics, and a state-of-the-art
metaheuristic. Experimental results show that the EHE-DCF can
obtain higher scheduling profits and complete more tasks compared
with existing algorithms. The EHE-DCF is especially efficient for
large-scale satellite observation scheduling problems.

I. INTRODUCTION

Earth observation satellites (EOSs) are widely used in
sensing Earth’s surface and surrounding atmosphere. The
extremely useful imaging capabilities of EOSs have played
an important role in resource exploration, disaster surveil-
lance, urban planning, and environmental monitoring [1],
[2]. In recent years, although the number of EOSs is in-
creasing continuously and has reached 906 by January 1st
2021, the satellites are still insufficient for serving numerous
Earth observation requests [3]. Therefore, the EOS schedul-
ing problem that aims to accomplish as many observation
requests as possible forms an essential component in the
EOS systems.

An illustration of the EOS imaging activity is shown in
Fig. 1. An EOS flies around the Earth along with its fixed
track, and its sensor could generate an observation strip
with a certain width and length when passing over a ground
target. To observe multiple ground targets, the EOS needs
to conduct certain operations for the transfer between two
consecutive observation tasks, such as attitude slewing and
stabilization. Besides, the EOS can only perform imaging
operations within a limited time window [4], [5] when it can
pass a ground target and catch sight of the target. During the
observation process, each ground target has different visible
time windows for different EOSs. Meanwhile, an EOS can
observe the same ground target on different orbits. Here,
a single orbit is defined as a time interval that the satellite
circles the Earth once [6], [7]. The scheduling horizon (24 h
in our study) is split into multiple orbits (i.e., intervals), and
each orbit includes candidate tasks with observation time
windows for certain ground targets. The observation time
windows are obtained in advance using satellite-to-target
visibility calculations [8]. Thus, there could be multiple
visible time windows between an EOS and a ground tar-
get. Although many impressive studies have been carried
out to address EOS scheduling problems [6], [8]–[11], the
increasing number of orbiting satellites and user demands
has posed new challenges on multisatellite scheduling prob-
lems with large-scale tasks in practical applications. In
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Fig. 1. Satellite imaging activity.

this article, we aim to tackle a multisatellite, multiorbit,
and large-scale Earth observation scheduling problem. The
difficulties for solving this kind of problem can be viewed
in two aspects. First, the number of candidate EOSs and
visible time windows for serving a task, as well as the
number of tasks could increase the problem complexity
exponentially. Second, multiple satellites indicate that the
constraints would be more complex to guarantee the collab-
oration of satellites, which increases the difficulties for solv-
ing the problem compared with single satellite scheduling
problems. In regard to these difficulties, the exact algorithms
developed in the existing literature are no longer suitable
for large-scale scheduling problems, as the computational
time of exact algorithms is unacceptable [12], [13]. On
the other hand, although heuristic and meta-heuristics have
been widely used to solve large-scale scheduling prob-
lems [14]–[17], the scheduling results of these methods
may not have performance guarantees. Therefore, it could
be natural and of great significance to develop efficient
satellite scheduling methods combing the exact and meta-
heuristics, which can bring together the advantages of
these two types of optimization algorithms to achieve a
higher scheduling performance, to satisfy more user de-
mands and improve the efficiency of the Earth observation
systems.

Motivated by this, in this study, we develop a scheduling
framework based on the well-known divide-and-conquer
principle [18], which decomposes a large-scale EOS
scheduling problem into multiple subproblems to reduce
the complexity of solving the problem. We treat the orbits
of satellites as the resources providing imaging services
and propose a novel scheduling method under the divide-
and-conquer framework (DCF). This method comprises
two phases: task allocation among multiple orbits and task
scheduling on a single orbit. In the task allocation phase,
we develop a metaheuristic allocation method based on
the idea of pheromone in ant colony optimization (ACO)
and the tabu mechanism in tabu search (TS). After the
task allocation phase, multiple subproblems that schedule
tasks on each orbit are generated. Afterward, in the task
scheduling phase, we construct an integer programming
model for each single orbit scheduling problem and utilize
a branch-and-bound (B&B) method to solve this model
exactly. The task allocation and single orbit scheduling in
the two phases are executed iteratively and interactively
until a promising solution is obtained.

The overall approach can be viewed as an ensem-
ble of metaheuristic and exact algorithms based on the
DCF. It provides a new paradigm that cooperatively uses
metaheuristics and exact mathematical programming ap-
proaches to solve complex and large-scale combinatorial
optimization problems. When confronting a complex and
large-scale optimization problem, metaheuristics may not
be effective to find a high-quality solution, while exact
methods generally cannot obtain an optimal solution with
affordable computation time. The proposed approach can
partition the original problem into multiple subproblems
by using a metaheuristic, and then, solves each simpler
subproblem via exact and mature mathematical program-
ming approaches. The obtained solution would be of more
high quality, while the optimization process would be more
efficient.

The main contributions of this article are summarized
as follows:

1) We propose an ensemble of metaheuristic and ex-
act algorithm based on the DCF (EHE-DCF) to
address a multisatellite, multiorbit, and large-scale
Earth observation scheduling problem. The proposed
framework is a new paradigm that decomposes a
large-scale scheduling problem into subproblems
and combines the advantages of metaheuristic and
exact algorithm.

2) In the EHE-DCF, we treat the orbits of satellites as
independent resources that could provide imaging
services, and divide the scheduling process into two
phases, i.e., task allocation among multiple orbits in
the first phase and task scheduling on every single
orbit in the second phase. These two phases are itera-
tively and interactively performed to further improve
the quality of the solution.

3) We design a metaheuristic based on the pheromone
mechanism used in ACO and the tabu mechanism
used in TS to realize the effective task allocation
in the first phase of the EHE-DCF. In addition, we
employ a mathematical model and a corresponding
B&B method to address the task scheduling problem
on every single orbit in the second phase.

4) Extensive experiments on EOS scheduling instances
with multisatellite, multiorbit, and large-scale tasks
are conducted to validate the performance of the
EHE-DCF. Specifically, the EHE-DCF is compared
with five existing approaches: an exact method with-
out the DCF (denote as pure B&B), three DCF-
based metaheuristics, i.e., greedy algorithm based
on the DCF (GR-DCF), simulated annealing al-
gorithm based on greedy neighborhood structure
and DCF (SANS1-DCF), and simulated annealing
algorithm based on random neighborhood struc-
ture and DCF (SANS2-DCF), as well as a state-
of-the-art metaheuristic (ASA) [19]. The experi-
mental results demonstrate the superiority of the
EHE-DCF.
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The rest of this article is organized as follows. Section II
surveys the related works. Section III provides the schedul-
ing framework based on the divide-and-conquer principle.
In Section IV, we present a mathematical model for the
single orbit task scheduling. We introduce the EHE-DCF in
Section V. The simulation experiments and the results are
detailed in Section VI. Finally, Section VII concludes this
article.

II. RELATED WORKS

At present, considerable achievements have been made
in the domain of EOS scheduling problems. The models
established by scholars include mathematical programming
models [3], [20]–[23], constraint satisfaction problem mod-
els [24]–[26], knapsack problems [27]–[29], and graph-
based problems [11], [30], [31]. The algorithms for EOS
scheduling problems can be roughly classified into exact,
heuristic, and metaheuristic approaches.

In general, exact algorithms are feasible in tackling
small-scale EOS scheduling problems [32]. For instance,
Gabrel and Vanderpooten [7] formulated the EOS schedul-
ing problem as the selection of a multiple criteria path in
a graph without a circuit. This problem was solved by the
generation of efficient paths and the selection of a satisfac-
tory path using multiple criteria interactive procedure. Hu
et al. [32] conducted a study on the application of exact
algorithms to EOS constellations and proposed a branch-
and-price algorithm to solve the EOS constellation imaging
and downloading integrated scheduling problem. Peng et
al. [6] investigated the agile satellite scheduling problem
with time-dependent profits and solved the problem based
on an adaptive-directional dynamic programming algorithm
with decremental state-space relaxation.

Exact algorithms can get optimal scheduling results; but
for NP-hard optimization problems, the required computa-
tion time of exact algorithms usually increases exponen-
tially with the increase of problem scale. Thus, heuristics
and metaheuristics are carried out to solve the EOS schedul-
ing problems. For example, Wu et al. [19] developed a
formal model for EOS scheduling problems, and presented
an adaptive simulated annealing SA-based scheduling al-
gorithm integrated with a dynamic task clustering strat-
egy . Huang et al. [33] presented a multiobjective chance
constrained programming model for electronic reconnais-
sance satellites scheduling problem, and proposed a Monte
Carlo simulation-based multiobjective evolutionary algo-
rithm. Many scholars have applied the ACO algorithm to
solve EOS scheduling problems [34]–[37]. For example,
Gao et al. [34] constructed an acyclic directed graph model
for the EOS scheduling problem and presented a novel
hybrid ACO method. Zhang et al. [36], [37] presented a
complex independent set model for multisatellite control
resource scheduling problem, and proposed an ACO-based
algorithm, in which the pheromone trail is updated by two
stages to avoid local optima. Wang et al. [38] established
an integer programming model for the EOS scheduling
problem, and proposed a hybrid ACO algorithm, where the

pheromone was used to indicate how to choose the request
to schedule . These existing works inspired us to design a
metaheuristic based on the pheromone mechanism of ACO
to realize the task allocation in the first phase.

In recent years, a new trend for solving the EOS schedul-
ing problem is to decompose the large-scale scheduling
problem into several small-scale scheduling problems that
can be solved separately. For instance, Xu et al. [39] trans-
ferred the very large area observation problems into a set
covering problem with constraints and solved the problems
based on a three-phase algorithm. Liu et al. [40] decom-
posed the scheduling problem into two subproblems: task
assignment and task merging. Our study is distinguished
from these studies in two aspects. First, we decompose
the scheduling problem into subproblems based on a DCF,
which can solve the problem iteratively and interactively.
Second, we propose an ensemble of metaheuristic and exact
algorithms, which combines the advantages of these two
kinds of algorithms, thereby improving the efficiency of
the optimization process significantly.

Furthermore, in the aforementioned studies, scholars
usually formulated satellites as resources and assumed that
each task has at most one observation time window on each
resource. However, a satellite could have multiple orbits to
provide multiple observation time windows by passing over
a ground target multiple times in the scheduling horizon.
Hence, the observation time windows for a ground target
will not be unique, increasing the difficulties in solving the
EOS scheduling problem. As in some existing studies [6],
[41], [42], we formulate the satellites orbits as different
resources, such that each resource involves at most one
observation window for each ground target, making the EOS
scheduling problem easier to model. Moreover, we address
larger-scale problems compared with the aforementioned
studies.

III. DIVIDE-AND-CONQUER-BASED SCHEDULING
FRAMEWORK

As Fig. 1 shows, an EOS could generate an observation
strip of a certain width and length when passing over a
ground target. The width and length of the strip are deter-
mined by the altitude of the satellite, as well as the view
field, the slewing angle, and the observation duration of
the sensor [5]. In order to facilitate modeling, we assume
that all ground targets are point targets and a ground target
is termed a task. Besides, the orbits of the satellites are
termed as resources that could provide imaging services.
To schedule the satellite resources efficiently, we propose
a novel scheduling framework based on the DCF. The
framework comprises two iterative phases: task allocation
phase among multiple orbits and task scheduling phase on
every single orbit, whose workflow is shown in Fig. 2.

In the task allocation phase, we develop a metaheuristic
to allocate tasks to orbits. We first calculate the probability
of each task to be allocated to each orbit. The calculation
of the allocation probability between a task and an orbit
is inspired by the idea of the pheromone mechanism of
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Fig. 2. Scheduling framework based on the divide-and-conquer principle.

ACO [37]. Once a task is allocated to an orbit, the inten-
sity of pheromone between the task and the orbit will be
increased. Besides, the tabu mechanism of TS is adopted in
this phase to avoid premature convergence. Further details
of the metaheuristic are provided in Section V.

In the task scheduling phase, a set of task scheduling
subproblems on every single orbit is separately solved by a
B&B method based on the allocation results in the task
allocation phase. The scheduling scheme of an orbit is
exactly regarded as the solution of a subproblem, and the
overall scheduling scheme can be obtained by merging all
the subscheduling schemes.

The final scheduling results are obtained through itera-
tively performing the task allocation phase and task schedul-
ing phase until the algorithm termination conditions are met.
These two phases are interconnected via the pheromone
mechanism and tabu mechanism. This framework can ef-
fectively reduce the scheduling complexity of the original
problem and obtain a more promising solution by merging
a set of subsolutions obtained by a B&B method that solves
a set of relatively small-scale subproblems.

IV. MATHEMATICAL MODEL FOR TASK SCHEDULING
ON AN ORBIT

In this section, we develop a task scheduling model
for a single orbit. Satellite observation operations in prac-
tical applications are affected by various factors, such as
cloud coverage, imaging data transmission, and satellite
malfunction [3], [43]. For the convenience of modeling,
we assume that the impacts of these real-world factors are
ignored. Besides, we assume that each task is desired to be
observed once, without repeated observation requests. The
task scheduling model aims to maximize the overall profits
of all the scheduled tasks, while satisfying the constraints
related to satellite operations, including satellite transfer
time between two consecutive tasks, energy capacity, and
memory capacity. The profit of a task represents the impor-
tance and value to the user of completing the observation
task [22], [33], [38].

The used notations are summarized in Table I. Let O =
{O1, O2, . . . , OH } be the set of orbits within the predefined
scheduling horizon and H the number of orbits. Denote T =
{1, 2, . . . , N} as the set of tasks and N the number of tasks.
Define Tk ∈ T as the set of tasks allocated to the orbit k ∈ O.

TABLE I
Notations for the Scheduling Model

Each orbit k is associated with a memory capacity Mk and
an energy capacity Ek . The observation activity consumes
energy and memory resources on each orbit per unit time.
Each task i ∈ Tk is endowed with an observation profit ϕi, a
slewing angle θik , and a time window [wsik, weik] specified
by its earliest possible observation time wsik and its latest
possible observation time weik .

Satellite transfer time is required to observe two dif-
ferent tasks successively. Specifically, after observing a
task i ∈ Tk , the satellite needs a sequence of transformation
operations to observe the next task j ∈ Tk , including sensor
shutdown, slewing, attitude stability, and startup. Denote
tuk , tdk , and tsk as the time consumption of sensor startup,
shutdown, and attitude stability on the orbit k, respectively.
Let v be the slewing velocity of the satellite. The transfer
time st k

i j can be computed as

st k
i j = tdk + ∣∣θik − θ jk

∣∣ /v + tsk + tuk. (1)

To accomplish the model, we introduce binary decision
variables xk

i j , and define xk
i j = 1 if the task i is the immediate

predecessor of the task j on the orbit k; otherwise xk
i j = 0.

Note that there exist two dummy tasks used to start or
terminate sensors when the task index equals 0 or N + 1.
The dummy tasks do not have real profit (i.e., ϕ0 = 0,
ϕN+1 = 0). Thus, the integer programming formulation of
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the task scheduling on the single orbit is constructed as

max
∑
i∈Tk

∑
j∈Tk∪{N+1}, j �=i

xk
i j · ϕi (2)

∑
i∈Tk

∑
j∈Tk∪{N+1}, j �=i

xk
i j · ei · (weik − wsik ) ≤ Ek (3)

∑
i∈Tk

∑
j∈Tk∪{N+1}, j �=i

xk
i j · mk · (weik − wsik ) ≤ Mk (4)

xk
i j · (ws jk − weik − st k

i j ) ≥ 0∀i, j ∈ Tk (5)∑
j∈Tk∪{0}, j �=i

xk
ji ≤ 1 ∀i ∈ Tk (6)

∑
j∈Tk∪{N+1}, j �=i

xk
i j ≤ 1 ∀i ∈ Tk (7)

∑
j∈Tk∪{0}, j �=i

xk
ji −

∑
j∈Tk∪{N+1}, j �=i

xk
i j = 0 ∀i ∈ Tk (8)

xk
0,N+1 + xk

N+1,0 = 0 (9)∑
j∈Tk

xk
0, j = 1 (10)

∑
i∈Tk

xk
i,N+1 = 1. (11)

The objective function (2) aims to maximize the entire
observation profits of all the scheduled tasks. Constraints
(3)–(5) represent the energy, memory, and time window
constraints, respectively. Constraints (6) and (7) indicate
that there is at most one predecessor task and one subsequent
task for each real task. Constraint (8) guarantees that the
number of predecessors is equal to the number of successors
for each task. Constraint (9) indicates that the dummy tasks
cannot be used as adjacent tasks. Since adjacent dummy
tasks do not contribute to the objective function, we force
xk

0,N+1=0 and xk
N+1,0 = 0. Constraints (10) and (11) ensure

that there must be a real task after the dummy task 0 and a
real task before the dummy task N + 1.

V. ENSEMBLE OF METAHEURISTIC AND EXACT AL-
GORITHM

A. Metaheuristic for Task Allocation

To cooperate with the proposed DCF, we propose a novel
metaheuristic method hybridizing the tabu mechanism of
TS and the pheromone mechanism of ACO, for the task
allocation phase. In detail, the tabu mechanism is utilized to
modify the orbit set for task allocation, while the pheromone
mechanism is adopted to select appropriate orbits for tasks.
Furthermore, we introduce three kinds of factors, including
status factor, pheromone trail factor, and feedback factors
to implement the aforementioned two mechanisms.

Before detailing the proposed metaheuristic method, we
clarify some definitions for convenience. Denote COi as an
orbit set in which all orbits have visible time windows for
the task i. Although all the orbits in COi are visible to i,
some of them would not be used due to the tabu mechanism.
Thus, denoteCO′

i(n) ⊆ COi as the available orbits at the nth
iteration. Let wi(n) be the allocation priority of a task i at

the nth iteration. Denote σik (n) ∈ [0, l] as the tabu factor
between a task i and an orbit k at the nth iteration, where l
is the tabu step. σik (n) is used to check whether an orbit k can
be utilized in CO′

i(n) when allocating i. Furthermore, define
ηik (n) and τik (n) as the status factor and the pheromone
trail factor between a task i and an orbit k, respectively.
ηik (n) represents the conflict and load status of a task i on an
orbit k. ηik (n) and τik (n) are used to calculate the allocation
probability pik (n) of assigning a task i to an orbit k at the
nth iteration, which can be expressed by

pik (n) = [τik (n)]α × [
ηik (n)

]β
∑

t∈CO′
i (n) [τit (n)]α × [

ηit (n)
]β (12)

where parameters α and β are real numbers that determine
the relative influence of the pheromone trail and the status
information.

An overview of the metaheuristic for task allocation is
illustrated in Fig. 3. When performing the task allocation,
tasks in the task set T are first sorted in descending or-
der according to their allocation priority wi(n). Then, an
available orbit set CO′

i(n) is selected for the task i with
the highest allocation priority. Afterward, the allocation
probabilities between the task i and each orbit in CO′

i(n)
are calculated, and i is allocated to an orbit k according
to the allocation probability pik (n). Meanwhile, the status
factor is updated and the assigned task i is removed from
T . The aforementioned processes are repeated iteratively
until T is empty. After each iteration, the pheromone trail
factor and feedback factors will be updated according to
the scheduling results. The results of task allocation after
each iteration are different, which can make the algorithm
escape from local optima and converge to better solutions
gradually.

In particular, the status factor is designed based on the
task load condition and task conflict condition, and it will
be updated once a task is allocated. The pheromone trail
factor is updated at each iteration, during which it will be
increased, decayed, and diluted according to the schedul-
ing results. The calculation methods of the status factor,
pheromone trail factor, and feedback factors are presented
as follows:

1) Status Factor: Denote T ′
k as a set of tasks already

allocated to the orbit k, the load degree of k can be expressed
by εk = |T ′

k | (i.e., the number of tasks already allocated to k).
When allocating a new task i, the orbit k in CO′

i(n) presents
one of the following two states:

1) there are no allocated tasks on the orbit k (i.e., εk =
0);

2) there are some tasks already allocated to the orbit k
(i.e., εk > 0).

In the second state, the task i to be assigned may
conflict with other tasks in T ′

k . We use a binary variable
confk

is ∈ {0, 1} to measure the conflict between the tasks i
and s ∈ T ′

k . If confk
i j = 1, the task i conflicts with task j; 0

otherwise. Two tasks are in conflict when their observation
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Fig. 3. Task allocation process.

Fig. 4. Conflict and load condition.

time windows satisfy the following conditions:{
weik + |θik − θ jk|/v > ws jk, if ws jk > wsik

we jk + |θik − θ jk|/v > wsik, if ws jk ≤ wsik.
(13)

Then, let ξik be the conflict degree between task i and
all the tasks in T ′

k , it can be calculated according to

ξik =
∑
s∈T ′

k

confk
is. (14)

Fig. 4 shows an example of the conflict degree and load
degree, in which ξ11 = 1, ξ12 = 0, ξ21 = 2, ξ22 = 0, ξ31 = 1,
ξ32 = 0, ξ41 = 1, ξ42 = 0, ε1= 4, and ε2= 3.

Denote ε̄k and ξ̄ik as the normalized values of εk and ξik ,
respectively, they can be calculated by

ε̄k =
( ∑

s∈COi (n)

εs − εk

)/ ∑
s∈COi (n)

εs (15)

ξ̄ik =
( ∑

s∈COi (n)

ξis − ξik

)/ ∑
s∈COi (n)

ξis. (16)

Therefore, the value of the status factor ηik (n) can be
obtained by

ηik (n) = a · ε̄k + b · ξ̄ik (17)

where a and b are the weights of ε̄k and ξ̄ik , respectively.
2) Pheromone Trail Factor: We use ρ ∈ (0, 1) and λ to

represent the pheromone decay parameter and pheromone
dilution parameter, respectively. The increment of the

pheromone between a task i and an orbit k can be expressed
as

τik = γ (n)

λ · Num(n)
(18)

where γ (n) and Num(n) are scheduling profits and number
of scheduled tasks at the nth iteration, respectively. Denote
γ ∗ as the current best scheduling profits, it can be calculated
as

γ ∗ = max {γ (1), γ (2), . . . , γ (n)} . (19)

When
∑

j∈Tk∪{N+1}, j �=i xk
i j = 1, which indicates that the

task i is successfully scheduled, the pheromone trail factor
τik (n) would be updated based on the following formulas:{

τik (1 + n) = (1 − ρ ) · τik (n) + τik

τik (1) = 1.
(20)

3) Feedback Factors: The feedback factors consist of
the allocation priority factor wi(n) and tabu factor σik (n).
After the task scheduling on each orbit has been finished,
we use wi(n) and σik (n) to update the allocation orders of
the task i, as well as the elements in CO′

i(n) at the (n + 1)th
iteration, which will affect the task allocation process at the
next iteration.

The initial value of the allocation priority factor is the
initial profit of the task i (i.e.,wi(1) = ϕi). If the task i has not
been successfully scheduled (i.e.,

∑
j∈Tk∪{N+1}, j �=i xk

i j = 0),
wi(n + 1) will be updated; otherwise it keeps unchanged,
which can be expressed as{

wi(n + 1) = wi(n) − c, if
∑

j∈Tk∪{N+1}, j �=i xk
i j = 0

wi(n + 1) = wi(n), otherwise
(21)

where c ∈ Z+ is a weight decay parameter. The alloca-
tion priority of a task will be decreased if the task is not
scheduled, thereby ensuring that the task that has not been
scheduled for several times will be adjusted backward in
the task allocation sequence.
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The tabu factor σik (n) checks whether an orbit is avail-
able or not. The initial value of σik (n) is 0, and it will be
updated iteratively in the later iterations. We propose seven
heuristic rules to determine the value of σik (n). Specifically,
the initialization of the tabu process is shown in Rule 1. If
σik (n) > 0, which indicates that the orbit k is not allowed to
serve the task i at the nth iteration, the elements in CO′

i(n)
will be adjusted according to Rules 2–4. If σik = 0, which
means that the orbit k is available to serve the task i at the nth
iteration, CO′

i(n) will be updated based on Rule 5. Finally,
the tabu factor σik (n) will be updated iteratively according
to Rules 6 and 7.

Rule1: In the initial situation, all the orbits in COi can be
used to serve the task i, which can be expressed asCO′

i(1) =
COi.

Rule2: If there is only one visible orbit for the task i
(i.e., |COi| = 1), the orbit in COi is always available, which
can be expressed by CO′

i(n) ≡ COi.
Rule3: If there are multiple visible orbits for the task i

(i.e., |COi| > 1), a randomly selected orbit k would be re-
moved from CO′

i(n) to obtain CO′
i(n + 1), which is denoted

as CO′
i(n + 1) = CO′

i(n)/{Ok}.
Rule4: If there are multiple visible orbits and no orbits

can be used for serving the task i at the nth iteration (i.e.,
|COi| > 1 and CO′

i(n) = ∅), CO′
i(n) will be initialized as

CO′
i(n + 1) = COi.
Rule5: In the iterative process, when σik (n) decreases

to 0, the orbit k would be added to CO′
i(n + 1) in the next

iteration, which is written as CO′
i(n + 1) = CO′

i(n) ∪ Ok .
Rule6: If the task i allocated to the orbit k is not suc-

cessfully scheduled at the nth iteration, the tabu factor σik (n)
will be updated at the (n + 1)th iteration as σik (n + 1) = l ,
where l ∈ Z+.

Rule7: If the orbit k is forbidden to serve the task i
at the nth iteration (i.e., σik (n) > 0), the tabu factor σik (n)
will decrease according to σik (n + 1) = σik (n) − l in the
following iterations until its value is 0. Here, l is a divisor
of l , which is used to gradually reduce the value of σik (n).

B. Ensemble of Metaheuristic and Exact Algorithm Based
on the DCF

The pseudocode of the EHE-DCF is provided in Algo-
rithm 1. In the algorithm, first, the task i with the highest
allocation priority is selected as the current task to be
allocated (line 5). Second, according to the visibility of
the orbits to the task i and the orbit tabu condition, an
available orbit set CO′

i(n) is derived for serving task i (line
6). Third, the allocation probabilities between the task i and
each orbit in CO′

i(n) are calculated based on the pheromone
trail factor τik (n) and status factor ηik (n), and the task i is
allocated to the orbit k based on the allocation probability
pik (n) (lines 8 and 9). When all the tasks in T are scheduled,
the task allocation phase is terminated. In the single orbit
scheduling phase, we use the CPLEX software to implement
the B&B method to obtain a set of scheduling results of the
single orbit scheduling problems. Then, the subscheduling
results are merged to obtain an overall task scheduling

result (lines 13 and 14). The task allocation and the single
orbit scheduling phases are performed iteratively until the
number of iterations reaches the maximum iterations G1.
Specifically, the status factor ηik (n) is updated once the task
i is assigned to the orbit k (line 11), and the pheromone
pheromone trail factor τik (n) and feedback factors (i.e.,
allocation priority factor wi(n) and tabu factor σik (n)) are
updated after each iteration (line 16).

C. Complexity Analysis

The proposed EHE-DCF repeats the task allocation
phase and the task scheduling phase with G iterations. In the
task allocation phase, assume that N tasks are allocated to H
orbits and the number of tasks on each orbit is uncertain. The
metaheuristic developed for the task allocation has a compu-
tational complexity O(N · (log(N ) + H )) by using a quick
sort algorithm [44]. Then, in the task scheduling phase, we
denote the highest number of tasks allocated to a single orbit
is Nmax ∈ [0, N]. Since the single orbit scheduling can be
regarded as a knapsack problem [45], the complexity of the
single orbit scheduling is expressed as O(2N2

max ) by assum-
ing a B&B based full-factorial search. The task allocation
phase, which includes H single scheduling problems, thus
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has a complexity O(2N2
max · H ). Therefore, the complexity of

the EHE-DCF is O(G · (N · log(N ) + N · H + 2N2
max · H )).

VI. SIMULATION EXPERIMENTS

In this section, we carry out experiments based on EOS
scheduling instances with different task scales and different
observation resource scales to comprehensively evaluate
the performance of the EHE-DCF. Both EHE-DCF and
its competitors are implemented in MATLAB R2016a and
CPLEX12.5, and all the experiments are executed on a
computer with Intel(R) Core (TM) i5 2.80 GHz and 8.0-GB
RAM.

A. Comparative Algorithms

We compare the EHE-DCF with five algorithms, includ-
ing three DCF-based metaheuristics, a state-of-the-art meta-
heuristic in the existing literature, and pure B&B method.
The pure B&B method is implemented with the commercial
solver CPLEX, and the metaheuristics are briefly introduced
as follows:

1) Greedy Algorithm Based on the DCF (GR-DCF):
Greedy algorithms that preferentially schedule the task with
the highest profit or priority are commonly used to solve
satellite scheduling problems in practical applications [46],
[47]. In the GR-DCF, the task allocation phase is the same
as EHE-DCF, while the task scheduling phase is performed
greedily. In each iteration of the task scheduling phase,
the tasks assigned to each orbit are scheduled iteratively
according to their profits. During the scheduling process, if
constraints (3) and (4) are violated when a task is inserted
into an orbit, the previously scheduled tasks on this orbit
would be removed one by one, until all constraints are
satisfied. The scheduled task with the lowest profit would
be removed first. Finally, the tasks that are not successfully
scheduled are preserved for the next iteration.

2) Simulated Annealing Neighborhood Based on Greedy
Neighborhood Structure and DCF (SANS1-DCF): Dif-
ferent from the GR-DCF, the SANS1-DCF implements
a greedy neighborhood structure in the task scheduling
phase. The greedy neighborhood structure schedules tasks
assigned to each orbit in the same way as GR-DCF, but
removes a task with the lowest profit before inserting tasks
if any task has been inserted into the orbit. By removing
tasks from previously scheduled results, The SANS1-DCF
is expected to have a higher capability to escape from
the local optimum. Meanwhile, the SANS1-DCF adopts
the well-known Metropolis acceptance criteria [48] of the
simulated annealing algorithm to accept worse solutions
with an adaptively controlled probability.

3) Simulated Annealing Neighborhood Based on Ran-
dom Neighborhood Structure and DCF (SANS2-DCF):
The framework of the SANS2-DCF is similar to SANS1-
DCF. The difference between SANS1-DCF and SANS2-
DCF is that SANS2-DCF removes a task randomly instead
of removing the task with the lowest profit from the previ-
ously scheduled result.

4) Adaptive Simulated Annealing-Based Scheduling Al-
gorithm (ASA): The ASA is a state-of-the-art algorithm
extracted from the existing literature [19]. This algorithm
has been proved efficient in solving EOS scheduling prob-
lems, due to involving sophisticated mechanisms, i.e., adap-
tive temperature control, tabu-list-based short-term revisit-
ing avoidance mechanism, and intelligent combination of
neighborhood structures.

B. Experiment Setups

In the experimental studies, eight instances varying from
200 to 1600 tasks are prepared. The ground targets are
distributed in a range of latitude 15◦–45◦ and longitude
80◦–120◦ randomly. The profits of tasks are random values
within [1, 10]. We set the allowable runtime for an algorithm
solving a scheduling problem to 3 600 s and the scheduling
horizon to 24 h. The basic information of the instances are
provided in Table II. We consider ten EOSs and each satellite
is equipped with a sensor to accomplish observation tasks.
Detailed satellite orbital parameters for simulations are
displayed in Table III. Parameters of satellite and algorithms
are listed in Tables IV and V, respectively. All algorithms
are repeated 25 times on each instance independently.

C. Results and Discussions

The results are reported in Table VI, including the
obtained observation profits, number of scheduled tasks,
and average runtime. As seen from Table VI, the EHE-DCF
outperforms its comparative metaheuristics (i.e., GR-DCF,
SANS1-DCF, SANS2-DCF, and ASA) in terms of the
obtained observation profits and the number of scheduled
tasks. This is because EHE-DCF uses the B&B method
to generate optimal solutions for single orbit scheduling
subproblems and the iterative task allocation procedure
realizes a proper problem partition. Meanwhile, these two
phases can work cooperatively to obtain a high-quality
entire scheduling scheme.

By contrast, pure B&B can get the highest profits in
the small-scale task scheduling problems without surprise,
as pure B&B is an exact algorithm. However, its runtime
increases dramatically when the task scale increases, indi-
cating that its computational efficiency is not satisfactory
when solving large-scale EOS scheduling problems. To
be concrete, pure B&B has a sharp increase in runtime
when the number of tasks is more than 600, and it con-
sumes much more time than other comparative algorithms.
In the case of 800 tasks, the runtime of pure B&B has
exceeded the predefined allowable running time. As for
the ASA, it needs more computational efforts to solve
the scheduling problem, while the obtained profits are
less than that of other metaheuristics based on the DCF.
Particularly, the ASA cannot solve large-scale instances
(i.e., instances C5–C8) within acceptable running time.
Although pure B&B consumes less computational time
when solving small-scale instances (i.e., instances C1–C3)
compared with the ASA, the pure B&B still requires more
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TABLE II
Information of Instances

TABLE III
Satellite Orbital Parameters

TABLE IV
Parameters of Satellites

TABLE V
Parameters of Algorithms

Fig. 5. Convergence of the EHE-DCF on the instances with 400, 1000,
and 1600 tasks.

computational time compared with DCF-based metaheuris-
tics on instances C2–C8. These observation results further
prove the efficiency of the DCF, particularly on large-scale
instances.

To visually analysis the performance of the EHE-DCF,
we plot the convergence process of the EHE-DCF when
dealing with the instances with 400, 1000, and 1600 tasks
in Fig. 5, which demonstrates that the EHE-DCF is robust
and able to converge to a satisfactory solution efficiently.

Fig. 6. Comparisons on the stability with respect to the obtained profits
and the number of scheduled tasks. (a) Variance of the obtained profits.

(b) Variance of the number of scheduled tasks.

The variances of the scheduling profits and number of
scheduled tasks obtained by four DCF-based metaheuristics
on all instances are investigated in Fig. 6. It can be found that
the EHE-DCF has more stable performance in solving EOS
scheduling problems with different scales compared with
SANS1-DCF, SANS2-DCF, and GR-DCF. In particular, its
advantage is more obvious when the task scale is more than
800, which indicates that EHE-DCF could be useful and
reliable in practical applications.

To further demonstrate the advantages of the EHE-DCF
under large-scale task scheduling, we define two indicators,
i.e., the increase rate of obtained profits rprofit

1,i and the
number of scheduled tasks rtask

1,i , which are, respectively,
calculated as follows:

rprofit
1,i = γ ave

1 − γ ave
i

γ ave
i

× 100%, i = {2, 3, 4} (22)

rtask
1,i = Numave

1 − Numave
i

Numave
i

× 100%, i = {2, 3, 4} (23)

where γ ave
i and Numave

i represent the average value of
obtained profits and the number of scheduled tasks of
the DCF-based algorithm i, respectively. The compari-
son results of increase rates are shown in Fig. 7. The
results show that when the task scale is 1600, the in-
crease rates of the obtained profits and number of sched-
uled tasks reach the maximum values. It can be con-
cluded that the performance of three comparative DCF-
based metaheuristics (i.e., GR-DCF, SANS1-DCF, and
SANS2-DCF) are deteriorated when solving large-scale
EOS scheduling problems. On the contrary, the increase
rates of the EHE-DCF increase significantly in the case
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TABLE VI
Experimental Results on Eight Instances

Fig. 7. Histograms on different task scales with respect to the obtained profits and the number of scheduled tasks. (a) Increase rate of the obtained
profits. (b) Increase rate of the number of scheduled tasks.

of large-scale tasks, indicating that the EHE-DCF is par-
ticularly suitable to large-scale complex EOS scheduling
problems.

More observation resources mean more observation
opportunities, while it brings more scheduling challenges.
To test the performance of the EHE-DCF in solving EOS

scheduling problems with different numbers of observation
resources, we apply EHE-DCF, GR-DCF, SANS1-DCF,
and SANS2-DCF to instances with a different number of
satellites and the same number of tasks. Five groups of in-
stances are implemented by setting the number of satellites
from 2 to 10 and the number of tasks to 1000. The ASA is not
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Fig. 8. Comparisons on different satellite scales with respect to the obtained profits and the number of scheduled tasks. (a) Profits obtained by
satellites with different scales. (b) Number of tasks scheduled by satellites with different scales.

tested here for comparisons, as we have shown the superior
performance of the DCF-based metaheuristics in Table VI.
The computational results based on the EHE-DCF, SANS1-
DCF, SANS2-DCF, and GR-DCF are plotted in Fig. 8. It
can be seen that the number of satellites shows a significant
effect on the results of scheduling. Meanwhile, the schedul-
ing results obtained by the EHE-DCF are significantly
better than those of other comparative algorithms on all
instances.

VII. CONCLUSION

In this article, a novel ensemble approach named ECE-
DCF, which combines metaheuristic and exact methods
based on a DCF, has been proposed for solving the mul-
tiple EOS scheduling problem. The ECE-DCF divides the
EOS scheduling problem into a task allocation phase and a
single orbit scheduling phase. In the task allocation phase,
a metaheuristic is designed to generate a fairly reason-
able task allocation scheme in an iterative manner. This
metaheuristic method involves sophisticated mechanisms,
i.e., probabilistic selection and tabu mechanism, feedback
factors, status factor, and pheromone trail factors. In the
single orbit scheduling phase, we construct an integer pro-
gramming model and adopt the B&B method to obtain an
optimal solution for each subproblem. Furthermore, these
two phases are performed iteratively and interactively to
solve the EOS scheduling problem. Compared with an
exact method (i.e., pure B&B), three DCF-based meta-
heuristic (i.e., GR-DCF, SANS1-DCF, and SANS2-DCF),
and a state-of-the-art metaheuristic (i.e., ASA), the -DCF
outperforms the competitors in terms of scheduling profits
and number of scheduled tasks on the most instances, as
well as running time on large-scale instances. Extensive
experiments are further conducted to demonstrate that the
EHE-DCF is a robust and efficient method for solving
EOS scheduling problems, especially when the scale of the
scheduling problem gets large. In future studies, we would
extend the proposed approach to solve more complicated

EOS scheduling problems, such as the agile EOS scheduling
problem [49].

REFERENCES

[1] G. Wu, W. Pedrycz, H. Li, M. Ma, and J. Liu
Coordinated planning of heterogeneous earth observation re-
sources
IEEE Trans. Syst., Man, Cybern., Syst., vol. 46, no. 1,
pp. 109–125, Jan. 2016.

[2] J. Li, C. Li, and F. Wang
Automatic scheduling for Earth observation satellite with tem-
poral specifications
IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 4,
pp. 3162–3169, Aug. 2020.

[3] X. Wang, G. Song, R. Leus, and C. Han
Robust earth observation satellite scheduling with uncertainty
of cloud coverage
IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 3,
pp. 2450–2461, Jun. 2020.

[4] T. Stollenwerk, V. Michaud, E. Lobe, M. Picard, A. Basermann,
and T. Botter
Agile earth observation satellite scheduling with a quantum
annealer
IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 5, pp. 3520-
3528, Oct. 2021.

[5] X. Wang, C. Han, P. Yang, and X. Sun
Onboard satellite visibility prediction using metamodeling
based framework
Aerosp. Sci. Technol., vol. 94, 2019, Art. no. 105377.

[6] G. Peng, G. Song, L. Xing, A. Gunawan, and P. Vansteenwegen
An exact algorithm for agile earth observation satellite schedul-
ing with time-dependent profits
Comput. Operations Res., vol. 120, 2020, Art. no. 104946.

[7] V. Gabrel and D. Vanderpooten
Enumeration and interactive selection of efficient paths in a mul-
tiple criteria graph for scheduling an earth observing satellite
Eur. J. Oper. Res., vol. 139, no. 3, pp. 533–542, 2002.

[8] K. Zhu, J. Li, and H. Baoyin
Satellite scheduling considering maximum observation cover-
age time and minimum orbital transfer fuel cost
Acta Astronautica, vol. 66, no. 1, pp. 220–229, 2010.

[9] D. Liao and Y. Yang
Imaging order scheduling of an earth observation satellite
IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 37, no. 5,
pp. 794–802, Sep. 2007.

4406 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 58, NO. 5 OCTOBER 2022

Authorized licensed use limited to: TU Delft Library. Downloaded on January 19,2023 at 13:37:19 UTC from IEEE Xplore.  Restrictions apply. 



[10] Y. Huang, Z. Mu, S. Wu, B. Cui, and Y. Duan
Revising the observation satellite scheduling problem based on
deep reinforcement learning
Remote Sens., vol. 13, no. 12, 2021, Art. no. 2377.

[11] X. Wang, Z. Chen, and C. Han
Scheduling for single agile satellite, redundant targets problem
using complex networks theory
Chaos, Solitons Fractals, vol. 83, pp. 125–132, 2016.

[12] J. Wang, E. Demeulemeester, X. Hu, D. Qiu, and J. Liu
Exact and heuristic scheduling algorithms for multiple earth
observation satellites under uncertainties of clouds
IEEE Syst. J., vol. 13, no. 3, pp. 3556–3567, Sep. 2019.

[13] H. Chen, S. Yang, J. Li, and N. Jing
Exact and heuristic methods for observing task-oriented satellite
cluster agent team formation
Math. Problems Eng., vol. 2018, pp. 1–23, 2018.

[14] J. Zhang, L. Xing, G. Peng, F. Yao, and C. Chen
A large-scale multiobjective satellite data transmission schedul-
ing algorithm based on SVM NSGA-II
Swarm Evol. Comput., vol. 50, 2019, Art. no. 100560.

[15] M. Chen, J. Wen, Y. Song, L. Xing, and Y. Chen
A population perturbation and elimination strategy based ge-
netic algorithm for multi-satellite TT&C scheduling problem
Swarm Evol. Comput., vol. 65, 2021, Art. no. 100912.

[16] Y. Du, L. Xing, J. Zhang, Y. Chen, and Y. He
MOEA based memetic algorithms for multi-objective satellite
range scheduling problem
Swarm Evol. Computation, vol. 50, 2019, Art. no. 100576.

[17] W. Zhu, X. Hu, W. Xia, and P. Jin
A two-phase genetic annealing method for integrated earth
observation satellite scheduling problems
Soft Comput., vol. 23, no. 1, pp. 181–196, 2019.

[18] J. Abel
A divide and conquer approach to least-squares estimation
IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 2, pp. 423–427,
Mar. 1990.

[19] G. Wu, H. Wang, W. Pedrycz, H. Li, and L. Wang
Satellite observation scheduling with a novel adaptive simulated
annealing algorithm and a dynamic task clustering strategy
Comput. Ind. Eng., vol. 113, pp. 576–588, 2017.

[20] X. Wang, R. Leus, and C. Han
Fixed interval scheduling of multiple earth observation satellites
with multiple observations
in Proc. 9th Int. Conf. Mech. Aerosp. Eng., 2018, pp. 28–33.

[21] Z. Li and X. Li
A multi-objective binary-encoding differential evolution algo-
rithm for proactive scheduling of agile earth observation satel-
lites
Adv. Space Res., vol. 63, no. 10, pp. 3258–3269, 2019.

[22] J. Wang, E. Demeulemeester, X. Hu, and G. Wu
Expectation and SAA models and algorithms for scheduling of
multiple earth observation satellites under the impact of clouds
IEEE Syst. J., vol. 14, no. 4, pp. 5451–5462,
Dec. 2020.

[23] X. Wang, Y. Gu, G. Wu, and J. R. Woodward
Robust scheduling for multiple agile earth observation satellites
under cloud coverage uncertainty
Comput. Ind. Eng., vol. 156, 2021, Art. no. 107292.

[24] M. Deng et al.
A two-phase coordinated planning approach for heterogeneous
earth-observation resources to monitor area targets
IEEE Trans. Syst., Man, Cybern., Syst., vol. 51, no. 10,
pp. 6388–6403, Oct. 2021.

[25] B. Sun, W. Wang, and Q. Qi
Satellites scheduling algorithm based on dynamic constraint
satisfaction problem
in Proc. Int. Conf. Comput. Sci. Softw. Eng., 2008, vol. 4,
pp. 167–170.

[26] C. Plaunt, J. Frank, and K. Jonsson
Satellite tele-communications scheduling as dynamic constraint
satisfaction
in Proc. Artif. Intell., Robot. Automat. Space, 1999, vol. 440,
pp. 277–284.

[27] K. Luo
A hybrid binary artificial bee colony algorithm for the satellite
photograph scheduling problem
Eng. Optim., vol. 52, no. 8, pp. 1421–1440, 2020.

[28] M. Vasquez and J.-K. Hao
Upper bounds for the spot 5 daily photograph scheduling prob-
lem
J. Combinatorial Optim., vol. 7, no. 1, pp. 87–103, 2003.

[29] H. Wang, Z. Yang, W. Zhou, and D. Li
Online scheduling of image satellites based on neural networks
and deep reinforcement learning
Chin. J. Aeronaut., vol. 32, no. 4, pp. 1011–1019,
2019.

[30] P. Wang, X. Zhang, S. Zhang, H. Li, and T. Zhang
Time-expanded graph-based resource allocation over the satel-
lite networks
IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 360–363,
Apr. 2019.

[31] A. Sarkheyli, A. Bagheri, B. Ghorbani-Vaghei, and R.
Askari-Moghadam
Using an effective tabu search in interactive resources
scheduling problem for LEO satellites missions
Aerosp. Sci. Technol., vol. 29, no. 1, pp. 287–295,
2013.

[32] X. Hu, W. Zhu, B. An, P. Jin, and W. Xia
A branch and price algorithm for EOS constellation imaging
and downloading integrated scheduling problem
Comput. Operations Res., vol. 104, pp. 74–89, 2019.

[33] X. Huang, H. Wang, J. Zhu, and M. Ma
Simulation based multi-objective evolutionary algorithm for
electronic reconnaissance satellites scheduling problem
in Proc. 2nd Int. Conf. Power Electron. Intell. Transp. Syst.,
2009, vol. 1, pp. 166–170.

[34] K. B. Gao, G. H. Wu, and J. H. Zhu
Multi-satellite observation scheduling based on a hybrid ant
colony optimization
Adv. Mater. Res., vol. 765, pp. 532–536, 2013.

[35] P. Gao, Y. J. Tan, J. F. Li, and R. J. He
An ant colony algorithm for remote satellite and ground inte-
gration scheduling problem in parallel environment
Adv. Mater. Res., vol. 791, pp. 1341–1346, 2013.

[36] Z. Zhang, N. Zhang, and Z. Feng
Multi-satellite control resource scheduling based on ant colony
optimization
Expert Syst. Appl., vol. 41, no. 6, pp. 2816–2823,
2014.

[37] Z. Zhang, F. Hu, and N. Zhang
Ant colony algorithm for satellite control resource scheduling
problem
Appl. Intell., vol. 48, no. 10, pp. 3295–3305, 2018.

[38] H. Wang, M. Xu, R. Wang, and Y. Li
Scheduling earth observing satellites with hybrid ant colony
optimization algorithm
in Proc. Int. Conf. Artif. Intell. Comput. Intell., 2009, vol. 2,
pp. 245–249.

[39] Y. Xu, X. Liu, R. He, and Y. Chen
Multi-satellite scheduling framework and algorithm for very
large area observation
Acta Astronautica, vol. 167, pp. 93–107, 2020.

[40] X. Liu, B. Bai, Y. Chen, and F. Yao
Multi satellites scheduling algorithm based on task merging
mechanism
Appl. Math. Comput., vol. 230, pp. 687–700, 2014.

WU ET AL.: ENSEMBLE OF METAHEURISTIC AND EXACT ALGORITHM BASED ON THE DCF 4407

Authorized licensed use limited to: TU Delft Library. Downloaded on January 19,2023 at 13:37:19 UTC from IEEE Xplore.  Restrictions apply. 



[41] G. Wu, M. Ma, J. Zhu, and D. Qiu
Multi-satellite observation integrated scheduling method ori-
ented to emergency tasks and common tasks
J. Syst. Eng. Electron., vol. 23, no. 5, pp. 723–733, 2012.

[42] N. Bianchessi, J. F. Cordeau, J. Desrosiers, G. Laporte, and V.
Raymond
A heuristic for the multi-satellite, multi-orbit and multi-user
management of earth observation satellites
Eur. J. Oper. Res., vol. 177, no. 2, pp. 750–762, 2007.

[43] G. Wu, Q. Luo, Y. Zhu, X. Chen, Y. Feng, and W. Pedrycz
Flexible task scheduling in data relay satellite networks
IEEE Trans. Aerosp. Electron. Syst., to be published,
doi: 10.1109/TAES.2021.3115587.

[44] C. A. Hoare
Quicksort
Comput. J., vol. 5, no. 1, pp. 10–16, 1962.

[45] P. C. Chu and J. E. Beasley
A genetic algorithm for the multidimensional knapsack problem
J. Heuristics, vol. 4, no. 1, pp. 63–86, 1998.

[46] X. Chen, G. Reinelt, G. Dai, and M. Wang
Priority-based and conflict-avoidance heuristics for multi-
satellite scheduling
Appl. Soft Comput., vol. 69, pp. 177–191, 2018.

[47] J. Wu, J. Zhang, J. Yang, and L. Xing
Research on task priority model and algorithm for satellite
scheduling problem
IEEE Access, vol. 7, pp. 103031–103046, 2019.

[48] P. Gao, W. Li, F. Yao, B. Bai, and J. Yang
Simulated annealing algorithm for EOS scheduling problem
with task merging
in Proc. Int. Conf. Model., Identif. Control, 2011, pp. 547–552.

[49] X. Wang, G. Wu, L. Xing, and W. Pedrycz
Agile earth observation satellite scheduling over 20 years: For-
mulations, methods, and future directions
IEEE Syst. J., vol. 15, no. 3, pp. 3881–3892.

Guohua Wu (Member, IEEE) received the B.S.
degree in information systems and the Ph.D.
degree in operations research from the National
University of Defense Technology, Changsha,
China, in 2008 and 2014, respectively.

During 2012 and 2014, he was a visiting Ph.D
student with the University of Alberta, Edmon-
ton, Canada. He is currently a Professor with
the School of Traffic and Transportation En-
gineering, Central South University, Changsha.
His current research interests include planning

and scheduling, computational intelligence, and machine learning. He has
authored more than 80 referred papers including those published in IEEE
TRANSACTIONS ON CYBERNETICS—PART B (IEEE TCYB), IEEE TRANS-
ACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND
HUMANS (IEEE TSMCA), and IEEE TRANSACTIONS ON INTELLIGENT
TRANSPORTATION SYSTEMS.

Dr. Wu serves as an Associate Editor for Swarm and Evolutionary
Computation Journal, an editorial board member for International Journal
of Bio-Inspired Computation, and a Guest Editor for Information Sciences
and Memetic Computing. He is a regular reviewer of more than 20 journals
including IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, IEEE
TCYB, IEEE TSMCA, and Information Sciences.

Qizhang Luo received the B.S. and the M.S.
degrees in traffic and transportation engineering,
in 2015 and 2018, respectively, from Central
South University, Changsha, China, where he is
currently working toward the Ph.D. degree in
traffic and transportation engineering.

He is also a Ph.D. visiting student with the
National University of Singapore, Singapore.
His current research interests include compu-
tational intelligence and scheduling, with a fo-
cus on their applications in transportation and

aerospace fields.

Xiao Du received the M.S. degree in traffic and
transportation engineering from Central South
University, Changsha, China, in 2021.

He is currently working with Henan Transport
Investment Group Company, Ltd., Zhengzhou,
China. His research interests include computa-
tional intelligence and satellite scheduling.

Yingguo Chen received the B.S., M.S., and
Ph.D. degrees in systems engineering from the
National University of Defense Technology,
Changsha, China, in 2008, 2010, and 2014, re-
spectively.

He is currently an Assistant Professor with
the College of Systems Engineering, National
University of Defense Technology, Singapore.
His current research interests include intelligent
optimization, mission planning, and scheduling
methods.

Ponnuthurai Nagaratnam Suganthan (Fel-
low, IEEE) received the B.A. and M.A. degrees
from the University of Cambridge, Cambridge,
U.K., and the Ph.D. degree in computer science
from Nanyang Technological University, Singa-
pore.

He is currently a professor with Nanyang
Technological University, Singapore.

Dr. Suganthan was the recipient of the IEEE
TRANSACTIONS ON EVOLUTIONARY COMPUTA-
TION Outstanding Paper Award in 2012 and the

Highly Cited Researcher Award by the Thomson Reuters in computer
science in 2015 . He is currently an Associate Editor for the IEEE TRANS-
ACTIONS ON EVOLUTIONARY COMPUTATION, the IEEE TRANSACTIONS ON
CYBERNETICS, Information Sciences, and Pattern Recognition and the
Founding Co-Editor-in-Chief for Swarm and Evolutionary Computation
Journal.

Xinwei Wang received the B.S. and Ph.D. de-
grees in aerospace engineering from Beihang
University, Beijing, China, in 2013 and 2019,
respectively.

He was with Queen Mary University of Lon-
don, London, U.K., and is currently a Postdoc
with the Delft University of Technology, Delft,
Netherlands. His current interests include satel-
lite scheduling and intelligent transport systems.

4408 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 58, NO. 5 OCTOBER 2022

Authorized licensed use limited to: TU Delft Library. Downloaded on January 19,2023 at 13:37:19 UTC from IEEE Xplore.  Restrictions apply. 

https://dx.doi.org/10.1109/TAES.2021.3115587

