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Analyzing Efficacy and Safety of Anti-Fungal
Blue Light Therapy via Kernel-Based Modeling
the Reactive Oxygen Species Induced by Light

Tianfeng Wang , Jianfei Dong , and Guoqi Zhang, Fellow, IEEE

Abstract—Objective: The goal of this study is to investi-
gate the efficacy, safety, and mechanism of ABL for inacti-
vating Candida albicans (C. albicans), and to determine the
best wavelength for treating candida infected disease, by
experimental measurements and dynamic modeling. Meth-
ods: The changes in reactive oxygen species (ROS) in C.
albicans and human host cells under the irradiation of
385, 405, and 415 nm wavelengths light with irradiance
of 50 mW/cm2 were measured. Moreover, a kernel-based
nonlinear dynamic model, i.e., nonlinear autoregressive
with exogenous inputs (NARX), was developed and ap-
plied to predict the concentration of light-induced ROS,
whose kernels were selected by a newly developed algo-
rithm based on particle swarm optimization (PSO). Results:
The ROS concentration was increased respectively about
10-12 times in C. albicans and about 3-6 times in human
epithelial cells by the ABL treatment with the same fluence
of 90 J/cm2. The NARX models were respectively fitted to
the data from the experiments on both types of cells. Be-
sides, four different kernel functions, including Gaussian,
Laplace, linear and polynomial kernels, were compared in
their fitting accuracies. The errors with the Laplace kernel
turned out to be only 0.2704 and 0.0593, as respectively
fitted to the experimental data of the C. albicans and human
host cells. Conclusion: The results demonstrated the ef-
fectiveness of the NARX modeling approach, and revealed
that the 415 nm light was more effective as an anti-fungal
treatment with less damage to the host cells than the 405 or
385 nm light. Significance: The kernel-based NARX model
identification algorithm offers opportunities for determin-
ing the effective and safe light dosages in treating various
fungal infection diseases.

Index Terms—Anti-fungal blue light therapy, Kernel se-
lection, NARX modeling, nonlinear dynamics, reactive
oxygen species.
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I. INTRODUCTION

C ANDIDA albicans (C. albicans) is widely found in nature
and commonly occurs as a superficial infection on mucous

membranes, such as the mouth, throat, gut, and vagina [1]–[3],
and is the most common fungal pathogen of humans [4]. Candida
species are naturally found in 10%-20% of women [5]; and 75%
of women have at least one episode of vulvovaginal candidiasis
(VVC) [6]. About 90% of the overall cases of VVC are caused by
C. albicans [7]. Topical antimycotic drugs and more convenient
oral azole agents are the main treatments for VVC [2]. However,
C. albicans has shown increased resistance to these drugs [8],
[9]. Therefore it is crucial to identify new ways to treat fungal
infections. Photodynamic therapy (PDT) has been investigated
as an alternative to treat localized infectious diseases due to
the rapid action and avoidance of drug resistance by these
pathogens [10]. Similar to PDT, anti-fungal blue light (ABL)
therapy relies only on endogenous photosensitizers (PS) of the
pathogens, and are hence safer to use.

The hypothesized mechanism of the antimicrobial effect of
PDT and ABL is that light photons excite either exogenous
PS in the former case or endogenous PS in the latter, which,
in turn, produces highly toxic ROS in cells [11]. Due to the
type and content of endogenous PS in different cells, their
susceptibility to ABL can also be different. Fungal PS content
is normally higher than that of human cells. Thus, fungi are
more susceptible to ABL and, hence, ABL has been widely
investigated for treating fungal infections. For instance, the
inactivation rate of C. albicans by ABL was 42-fold faster than
human keratinocytes [12]. A dynamic model was developed
based on the viability of C. albicans and vaginal epithelial
(V. E.) cells during ABL irradiation, which demonstrated that
the shorter ABL wavelength around 410 nm achieved a higher
anti-fungal effect than 450 nm [13]. The safety of ABL in treating
candidal vaginitis was investigated in [14], which found that the
blue light at 405 nm preferentially induced more death to the
pathogenic cells than to the human V.E. cells. Furthermore, no
genotoxicity of blue light to the V. E. cells was observed at the
dosage for inactivating the pathogen. However, to the best of our
knowledge, no study has focused on the ROS concentrations in
fungi and host cells for treating VVC, i.e., C. albicans and the
V. E. cells.

Some first-principle models have been proposed based on
the PDT mechanism. For instance, modeling of the dynamic
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changes in ROS concentrations has been well investigated
[15]–[17], which are highly nonlinear models. These first-
principle models precisely fit the dynamic changes in ROS
concentrations. However, a dynamic model for the ROS con-
centrations to treat fungal infections has not been established.
This can be attributed to the difficulty of using a first principle
model, i.e., the parameters are related to the PS characteristics,
which are determined experimentally. For instance, up to 21
parameters are required to describe the process related to the
PS [16]. In contrast, although ABL is believed to be caused
by the PS that naturally exist in fungal cells, whose types and
amounts are usually unknown, first-principle modeling becomes
even more challenging than modeling PDT.

Generally, to handle the challenges in modeling by first princi-
ples, system identification methods (SIM) that estimate models
from the data measured from complex dynamic processes have
been well developed in control theory literature [18]. In the
recent decades, the applications of SIM methods to identify
biological and biomedical systems, which are usually highly
nonlinear, coupled and chaotic, have also been witnessed, e.g.,
in modeling arterial windkessel [19], aortic pressure [20] and
electrodermal activity [21]. To deal with the nonlinearities in
biological systems, various structured nonlinear dynamic model
identification methods have been investigated, e.g., Wiener
model [20] and NARMAX model [22].

Despite all the aforementioned efforts in biomedical sys-
tem identification, identifying a nonlinear dynamic model for
anti-fungal blue light therapy has not yet been targeted in the
literature. However, some attempts have been made to handle
similar problems. For instance, a closed-loop control scheme
has been implemented to track the photobleaching trajectory
during PDTs in [23], which is an ON/OFF controller designed
without any model. A data-driven modeling method has been
investigated in [24], which basically approximates the nonlinear
PDT dynamics by a linear integrator model. Until now, no non-
linear model based on experimental data has been established.
Furthermore, no study has analyzed the effects and safety of
ABL therapy based on a dynamic ROS model.

In this study, ROS levels were measured in C. albicans and
V. E. cells under irradiation from three LED light sources of
different wavelengths, including 385, 405, and 415 nm. Then,
these experimental data were fitted using a popular kernel-based
method [25], e.g., nonlinear autoregressive with exogenous in-
puts (NARX) modeling [26], [27]. The advantage of using kernel
based learning is mainly the treatment of the nonlinearity of a
complex dynamic process by linearly combining a set of kernels.
Furthermore, sparse kernel modeling can be applied to select
the best kernel centers from the training samples. One popular
approach is based on random selection by minimizing some cost
functions, e.g., using the repeating weighted boosting search
(RWBS) algorithm [28], which is an evolutionary algorithm
based on weight boosting search. In this method, the kernel
parameters and the centers are chosen by minimizing a MSE
objective function. However, to search one regressor, it needs
to be repeated for multiple times with initial random sampling,
before finally converges to the global optimum. This iteration
may reduce the algorithm efficiency. To avoid this iteration and

hence improve the efficiency, we choose the particle swarm
optimization (PSO) algorithm instead of RWBS, which is a
proven method for its fast searching speed [29]. The fitting
accuracy of the NARX model to ROS detected in C. albicans
and V. E. cells was satisfactory.

The contributions of the current study are three-fold. First,
we conducted blue light stimulation experiments and measured
the induced ROS in both C. albicans and V. E. cells, in response
to three different wavelengths (385, 405, and 415 nm). Second,
a kernel-based NARX model was developed and applied to the
experimental data. Moreover, a new PSO-based kernel selection
algorithm was proposed and applied to improve this NARX
model. The fitting accuracy demonstrated the effectiveness of
the modeling approach. Third, we analyzed the optimal ABL
wavelength for treating VVC using the simulation results.

II. METHODS

A. NARX Modeling

The “kernel trick” was used to reduce the experimental burden
and treat the nonlinearity of the dynamics of ROS accumulation,
e.g., using the NARX model with a suitable kernel function. A
general discrete-time nonlinear system is described as:

yk = f(yk−1, . . . ,yk−ny
,uk−1, . . . ,uk−nu

) + εk, (1)

where uk ∈ Rm,yk ∈ R�, and εk ∈ R� are respectively the in-
put, output, and noise vector at time instant k; f(·) is a nonlinear
function; and ny, nu ∈ N represent respectively the output and
input delays, e.g., uk−nu

= uk · z−nu , with z−1 standing for
the one step delay operator. The noise εk is zero-mean white
Gaussian with a covariance matrix Σ, i.e., εk ∼ N (0,Σ).

To model the changes in intracellular ROS concentrations
by (1), let yk denote the ROS concentration at the kth time
sampling point, f denote the ROS generation process, ŷk denote
the estimated value of yk, and uk denote the irradiance of the
light. In ABL, the irradiance is usually kept constant during the
entire treatment process, i.e., uk ≡ u,∀k > 0. So in (1), it is not
necessary to consider the inputs at different delay steps. Instead,
the effect of the exogenous input u can be considered as a step
response. That is, when the light is switched on, the excitation
of the ROS starts. Mathematically, this process can be rewritten
as:

yk = ŷk + εk = f̃u(yk−1, . . . ,yk−ny
) + εk, (2)

where f̃u(.) is defined as:

f̃u(yk−1, . . . ,yk−ny
) =

{
0, if uk = 0
f(yk−1, . . . ,yk−ny

), if uk = u
.

(3)
For simplicity, collect the sequence of yk−1, . . .,yk−ny

into
a column vector, and denote it as xk = [yT

k−1, . . .,y
T
k−ny

]T . Let
the number of kernel basis functions be n. (2) was changed into
the following regression model using some suitable functions
that approximate f(·) with arbitrary accuracy,

ŷk = Σn
i=1wigi(xk) (4)
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TABLE I
SOME POPULAR KERNEL FUNCTIONS, WITH xi BEING THE CENTER AND

ai, bi, AND ci BEING THE PARAMETERS OF THE i-TH KERNEL

where wi ∈ R�, i = 1, . . . , n are the corresponding weighting
vectors; and gi,∈ R, i = 1, . . . , n, is a kernel function chosen
from the popular candidates listed in Table I.

The number of I/O data samples was denoted byN . The output
vectors were collected into a matrix as:

y =
[
y1 y2 y3 · · · yN

]T ∈ RN×� (5)

Similarly, the outputs of the kernel functions excited by
x1, . . . ,xN were collected into the following regressor matrix

G =

⎡
⎢⎣
g1(x1) . . . gn(x1)

...
...

g1(xN ) . . . gn(xN )

⎤
⎥⎦ ∈ RN×n

=
[
g1 g2 g3 . . . gn

]
, (6)

where gi = [gi(x1), . . . , gi(xN )]T .
With the aforementioned definition, (4) can be written in

compact form as

y = Gw, (7)

where w = [w1 w2 w3 . . . wn]
T ∈ Rn×�.

With a given regressor matrix, the only parameter in (7) to
be estimated is the weight matrix w. On the other hand, the
regressor matrix is determined by the kernels with the set of
parameters {xi, ai, bi, ci, i = 1, . . . , N}. The method to deter-
mine these kernels will be detailed later in what follows.

First, to solve w, we use the QR factorization of G, i.e.,

G = PA, (8)

where A ∈ Rn×n is an upper diagonal matrix; P ∈ RN×n is as
orthogonal matrix. Therefore, (7) can be rewritten as

y = G ·w
= PA ·w
= P · θ (9)

whereθ = Aw ∈ Rn×�, and can simply be solved asθ = P Ty.
Learning a NARX model from data requires estimating the

weights θ and the parameters of the kernel functions, e.g.,
the kernel center xi. In this study, a kernel selection method
based on particle swarm optimization (PSO) was applied to
select a subset of the best kernels from the full set of candidate
kernels. This selection algorithm is detailed in the Appendix

TABLE II
THE LEDS USED AND THEIR MAIN PARAMETERS, WHERE FWHM

REPRESENTS FULL WIDTH AT HALF MAXIMUM

Fig. 1. LED light source design: (a) normalized SPD of the four types
of LEDs, (b) electrical scheme, (c) simulated irradiance distribution,
(d) photo of the experimental setup.

A. Incorporated by this selection algorithm, the entire NARX
model identification algorithm is summarized in Appendix B.1

B. LED Light Source

Three different types of LEDs with the specified peak wave-
lengths respectively at 385 nm, 405 nm, and 415 nm were applied
in this work. The types of these LEDs and their main parameters
are listed in Table II. Their spectral power density (SPD) curves,
as measured by a Maya2000Pro spectrometer (Ocean Optics,
US), are depicted in Fig. 1(a). In this figure, every SPD curve
is normalized with respect to its integral over the range of the
measured wavelength, i.e., with each normalized SPD curve
integrating to 1.

The LED light sources were designed following the proce-
dures in [30], and were driven by a constant current source with
PWM current level control to stabilize the output irradiance [31].
The LED chips are arranged in a 1.5cm-by-1.5 cm square as
a 4-by-4 array. The three LED light sources can deliver an
irradiance of 50mW/cm2 uniformly within a 60 cm-diameter
circle. Fig. 1(c) shows the simulated irradiance distribution,
where the average irradiance in the 6cm-diameter circle is
49.39mW/cm2, with a relative variation of only 6.56%. The

1The codes implementing these algorithms are available from https://drive.
google.com/drive/folders/1tSwPW5aBiS3KYAWcTKwRapLasZ2ZqdSD?usp=
sharing, or by contacting with the author.
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irradiance was measured and confirmed by a PM100D power
meter with a S120VC probe (Thorlabs, US). The schematic
diagram of the electrical drive and control system and the
experimental setup are illustrated in Figs. 1(b) and 1(d).

C. Culture Conditions for C. Albicans and the V. E. Cells

The human host cell line used in this study was the vagi-
nal epithelial cell strain (VK2/E6E7 ATCC CRL-2616, ATCC,
Manassas, VA, USA). The cell line was incubated in Dulbecco’s
modified Eagle’s medium (Gibco, Carlsbad, CA, USA) supple-
mented with 10% fetal bovine serum at 37oC in a humidified
atmosphere with 5% CO2.

The C. albicans used in this study was the 3147 (IFO 1594)
strain (ATCC). The fungal strain was cultured in tryptic soy broth
at 26oC. To maintain the concentration of the fungal suspension
within the same range, the absorption of the suspension was
measured at 550 nm using the U-3900H spectrophotometer
(Hitachi, Tokyo, Japan) before all experiments. The absorption
levels measured by this equipment were always controlled in the
range of 2.3-2.5, which corresponded to a fungi density of 107

CFU/ml.

D. ROS Assay

The fungi were centrifuged, separated from the medium, and
dissolved in a 1,000-fold dilution of the ROS fluorescent probe
(DCFH-DA assay kit, Beyotime Institute of Biotechnology,
Beijing, China) in phosphate buffered saline. After incubating
the suspension at 37oC in a shaker for 30 min, the suspension was
centrifuged three times to remove the redundant probe. Then, the
suspension was seeded into a 96-well plate and was irradiated
with one of the three LED light sources.

During the experiment, the cell suspension in one well was
resuspended and taken out of the plate consecutively at 0, 5, 10,
15, 20, 25, and 30 min. The removed suspension in one well was
placed in the dark; while the rest wells were kept under the irra-
diation of the light. Therefore, the fluence received by each well
was 0, 15, 30, 45, 60, 75, and 90 J/cm2, respectively, consider-
ing the light irradiance of 50 mW/cm2. The intracellular ROS
level of the cell suspension was measured immediately after the
light treatment using a VL0L0TD0 Varioskan LUX microplate
reader (Thermo Fisher, Waltham, MA, USA), with excitation
and emitting wavelengths of 488 and 525 nm, respectively.

Finally, a sequence of ROS fluorescent levels up to 30 min
were obtained. The entire experimental method was repeated
three times independently. In total, triplicate experiments were
performed. In each repeating experiment, a new cell strain was
thawed and incubated, then seeded into a new 96-well plate, and
finally irradiated following the aforementioned procedures.

E. Modeling the Viability of C. Albicans and V. E. Cells

Although the light-induced ROS causes cytotoxicity, the sus-
ceptibility to the ROS of the two cells can still be different, in the
sense that the same amount of ROS may cause different viability
reduction in both types of cells. To further investigate this issue,

the survival rates of C. albicans and V. E. cells affected by ABL
were modeled.

The viability models take the following form, which is a
piecewise function [13], [32], including a shoulder at the be-
ginning of the ABL to represent the accumulating process of the
light-induced cytotoxic ROS.

Nc,e(t) =

{
Nc,e(0), t < τ
Nc,e(0) · e−κ(t−τ), t ≥ τ

, (10)

where Nc,e(t) is the survival rate at time t; the subscripts “c, e”
respectively represent the C. albicans and V. E. cells; κ is the
decaying rate coefficient; and τ is the time constant of when the
inactivation starts.

F. Statistics

In the ROS assays, the raw data were processed to produce
the mean and standard deviation for each treatment time interval.
The significance of ROS levels and viability of cells were tested
by the Student’s t-test. The values of P < 0.05 were considered
statistically significant.

III. RESULTS

A. Measurements of the ROS Concentrations in C.
Albicans and V. E. Cells During ABL Irradiation

The time sequences of the ROS concentrations in the C. albi-
cans and V. E. cells were measured using all three light sources.
The measured fluorescence levels were processed as y = R

R0
,

where R0 is the initial ROS fluorescence of the cells, i.e., the
ROS level not altered by light, as the control group; R is the
measured ROS fluorescence level after the ABL irradiation, as
the treatment group; and y is the processed relative fluorescence
level. We denoted the relative change in the C. albicans ROS
level as yc; and similarly denoted that of V. E. cells as ye. The yc
and ye values irradiated by ABL of the three wavelengths from
0 to 30 min are plotted in Fig. 2.

After C. albicans was exposed to light for 5 min, the rela-
tive ROS concentration yc increased significantly in all cases
(P<0.05); yc increased 10-12 times within 30 min. The ye value
of the V. E. cells increased significantly after 5 min of light
exposure in all cases (P<0.05); ye was increased 3-6 times
within 30 min. Considering the experimental data from the both
cells together, yc was significantly higher than ye after 15 min
of irradiation in all cases (P<0.05).

B. NARX Modeling and Comparison Between PSO and
RWBS Kernel Selection Methods

The NARX was used to predict the dynamic changes in C.
albicans ROS concentrations; and the data from the experiments
with different wavelengths were fitted. The relative ROS concen-
tration of C. albicans at the kth time sampling point was denoted
by yc(k). Here, k is from 1 to 7; and corresponded C. albicans
was irradiated for 0 to 30 min with a step size of 5 min. Let
ny = 2, i.e., in a second order nonlinear dynamic form. Then,
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Fig. 2. Rrelative ROS levels of C. albicans and V. E. cells under
irradiation with three wavelengths of ABL.

TABLE III
COMPARISON OF THE EFFICACY AND ACCURACY OF DIFFERENT KERNEL

SELECTION ALGORITHMS OF NARX MODEL

the NARX model can be written as:

yc(k) = f̃u(yc(k − 2), yc(k − 1)) (11)

The ROS concentrations of the cells irradiated by 385, 405,
and 415 nm wavelength light were measured as time-series data.
These time-series data were used to estimate the NARX model.
More specifically, seven data sampling points were processed
with a delay of two steps to generate five pairs of I/O data as
required in (11).

The NARX model was estimated as described in Section II-
A using these five pairs of I/O data. Then, the first two data
sampling points were taken to predict the third point. After that,
the iteration was continued by plugging the predicted points into
the right hand side of (11).

Here, we compared the kernel selection methods respectively
by the PSO and RWBS algorithm [28], on fitting the NARX
model to the data from the ABL experiment on the C. albicans
under the irradiation of the 415 nm light. The parameters of
RWBS algorithm were chosen the same as those used in [28],
i.e., population size Q = 40, outer loop repeat times N = 7,
and inner loop repeat times K = 600. The PSO parameters
were Q = 40, N = 1 and K = 5, which can yield comparable
model accuracy as the RWBS algorithm, as listed in Table III.
The weighting factors of (12) in Appendix A were set to
d1 = 0.6, d2 = 0.6, d3 = 0.5 empirically.

For this problem, the average time cost of running the RWBS
algorithm was about 2.7 seconds; while the average time cost

TABLE IV
COMPARISON OF THE ACCURACY OF THE NARX MODELS WITH DIFFERENT
KERNELS FITTED TO THE DATA FROM THE EXPERIMENTS WITH DIFFERENT

WAVELENGTHS

Fig. 3. The NARX model predicting the measured relative ROS con-
centrations in C. albicans from the 385, 405 and 415 nm light irradiation
experiment, respectively.

of the PSO algorithm was only about 0.8 seconds. Both of them
ended up with 2 best kernels.

C. NARX Modeling Based on C. Albicans ROS

To select a best kernel for gi(x) from the candidates listed in
Table I, the NARX models were compared in simulations. They
were compared in terms of the fitting error of the RMSEs of
NARX models, which are shown in Table IV.

Since the Laplace kernel performs the best in the simulation,
we chose the NARX model with the Laplace kernel to model the
process in the following. This predicting results of the NARX
model are shown in Fig. 3.

D. NARX Modeling Based on Measured ROS in V. E.
Cells

Similar to Section III-C, the NARX model was used to predict
the dynamic changes in the ROS concentrations of V. E. cells.
The NARX model took the form of (11). As the increase in ye
was similar to that ofyc, we chose NARX with the Laplace kernel
to model the process. The modeling accuracy of the NARX
models against the data collected from different wavelengths
is listed in Table V and plotted in Fig. 4.
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TABLE V
THE RMSES OF THE NARX MODEL WITH THE LAPLACE KERNEL

ESTIMATED BY THE EXPERIMENTAL DATA FROM V. E. CELLS

Fig. 4. The NARX model predicting the measured relative ROS con-
centrations in V. E. cells from the 385, 405 and 415 nm light irradiation
experiment, respectively.

E. Analyzing the Safety and Efficacy of ABL Therapies
via NARX Models

In the above sections, NARX models were established to
estimate the ROS concentrations induced by single-wavelength
ABL for C. albicans and V. E. cells. In this section, the ROS
concentrations in the cells were compared using different NARX
models. More specifically, we plotted the tuple of (yc, ye) stimu-
lated by the same fluence ranging from 0 to 90J/cm2 with a step
size of 15 J/cm2. Here, fluence was calculated as the product of
irradiance and irradiation time. The results are shown in Fig. 5.
A dash line yc = ye was plotted to better reflect the trends in
the figure. It can be clearly observed that the ROS generation
was greater in the C. albicans than in the V. E. cells for each
wavelength and at a same amount of fluence. As shown in Fig. 5,
the red dash curve (415 nm) is the lowest one among the three
curves, which indicates the consistently lowest ROS generation
in the V. E. cells under the 415 nm light exposure. Therefore,
the 415 nm light had less damage to the human host cells than
the 385 nm and 405 nm. In comparison, the 405 nm light was
the most harmful to the V. E. cells.

F. Comparison of the NARX Models With Linear AR
Models in Fitting the Experimental Data

To further show the advantage of the nonlinear NARX model-
ing approach, linear autoregressive (AR) models (see [18]) were
also identified to predict the dynamic changes of ROS in the C.

Fig. 5. Comparing the light-induced ROS concentration using the
NARX models identified from the data of two types of cells.

TABLE VI
THE ACCURACY OF THE AR MODEL FITTED TO DATA OF ALL THE

THREE WAVELENGTHS

TABLE VII
THE ACCURACY OF THE ESTIMATED NARX MODELS FITTED TO DATA OF

ALL THE THREE WAVELENGTHS. THE EXPERIMENTAL DATA USED WERE THE
C. ALBICANS TIME-SERIES ROS CONCENTRATIONS

albicans and V. E. cells. Similar to the NARX model, the delay
step was also set to 2. The RMSEs of the AR models are listed
in Table VI. Clearly, the accuracy of the AR models was much
lower than that of the NARX models with the Laplace kernels,
which have been reported in Tables IV and V, respectively for
C. albicans and V. E. cells.

G. Generalized NARX Model for Short Wavelength ABL
Therapy

In this section, we developed a generalized NARX model
to fit the experimental data from all three wavelengths. Here,
the NARX model identified by the experimental data with one
wavelength was used to fit the experimental data to all three
wavelengths. The average fitting RMSEs of the NARX to the C.
albicans experimental data are listed in Table VII. The NARX
with a polynomial kernel estimated by 385 and 405 nm data
performed well with a good generalized capability. Similarly,
the polynomial kernel also showed good generalized capability
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TABLE VIII
FITTED PARAMETERS OF THE VIABILITY MODEL (10)

TABLE IX
ESTIMATED LETHAL DOSES, LD50 AND LD90, RESPECTIVELY FOR 50%

AND 90% VIABILITY REDUCTION

for the V. E. cells data. The NARX model estimated by the
405 nm wavelength data performed the best of all.

H. The Survival Rates of C. Albicans and V. E. Cells
Affected by ABL

By the aforementioned observations from Fig. 5, the 415 nm
was the best choice for treating C. albicans infected VVC; while
the 405 nm was the worst. Therefore, we only need to take these
two extreme cases to study the inactivating effects on both C.
albicans and V. E. cells. It shall be emphasized that since the
main contribution of this work is to develop and verify the
kernel-based NARX models of light-induced ROS concentra-
tions, extensively repeating the well-studied viability assays is
out of its scope. On the other hand, in our previous work [13],
such experiments with exactly the same types of cells and ex-
perimental settings were already performed, which had resulted
in the viability data, i.e.,Nc(t) andNe(t) for t = 0, 5, 15, 20, 25
min, from respectively the 405 nm and 415 nm light irradiation.
The details of the applied materials and methods can be found
therein.

(10) was fitted to these viability data, and applied to estimate
the lethal doses of the V. E. cells. The fitted parameters are listed
in Table VIII, with which the lethal doses of the V. E. cells were
finally estimated, and are listed in Table IX. Note that calculating
LD90 of the V. E. cells is especially relevant, because at the max
fluence applied to the C. albicans, i.e., after the irradiation by
either of the wavelengths for 25 min, Nc reached the order of
10−3. However, at the same dosage, the survival rates of the V.
E. cells were still a bit higher than 0.5, by either the 405 nm
or 415 nm light. Since the treatment target had already been
achieved, it was not necessary to further apply higher fluence to
the V. E. cells. Therefore, the LD90 calculated by the model is
a reasonable estimate of the dosage for killing up to 90% V. E.
cells.

Furthermore, the tuples of (Nc, Ne) caused by the same
dosages are illustrated in Fig. 6. Besides, linear lines were
fitted to show the descending trends of the V. E. cells, as
the viability rates of the C. albicans decreased. The slopes
of the linear lines were −0.4733 and −0.4031, as respec-
tively fitted to the experimental data of the 405 nm and
415 nm.

Fig. 6. The survival rates for the C. albicans and V. E. cell in the
irradiation of three wavelengths, i.e., 385, 405, and 415 nm.

IV. DISCUSSION

A. Experimental and Simulation Results

In this study, the ROS generated during anti-fungal light irra-
diation experiments were measured with three different wave-
lengths. The main objectives were to compare the effects of the
three different wavelengths on inducing ROS, and to build a
NARX model to predict the changes in ROS levels.

In our experiments, light-induced ROS increased significantly
in C. albicans, demonstrating the effectiveness of the ABL
therapy. On the other hand, the ROS in the V. E. cells was also
increased during blue light irradiation. However, the increased
ROS ratio of V. E. cells was much lower than that of C. albicans,
which demonstrates the safety of ABL therapy.

The ROS level produced by the 405 nm light was slightly
higher than that of the other two wavelengths, indicating a
higher effectiveness for inducing ROS in C. albicans. This
coincided with the finding that the main PS in C. albicans is
porphyrins [12], [33], whose peak absorption wavelength is
405 nm. Thus, the 405 nm blue light excited the porphyrins
more effectively than the other two wavelengths.

V. E. cells were also most affected by the 405 nm blue light.
Although the main endogenous PS in V. E. cells is flavin ade-
nine dinucleotide, whose peak absorption wavelength is about
450 nm [34], they also include considerable coproporphyrin
content [14]. Besides, the molar extinction coefficient of copro-
porphyrin is about 45 times higher than that of flavin adenine
dinucleotide [35], [36]. Thus, 405 nm light also induced the ROS
effectively in V. E. cells.

The main difficulty with ROS assay experiments is that the
initial cellular ROS level is difficult to control. The initial cellular
ROS level is proportional to the cell concentration, which is
strictly controlled by absorption of the fungal suspension. Also,
the culture conditions, e.g., media and passage or culture time,
can affect the amount of cellular PS [37]; therefore, affecting the
initial ROS level and ability of ROS to accumulate. In this study,
the culture conditions were strictly controlled. All experiments
were performed with fresh-thawed fungal strains, which were
cultured for the same durations.
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On the other hand, the performance of the polynomial
kernel was best among the four kernels, when the generalized
NARX model was used to fit the experimental data of all
three wavelengths. The fitting accuracy of the linear kernel
was not satisfactory, which was attributed to the nonlinearity
of the ROS accumulation process. For instance, some kinetic
models of light-induced ROS have been investigated [38]–[40]
and all of these kinetic models demonstrated high
nonlinearity.

In Section III-G, a generalized NARX model was devel-
oped to predict the ROS induced by the three wavelengths of
light. In fact, the 385, 405 and 415 nm wavelengths include
almost all of the short wavelength blue light. Thus, this gen-
eralized NARX model was useful to predict the ROS con-
centration with any short wavelength blue light. We did not
perform experiments with long wavelength ABL, since it does
not inactivate fungal strains [13], [34]. Thus, short wavelength
ABL is a potential and effective treatment; and our generalized
NARX model has provided a satisfactory prediction of the light-
induced ROS concentration in responses to short wavelength
blue light.

B. Comparison of the Effects Based on the Experimental
and Simulation Results of All Three Wavelengths

The ROS concentrations in the different cells were compared
in Section III-E. The dash line in Fig. 5 represents yc = ye,
indicating the same ROS concentrations in C. albicans and
V. E. cells in response to the same fluence of light. All three
curves were always below it, which explains why the relative
increase of ROS in V. E. cells was lower than that of C. albicans.
More specifically, by the same relative ROS concentrations in C.
albicans (yc=8), the increase in the ROS ratio in V. E. cells was
2.6, 3, and 2.13, respectively with the 385, 405, and 415 nm light.
Obviously, the 415 nm light has a more effective anti-fungal
function with less damage to the human host cells than 385 and
405 nm.

However, the same amount of ROS may still cause different
viability reduction in different types of cells. The slopes of the
fitted lines in Fig. 6 help to further investigate this issue, which
turned out to be −0.4733 and −0.4031, as respectively fitted to
the experimental data of the 405 nm and 415 nm reported in our
previous work [13]. The slope reflects the resistance of the V. E.
cells to the light relatively to that of the C. albicans. The lower
its absolute value, the more resistant the host cells to the light
than the pathogens. Therefore, Fig. 6 shows that the 415 nm
light has a more effective anti-fungal function with less damage
to the human host cells than the 405 nm. Putting the observations
from both Fig. 5 and Fig. 6 together, it can be concluded that the
415 nm is the best wavelength to treat this disease, in terms of
both the efficacy and safety.

Notably, the 405 nm ABL was the most effective wavelength
to induce the ROS in C. albicans and V. E. cells. However,
the 415 nm is the better wavelength for treating VVC. This
result reminds us that we should not only focus on the ROS
accumulation by pathogens, but pay attention to the damage

to host cells. The peak absorption of specific pathogens, such
as C. albicans, is 405 nm, determined by the endogenous PSs.
However, this is not to say that the 405 nm is always the best
ABL wavelength to treat candida infections.

C. The Safety of ABL

Clinically applicable anti-fungal strategies shall selectively
inactivate pathogenic fungi, while sparing the normal host cells
and tissues. As a safety study of ABL, both the ROS accumu-
lation and survival rates were investigated and compared in C.
albicans and V. E. cells. The increased ROS concentration in the
V. E. cells was much lower than that in the C. albicans, implying
the favorable selectivity of the ABL. During the 415 nm light
exposure, no significant inhibition of the V. E. cells was observed
within the beginning 10 min; while 47% of the C. albicans was
killed at that time. In the end, over 58% of the V. E. cells survived
after the 415 nm light irradiation, which almost completely
inactivated the C. albicans. The aforementioned results suggest
that there exists a therapeutic window, where the C. albicans can
be selectively inactivated, while the majority of V. E. cells are
preserved.

Furthermore, the maximum ABL fluence applied in this study
was 90J/cm2. Such a fluence is a safe dose without causing
any genotoxicity to human host cells. It has been reported by
other authors that no ABL induced DNA damage occurred in the
epithelial cells up to the 216J/cm2 fluence of 405 nm light [14].
For the more sensitive human retinal pigment epithelial (RPE)
cells, it has also been observed that the induced damage to the
mitochondrial DNA in the RPE cells was less at the fluence of
60J/cm2 than that at 30J/cm2 [41]. This may be attributed to
the DNA repair system that was activated after the 30J/cm2

light treatment. In fact, it was proved that the mitochondria are
capable of repairing oxidative DNA damage to some extent, e.g.,
the damage to bases and single-strand breaks [42].

V. CONCLUSION

In this study, we measured the changes in intracellular ROS
of C. albicans and V. E. cells for 30 min with irradiation
of 385, 405, and 415 nm light. Furthermore, we proposed a
modeling scheme using a kernel-based NARX structure, whose
kernels were selected by a newly developed algorithm based
on PSO optimization. This NARX model was used to fit the
experimental data. High fitting accuracy was achieved by the
model, demonstrating the effectiveness of the proposed mod-
eling technique. Both the experimental data and the numerical
results from the NARX model indicated that the ROS ratio of V.
E. cells was always lower than that of C. albicans, demonstrating
the safety of the ABL therapy. Moreover, a key conclusion was
that the 415 nm wavelength blue light was the most effective
wavelength, with the least damage to V. E. cells. More impor-
tantly, the proposed kernel-based NARX model identification
algorithm can also be applied to determine the effective and
safe light dosages in treating other types of fungal infection
diseases.
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APPENDIX A
PSO ALGORITHM FOR KERNEL SELECTION

The PSO algorithm is an evolutionary algorithm that mimics
the movements of the organisms in a bird flock. It solves a prob-
lem by having a population of candidate solutions, and moving
these particles around in the search-space. The movements of
the particles are guided by their own best known position in the
search space as well as the best known position of the entire
swarm.

First, all particles are dispersed uniformly. The movement,
also known as velocity, is denoted as V , whose initial value can
be randomly chosen. Let Ψj ,V j ∈ RS denotes the j-th particle
and its corresponding velocity, where S denotes the dimension
of Ψj and V j . The movements are adapted by the following
formula.

V j = d1V j + d2(Ψ
∗ −Ψj) + d3(Ψ

∗
j −Ψj), (12)

where d1, d2 and d3 are the weighting factors; Ψ∗ and Ψj∗
are the global best particle and local best particle respectively.
The value of V j shall be hard bounded to the so-called “setting
region,” i.e. V j ∈ [V min,V max].

After each movement, the position of the j-th particle is
updated by

Ψj+1 = Ψj + V j , (13)

which is then hard bounded to the search space, i.e. Ψj ∈
[Ψmin,V max]. The search will stop when the cost function of
Ψ∗ is satisfied or the maximum generation is reached.

In this work, we propose to use PSO for the kernel selection in
the NARX model. The objective of kernel selection is to select
a subset of ns (ns � n) best kernels from the full set of n
candidate kernels. In this specific NARX model, the I/O data
are time-series data of the ROS concentrations which is a vector.
To model each this process, the output dimension is � = 1, and
hence yk, θi take the scalar form. For simplicity of notations,
we will especially consider the single output case. However, it
shall be mentioned that the proposed method is not restricted
to single output case. For the NARX kernel selection, define a
cost function as Jt, where t stands for the number of selected
regressors. The initial cost is denoted as J0 = yTy. According
to Eq. (8) one can write

J0 = θTP TPθ = Σn
i=1p

T
i piθ

2
i .

The idea is to search all the columns in P , and find the one that
reduces the cost value most, if being removed from J .

Ji = Ji−1 − pT
i piθ

2
i , (14)

where pi is chosen from P . This procedure can be terminated if

Ji < ε or i < T (15)

is satisfied, where ε is a chosen positive scalar; and “T” is the
maximum epoch, represents that T regressors are chosen.

The PSO algorithm is proposed to choose the orthogonal
columns in (14). In PSO, the decision variables are regarded
as particles. These particles move around in the search space.

The parameters in the NARX model to be optimized are the
kernel center xi and the kernel parameters ai, bi, . . .. Thus, for
kernel selection, the particle shall include the index of the center
and its corresponding variance; i.e., Ψj = [ij , aij , bij , . . .]

T ,
where ij stands for the index of the kernel center that is included
in the j-th particle while choosing pi. Once these kernel param-
eters are fixed, the corresponding pi and θi can be calculated
by the standard Gram-Schmidt procedure; and the cost function
can be calculated by (14).

APPENDIX B
NARX MODEL IDENTIFICATION ALGORITHM

Outer loop (search the i-th regressor gi, i = 1, 2, . . . , T )
Initialize the value of population size denoted as Q;

the weighting factors d1, d2 and d3; the searching space
Ψmin,Ψmax; and the movement setting region V min,V max.

for (i=1; i ≤ T; i=i+1)
1) Initialize the population Ψ randomly in the searching

space and randomly generate an initial velocity matrix
V inside the setting region.

2) Calculate the cost for all particles:
for (j=1; j ≤ Q; j=j+1)

a) Choose the kernel index ij from the particle Ψj =
[ij , aij , bij , . . .]

T . Compute the regressor vector
gij = [gij (x1), . . . , gij (xN )]T by the kernel func-
tions on Table (II), as a candidate while selecting
the i-th regressor. Then orthogonalize it by the
standard Gram-Schmidt procedure:

b) if i = 1

uj = gij

pij =
uj

‖uj‖2
(16)

else

uj = gij − Σi−1
r=1(g

T
ij
· pr) · pr (17)

pij =
uj

‖uj‖2
c) Calculate the corresponding θij and the cost func-

tion in terms of pij , θij by

θij =
pij

T y

pij
Tpij

(18)

Jij = Jij−1
− pij

Tpijθij
2 (19)

where Jij is the cost after choose Ψj =
[ij , aij , bij , . . .]

T as the i-th regressor.
end for

3) Find the best particle, as the one corresponding to the
minimal Jij , i.e.

j∗ = min
j

{Ji1 , Ji2 , . . . , JiQ}.

And set the global best as Ψ∗ = Ψj∗.
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4) Initialize the local best particles as

Ψj∗ = Ψj , j = 1, 2, . . . , Q

The PSO inner loop:
for(k=1; k ≤ K; k=k+1)

for(j = 1; j ≤ Q, j = j + 1)
a) Calculate V j by (12) and restrict its value into the

setting region.
b) Update Ψj by (13) and restrict its value into the

search space.
c) Calculate the cost function value Jij as in (19) for

the new particle. Update the global best particleΨ∗

and the local best particles Ψ∗
i as follows.

If Ψj is better than Ψ∗, set Ψ∗ = Ψj .
If Ψj is better than Ψ∗

j , set Ψ∗
j = Ψj .

end for
Stop the inner loop when the maximum epoch is reached
or J∗

ij
< ε.

end for
End of inner loop

The best particle find in this epoch is Ψ∗. Set Ji = Jij∗, gi =
gij∗ , pi = pij∗ and θi = θij∗ . Remove the selected index j∗
from the candidates of the regressor indices.

end for
End of outer loop
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