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FROSch PRECONDITIONERS FOR LAND ICE SIMULATIONS OF
GREENLAND AND ANTARCTICA\ast 

ALEXANDER HEINLEIN\dagger , MAURO PEREGO\ddagger , AND SIVASANKARAN RAJAMANICKAM\ddagger 

Abstract. Numerical simulations of Greenland and Antarctic ice sheets involve the solution of
large-scale highly nonlinear systems of equations on complex shallow geometries. This work is con-
cerned with the construction of Schwarz preconditioners for the solution of the associated tangent
problems, which are challenging for solvers mainly because of the strong anisotropy of the meshes and
wildly changing boundary conditions that can lead to poorly constrained problems on large portions
of the domain. Here, two-level generalized Dryja--Smith--Widlund (GDSW)--type Schwarz precondi-
tioners are applied to different land ice problems, i.e., a velocity problem, a temperature problem, as
well as the coupling of the former two problems. We employ the message passing interface (MPI)--
parallel implementation of multilevel Schwarz preconditioners provided by the package FROSch (fast
and robust Schwarz) from the Trilinos library. The strength of the proposed preconditioner is that
it yields out-of-the-box scalable and robust preconditioners for the single physics problems. To the
best of our knowledge, this is the first time two-level Schwarz preconditioners have been applied to
the ice sheet problem and a scalable preconditioner has been used for the coupled problem. The
preconditioner for the coupled problem differs from previous monolithic GDSW preconditioners in
the sense that decoupled extension operators are used to compute the values in the interior of the
subdomains. Several approaches for improving the performance, such as reuse strategies and shared
memory OpenMP parallelization, are explored as well. In our numerical study we target both uni-
form meshes of varying resolution for the Antarctic ice sheet as well as nonuniform meshes for the
Greenland ice sheet. We present several weak and strong scaling studies confirming the robustness
of the approach and the parallel scalability of the FROSch implementation. Among the highlights of
the numerical results are a weak scaling study for up to 32K processor cores (8K MPI ranks and 4
OpenMP threads) and 566M degrees of freedom for the velocity problem as well as a strong scaling
study for up to 4K processor cores (and MPI ranks) and 68M degrees of freedom for the coupled
problem.

Key words. domain decomposition methods, monolithic Schwarz preconditioners, GDSW
coarse spaces, multiphysics simulations, parallel computing
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1. Introduction. Greenland and Antarctic ice sheets store most of the fresh
water on earth, and mass loss from these ice sheets significantly contributes to sea-
level rise (see, e.g., [37]). In this work, we propose overlapping Schwarz domain
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decomposition preconditioners for efficiently solving the linear systems arising in the
context of ice sheet modeling.

We first consider the solution of the ice sheet momentum equations for computing
the ice velocity. This problem is at the core of ice sheet modeling and has been largely
addressed in the literature; several solvers have been considered [43, 6, 19, 38, 53, 20,
11, 10]. Most solvers from the literature rely on Newton--Krylov methods, using, e.g.,
the conjugate gradient (CG) [32] or the generalized minimal residual (GMRES) [47]
method as the linear solver, and either one-level Schwarz preconditioners, hierarchical
low-rank methods, or multigrid preconditioners to accelerate the convergence. In
particular, the solvers that have been demonstrated on problems with hundreds of
millions of unknowns [6, 38, 53, 20, 11] use tailored multigrid preconditioners or
hierarchical low-rank methods. Multigrid preconditioners [6, 38, 53, 20] require careful
design of the grid transfer operators for properly handling the anisotropy of the mesh
and the basal boundary conditions that range from no-slip to free-slip. Hierarchical
low-rank approaches have also been used for the velocity problem [11, 10]. Chen et al.
[11] developed a parallel hiearchical low-rank preconditioner that is aysmptotically
scalable, but it has a large constant overhead, and the trade-off between memory
usage and solver convergence does not make it an ideal choice for the large problems
considered here. The hierarchical low-rank approach that showed the most promise
in terms of solver scalability is a sequential implementation, which limits its usage to
small problems [10].

In addition to the velocity problem, we also consider the problem of finding the
temperature of an ice sheet using an enthalpy formulation [1, 49, 33] and the steady-
state thermo-mechanical problem coupling the velocity and the temperature prob-
lems. The robust solution of this coupled problem is crucial for finding the initial
thermo-mechanical state of the ice sheet under the assumption that the problem is
almost at thermodynamic equilibrium. In fact, the initial state is estimated solving a
PDE-constrained optimization problem where the loss function is the mismatch with
observations and the constraint is the coupled velocity-temperature problem consid-
ered here. To the best of our knowledge, while there are works in the literature
targeting the solution of unsteady versions of the coupled problem [5, 42, 46], none of
them target the steady thermo-mechanical problem at the ice sheet scale.

Both the velocity problem and the coupled velocity-temperature problem are
characterized by strong nonlinearities and anisotropic meshes (due to the shallow
nature of ice sheets). The coupled problem presents additional complexities due to the
different nature of the velocity and temperature equations, the former being a purely
diffusive elliptic problem, whereas the second is an advection dominated problem. In
our experience, the naive use of multigrid methods leads to convergence failure for
the coupled problem.

Our approach is to employ a preconditioning framework based on two-level Schwarz
methods with generalized Dryja--Smith--Widlund (GDSW) [13, 14] type coarse spaces.
Since they have been introduced, GDSW methods have proven to be very flexible and
robust. Let us briefly recall some of the most recent works: In [25], a framework for
enhancing both classical GDSW as well as reduced dimension GDSW (RGDSW) [17]
coarse spaces by adaptive coarse basis functions was introduced. This leads to adap-
tive GDSW (AGDSW) and reduced dimension adaptive GDSW (RAGDSW) coarse
spaces, respectively, which are also robust for highly heterogeneous problems; more-
over, this adaptive approach has been combined with machine learning techniques
in order to reduce the number of local eigenvalue problems necessary to construct
the adaptive coarse space in [27]. In [26], nonlinear overlapping and nonoverlap-
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ping preconditioning techniques were combined with adaptive coarse space, where, in
particular, AGDSW coarse spaces were employed in the nonlinear two-level Schwarz
framework introduced in [31]. This two-level Schwarz framework incorporates the
coarse space by a Galerkin product, also allowing for the use of GDSW-type coarse
spaces. Moreover, a three-level extension for the GDSW preconditioner was intro-
duced to significantly improve the parallel scalability; see, e.g., [30] for parallel scal-
ing results for up to 64 000 cores on the JUQUEEN BG/Q supercomputer at JSC
J\"ulich. Furthermore, in [22, 23], monolithic GDSW coarse spaces for block systems
were introduced. This idea is also the basis for the monolithic preconditioners in this
paper. To the best of our knowledge, scalable domain decomposition methods such
as the GDSW preconditioner used in this work have not been shown to work on the
ice sheet problems. The main contributions of this work are as follows:

\bullet We demonstrate that two-level Schwarz preconditioners such as GDSW-type
preconditioners work out-of-the-box to solve two single physics problems (the
velocity problem and the temperature problem) on land ice simulations.

\bullet We introduce a scalable two-level preconditioner for the coupled problem that
is tailored for the coupled problem by decoupling the extension operators to
compute the values in the interior of the subdomains.

\bullet We present results using a message passing interface (MPI)--parallel imple-
mentation of multilevel Schwarz preconditioners provided by the package
FROSch (fast and robust Schwarz) [21, 29, 28] from the Trilinos software
framework.

\bullet Finally, we demonstrate the scalability of the approach with several weak
and strong scaling studies confirming the robustness of the approach and
the parallel scalability of the FROSch implementation. We conduct a weak
scaling study for up to 32K processor cores and 566M degrees of freedom for
the velocity problem as well as a strong scaling study for up to 4K processor
cores and 68M degrees of freedom for the coupled problem. We compare
against the multigrid method in [51, 53] for the velocity problem.

The remainder of the paper is organized as follows. Sections 2 and 3 introduce the ice
sheet problems and the finite element discretization used in this study. We describe
the Schwarz preconditioners, the reuse strategies for better performance, and the
monolithic preconditioner tailored for the coupled problem in section 4. Our software
framework, which is based on Albany and FROSch, is briefly described in section 5.
Finally, the scalability and the performance of the proposed preconditioners are shown
in section 6. Appendix A contains additional numerical results.

2. Mathematical model. At the scale of glaciers and ice sheets, ice can be
modeled as a very viscous shear-thinning fluid with a rheology that depends on the
ice temperature. Complex phenomena like the formation of crevasses and ice calving
would require more complex damage mechanics models; however, the fluid descrip-
tion accounts for most of the large-scale dynamics of ice sheets, and it is adopted
by all ice sheet computational models. The ice temperature depends on ice flow
(velocity/deformation). Given the large characteristic time scale of the temperature
evolution, it is reasonable to assume the temperature to be relatively constant over
a few decades and solve the flow problem uncoupled from the temperature problem.
However, when finding the initial state of an ice sheet (by solving an inverse problem)
it is important to consider the coupled flow/temperature model to find a self-consistent
initial thermo-mechanical state. In this case, we assume the ice temperature to be
almost in steady-state. Therefore, in this paper, we consider a steady-state temper-
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ature solver. In this section, we first introduce separately the flow model and the
temperature model and then introduce the coupled model.

2.1. Flow model. We model the ice as a very viscous shear-thinning fluid with
velocity \bfitu and pressure p satisfying the Stokes equations\biggl\{ 

 - \nabla \cdot \sigma (\bfitu , p) = \rho i \bfitg ,
\nabla \cdot \bfitu = 0,

where \bfitg is the gravity acceleration, \rho i is the ice density, and \sigma is the stress tensor. In
what follows, we use the so-called first-order (FO) or Blatter--Pattyn approximation
of the Stokes equations derived using scaling arguments based on the fact that ice
sheets are shallow. Following [45] and [50], we have

(2.1)

\biggl\{ 
 - \nabla \cdot (2\mu \.\bfitepsilon 1) =  - \rho i g \partial xs,
 - \nabla \cdot (2\mu \.\bfitepsilon 2) =  - \rho i g \partial ys,

where x and y are the horizontal coordinate vectors in a Cartesian reference frame,
s(x, y) is the ice surface elevation, g = | \bfitg | , and \.\bfitepsilon 1 and \.\bfitepsilon 2 are given by

(2.2) \.\bfitepsilon 1 =
\bigl( 
2 \.\epsilon xx + \.\epsilon yy, \.\epsilon xy, \.\epsilon xz

\bigr) T
and \.\bfitepsilon 2 =

\bigl( 
\.\epsilon xy, \.\epsilon xx + 2\.\epsilon yy, \.\epsilon yz.

\bigr) T
.

Denoting with u and v the horizontal components of the velocity \bfitu , the stress com-
ponents are defined as \epsilon xx = \partial xu, \epsilon xy = 1

2 (\partial yu + \partial xv), \epsilon yy = \partial yv, \epsilon xz = 1
2\partial zu, and

\epsilon yz = 1
2\partial zv. The ice viscosity \mu in (2.1) is given by

(2.3) \mu =
1

2
A(T ) - 

1
n \.\epsilon 

1 - n
n

e ,

where A(T ) = \alpha 1e
\alpha 2T is a temperature-dependent rate factor (see [50] for the defi-

nition of coefficients \alpha 1 and \alpha 2), n = 3 is the power-law exponent, and the effective
strain rate, \.\epsilon , is defined as

(2.4) \.\epsilon e \equiv 
\bigl( 
\.\epsilon 2xx + \.\epsilon 2yy + \.\epsilon xx \.\epsilon yy + \.\epsilon 2xy + \.\epsilon 2xz + \.\epsilon 2yz

\bigr) 1
2 ,

where \.\epsilon ij are the corresponding strain-rate components. Given that the atmospheric
pressure is negligible compared to the pressure in the ice, we prescribe stress-free
conditions at the upper surface: \.\bfitepsilon 1 \cdot \bfitn = \.\bfitepsilon 2 \cdot \bfitn = 0, where n is the outward pointing
normal vector at the ice sheet upper surface, z = s(x, y). The lower surface can slide
according to the following Robin-type conditions 2\mu \.\bfitepsilon 1 \cdot \bfitn +\beta u = 0 and 2\mu \.\bfitepsilon 2 \cdot \bfitn +\beta v =
0, where \beta is a spatially variable friction coefficient and u and v are the horizontal
components of the velocity \bfitu . The field \beta is set to zero beneath floating ice. On
lateral boundaries we prescribe the conditions 2\mu \.\bfitepsilon 1 \cdot \bfitn = 1

2gH
\bigl( 
\rho i  - \rho wr

2
\bigr) 
n1 and

2\mu \.\bfitepsilon 2 \cdot \bfitn = 1
2gH

\bigl( 
\rho i  - \rho wr

2
\bigr) 
n2, where H is the ice thickness, n is the outward pointing

normal vector to the lateral boundary (i.e., parallel to the (x, y) plane), \rho w is the
density of ocean water, n1 and n2 are the x and y components of n, and r is the
ratio of ice thickness that is submerged. On terrestrial ice margins r = 0, whereas on
floating ice r = \rho i

\rho w
. Additional details on the momentum balance solver can be found

in [50].

2.2. Temperature model. As is apparent from (2.3), the ice rheology depends
on the ice temperature T . In order to model the ice sheet thermal state, we consider
an enthalpy formulation similar to the one proposed by Aschwanden et al. in [1]. We
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assume that, for cold ice, the enthalpy h depends linearly on the temperature, whereas
for temperate ice, the enthalpy grows linearly with the water content \phi :

h =

\biggl\{ 
\rho ic (T  - T0) for cold ice (h \leq hm),
hm + \rho wL\phi for temperate ice.

Here, the melting enthalpy hm is defined as hm := \rho wc(Tm  - T0), and T0 is a uniform
reference temperature.

The steady-state enthalpy equation reads

(2.5) \nabla \cdot \bfitq (h) + \bfitu \cdot \nabla h = 4\mu \epsilon 2e.

Here, \bfitq (h) is the enthalpy flux, given by

\bfitq (h) =

\Biggl\{ 
k

\rho ici
\nabla h for cold ice (h \leq hm),

k
\rho ici

\nabla hm + \rho wL\bfitj (h) for temperate ice,

\bfitu \cdot \nabla h is the drift term, and 4\mu \epsilon 2e is the heat associated to ice deformation. The
water flux term \bfitj (h) := 1

\eta w
(\rho w  - \rho i)k0\phi 

\gamma \bfitg has been introduced by Schoof and Hewitt

[49, 33], and it describes the percolation of water driven by gravity. The parameter
ci is the heat capacity of ice, k is its thermal conductivity, and L is the latent heat
of fusion. At the upper surface, the enthalpy is set to h = \rho ic(Ts  - T0), where Ts is
the temperature of the air at the ice upper surface. At the bed, the ice is in contact
either with a dry bed or with a film of water at the melting point temperature and,
in the first approximation, satisfies the Stefan condition:

m = G+ \beta (u2 + v2) - k\nabla T \cdot \bfitn and m (T  - Tm) = 0 and Tm \leq 0.

Here, m is the melting rate. Ice at the bed is melting when m > 0 and refreezing
when m < 0. Moreover, G is the geothermal heat flux (positive if entering the ice
domain), \beta 

\surd 
u2 + v2 is the frictional heat, and  - k\nabla T \cdot \bfitn is the temperature heat flux

exiting the domain as \bfitn is the outer normal to the ice domain. Depending on whether
the ice is cold at the bed, melting, or refreezing, the Stefan condition translates into
natural or essential boundary conditions for the enthalpy equation. Further details
on the enthalpy formulation and its discretization are provided in [44].

2.3. Coupled model. The ice velocity depends on the temperature through (2.4),
and the enthalpy depends on the velocity field through the drift term \bfitu \cdot \nabla h and the
fractional heat term at the ice sheet lower surface. The FO problem (2.1) only provides
the horizontal velocities u and v, but we also need the vertical velocity w to solve the
enthalpy equations. The vertical velocity w is computed using the incompressibility
condition

(2.6) \partial xu+ \partial yv + \partial zw = 0,

with the Dirichlet boundary condition at the ice lower surface \bfitu \cdot \bfitn = m
L (\rho i - \rho w\phi ) . The

coupled problem is formed by problems (2.1), (2.5), and (2.6) and their respective
boundary conditions. For further details, see [44]. Figure 1 shows the ice velocity and
temperature computed solving the coupled thermo-mechanical model. For details
about the problem setting and the Greenland data set, see [34, 44].
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Fig. 1. Solution of a Greenland ice sheet simulation. Left: Ice surface speed in [m/yr]. Right:
Ice temperature in [K] over a vertical section of the ice sheet.

3. Finite element discretization. The ice sheet mesh is generated by extrud-
ing in the vertical direction a two-dimensional unstructured mesh of the ice sheet
horizontal extension [50], and it is constituted of layers of prisms. The problems
described in section 2 are discretized with continuous piecewise bilinear (for trian-
gular prisms) or trilinear (for hexahedra) finite elements using a standard Galerkin
formulation, for each component of the velocity and for the enthalpy. We use up-
wind stabilization for the enthalpy equation. The nonlinear discrete problems can be
written in the residual form

F (x) = 0,(3.1)

where x is the problem unknown (velocity, enthalpy, or both, depending on the prob-
lem). The nonlinear problems are then solved using a Newton--Krylov approach. More
precisely, we linearize the problem using Newton's method, and we solve the resulting
linear tangent problems

DF (x(k))\Delta x(k) =  - F (x(k))(3.2)

using a Krylov subspace method. The Jacobian DF is computed through automatic
differentiation. Using a block matrix notation, the tangent problem (3.2) of the ve-
locity problem can be written as\biggl[ 

Auu Auv

Avu Avv

\biggr] \biggl[ 
xu

xv

\biggr] 
=

\biggl[ 
ru
rv

\biggr] 
,(3.3)

where the tangent matrix is symmetric positive definite. When considering also the
vertical velocity w, the tangent problem becomes\left[  Auu Auv

Avu Avv

Awu Awu Aww

\right]  
\underbrace{}  \underbrace{}  

=:Au

\left[  xu

xv

xw

\right]  
\underbrace{}  \underbrace{}  
=:xu

=

\left[  rurv
rw

\right]  
\underbrace{}  \underbrace{}  
=:ru

.(3.4)D
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Fig. 2. Extending two-dimensional nonoverlapping subdomains (left) by layers of elements to
obtain overlapping domain decompositions with an overlap of \delta = 1h (middle) and \delta = 2h (right).

Note that the matrix is lower block-triangular because in the FO approximation, the
horizontal velocities are independent of the vertical velocity. Similarly, the tempera-
ture equation reads

AT xT = rT .(3.5)

The coupled problem is a multiphysics problem coupling the velocity and the
temperature problem. Hence, the tangent system can be written as\biggl[ 

Au CuT

CTu AT

\biggr] \biggl[ 
xu

xT

\biggr] 
=

\biggl[ 
\~ru
\~rT

\biggr] 
,(3.6)

where the blocks Au and AT and solution vectors xu and xT are the same as in the
single physics problems; cf. (3.4) and (3.5). The residual vectors \~ru and \~rT differ from
the single physics residuals ru and rT due to the coupling of velocity and temperature,
which also results in the nonzero coupling blocks CuT and CTu in the tangent matrix.

4. Preconditioners. In order to solve the tangent problems (3.2) in our New-
ton iteration, we apply the GMRES method [47] and speed up the convergence using
GDSW-type domain decomposition preconditioners. In particular, we will use clas-
sical GDSW and RGDSW preconditioners, as described in subsection 4.1, as well as
corresponding monolithic preconditioners, as introduced in subsection 4.3. In order
to improve the performance of the first level of the Schwarz preconditioners, we will
always apply scaled prolongation operators; cf. subsection 4.2. As we will describe
in subsection 4.4, domain decomposition preconditioners and, in particular, GDSW-
type preconditioners are well suited for the solution of land ice problems because of
the specific structure of the meshes. In order to improve the efficiency of the precon-
ditioners in our Newton--Krylov algorithm, we will also apply strategies to reuse, in
later Newton iterations, certain components of the preconditioners set up in the first
Newton iteration; see subsection 4.5.

For the sake of clarity, we will restrict ourselves to the case of uniform meshes
with characteristic element size h for the description of the preconditioners. However,
the methods can also be applied to nonuniform meshes such as the ones for Greenland;
see Figure 4.

4.1. GDSW-type preconditioners. Let us consider the general linear system

Ax = b(4.1)

arising from a finite element discretization of an elliptic boundary value problem on
\Omega . Our aim is then to apply the preconditioners to the tangent problems (3.2) of the
model problems described in section 2.
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The GDSW preconditioner was originally introduced by Dohrmann, Klawonn,
and Widlund in [14, 13] for elliptic problems. It is a two-level Schwarz preconditioner
with energy minimizing coarse space and exact solvers. To describe the construction
of the GDSW preconditioner, let \Omega be partitioned into N nonoverlapping subdomains
\Omega 1, . . . ,\Omega N with characteristic sizeH. We extend these subdomains by adding k layers
of finite elements resulting in overlapping subdomains \Omega \prime 

1, . . . ,\Omega 
\prime 
N with an overlap

\delta = kh; cf. Figure 2 for a two-dimensional example. In general, two-level Schwarz
preconditioners for (4.1) with exact solvers are of the form

MOS - 2 = \Phi A - 1
0 \Phi T +

N\sum 
i=1

RT
i A

 - 1
i Ri.(4.2)

Here, A0 = \Phi TA\Phi is the coarse matrix corresponding to a Galerkin projection onto
the coarse space, which is spanned by the columns of matrix \Phi . The local matrices Ai

are submatrices of A corresponding to the overlapping subdomains \Omega \prime 
1, . . . ,\Omega 

\prime 
N . They

can be written as Ai = RiART
i , where Ri : V

h \rightarrow V h
i is the restriction operator from

the global finite element space V h to the local finite element space V h
i on \Omega \prime 

i; the RT
i

is the corresponding prolongation.
We first present the framework enabling the construction of energy-minimizing

coarse spaces for elliptic problems based on a partition of unity on the interface

\Gamma =
\bigl\{ 
x \in (\Omega i \cap \Omega j) \setminus \partial \Omega D| i \not = j, 1 \leq i, j \leq N

\bigr\} 
(4.3)

of the nonoverlapping domain decomposition, where \partial \Omega D is the Dirichlet boundary.
This will allow us to construct classical GDSW coarse spaces [14, 13] and RGDSW
coarse spaces [17] as used in our simulations. Note that other types of coarse spaces can
be constructed using this framework as well, e.g., coarse spaces based on the multiscale
finite element method (MsFEM) [36]; see also [7]. However, in our experiments, we
restrict ourselves to GDSW-type coarse spaces.

Let us first decompose \Gamma into connected components \Gamma 1, . . . ,\Gamma M . This decom-
position of \Gamma may be overlapping or nonoverlapping. Furthermore, let R\Gamma i

be the
restriction from all interface degrees of freedom to the degrees of freedom of the in-
terface component \Gamma i. In order to account for overlapping decompositions of the
interface, we introduce diagonal scaling matrices D\Gamma i

, such that

M\sum 
i=1

RT
\Gamma i
D\Gamma i

R\Gamma i
= I\Gamma ,(4.4)

where I\Gamma is the identity matrix on \Gamma . This means that the scaling matrices correspond
to a partition of unity on the interface \Gamma .

Using the scaling matrices D\Gamma i
, we can now build a space which can represent

the restriction of the null space of our problem to the interface. For the construction
of a basis for this interface space, let the columns of the matrix Z form a basis of the
null space of the operator \^A, which is the global matrix corresponding to A but with
homogeneous Neumann boundary conditions on the full boundary, and let Z\Gamma be the
restriction of Z to the interface \Gamma . Because of (4.4), we have

\sum M
i=1 R

T
\Gamma i
D\Gamma i

R\Gamma i
Z\Gamma =

Z\Gamma .
Now, for each \Gamma i, we construct a matrix \Phi \Gamma i

such that its columns are a basis of
the space spanned by the columns of D\Gamma i

R\Gamma i
Z\Gamma . Then, the interface values of our

coarse space are given by the matrix

(4.5) \Phi \Gamma =
\bigl[ 
RT

\Gamma 1
\Phi \Gamma 1

. . . RT
\Gamma M

\Phi \Gamma M

\bigr] 
.
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Based on these interface values, the coarse basis functions are finally computed
as energy-minimizing extensions to the interior of the nonoverlapping subdomains.
Therefore, we partition all degrees of freedom into interface (\Gamma ) and interior (I) degrees
of freedom. Then, the system matrix can written as

A =

\biggl[ 
AII AI\Gamma 

A\Gamma I A\Gamma \Gamma 

\biggr] 
,

and the energy-minimizing extensions are computed as \Phi I =  - A - 1
II AI\Gamma \Phi \Gamma , resulting

in the coarse basis

(4.6) \Phi =

\biggl[ 
\Phi I

\Phi \Gamma 

\biggr] 
=

\biggl[ 
 - A - 1

II AI\Gamma \Phi \Gamma 

\Phi \Gamma 

\biggr] 
.

As mentioned earlier, this construction allows for a whole family of coarse spaces,
depending on decomposition of the interface into components \Gamma i and the choice of
scaling matrices D\Gamma i

.
GDSW coarse spaces. We obtain the interface components of the GDSW coarse

space \Gamma 
(GDSW)
i by decomposing the interface \Gamma into the largest connected components

\gamma belonging to the same sets of subdomains \scrN \gamma :=
\bigl\{ 
i : x \in \Omega i \forall x \in \gamma 

\bigr\} 
, i.e., into

vertices, edges, and faces; cf., e.g., [41]. Because these components are disjoint by
construction, the scaling matrices D

\Gamma 
(GDSW)
i

have to be chosen as identity matrices

I
\Gamma 
(GDSW)
i

in order to satisfy (4.4). Using this choice, we obtain the classical GDSW

coarse space as introduced by Dohrmann, Klawonn, and Widlund in [14, 13]. If the
boundaries of the subdomains are uniformly Lipschitz, the condition number estimate
for the resulting two-level GDSW preconditioner,

\kappa 
\bigl( 
M - 1

GDSWA
\bigr) 
\leq C

\biggl( 
1 +

H

\delta 

\biggr) \biggl( 
1 + log

\biggl( 
H

h

\biggr) \biggr) 
,(4.7)

holds for scalar elliptic and compressible linear elasticity model problems; the constant
C is then independent of the geometrical parameters H, h, and \delta . For the general case
of \Omega \subset \BbbR 2 being decomposed into John domains, we can obtain a condition number

estimate with a second power logarithmic term, i.e., with
\bigl( 
1 + log

\bigl( 
H
h

\bigr) \bigr) 2
instead of\bigl( 

1 + log
\bigl( 
H
h

\bigr) \bigr) 
; cf. [13, 14]. Please also refer to [15, 16] for other variants with linear

logarithmic term.
RGDSW coarse spaces. Another choice of the \Gamma i leads to RGDSW coarse spaces;

cf. [17]. In order to construct the interface components \Gamma 
(RGDSW)
i , we first define

a hierarchy of the previously defined \Gamma 
(GDSW)
i . In particular, we call an interface

component \gamma an ancestor of another interface component \gamma \prime if \scrN \gamma \prime \subset \scrN \gamma ; conversely,

we call \gamma an offspring of \gamma \prime if \scrN \gamma \prime \supset \scrN \gamma . Now, let
\bigl\{ 
\^\Gamma 
(GDSW)
i

\bigr\} 
i=1,...,M(RGDSW) be the

set of all GDSW interface components which have no ancestors; we call these coarse
components. Now, we define the RGDSW interface components as

\Gamma 
(RGDSW)
i :=

\bigcup 
\scrN \gamma \subset \scrN 

\^\Gamma 
(GDSW)
i

\gamma \forall i = 1, . . . ,M (RGDSW).(4.8)

The \Gamma 
(RGDSW)
i may overlap in nodes which do not belong to the coarse components.

Hence, we have to introduce scaling operators D
\Gamma 
(RGDSW)
i

\not = I
\Gamma 
(RGDSW)
i

to obtain a

partition of unity on the interface; cf. (4.4). Different scaling operators D\Gamma i
lead to
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different variants of RGDSW coarse spaces, e.g., Options 1, 2.1, and 2.2, introduced
in [17] and another variant introduced in [25]. Here, we will only consider the algebraic
variant, Option 1, where an inverse multiplicity scaling

D
\Gamma 
(RGDSW)
i

= R
\Gamma 
(RGDSW)
i

\left(  M(RGDSW)\sum 
j=1

RT

\Gamma 
(RGDSW)
j

R
\Gamma 
(RGDSW)
j

\right)   - 1

RT

\Gamma 
(RGDSW)
i

is employed. For scalar elliptic and compressible linear elasticity model problems and
under the condition that all subdomains are Lipschitz domains, we then obtain the
same condition number estimate (4.7) as previously for GDSW coarse spaces; cf. [17].

The only missing ingredient to construct the GDSW and RGDSW coarse spaces
is the respective null space Z of the global Neumann matrix corresponding to A.
For the velocity and the temperature problems, the preconditioners can be directly
constructed and applied using the corresponding null spaces spanned by

ru,1 :=

\biggl[ 
1
0

\biggr] 
, ru,2 :=

\biggl[ 
0
1

\biggr] 
, and ru,3 :=

\biggl[ 
y
 - x

\biggr] 
or rT :=

\bigl[ 
1
\bigr] 
,

respectively, on each finite element node. Here, ru,1 and ru,2 correspond to the transla-
tions and ru,3 to the linearized rotation building the null space of the velocity problem.
The rT is the constant null space element of the temperature problem.

Remark 4.1. Sometimes it may be beneficial to only consider a subspace \^Z of the
full space Z. This results in a smaller coarse space, at the cost of slower convergence of
the linear solver. In particular, in theory, numerical scalability is not provided in this
case. However, since the coarse solve is typically a parallel scaling bottleneck, it may
still be faster to neglect a part of the coarse space for a large number of subdomains.
In our numerical results, we will actually observe that neglecting rotational rigid body
modes improves the parallel performance of our solver; see also [29, 24] for similar
experiments for elasticity problems.

Note that, if rotations are neglected, the GDSW and RGDSW coarse spaces can
actually be constructed in an algebraic way because the translational coarse basis
functions can be computed without geometric information; see also [24].

For the coupled problem described in subsection 2.3, we will describe a mono-
lithic preconditioner in subsection 4.3, where we use the same construction but with
decoupled extensions operators. Before that, however, we will describe the scaled
prolongation operators used in the first level in our numerical experiments.

4.2. Scaled prolongation operators. As first shown in [9], the convergence
of additive Schwarz preconditioners can often be improved using restricted or scaled
variants of the prolongation operators RT

i in (4.2); see also [18, 23]. For the sake of
brevity, we will not compare the performance of the standard, the restricted, and the
scaled variants for the different model problems considered in this paper. We only
show results using the scaled variant because it performed best in preliminary tests.

We construct the scaled prolongation operator \~RT
i such that

\sum N
i=1

\~RT
i Ri = I:

\~RT
i :=

\left(  N\sum 
j=1

RT
j Rj

\right)   - 1

RT
i .

Note that the matrix
\sum N

i=1 R
T
i Ri is just a diagonal scaling matrix, and its inverse

can therefore be specified directly. The two-level Schwarz preconditioner with scaled
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prolongations then reads

MOS - 2 = \Phi A - 1
0 \Phi T +

N\sum 
i=1

\~RT
i A

 - 1
i Ri.(4.9)

4.3. Monolithic preconditioning the coupled problem. For the coupled
problem, A is structured as follows:

A =

\biggl[ 
Au CuT

CTu AT

\biggr] 
,(4.10)

where the off-diagonal blocks formally account for the coupling of the different vari-
ables; cf. (3.6). We will construct monolithic two-level Schwarz preconditioners as
introduced in [39, 40] and extended to monothic GDSW preconditioners in [22, 23].
Formally, the monolithic preconditioners for the coupled problem can again be written
as (4.2) or (4.9), respectively. However, all matrices are now 2\times 2 block matrices. In
particular, the monolithic restriction and prolongation matrices are of the form

Ri =

\biggl[ 
Ri,u 0
0 Ri,T

\biggr] 
and \~Ri =

\biggl[ 
\~Ri,u 0

0 \~Ri,T

\biggr] 
,

where Ri,u and Ri,T are the restriction operators to the overlapping subdomain \Omega \prime 
i on

the velocity and temperature degrees of freedom, and \~Ri,u and \~Ri,T are the respective
prolongation operators.

The coarse space can be constructed in a similar way as in the single physics case.
In particular, the interface components \Gamma i and the scaling matrices D\Gamma i

are construc-
ted in the same way, and the null space Z of the multiphysics problem is composed of
the null spaces of the individual single physics problems. However, as we will observe
in the numerical results, it is necessary to remove the coupling blocks between the
velocity and the temperature problems before computing the extensions (4.6). Hence,
instead of A, the matrix

\~A =

\biggl[ 
Au 0
0 AT

\biggr] 
(4.11)

is used in the computation of the harmonic extensions, i.e., \Phi I =  - \~A - 1
II

\~AI\Gamma \Phi \Gamma . This
can be viewed as applying a block Jacobi preconditioner with two blocks corresponding
to the single physics problems instead of solving the systems corresponding to A - 1

II

monolithically. Consequently, the coarse basis functions corresponding to the velocity
and the temperature problems can be computed independently. Then, the matrix \Phi 
is of the form

\Phi =

\biggl[ 
\Phi u,u0

0
0 \Phi T,T0

\biggr] 
,(4.12)

where the row indices u and T indicate the finite element functions of the original
problem, and the column indices u0 and T0 correspond to the basis functions of
the coarse space. A similar decoupling approach for the coarse basis functions was
performed in [22, 23] for a monolithic preconditioner for fluid problems. However,
it was necessary to first compute the fully coupled extensions (4.6) and to drop the
off-diagonal blocks in the matrix \Phi afterwards. This was due to the fact that the
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Fig. 3. Uniform hexahedral mesh for the Antarctica ice sheet with a horizontal resolution
of 16 km decomposed into nine subdomains. The domain decomposition is performed on the two-
dimensional top surface mesh, and the subdomains are extruded in the vertical direction to obtain
three-dimensional subdomains with 10 layers of height.

system matrix was of the form
\Bigl[ 
A BT

B 0

\Bigr] 
, such that the decoupled matrix would become

singular. Here, the decoupled matrix (4.11) remains invertible since the individual
blocks correspond to the single physics velocity and temperature problems. Therefore,
our coarse basis matrix is also of the same structure for Lagrangian coarse spaces
in [39, 40].

It is important to note that, even though the coarse basis functions do not contain
any coupling blocks, the coarse problem is still a coupled problem with a coarse matrix
of the form

A0 =

\biggl[ 
\Phi u,u0 0
0 \Phi T,T0

\biggr] T \biggl[ 
Au CuT

CTu AT

\biggr] \biggl[ 
\Phi u,u0 0
0 \Phi T,T0

\biggr] 
=

\biggl[ 
\Phi T

u,u0
Au\Phi u,u0 \Phi T

u,u0
CuT\Phi T,T0

\Phi T
T,T0

CTu\Phi u,u0
\Phi T

T,T0
AT\Phi T,T0

\biggr] 
.

Because we use equal order discretizations for the velocity and temperature vari-
ables in the coupled problem, we can formally apply a nodewise ordering to our
degrees of freedom. Then, the monolithic preconditioner can be constructed exactly
as in the elliptic case (see section 4), however using the previously described decoupled
matrix (4.11) to compute the extension.

We then obtain all three velocity degrees of freedom and one temperature degree
of freedom for each finite element node, and the full null space is spanned by

ru,1 :=

\left[    
1
0
0
0

\right]    , ru,2 :=

\left[    
0
1
0
0

\right]    , ru,3 :=

\left[    
0
0
1
0

\right]    , ru,4 :=

\left[    
y
 - x
0
0

\right]    , rT :=

\left[    
0
0
0
1

\right]    .

Here, ru,4 corresponds to a linearized rotation, which will be neglected in some of our
numerical experiments to reduce the computing time on the coarse level.
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Fig. 4. Nonuniform triangulation of the top surface mesh for the Greenland ice sheet with a
horizontal resolution of 3 km to 30 km decomposed into nine subdomains. The three-dimensional
mesh is then obtained by extrusion in the vertical direction.

4.4. Remarks on domain decomposition methods for land ice problems.
The geometries for the ice sheets in Antarctica and Greenland are visualized in Fig-
ures 3 and 4. Generally, the horizontal extensions of the ice sheets are on the order of
hundreds or thousands of kilometers, whereas their thickness is at maximum only a
few kilometers. Therefore, the geometries and the corresponding meshes used in our
simulations are clearly anisotropic; cf. section 3 for a description of the mesh gener-
ation procedure and Figure 3 for a visualization of an exemplary mesh of Antarctica
with a horizontal mesh resolution of 16 km and 10 layers of elements in the z direction.

Due to this specific structure of the meshes, we perform the nonoverlapping do-
main decomposition as follows: First, we decompose the two-dimensional mesh of the
top surface. We extrude the two-dimensional subdomains in the z direction next,
resulting in a domain decomposition of the whole three-dimensional domain. Hence,
the domain decomposition is essentially a two-dimensional domain decomposition, and

the partition of the domain decomposition interface \Gamma into the components \Gamma 
(GDSW)
i

only yields edges and faces but no vertices. However, as can be seen in Figures 3
and 4, the subdomain geometries can be very irregular due to the complex shape of
the boundary of the ice sheets. Hence, the domain decomposition is not well suited for
the use of classical Lagrangian coarse spaces, which would require the construction of
a coarse triangulation of the geometry. However, this is not required for GDSW-type
coarse spaces which can be constructed without an additional coarse triangulation.
Hence they can easily be constructed for the considered land ice problems.

4.5. Reuse strategies for nonlinear problems. The model problems in sec-
tion 2 are highly nonlinear; as can be seen in section 6, the coupled problem requires
a particularly high number of nonlinear iterations. Therefore, we will investigate sev-
eral strategies to reuse information from the first iteration in later Newton iterations,
such that the total time to solution can be improved. Note that other approaches
where the information is updated in certain multiple Newton iterations, e.g., in every
nth iteration, are also possible but are outside the scope of this paper.

The different reuse strategies, which are listed in Table 1, are used in different
numerical experiments in section 6 and Appendix A. Since neither the topology nor
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Table 1
Reuse strategies for monolithic GDSW preconditioners (4.2) for nonlinear model problems.

Reuse strategy Short description

NR (no reuse) Set up the preconditioner from scratch in each nonlinear iter-
ation.

IS (index sets) Reuse the index sets for the overlapping subdomains and the
interface components.

SF1 (symb. fact. lvl 1) Reuse the symbolic factorization of Ai.
SF2 (symb. fact. lvl 2) Reuse the symbolic factorization of A0.
CB (coarse basis) Reuse the coarse basis \Phi .
CM (coarse matrix) Reuse the coarse matrix A0.

the domain decomposition of our problem changes during the nonlinear iteration, it is
a safe assumption that the index sets of the overlapping subdomains and the interface
components stay the same. This saves mostly communication, which dominates the
time for identifying the index sets. If the sparsity pattern of the system matrix is also
constant during the nonlinear iteration, the symbolic factorizations for Ai and A0 can
be easily reused as well. In GDSW-type preconditioners, the coarse basis functions
\Phi change with the tangent matrix, which is used to compute the extensions (4.6) in
each nonlinear iteration. However, in practice, the coarse basis computed with the
tangent matrix in the first Newton iteration can also be used in later iterations. In
some cases, the complete coarse matrix A0 and its factorization can even be reused.

5. Software framework. The land ice problems are implemented in Albany
Land Ice (formerly referred to as Albany FELIX) [50, 48], a C++ finite element li-
brary that relies on Trilinos [52] for MPI+X parallelism (Tpetra, Kokkos), linear (Be-
los/AztecOO) and nonlinear (NOX) solvers, preconditioners (Ifpack2, Muelu, ShyLU,
FROSch), discretization tools (STK, Intrepid2, Phalanx), and automatic differentia-
tion (Sacado). Albany Land Ice is part of the land ice code MALI [35].

The GDSW-type preconditioners described in section 4 are implemented in the
FROSch framework [21, 29, 28], which is part of Trilinos [52]. FROSch can use
both distributed-memory parallelism using the Tpetra package of Trilinos and shared-
memory parallelism while using the direct solvers interfaced through the Amesos2
package of Trilinos [2]. With respect to shared-memory parallelism, in this paper,
we restrict ourselves to using CPU threads. Specifically, we use the Pardiso solver
provided with the Intel MKL software, which can also make use of shared-memory
parallelism using OpenMP threads and has already been shown to perform well for
several applications. FROSch is called from Albany Land Ice using the unified Trilinos
solver interface Stratimikos and directly uses the Tpetra matrices and vectors which
have been assembled in Albany Land Ice. Moreover, FROSch makes use of the index
set of the nonoverlapping domain decomposition and the null space basis provided by
Albany Land Ice in the form of Tpetra map and multivector objects; cf. the discussion
in [24].

The performance characteristics of the implementation of individual kernels need
to be known in order for the numerical results to be meaningful. We use a software
stack that is several layers deep from the ice sheet application, nonlinear solvers, linear
solvers, distributed memory data structures, to local data structures. Analyzing the
performance of each kernel using a performance model is not in the scope of the paper.
We point out the key computational cost is in the local sparse direct solver Pardiso.
The communication costs in our computations arise mainly from the linear solver. We
use Trilinos data structures that have been optimized and used within several scientific
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codes. We were still able to find a significant improvement in communication cost on
top of Trilinos data structures as described in Appendix A.1.2.

6. Numerical results. In this section, we will present numerical results for
the flow (subsection 2.1), temperature (subsection 2.2), and coupled (subsection 2.3)
problems; additional results can be found in Appendix A. For the flow problem, we will
use the uniform meshes for Antarctica, whereas we will use the nonuniform Greenland
meshes for the other two model problems; cf. Figures 3 and 4. The experiments were
performed using the Haswell compute nodes (2 sockets with a 16-core Intel Xeon
Processor E5-2698 v3 with 2.3 GHz each) of the Cori supercomputer at NERSC
(National Energy Research Scientific Computing Center); we always employed one
processor core per thread. The code was compiled using Intel 19.0.3.199 compilers
and Intel MKL. The subdomain problems and the coarse problem are solved on one
MPI rank using Pardiso from the Intel MKL with OpenMP parallelization if more
than one OpenMP thread is used.

The nonlinear problems are solved using the inexact Newton method with back-
tracking implemented in the Trilinos package NOX up to a relative reduction of the
residual of 10 - 5. As the linear solver we employ the GMRES method [47] from
Trilinos AztecOO preconditioned by two-level overlapping Schwarz domain decompo-
sition preconditioners from Trilinos FROSch (part of the package ShyLU) as described
in section 4; cf. [29, 28, 22, 23]. We iterate the GMRES method up to a relative re-
duction of the residual of 10 - 7 for the flow and temperature problems or 10 - 9 for the
coupled problem. Since the number of nonlinear iterations is not influenced by our
preconditioners, we always report the number of linear iterations averaged over the
number of Newton iterations.

With respect to the Schwarz preconditioners, if not stated otherwise, we will al-
ways use one layer of overlap as determined from the sparsity pattern of the matrix.
On the first level, we apply scaled prolongation operators; cf. subsection 4.2. As
already discussed in [29], we will use two communication steps in order to transfer in-
formation from the first to the second level (scatter and gather); during the discussion
in Appendix A.1.2, we will also present results using only one or three communication
steps.

6.1. Flow problem for Antarctica. In this section, we will present a numeri-
cal study of GDSW-type preconditioners for the land ice flow problem for Antarctica.
We compare one-level Schwarz methods and two-level Schwarz methods with GDSW-
type coarse spaces (subsection 6.1.1), and we provide weak scaling results ranging
from the coarsest mesh with 16 km horizontal resolution to the finest mesh with 1 km
horizontal resolution (subsection 6.1.2). The largest computation in this weak scaling
study was performed on 32 768 processor cores using 8 192 MPI ranks and 4 OpenMP
threads per MPI rank solving a problem with more than 566m degrees of freedom.
Moreover, we compare our results using FROSch against the algebraic multigrid pack-
age MueLu [4, 3] (subsection 6.1.3). For additional results on different reuse strategies,
parallelization aspects, and varying the number of mesh layers in the vertical direction,
see Appendix A.1.

6.1.1. Comparison of different Schwarz preconditioners. First, we com-
pare the classical GDSW and the RGDSW coarse spaces in a strong scaling study
on a medium size mesh with 4 km horizontal resolution using both the full three-
dimensional null space and a two-dimensional subspace of the null space where the
rotation has been omitted; cf. the discussion in subsection 4.1. In this study, we reuse
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Table 2
Comparison of different coarse spaces for the flow problem on the Antarctica mesh with 4 km

horizontal resolution, 20 layers of elements in the vertical direction, and a total of 35.3m degrees of
freedom. The linear iteration counts (avg. its), setup times (avg. setup), and solve times (avg. solve)
are averaged over the number of Newton iterations (nl its). The lowest average iteration counts,
setup times, and solve times in each row are marked in bold.

Without rotational coarse basis functions (2 rigid body modes)
GDSW (IS \& SF1 \& SF2 \& CB) RGDSW (IS \& SF1 \& SF2 \& CB)

MPI avg. its avg. avg. avg. its avg. avg.
ranks dimV0 (nl its) setup solve dimV0 (nl its) setup solve
512 4 598 40.8 (11) 15.36 s 12.38 s 1 834 42.6 (11) 14.99 s 12.50 s
1 024 9 306 43.3 (11) 5.80 s 6.27 s 3 740 44.5 (11) 5.65 s 6.08 s
2 048 18 634 41.7 (11) 3.27 s 2.91 s 7 586 42.7 (11) 3.11 s 2.79 s
4 096 37 184 41.4 (11) 2.59 s 2.07 s 15 324 42.5 (11) 1.07 s 1.54 s
8 192 72 964 39.5 (11) 1.51 s 1.84 s 30 620 42.0 (11) 1.20 s 1.16 s

With rotational coarse basis functions (3 rigid body modes)
GDSW (IS \& SF1 \& SF2 \& CB) RGDSW (IS \& SF1 \& SF2 \& CB)

MPI avg. its avg. avg. avg. its avg. avg.
ranks dimV0 (nl its) setup solve dimV0 (nl its) setup solve
512 6 897 35.5 (11) 15.77 s 11.21 s 2 751 40.7 (11) 15.23 s 12.22 s
1 024 13 959 35.6 (11) 6.16 s 5.78 s 5 610 42.9 (11) 5.65 s 6.04 s
2 048 27 951 33.5 (11) 3.78 s 3.45 s 11 379 42.2 (11) 3.17 s 2.81 s
4 096 55 776 31.8 (11) 2.21 s 3.80 s 22 986 44.3 (11) 1.95 s 2.70 s
8 192 109 446 29.3 (11) 2.49 s 5.33 s 45 930 40.8 (11) 1.19 s 3.13 s

Table 3
Number of coarse components \Gamma i for the Antarctica mesh with 4km horizontal resolution. The

dimension of the coarse space is the number of coarse components multiplied by the dimension of
the null space.

\# subdomains 512 1 024 2 048 4 096 8 192
GDSW 2299 4 653 9 317 18 592 36 482
RGDSW 917 1 870 3 793 7 662 15 310

the index sets (IS), the symbolic factorizations (SF1 \& SF2), and the coarse basis
(CB) from the first nonlinear iteration. As can be seen in Table 2, all preconditioners
scale numerically, but the iteration counts are better for the classical GDSW coarse
spaces compared to the respective RGDSW coarse spaces. In particular, the best
iteration counts are obtained using the classical GDSW coarse space with the full null
space. However, the parallel performance is clearly better when reducing the dimen-
sion of the coarse space either by omitting the rotational rigid body mode or by using
the RGDSW coarse space; see also Table 3 for the number of coarse components used
in the GDSW and the RGDSW coarse spaces, which, together with the dimension
of the employed subspace of the null space, determines the size of the coarse space.
In total, the variant with the smallest coarse space, i.e., RGDSW without rotation,
yields both the highest iteration counts but the best parallel performance. Hence, we
will concentrate on this coarse space in the following experiments.

Moreover, we compare one-level and two-level Schwarz methods in Table 4. We
observe that the one-level methods do not scale numerically. However, due to the
geometry of the ice sheet, the increase in the iteration count of the one-level precon-
ditioners is lower compared to usual fully three-dimensional domain decompositions.
Due to the reuse strategies for the two-level methods used in this comparison, the
setup cost for the one-level preconditioners is only slightly lower; even the coarse ma-
trix is reused. However, due to numerical scalability, the two-level methods clearly
perform better in the solve phase.
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Table 4
Comparison of one-level and RGDSW preconditioners for the flow problem on the Antarctica

mesh with 4 km horizontal resolution, 20 layers of elements in the vertical direction, and a total of
35.3m degrees of freedom. The linear iteration counts (avg. its), setup times (avg. setup), and solve
times (avg. solve) are averaged over the number of Newton iterations (nl its). The lowest average
iteration counts, setup times, and solve times in each row are marked in bold.

One-level Schwarz
one layer of algebraic overlap two layers of algebraic overlap

MPI avg. its avg. avg. avg. its avg. avg.
ranks (nl its) setup solve (nl its) setup solve
512 67.7 (11) 13.80 s 19.55 s 56.2 (11) 17.95 s 18.40 s
1 024 79.1 (11) 5.00 s 10.60 s 66.5 (11) 6.74 s 10.56 s
2 048 96.1 (11) 1.74 s 6.09 s 80.8 (11) 2.58 s 6.31 s
4 096 113.3 (11) 0.81 s 3.59 s 94.8 (11) 1.21 s 3.99 s
8 192 132.0 (11) 0.47 s 2.15 s 109.5 (11) 0.65 s 2.35 s

RGDSW (IS \& SF1 \& SF2 \& CB \& CM)
one layer of algebraic overlap two layers of algebraic overlap

MPI avg. its avg. avg. avg. its avg. avg.
ranks (nl its) setup solve (nl its) setup solve
512 46.7 (11) 14.94 s 13.81 s 42.1 (11) 18.89 s 14.13 s
1 024 49.2 (11) 5.75 s 6.78 s 44.3 (11) 6.95 s 7.21 s
2 048 47.7 (11) 2.92 s 3.10 s 44.3 (11) 2.66 s 3.56 s
4 096 48.9 (11) 0.95 s 1.75 s 45.5 (11) 1.28 s 2.15 s
8 192 50.1 (11) 0.63 s 1.35 s 46.0 (11) 0.76 s 1.66 s

Table 5
Weak scalability studies for the RGDSW preconditioner for the flow problem on the Antarctica

mesh with 4 km horizontal resolution and 20 layers of elements in the vertical direction. The linear
iteration counts (avg. its), setup times (avg. setup), and solve times (avg. solve) are averaged over
the number of Newton iterations (nl its). The lowest average iteration counts, setup times, and
solve times in each row are marked in bold.

1 OpenMP thread
IS \& SF1 \& SF2 \& CB IS \& SF1 \& SF2 \& CB \& CM

MPI mesh \# avg. its avg. avg. avg. its avg. avg.
ranks dofs (nl its) setup solve (nl its) setup solve
32 16 km 2.2m 24.1 (11) 11.97 s 9.47 s 24.0 (11) 11.18 s 9.45 s
128 8 km 8.8m 32.0 (10) 14.08 s 8.71 s 32.6 (10) 14.06 s 8.93 s
512 4 km 35.3m 42.6 (11) 14.99 s 12.50 s 42.6 (11) 16.14 s 14.19 s
2 048 2 km 141.5m 61.0 (11) 22.83 s 19.76 s 67.1 (11) 22.65 s 21.69 s
8 192 1 km 566.1m 67.1 (14) 17.36 s 22.91 s 73.0 (14) 16.80 s 28.48 s

4 OpenMP threads
IS \& SF1 \& SF2 \& CB IS \& SF1 \& SF2 \& CB \& CM

MPI mesh \# avg. its avg. avg. avg. its avg. avg.
ranks dofs (nl its) setup solve (nl its) setup solve
32 16 km 2.2m 23.5 (11) 4.15 s 3.25 s 23.8 (11) 3.93 s 3.28 s
128 8 km 8.8m 32.0 (10) 4.97 s 2.85 s 32.6 (10) 4.62 s 2.82 s
512 4 km 35.3m 42.6 (11) 5.50 s 4.02 s 46.7 (11) 5.27 s 4.45 s
2 048 2 km 141.5m 61.0 (11) 7.36 s 6.55 s 67.1 (11) 7.15 s 7.34 s
8 192 1 km 566.1m 67.1 (14) 6.20 s 7.39 s 73.0 (14) 5.75 s 7.92 s

6.1.2. Weak scaling. In Table 5, we provide four weak scalability studies, where
we increase the number of MPI ranks proportional to the resolution of the top surface
mesh; the number of vertical layers is again fixed to 20. In particular, we consider 1
or 4 OpenMP threads per MPI rank combined with the IS \& SF1 \& SF2 \& CB and
IS \& SF1 \& SF2 \& CB \& CM reuse strategies; cf. subsection 4.5 and Appendix A.1.1.

We observe good weak scalability from 32 to 8 192 (1 OpenMP thread per MPI
rank) and from 128 to 32 768 (4 OpenMP threads per MPI rank) processor cores.
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Table 6
Comparison of the RGDSW preconditioner with two different reuse strategies against MueLu

algebraic multigrid for the flow problem on the Antarctica mesh with 4 km horizontal resolution, 20
layers of elements in the vertical direction, and a total of 35.3m degrees of freedom. The linear
iteration counts (avg. its), setup times (avg. setup), and solve times (avg. solve) are averaged over
the number of Newton iterations (nl its). The lowest average iteration counts, setup times, and
solve times in each row are marked in bold.

FROSch MueLu
IS \& SF1 IS \& SF1 \& SF2 \& CB \& CM Vertical Semi-Coarsening

MPI avg. its avg. avg. avg. its avg. avg. avg. its avg. avg.
ranks (nl its) setup solve (nl its) setup solve (nl its) setup solve
512 41.9 (11) 25.10 s 12.29 s 46.7 (11) 14.94 s 13.81 s 31.0 (11) 0.35 s 3.00 s
1024 43.3 (11) 9.18 s 5.85 s 49.2 (11) 5.75 s 6.78 s. 30.7 (11) 0.32 s 1.66 s
2 048 41.4 (11) 4.15 s 2.63 s 47.7 (11) 2.92 s 3.10 s 31.0 (11) 0.36 s 1.02 s
4 096 41.2 (11) 1.66 s 1.49 s 48.9 (11) 0.95 s 1.75 s 30.9 (11) 0.80 s 1.69 s
8 192 40.2 (11) 1.26 s 1.06 s 50.1 (11) 0.63 s 1.35 s 48.5 (11) 1.05 s 2.55 s

However, there is a moderate increase in the number of iterations, which is most
likely caused by the unstructured domain decomposition, where subdomains with
irregular shape and bad aspect ratio may occur in certain cases, in particular at the
boundary of the top surface mesh; cf. Figure 3. For all configurations, the setup time
scales very well, whereas the increase in the solve time is more pronounced; however,
except for the case of 1 OpenMP rank and IS \& SF1 \& SF2 \& CB \& CM reuse, the
solve time does increase clearly less than the number of iterations.

Generally, we observe a speedup by a factor of approximately 3 when using 4
threads instead of 1 OpenMP thread. However, the former uses 4 times the number
of cores compared to the latter. Hence, OpenMP parallelization has to be carefully
considered with respect to the size of the problems and the available parallelism.

6.1.3. Comparison against multigrid. As a final result for the velocity prob-
lem for Antarctica, we compare the strong scalability for the RGDSW preconditioner
in the FROSch package to an algebraic multigrid preconditioner described in [53] and
using MueLu. The method uses a vertical semicoarsening approach designed for the
ice sheet problems. As can be observed in Table 6, for small numbers of MPI ranks
and subdomains, the total time is clearly higher for FROSch compared to MueLu.
This is caused by the superlinear complexity of the direct solvers which are used
to solve the problems on the overlapping subdomains. However, when increasing the
number of subdomains and therefore reducing the size of the overlapping subdomains,
we observe a better speedup compared to MueLu. We note that MueLu settings were
not fine-tuned for this particular problem. However, it is fair to say that FROSch
is competitive for a large number of subdomains, especially considering the fact that
FROSch is used almost as a black box.

6.2. Temperature problem for Greenland. As a second problem for land
ice simulations, we consider the temperature problem described in subsection 2.2 for
Greenland; see also Figure 4. In Table 7, we compare one-level Schwarz and RGDSW
preconditioners using one and two layers of algebraic overlap. As can be observed,
already the one-level method scales well since all subdomains are adjacent to the
Dirichlet boundary, which is the whole upper surface; cf. subsection 2.2. Due to the
lower setup and application costs of the one-level method, both the setup and the solve
times are also lower. Therefore, one-level Schwarz methods are well suited for solving
the temperature problem, and hence, it is not necessary to add a second level. Note
that the standalone steady-state temperature problem is not physically meaningful
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Table 7
Comparison of one-level and RGDSW Schwarz preconditioners for the temperature problem

on the Greenland mesh with 1-10 km horizontal resolution (fine mesh), 20 layers of elements in
the vertical direction, and a total of 1.9m degrees of freedom. The linear iteration counts (avg.
its), setup times (avg. setup), and solve times (avg. solve) are averaged over the number of Newton
iterations (nl its). The lowest average iteration counts, setup times, and solve times in each row
are marked in bold.

One-level Schwarz
one layer of algebraic overlap two layers of algebraic overlap

MPI avg. avg. avg. avg. avg. avg.
ranks its setup solve its setup solve
512 18.1 (11) 0.42 s 0.35 s 17.1 (11) 0.51 s 0.40 s
1 024 23.7 (11) 0.25 s 0.25 s 22.1 (11) 0.27 s 0.27 s
2 048 29.6 (11) 0.16 s 0.17 s 27.6 (11) 0.23 s 0.20 s
4 096 39.8 (11) 0.15 s 0.15 s 35.6 (11) 0.17 s 0.17 s

RGDSW (IS \& SF1 \& SF2 \& CB)
one layer of algebraic overlap two layers of algebraic overlap

MPI avg. avg. avg. avg. avg. avg.
ranks avg. its setup solve avg. its setup solve
512 19.5 (11) 0.44 s 0.41 s 18.7 (11) 0.55 s 0.46 s
1 024 25.2 (11) 0.28 s 0.29 s 23.9 (11) 0.35 s 0.33 s
2 048 31.5 (11) 0.26 s 0.24 s 29.5 (11) 0.25 s 0.27 s
4 096 42.2 (11) 0.25 s 0.27 s 38.2 (11) 0.25 s 0.29 s

because the temperature equilibration is on time scales that are much larger than the
velocity ones. For this reason, we focus our attention on the coupled problem.

6.3. Coupled problem for Greenland. Finally, we consider the coupled prob-
lem for the nonuniform Greenland meshes and present, for the first time, results for
scalable monolithic two-level preconditioners for this problem. Note that the nonlin-
ear iteration is very sensitive for the coupled problem. In particular, even though a
very strict stopping tolerance of 10 - 9 is used for the GMRES iteration, changing the
preconditioner may result in significant variations in the number of nonlinear itera-
tions; cf. Tables 8, 10, and 11. Note again that, in this work, we report linear iteration
counts averaged over the total number of Newton iterations, so that our results are
not influenced much by the sensitivity of the nonlinear solver.

High nonlinear iteration counts may be related to strong, and possibly localized,
nonlinearities. Such nonlinearities can often be eliminated efficiently by using non-
linear preconditioning techniques, that is, by introducing additional local nonlinear
problems to account for the strong nonlinearities. For instance, we could employ
the nonlinear elimination strategy introduced in [12] or a nonlinear Schwarz method,
such as the additive Schwarz preconditioned inexact Newton (ASPIN) [8] method. In
particular, the nonlinear two-level Schwarz framework from [31], which is based on
the ASPIN method, would allow for the use of (monolithic) GDSW coarse spaces.
In the two-level approach, local nonlinear subdomain problems as well as a nonlinear
coarse problem are introduced to improve the nonlinear convergence and the scal-
ability. These approaches are out of the scope of this paper but should be further
investigated in the future.

First, we compare different monolithic coarse spaces for a coarse Greenland mesh
with 3-30 km horizontal resolution, 20 layers of elements in the vertical direction, and
a total of more than 7.5m degrees of freedom. In order to focus only on the coarse
basis, we only consider the following two reuse strategies. On the one hand, we do not
reuse any information from the first Newton iteration (NR); on the other hand, we
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Table 8
Comparison of monolithic RGDSW preconditioners with different coarse spaces neglecting ro-

tational coarse basis functions for the velocity degrees of freedom for the coupled problem on the
Greenland mesh with 3-30 km horizontal resolution (coarse mesh), 20 layers of elements in the ver-
tical direction, and a total of 7.5m degrees of freedom. The linear iteration counts (avg. its), setup
times (avg. setup), and solve times (avg. solve) are averaged over the number of Newton iterations
(nl its). The lowest average iteration counts, setup times, and solve times in each row are marked
in bold.

Fully coupled extensions
NR IS \& CB

MPI avg. its avg. avg. avg. its avg. avg.
ranks dimV0 (nl its) setup solve (nl its) setup solve
256 1 400 100.1 (27) 4.10 s 6.40 s 18.5 (70) 2.28 s 1.07 s
512 2 852 129.1 (28) 1.88 s 4.20 s 24.6 (38) 1.04 s 0.70 s
1 024 6 036 191.2 (65) 1.21 s 4.76 s 34.2 (32) 0.66 s 0.70 s
2 048 12 368 237.4 (30) 0.96 s 4.06 s 37.3 (30) 0.60 s 0.58 s

Decoupled extensions
NR IS \& CB

MPI avg. its avg. avg. avg. its avg. avg.
ranks dimV0 (nl its) setup solve (nl its) setup solve
256 1 400 23.6 (29) 3.90 s 1.32 s 21.5 (34) 2.23 s 1.18 s
512 2 852 27.5 (30) 1.83 s 0.78 s 26.4 (33) 1.13 s 0.78 s
1 024 6 036 30.1 (29) 1.19 s 0.60 s 28.6 (43) 0.66 s 0.61 s
2 048 12 368 36.4 (30) 0.69 s 0.56 s 31.2 (50) 0.57 s 0.55 s

Table 9
Number of coarse components \Gamma i for the two nonuniform Greenland meshes with 3-30 km and

1-10 km horizontal resolution. The dimension of the coarse space is the number of coarse components
multiplied by the dimension of the null space.

\# subdomains 256 512 1 024 2 048 4 096

RGDSW
3-30 km 350 713 1 509 3 092 6 245
1-10 km - 721 1 536 3 230 6 615

only reuse index sets and the coarse basis (IS \& CB); in both cases, we do not reuse
symbolic factorizations because of variations in the sparsity pattern of the system ma-
trix. In combination with these two reuse strategies, we consider monolithic RGDSW
preconditioners (see subsection 4.3) with fully coupled extensions using (4.10) and
decoupled extensions using (4.11), respectively. In Table 8, we clearly observe that us-
ing the standard monolithic coarse space (without reuse of the coarse basis functions)
does not yield a scalable two-level method. However, using the decoupled extensions
described in subsection 4.3 instead, we obtain a scalable monolithic RGDSW precon-
ditioner. Moreover, it seems that the coupling terms in the first Newton iteration do
not deteriorate the scalability. Hence, reusing the coarse basis from the first Newton
iteration even yields a scalable preconditioner for both cases, the fully coupled and
the decoupled extensions.

As for the velocity problem (see subsection 6.1.1), the time to solution is lower
when neglecting the rotational coarse basis functions due to the lower coarse space
dimension; cf. Table 8 and Table 17 in the appendix or Tables 16 and 17, which are
both in the appendix, respectively. Note also the numbers of interface components
in Table 9, which are a driving factor for the coarse space dimension. Consequently,
we will only consider the case of neglecting rotational coarse basis functions for the
monolithic RGDSW coarse spaces in the following experiments.

Next, we investigate different reuse strategies in Table 10 for a fine Greenland
mesh with 1-10 km horizontal resolution, 20 layers of elements in the vertical direction,
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Table 10
Comparison of monolithic RGDSW preconditioners with different reuse strategies for the cou-

pled problem on the Greenland mesh with 1-10 km horizontal resolution (fine mesh), 20 layers of
elements in the vertical direction, and a total of 68.6m degrees of freedom. The linear iteration
counts (avg. its), setup times (avg. setup), and solve times (avg. solve) are averaged over the num-
ber of Newton iterations (nl its). The lowest average iteration counts, setup times, and solve times
in each row are marked in bold.

Decoupled (NR) Fully coupled (IS \& CB) Decoupled (IS \& SF1 \& CB)
MPI avg. avg. avg. avg. avg. avg. avg. avg. avg.
ranks (nl its) setup solve (nl its) setup solve (nl its) setup solve
512 41.3 (36) 18.78 s 4.99 s 45.3 (32) 11.84 s 5.35 s 45.0 (35) 10.53 s 5.36 s
1 024 53.0 (29) 8.68 s 4.22 s 47.8 (37) 5.36 s 3.82 s 54.3 (32) 4.59 s 4.31 s
2 048 62.2 (86) 4.47 s 4.23 s 66.7 (38) 2.81 s 4.53 s 59.1 (38) 2.32 s 3.99 s
4 096 68.9 (40) 2.52 s 2.86 s 79.1 (36) 1.61 s 3.30 s 78.7 (38) 1.37 s 3.30 s

Table 11
Strong scaling study for monolithic one-level Schwarz preconditioners with one layer of algebraic

overlap for the coupled problem on the Greenland mesh with 1-10 km horizontal resolution (fine
mesh), 20 layers of elements in the vertical direction, and a total of 68.6m degrees of freedom. The
linear iteration counts (avg. its), setup times (avg. setup), and solve times (avg. solve) are averaged
over the number of Newton iterations (nl its). The lowest average iteration counts, setup times, and
solve times in each row are marked in bold. See Table 18 for an extended version, which includes
the case of two layers of overlap.

One-level Schwarz
NR NR \& SF1

MPI avg. its avg. avg. avg. its avg. avg.
ranks (nl its) setup solve (nl its) setup solve
512 48.7 (35) 11.3 s 5.41 s 52.2 (32) 10.16 s 5.88 s
1 024 61.9 (40) 5.29 s 4.75 s 66.2 (35) 4.32 s 4.91 s
2 048 89.9 (30) 2.52 s 5.70 s 82.0 (37) 2.07 s 5.27 s
4 096 116.1 (31) 1.17 s 3.68 s 120.39 (31) 0.92 s 3.83 s

and a total of more than 68m degrees of freedom. As can be observed, the best parallel
performance can be obtained when reusing the index sets (IS) as well as the symbolic
factorization on the first level (SF1) and the coarse basis (CB) from the first Newton
iteration. Note that when we reused the symbolic factorization on the second level,
the iteration counts always deteriorated in our experiments.

Finally, we also provide results for monolithic one-level Schwarz preconditioners in
comparison to the two-level monolithic RGDSW preconditioner. As can be observed
in Table 11, the iteration counts for the one-level preconditioners with one level of
overlap are clearly higher compared to the RGDSW preconditioner with one layer of
overlap in Table 10. Therefore, the solve time is reduced by adding an appropriate
second level. On the other hand, the setup cost for the two-level methods is again
higher; in particular, the additional coarse problem is also a fully coupled multiphysics
problem in this case. The computing time for an overlap of two layers was higher for
both the one-level and the two-level methods. For the results for the one-level method
with two layers of overlap, see Table 18 in the appendix.

Note that we observed that the matrix structure of the coupled problem is not
well suited for OpenMP parallelization of the node-level solver Pardiso. In particular,
the speedup was always lower than a factor of 2 when using 4 OpenMP threads and
one processor core per OpenMP thread. For the case of 4 096 MPI ranks, the speedup
was even reduced to a factor of less than 1.2.
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Table 12
Comparison of different reuse strategies for the RGDSW preconditioner for the flow problem on

the Antarctica mesh with 4 km horizontal resolution, 20 layers of elements in the vertical direction,
and a total of 35.3m degrees of freedom. The linear iteration counts (avg. its), setup times (avg.
setup), and solve times (avg. solve) are averaged over the number of Newton iterations (nl its). The
lowest average iteration counts, setup times, and solve times in each row are marked in bold.

IS \& SF1 IS \& SF1 \& SF2 \& CB IS \& SF1 \& SF2 \& CB \& CM
MPI avg. its avg. avg. avg. its avg. avg. its avg. its avg. avg.
ranks (nl its) setup solve (nl its) setup solve (nl its) setup solve
512 41.9 (11) 25.10 s 12.29 s 42.6 (11) 14.99 s 12.50 s 46.7 (11) 14.94 s 13.81 s
1 024 43.3 (11) 9.18 s 5.85 s 44.5 (11) 5.65 s 6.08 s 49.2 (11) 5.75 s 6.78 s
2 048 41.4 (11) 4.15 s 2.63 s 42.7 (11) 3.11 s 2.79 s 47.7 (11) 2.92 s 3.10 s
4 096 41.2 (11) 1.66 s 1.49 s 42.5 (11) 1.07 s 1.54 s 48.9 (11) 0.95 s 1.75 s
8 192 40.2 (11) 1.26 s 1.06 s 42.0 (11) 1.20 s 1.16 s 50.1 (11) 0.63 s 1.35 s

7. Conclusions. We have presented a flexible preconditioning framework based
on the GDSW method, which yields scalable and robust preconditioners for all consid-
ered land ice problems. In particular, the implementation in FROSch can be applied
out-of-the-box; between the different problems, only minor changes of the input pa-
rameters are necessary. Moreover, to the best of our knowledge, we have presented
the first scalable two-level method for the coupled problem for land ice simulations.
Compared to the single physics problems, the extension operators have to be decou-
pled, which can easily be done by changing one parameter in FROSch. Otherwise,
the coarse basis from the first Newton iteration also resulted in a scalable method.

The parallel results of several strong and weak scaling studies, involving different
coarse space variants and reuse strategies as well as OpenMP parallelization and MPI
communication aspects, prove both the robustness and numerical scalability of the
methods as well as the parallel scalability of the implementation in FROSch.

Furthermore, we have observed that the direct solvers in our two-level method are
the main performance bottleneck. On one hand, the direct solvers on the first level
determine the computing time for a small number of MPI ranks and large subdomain
problems. On the other hand, the direct solver on the coarse level may become
the scaling bottleneck for very large numbers of MPI ranks and subdomains. The
improvement of the subdomain and coarse solvers for these complex problems will be
the subject of future research.

Appendix A. Additional numerical results. In this section, we will present
additional numerical results for the flow problem for Antarctica (Appendix A.1) as
well as the coupled problem for Greenland (Appendix A.2).

A.1. Flow problem for Antarctica. Here, we extend the results from subsec-
tion 6.1 by comparing different reuse strategies described in subsection 4.5 and Ta-
ble 1 (Appendix A.1.1) and parallelization aspects (Appendix A.1.2). Moreover, we
investigate the robustness with respect to an increasing number of mesh layers of
elements in the vertical direction (Appendix A.1.3).

A.1.1. Reuse strategies. In Table 12, we investigate the performance improve-
ments due to the use of reuse strategies on the coarse level. As the baseline, we
consider reusing the index sets (IS) and the symbolic factorization for the first level
(SF1). We then consider reusing only the symbolic factorization of the coarse matrix
(SF2) and coarse basis functions (CB) as well as also reusing the coarse matrix itself
(CM). As can be observed, the iteration counts increase, and, at the same time, the
setup cost reduces if parts of the second level are reused. In particular, for lower
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Table 13
Variation of the number of communication steps for the scatter and gather operations on the

coarse level for the RGDSW preconditioner for the flow problem on the Antarctica mesh with 4 km
horizontal resolution, 20 layers of elements in the vertical direction, and a total of 35.3m degrees of
freedom. The linear iteration counts (avg. its), setup times (avg. setup), and solve times (avg. solve)
are averaged over the number of Newton iterations (nl its). The lowest average iteration counts,
setup times, and solve times in each row are marked in bold.

1 comm. step 2 comm. steps 3 comm. steps
MPI avg. avg. avg. avg. avg. avg.
ranks setup solve setup solve setup solve
512 15.38 s 13.8 s 14.99 s 12.50 s 15.75 s 13.85 s
1 024 5.68 s 6.25 s 5.65 s 6.08 s 5.63 s 6.10 s
2 048 2.91 s 3.27 s 2.94 s 2.78 s 3.40 s 2.75 s
4 096 1.35 s 3.77 s 1.07 s 1.54 s 1.15 s 1.56 s
8 192 2.5 s 12.22 s 1.29 s 1.13 s 1.29 s 1.17 s

Table 14
Comparison of increasing the numbers of OpenMP threads or MPI ranks for the RGDSW

preconditioner for the flow problem on the Antarctica mesh with 4 km horizontal resolution, 20
layers of elements in the vertical direction, and a total of 35.3m degrees of freedom. The linear
iteration counts (avg. its), setup times (avg. setup), and solve times (avg. solve) are averaged over
the number of Newton iterations (nl its). The lowest average iteration counts, setup times, and
solve times in each row are marked in bold.

OpenMP parallelization (512 MPI ranks) MPI parallelization
OpenMP avg. its avg. avg. MPI avg. its avg. avg. its

cores threads (nl its) setup solve ranks (nl its) setup solve
512 1 42.6 (11) 14.99 s 12.50 s 512 42.6 (11) 14.99 s 12.50 s
1 024 2 42.6 (11) 9.43 s 6.80 s 1 024 44.5 (11) 5.65 s 6.08 s
2 048 4 42.6 (11) 5.50 s 4.02 s 2 048 42.7 (11) 3.11 s 2.79 s
4 096 8 42.6 (11) 3.65 s 2.71 s 4 096 42.5 (11) 1.07 s 1.54 s
8 192 16 42.6 (11) 2.56 s 2.32 s 8 192 42.0 (11) 1.20 s 1.16 s

numbers of MPI ranks and large subdomain problems, the setup cost is significantly
reduced. Due to the better overall performance, we will only consider results using IS
\& SF1 \& SF2 \& CB or IS \& SF1 \& SF2 \& CB \& CM for the following results using
two-level preconditioners for the flow problem.

A.1.2. Parallelization aspects. Here, we discuss two parallelization aspects in
detail: the communication between the first and the second levels as well as OpenMP
parallelization.

Communication between the first and the second levels. First, we discuss the com-
munication between all MPI ranks and the single MPI rank which computes the coarse
problem, the coarse rank. In particular, both all-to-one and one-to-all communication
patterns are necessary in our implementation: In the setup phase, the coarse matrix,
which is computed by an RAP product on all MPI ranks, has to be communicated to
the coarse rank. Then, in each linear iteration of the solve phase, the right-hand side
of the coarse problem has to be communicated from all ranks to the coarse rank, and
the corresponding solution has to be communicated back. As already discussed in [29,
section 4.7], this type of communication does not perform well for large numbers of
MPI ranks using the Trilinos import and export objects. In [29, section 4.7] Epetra
import and export objects were employed, whereas their Tpetra counterparts are con-
sidered here. Therefore, we introduce nested sets of MPI ranks, beginning with all
MPI ranks and ending with the single coarse rank, and we perform the all-to-one and
one-to-all communication using multiple steps; cf. [29, section 4.7] for a more detailed
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Table 15
Performance of the RGDSW preconditioner for an increasing number of layers for the flow

problem on the Antarctica mesh with 4 km horizontal resolution and 20 layers of elements in the
vertical direction. Left: Constant number of MPI ranks and subdomains. Right: Increasing the
number of MPI ranks and subdomains proportionally to the number of layers. The linear iteration
counts (avg. its), setup times (avg. setup), and solve times (avg. solve) are averaged over the number
of Newton iterations (nl its).

Constant number of MPI ranks 128 MPI ranks per 5 layers
\# \# MPI avg. its avg. avg. MPI avg. its avg. avg.
layers dofs ranks (nl its) setup solve ranks (nl its) setup solve
5 10.1m

2 048

39.2 (11) 0.42 s 0.58 s 128 38.8 (12) 5.47 s 7.79 s
10 18.5m 41.0 (11) 0.79 s 1.15 s 256 37.8 (11) 8.46 s 8.57 s
20 35.3m 42.7 (11) 2.94 s 2.78 s 512 42.6 (11) 14.99 s 12.50 s
40 69.0m 45.6 (12) 5.77 s 6.67 s 1 024 47.8 (12) 19.00 s 15.72 s
80 136.3m 45.3 (15) 14.41 s 14.53 s 2 048 45.3 (15) 14.41 s 14.53 s

discussion.
In Table 13, we present results, varying the number of communication steps from

one to three. As can be observed, using two or three communication steps, we obtain
good parallel scalability. However, if only a single import/export call from Tpetra is
performed in each scatter/gather operation, the parallel scalability deteriorates due
to a significant communication overhead. In particular, the solve time, where one
scatter and one gather operation are performed in each linear iteration, is increased
significantly. Hence, in all other experiments, we use two communication steps.

OpenMP parallelization. In Table 14, we compare OpenMP parallelization and
MPI parallelization. Starting with 512 MPI ranks, we increase the number of processor
cores up to 8 192 using either OpenMP threads or a higher number of MPI ranks. As
can be observed, MPI parallelization is clearly superior in this comparison even though
the size of the coarse problem increases with an increasing number of MPI ranks and
subdomains, whereas it stays constant for OpenMP parallelization. For large numbers
of MPI ranks and subdomains, it may be reasonable to additionally use OpenMP
parallelization since it does not further increase the coarse problem size. Alternatively,
more levels could be added to the GDSW-type preconditioners; cf. [30]. Hence, we will
restrict ourselves to using MPI parallelization; in the largest weak scalability study
in subsection 6.1.2, we also show results using OpenMP parallelization in addition to
MPI parallelization.

A.1.3. Increasing the number of layers of elements in the vertical di-
rection. In most of our numerical simulations, we use 20 layers of elements in the
vertical direction; this corresponds to a rather fine resolution in the vertical direction,
which would also be used in production runs of the land ice simulations. However, we
are also interested in investigating the influence of an increasing number of layers on
the performance of our preconditioners. In Table 15, we employ the RGDSW precon-
ditioner and fix the top surface mesh while increasing the number of vertical layers
of elements from 5 up to 80. For both cases, keeping the number of MPI ranks fixed
and increasing it proportionally to the number of layers, the iteration counts are very
robust. However, the number of nonlinear iterations increases slightly from 11 to 15.
Note that we use 2 048 MPI ranks for all problems in this experiment when we keep
a constant number of MPI ranks. This also allows comparing scalability of the solver
for different problems to 2048 ranks. For example, even the 5-layer problem achieves
13.4x speedup in average solve time going from 128 MPI ranks to 2 048 MPI ranks,
demonstrating good parallel scalability.
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Table 16
Comparison of monolithic RGDSW preconditioners with different coarse spaces neglecting ro-

tational coarse basis functions for the velocity degrees of freedom for the coupled problem on the
Greenland mesh with 3-30 km horizontal resolution (coarse mesh), 20 layers of elements in the ver-
tical direction, and a total of 7.5m degrees of freedom. The linear iteration counts (avg. its), setup
times (avg. setup), and solve times (avg. solve) are averaged over the number of Newton iterations
(nl its). The lowest average iteration counts, setup times, and solve times in each row are marked
in bold. Same as Table 8.

Fully coupled extensions
NR IS \& CB

MPI avg. its avg. avg. avg. its avg. avg.
ranks dimV0 (nl its) setup solve (nl its) setup solve
256 1 400 100.1 (27) 4.10 s 6.40 s 18.5 (70) 2.28 s 1.07 s
512 2 852 129.1 (28) 1.88 s 4.20 s 24.6 (38) 1.04 s 0.70 s
1 024 6 036 191.2 (65) 1.21 s 4.76 s 34.2 (32) 0.66 s 0.70 s
2 048 12 368 237.4 (30) 0.96 s 4.06 s 37.3 (30) 0.60 s 0.58 s

Decoupled extensions
NR IS \& CB

MPI avg. its avg. avg. avg. its avg. avg.
ranks dimV0 (nl its) setup solve (nl its) setup solve
256 1 400 23.6 (29) 3.90 s 1.32 s 21.5 (34) 2.23 s 1.18 s
512 2 852 27.5 (30) 1.83 s 0.78 s 26.4 (33) 1.13 s 0.78 s
1 024 6 036 30.1 (29) 1.19 s 0.60 s 28.6 (43) 0.66 s 0.61 s
2 048 12 368 36.4 (30) 0.69 s 0.56 s 31.2 (50) 0.57 s 0.55 s

Table 17
Comparison of monolithic RGDSW preconditioners with different coarse spaces including ro-

tational coarse basis functions for the velocity degrees of freedom for the coupled problem on the
Greenland mesh with 3-30 km horizontal resolution (coarse mesh), 20 layers of elements in the ver-
tical direction, and a total of 7.5m degrees of freedom. The linear iteration counts (avg. its), setup
times (avg. setup), and solve times (avg. solve) are averaged over the number of Newton iterations
(nl its). The lowest average iteration counts, setup times, and solve times in each row are marked
in bold.

Fully coupled extensions
NR IS \& CB

MPI avg. its avg. avg. avg. its avg. avg.
ranks dimV0 (nl its) setup solve (nl its) setup solve
256 1 750 99.3 (27) 4.20 s 6.35 s 21.9 (30) 2.35 s 1.22 s
512 3 565 131.4 (28) 1.95 s 4.40 s 22.8 (50) 1.09 s 0.66 s
1 024 7 545 261.7 (31) 1.22 s 5.47 s 31.3 (29) 0.73 s 0.61 s
2 048 15 460 325.7 (27) 1.08 s 8.53 s 41.7 (25) 0.74 s 1.16 s

Decoupled extensions
NR IS \& CB

MPI avg. its avg. avg. avg. its avg. avg.
ranks dimV0 (nl its) setup solve (nl its) setup solve
256 1 750 22.0 (28) 3.98 s 1.23 s 22.8 (27) 2.23 s 1.28 s
512 3 565 24.7 (32) 1.92 s 0.72 s 23.8 (39) 1.11 s 0.69 s
1 024 7 545 31.9 (27) 1.23 s 0.62 s 33.1 (27) 0.74 s 0.76 s
2 048 15 460 31.2 (38) 0.99 s 0.77 s 34.7 (34) 0.69 s 1.05 s

A.2. Coupled problem for Greenland. Finally, we provide additional results
for the coupled problem for Greenland. In particular, Tables 16 and 17 show strong
scaling results with and without considering rotational coarse basis functions; as al-
ready shown in subsection 6.3 and Table 8, fully coupled and decoupled extensions
without and with IS \& CB reuse strategies are compared. We observe that, even
though the best convergence is obtained for decoupled extensions including rotational
coarse basis functions, the computing times are generally lower when neglecting rota-
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Table 18
Strong scaling study for monolithic one-level Schwarz preconditioners with one or two layers of

algebraic overlap for the coupled problem on the Greenland mesh with 1-10 km horizontal resolution
(fine mesh), 20 layers of elements in the vertical direction, and a total of 68.6m degrees of freedom.
The linear iteration counts (avg. its), setup times (avg. setup), and solve times (avg. solve) are
averaged over the number of Newton iterations (nl its). The lowest average iteration counts, setup
times, and solve times in each row are marked in bold. Extension of Table 11.

One-level Schwarz (NR)
one layer of algebraic overlap two layers of algebraic overlap

MPI avg. its avg. avg. avg. its avg. avg.
ranks (nl its) setup solve (nl its) setup solve
512 48.7 (35) 11.3 s 5.41 s 42.6 (33) 15.2 s 5.80 s
1 024 61.9 (40) 5.29 s 4.75 s 58.8 (30) 6.92 s 5.48 s
2 048 89.9 (30) 2.52 s 5.70 s 73.5 (34) 3.83 s 6.24 s
4 096 116.1 (31) 1.17 s 3.68 s 103.1 (33) 1.86 s 4.87 s

One-level Schwarz (NR \& SF1)
one layer of algebraic overlap two layers of algebraic overlap

MPI avg. its avg. avg. avg. its avg. avg.
ranks (nl its) setup solve (nl its) setup solve
512 52.2 (32) 10.16 s 5.88 s 42.6 (39) 13.80 s 5.77 s
1 024 66.2 (35) 4.32 s 4.91 s 35.7 (72) 5.98 s 3.19 s
2 048 82.0 (37) 2.07 s 5.27 s 68.5 (39) 3.20 s 5.81 s
4 096 120.39 (31) 0.92 s 3.83 s 95.5 (32) 1.48 s 4.53 s

tional coarse basis functions; this is again due to the smaller coarse space dimension,
resulting in lower costs for computing the coarse problem.

Moreover, in Table 18, we provide an extension of Table 11. In particular, strong
scaling results for a one-level Schwarz method with one and two layers of algebraic
overlap are shown. A wider overlap results in lower iteration counts; however, the
larger local subdomain problems result in an increase in the computational time of
the sparse direct solver. Hence, the use of one level of overlap is more competitive
with respect to the computing time.
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