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Scientific computing is at the core of many High-Performance Computing applications, including computa-
tional flow dynamics. Because of the utmost importance to simulate increasingly larger computational models,
hardware acceleration is receiving increased attention due to its potential to maximize the performance of
scientific computing. Field-Programmable Gate Arrays could accelerate scientific computing because of the
possibility to fully customize the memory hierarchy important in irregular applications such as iterative linear
solvers. In this article, we study the potential of using Field-Programmable Gate Arrays in High-Performance
Computing because of the rapid advances in reconfigurable hardware, such as the increase in on-chip mem-
ory size, increasing number of logic cells, and the integration of High-Bandwidth Memories on board. To
perform this study, we propose a novel Sparse Matrix-Vector multiplication unit and an ILUO preconditioner
tightly integrated with a BiCGStab solver kernel. We integrate the developed preconditioned iterative solver
in Flow from the Open Porous Media project, a state-of-the-art open source reservoir simulator. Finally, we
perform a thorough evaluation of the FPGA solver kernel in both stand-alone mode and integrated in the
reservoir simulator, using the NORNE field, a real-world case reservoir model using a grid with more than
10° cells and using three unknowns per cell.

CCS Concepts: « Computer systems organization — Reconfigurable computing; Heterogeneous (hybrid)
systems; Data flow architectures;

Additional Key Words and Phrases: Iterative solvers, FPGA, GPU, ILU0, BiCGStab, CFD, HPC

ACM Reference format:

Tom Hogervorst, Razvan Nane, Giacomo Marchiori, Tong Dong Qiu, Markus Blatt, and Alf Birger Rustad.
2021. Hardware Acceleration of High-Performance Computational Flow Dynamics Using High-Bandwidth
Memory-Enabled Field-Programmable Gate Arrays. ACM Trans. Reconfigurable Technol. Syst. 15, 2, Article 20
(December 2021), 35 pages.

https://doi.org/10.1145/3476229

Authors’ addresses: T. Hogervorst and R. Nane, Delft University of Technology, Mekelweg 4, 2628CD, Delft, The Nether-
lands; emails: tom.hogervorst74@gmail.com, razvan.nane@bigdataccelerate.com; G. Marchiori and T. D. Qiu, Big Data Ac-
celerate B.V., Burgemeestersrand 66, 2625NW, Delft, The Netherlands; emails: marchiori.giacomo@gmail.com, tongdong.
qiu@bigdataccelerate.com; M. Blatt, OPM-OS AS, Heyerdahlsvei 12b, 0777 Oslo, Norway; email: markus@dr-blatt.de; A. B.
Rustad, Equinor S.A., Arkitekt Ebbels veg 10, Rotvoll, Norway; email: abir@equinor.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

1936-7406/2021/12-ART20 $15.00

https://doi.org/10.1145/3476229

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 20. Pub. date: December 2021.



https://doi.org/10.1145/3476229
https://doi.org/10.1145/3476229
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3476229&domain=pdf&date_stamp=2021-12-06

20:2 T. Hogervorst et al.

1 INTRODUCTION

The advent of data proliferation and the slowing down of Moore’s law is driving many application
designers to implement an algorithm’s computationally demanding functionality using a hardware
accelerator. Although Graphical Processing Units (GPUs) benefit from a larger user base be-
cause of their massive amount of parallel cores, on-board High-Bandwidth Memories (HBMs),
and ease of programming, Field-Programmable Gate Arrays (FPGAs) recently have been gain-
ing a lot of attention because of their application-specific customizability. Furthermore, the re-
cent integration of High-Bandwidth Memorys (HBMs) in FPGA-based systems have touted the
Field-Programmable Gate Array (FPGA) as a viable competitor for the Graphical Process-
ing Unit (GPU) in emerging machine learning-related domains, but also in High-Performance
Computing (HPC) applications where the GPU was traditionally the sole candidate. The acqui-
sition of Altera by Intel [13] and the recent announcement of AMD acquiring Xilinx [2], two of
the biggest FPGA providers, can be considered an indication of this trend.

In this context, it is highly relevant to reassess the potential of FPGAs for High-Performance
Computing (HPC), when we consider the addition of HBM on board, the increase of on-chip
memory (e.g., Ultra RAM (URAM) [34]), and the continuing increase of logic cell resources enabling
one to implement complex functionality. To perform this evaluation, we look at an ubiquitous
scientific computing field used in many HPC application domains, namely the solution of systems
of non-linear partial differential equations in time and space. It is typically not possible to solve
these systems exactly through analytical methods. Hence, the equations are discretized in time
and over a domain space using finite difference, finite volume, or finite element methods. The
derived system of equations is solved, often iteratively using a combination of preconditioners
and iterative linear solvers available in one of the many scientific solver libraries, such as DUNE
[4] and PETSc [11]. Due to the complexity of implementing linear solvers on FPGA, there are only
a few previous works that studied the acceleration of them on FPGA. Those works often made
assumptions to simplify the design and implementation, such as either focusing solely on single-
precision floating point support, or using simple solvers without preconditioners, and all ignored
the integration into the whole scientific computing pipeline. However, to realistically assess the
potential of FPGAs, it is important to eliminate the aforementioned restrictions. Consequently, in
this work, we develop a complete solver with a preconditioner on FPGA with support for double
precision, which is utterly important in a real-world setting because it enables the convergence to
a solution. Furthermore, we integrate our work in a state-of-the-art reservoir simulator, OPM Flow
[25], and validate our work by running with a real-world use case containing a large number of
grid cells (10°).

To accomplish our study goals, we develop a novel BiCGStab [31] solver implementation with
ILUO [5] as preconditioner on FPGA. This combination of preconditioner and linear solver was
chosen because it is known be a good solver for the large sparse linear systems arising when
simulating oil reservoirs [35]. Due to the challenging properties of the linear systems, it is manda-
tory to use powerful Krylov methods like BiCGStab together with good preconditioners and high
precision. Often oil reservoir simulators use even more powerful preconditioners like nested fac-
torization [3, 28]. Otherwise, the iterative solver will not converge due to highly heterogeneous
material parameters, which lead to rather ill-conditioned matrices. This choice of solver also leads
to an apples-to-apples comparison with the CPU performance on the NORNE field dataset, as this
combination was best performing in that case. To maximize the performance, we use manually
written Register-Transfer Level (RTL). Please note that there might be other solvers that can be
more efficient in terms of time needed per iteration of the linear solver on a parallel architecture
such as the FPGA (and GPU) than an ILUO preconditioner, but these still might not be suitable to
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reach convergence or even scale in terms of time needed to reach the solution. However, this is
left for future work because it was most important to make certain the results are close to the ones
obtained by the already validated software-only simulation. Therefore, we selected the same com-
bination of preconditioner and solver as those used by default in OPM Flow and designed the solver
to support double precision because high accuracy is required, as otherwise the selected real-world
case would not converge. Furthermore, integration is key to benchmark the performance in the
overall system. Previous work [6, 16, 32] has only benchmarked the solvers in isolation, whereas
we consider the whole system for benchmarking, where including the memory transfers between
off-chip and off-board as well as the pre- and post-processing times is crucial. Finally, we make
our work available in the Open Porous Media (OPM) Git repository [19].
The contributions of this work are summarized as follows:

e We propose a novel Compressed Sparse Row (CSR)-based encoding to optimize Sparse
Matrix-Vector (SpMV) multiplication on FPGA, which is the core functionality required
to implement iterative solvers.

e We develop a hardware model to predict and guide the design of the solver, helping us to
understand trade-off between area and performance when scaling the resources.

e We design a novel ILUO-BiCGStab preconditioned solver on HBM-enabled FPGA using op-
timized hand-coded Register-Transfer Level (RTL).

e We integrate the proposed solver in OPM Flow, both for FPGA and GPU. Furthermore, we
make all sources available in the OPM Git repository [19].

e We provide extensive evaluation results for both stand-alone solver kernel benchmarking
and complete reservoir simulation execution on a real-world use case running on three dif-
ferent types of systems: CPU, FPGA, and GPU.

The rest of the article is organized as follows. In Section 2, we introduce the background required
to understand the work, whereas in Section 3, we highlight related works. We then start a bottom-
up explanation approach in which we first describe the Sparse Matrix Vector Multiplication
(SpMYV) kernel in Section 4, then the solver in Section 5, and discuss the performance hardware
model used to guide the design in Section 6. Finally, in Section 7, we present the experimental
results.

2 BACKGROUND

2.1 Sparse Matrix Iterative Solvers

The central problem in this work is to solve AxxX = b for vector %, where A is a known sparse matrix
and b is a known dense vector. There are different methods for solving such a problem, which can
be grouped into direct solvers and iterative solvers. Direct solvers, as the name implies, use linear
algebra techniques to solve the problem for x directly and precisely. However, direct methods are
not suitable to solve large sparse linear systems, as is usually the case in a real-world HPC appli-
cation, because they will fill in the zero values of the sparse matrix to solve the problem, resulting
in a very high computational cost and memory usage. Iterative solvers are a heuristic alternative
to direct solvers: they start from an initial guess of the solution and then iteratively improve this
guess, until it is deemed close enough to the actual solution. In this article, we use the BiCGStab
(bi-conjugate gradient stabilized) solver with the ILUO (incomplete LU factorization with no fill-in)
as the preconditioner because this combination is the most robust and the default software config-
uration used in OPM Flow. Consequently, besides the goal of studying the acceleration potential
of FPGAs, another implicit goal required by the reservoir engineers using the simulator was to
obtain simulation results close to the software counterpart. Consequently, although it might not
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ALGORITHM 1: Pseudo-code BiCGSTAB Solver

Input: b, % A

> b and % are N element arrays, A is an NxN matrix
Output: 7, ¥

> Both are N element arrays

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

™o

1
2
3
4
5:
6
7
8
9

F= l;—spmv(A, X)
rt=7

=0

_5

norm = sqrt(dot (¥, 7))

: conv_threshold = norm/desired_improvement
: while norm > conv_treshhold do

Prnew = dot(rt,r)

p= (P * a)/(pnew * W)

p = axpy(B. 7, axpy(w, p,v))

i = preconditioner(p)

U = spmou(A, 1)

& = prews dot (7, )

P = Pnew

% = axpy(e. %, )

7 = axpy(—a,7,0)

norm = sqrt(dot(7, 7))

if norm < conv_threshold then
break

nd if

= preconditioner ()

= spmv(A i)

= dot(7, _))/dot t,7)

X = axpy(w, X, )

7 = axpy(-w, 7, t)
norm = sqrt(dot(7, 7))

end while

ey rn

1

be the best choice for acceleration on a parallel architecture, fulfilling the conformance criteria led
us to use the same solver used in the software stack.

Algorithm 1 shows the pseudo-code of the BiCGStab solver. This code makes use of several
other functions:

e An SpMYV function, which performs an SpMV multiplication.

e A dot function, which calculates the dot product (or inner product) of two vectors.

e An axpy function, which scales its first input vector by a scalar value and adds it to its second
input vector (i.e., axpy(a, ¥, ) performs: o * X + 7).

e A preconditioner function. This is an optional part of the solver and does not have a set
behavior. For more information about preconditioners, see Section 2.3.

The result of the solver are two vectors: X, which is the estimation of the solution of A*X4¢7ya1 =

b and7 = b — AX, a residual vector, which is an indication of how close the result X vector is to
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the exact solution X4¢7y4;. It is worth noting in Algorithm 1 how the exit condition of the solver
is set, or, in other words, how the algorithm determines when to stop iterating because the results
are sufficiently close to the actual result. The solver stops iterating when the norm of the resid-
ual is lower than a certain convergence threshold. There are two ways in which this convergence
threshold can be chosen: either it is a constant value, in which case we speak of an absolute exit
condition, or it is a value set by the norm of the initial residual by a desired improvement factor, in
which case we speak of a relative exit condition. An absolute exit condition can be useful when one
needs to be certain that the result of a solver is at least within a certain numerical distance from
the actual result. However, when solving for multiple different matrices from different domains, a
matrix with lower values all across the board might start off at a lower error and also reach the
absolute exit condition more quickly. In such a case, a relative exit condition leads to a more fair
comparisons between solves, which is why a relative exit condition is used in this work.

Ignoring for now the preconditioner, what remains in the BICGStab solver are a series of vector
operations and SpMVs, as well as a few scalar operations. From profiling the solver, it is clear that
the majority of its computational time is spent on performing SpMV and SpMV-like computations.
Therefore, the first goal to design a performant solver kernel would be to perform the SpMV
efficiently.

2.2 SpMV Multiplication

The SpMYV is a widely used, rather elementary operation in which a sparse matrix is multiplied by
a dense vector. How this operation will be performed algorithmically depends on how the matrix
is stored. A sparse matrix consists of many more zeroes than non-zero values, which means that
storing all of them is not efficient. There are a variety of different formats in which only the non-
zero values of a sparse matrix can be stored. Among these formats, Compressed Sparse Column
(CSC) and CSR are two of the most commonly used and have inspired many variants (e.g., [23, 24]).
The Compressed Sparse Row (CSR) and CSC formats both store matrices efficiently without
putting any restrictions on the contents of the matrix, whereas other formats may require the
matrix to have certain sparsity pattern features such as symmetry, values being repeated multiple
times, or store additional non-zeroes, such as sliced ELLPACK [15], to be efficient. In this article, we
focus only on the CSR representation, as the column-major CSC format would be more difficult to
use during the application of the ILUO preconditioner because ILUO goes through the matrix row
by row (see Section 2.3), which would be difficult to implement in the column-major CSC format.

The CSR format consists of three arrays: an array with all non-zero values of the matrix stored
row-major, an array of the column indices of those non-zero values, and an array of row pointers,
which contains an index for each row to identify which non-zero value is the first value of that
row, plus a last additional entry containing the total number of non-zeroes stored. The pseudo-code
showing how the SpMV is performed on a matrix stored in the CSR format is given in Algorithm 2.
It is worth noting that there is a high degree of parallelism available in this SpMV. In theory,
the calculations for all rows can be done in parallel because the result of one row is never used
during the calculation of another row. However, in practice, the irregular memory accesses in the
x vector, which depend on the random column index representing the location of the non-zero
value in the system matrix, restrict the amount of parallelism that can be exploited efficiently.
The main bottleneck is the requirement to replicate the x vector to enable multiple read units to
feed independent row Processing Units (PUs). This replication is impractical for realistic large
use cases for two main reasons: (1) limited on-chip (i.e., cache) memory and (2) significant pre-
processing computations required to align the read data feed into the multiple PUs, which is needed
to exploit the maximum available bandwidth in state-of-the-art accelerators with HBM.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 20. Pub. date: December 2021.



20:6 T. Hogervorst et al.

ALGORITHM 2: Pseudo-code of a CSR SpMV

Input: nnzs, collnds, rowPointers, x

> nnz is an M element array of floating point values,
> collnds is an M element array of integers,

> rowPointers is an N + 1 element array of integers,
> x is an N element array of floating point values
Output: y

>y is an N element array of floating point values

1: for0 <i< Ndo

2 yli]=0

3 for rowPointers[i] < v < rowPointers[i + 1] do
4: yli] = y[i] + nnzs[v] = x[colInds[v]]

5 end for

6: end for

2.3 The ILUO Preconditioner

How hard a series of linear equations is to solve depends on various different aspects of those
equations, or the matrix that represents them. In other words, how many non-zeroes the matrix
has, where they are located in the matrix, and their values in relation to one another, among other
things, all play a role. The condition number x(A) of a matrix A, which is the ratio of the biggest
eigenvalue of the matrix divided by the smallest one, is a measure of how relative changes in the
right-hand side b of a linear equation A = X = b result in relative changes of the solution ¥. In
addition, it is a measure of how changes in A affect the solution and how numerical errors affect
the solution. Often, convergence of iterative methods is worse for matrices with high condition
numbers. Therefore, although iterative solvers such as BiCGStab are a powerful method for solv-
ing sparse matrix problems, they might still take many iterations before they approach the result
within the desired precision when solving matrices with a high condition number.

One technique for reducing the amount of iterations needed for BiCGStab and other Krylov
methods is utilizing a preconditioner. Generally, a preconditioner is a transformation or matrix
M that approximates A, but for which M * ¥ = b is less computationally expensive to solve than
AxX = I; If M is a matrix, then the preconditioned method solves M TAxxX =M1 I; Note that
if M is a good approximation for A, then this system will have a much better condition number
than the original one and hence the iterative solver will converge faster. A simple example of a
preconditioner is the Jacobi method with M = diag(A), the diagonal values of A. Many different
types of preconditioners exist, from very simple ones that only very weakly approximate the prob-
lem’s solution to complex ones that almost solve the system by themselves. Unfortunately, how
well a preconditioner performs depends not only on the type of preconditioner but also on the
matrix being solved. For example, the Jacobi preconditioner is fairly accurate if the original matrix
has most of its non-zeroes clustered around the diagonal, and if the values on the diagonal have a
higher magnitude than those off the diagonal, but does not work as well for matrices that do not
have those characteristics.

In this work, we utilize the zero fill-in incomplete LU factorization (ILU0) as the preconditioner,
which falls somewhere in the middle: it approximates the system reasonably while not being too
computationally intensive to apply. Using an ILUO consists of two steps. First, before the solver is
started, an incomplete LU decomposition is performed. To understand what this is, we must first
introduce the LU decomposition. LU decomposition is a direct solving method that calculates an
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Table 1. CPU Solver Time in Milliseconds with 1072 & 107 Exit Condition

Preconditioner || None | None || Jacobi | Jacobi || ILUO | ILUO
Matrix 1072 | 107° 1072 10°° 1072 | 10°°
Hummocky 5.9 925 1.2 125.8 3.1 32.3
besstk25 5.8 3396 3.7 34.9 18.9 4331
bodyy() 4.4 224 1.2 86.3 3.7 15.7
wathen120 8.0 112 5.2 25.2 12.8 18.7
gridgena 2.0 403 5.9 643.3 18.7 324.7
qa8fm 12.7 114 13.1 79.7 44.8 60.3

upper-triangular matrix U and a lower-triangular matrix L so that A = L U. Such a decomposition
can be done using Gaussian elimination, among other methods. Once such a decomposition has

been found, A * % = b can be solved for % by first solving L i = b for i and then solving U %% = §f
for ¥. Since L and U are triangular matrices, these two solves can be done using forward and
backward substitution, respectively. However, like we discussed in the previous section, direct
solving methods become very computationally intensive for sparse matrices because they start
filling in the zero values of the matrix, and LU decomposition is no exception. Incomplete LU(N)
decomposition decreases the high computational cost of LU decomposition for sparse matrices by
reducing the amount of fill-in that happens, where N is an indicator of how much fill-in is done.
The case were N = 0 (ILUO) means that for the L and U matrices, the decomposition generates
non-zero values only at the same indices where A had non-zero values. Since the result of the
decomposition algorithm, L and U, is not unique, it is common practice to restrict the L matrix to
be a unit triangular matrix. With the diagonal of the L matrix set to known constant values, it is
possible to store both the L and U matrices resulting from ILUO decomposition in a matrix with
the same sparsity pattern as the decomposed matrix. The diagonal of this LU result matrix belongs
to the U matrix, and the assumption that the L matrix has a diagonal filled with ones needs to be
taken into account by the operations performed using this matrix.

Once the ILUO decomposition is complete, the solver can start. The solver will then apply the
ILUO preconditioner in every iteration. In this apply_ILUO step, the solution to the matrix solve
is approximated by solving for the LU matrix. Pseudo-code of the ILUO application is shown in
Algorithm 3. The ILUO application consists of two parts, represented by the two for loops in lines
1 and 11: a forward substitution on the lower-triangular part of the LU matrix, and a backward sub-
stitution on the upper-triangular part of that matrix. Both loops are very similar in the operations
they perform, with the main differences being that the forward substitution traverses the matrix
top to bottom, whereas the backward substitution traverses the matrix bottom to top, and that the
backward substitution concludes by dividing the result array by the values on the diagonal of the
LU matrix. It is worth noting that although these loops ostensibly have the same basic structure
as the SpMV loop, there is one major difference: the results of one row depend on rows before it,
which means the operations on the rows cannot be performed all in parallel. See Section 2.4 for
more on how this issue can be circumvented somewhat by reordering the matrix.

To quantify the effect of the ILUO preconditioner in practice for our solver performance, we ran
software implementations of the solver without a preconditioner and with the Jacobi and ILUO
preconditioners on several benchmark matrices. The matrices were obtained from the SuiteSparse
matrix collection [7].

Table 1 shows the results of these tests, which were obtained by running the preconditioned
solver for a single thread on an Intel i7-9700 CPU with 16 GB of RAM. Two exit conditions were
used: the more precise exit condition requiring the absolute value of the residue being reduced by
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ALGORITHM 3: Pseudo-code of the applying of the ILUO preconditioner
Input: LUmat, x

> LUmat is an NxN sparse matrix in the CSR format

> x is an N element array of floating point values

Output: p

> p is an N element array of floating point values

1: for0<i< Ndo

2 pli] = xi]

3 for LURowPointers[i] < v < LURowPointers[i + 1] do
4 pIndex = LUcolInds[v]

5 if pIndex > i then

6 break

7 end if

8 pli] = p[i]-LUnnzs[v] * p[pIndex]

9 end for

10: end for
11: for N >i > 0do
12: diagIndex = LURowPointers[i + 1]

13: for LURowPointers[i + 1] > v > LURowPointers[i] do
14: pIndex = LUcolInds[v]

15: if pIndex < i then

16: diagIndex = v

17: break

18: end if

19: pli] = p[i]-LUnnzs[v] * p[pIndex]

20: end for

21: pli] = p[i]/LUnnzs[diagIndex]

22: end for

107° of its initial value, and the less precise exit condition requiring a residue norm reduction of
1072, Not shown in the table are the number of iterations in which the solvers converged, which
in all matrices except for besstk25 were lower when ILUO preconditioning was used over the other
two preconditioning options. However, a lower iteration count does not directly result in a higher
solver performance. The first reason for this is the time the pre-processing of the preconditioner
takes, which accounts for between 60% and 90% of the time taken by the lower-accuracy solver
with the ILUO preconditioner. The Jacobi preconditioner has barely any pre-processing time, and
it is powerful enough to be preferred over no preconditioner for all but one matrix, and preferred
over ILUO for all matrices when the solver’s precision is low. Only when the solver’s precision was
set higher did the ILUO preconditioner’s power show: the number of iterations required to reach
this accuracy was high enough that the pre-processing time no longer dominated the runtime.
For most matrices, the ILUO preconditioner reduced the iteration count enough that the solve
performance was better than that of the other preconditioner options tested, with the bcsstk25
matrix being an exception, as its solve was only accelerated by the Jacobi preconditioner. We
suspect the matrix’ narrow banded structure and high values on the diagonal make it particularly
well estimated by the Jacobi preconditioner. The second reason a lower iteration count does not
translate to a higher solver performance directly is not captured in our software tests. In other
words, different preconditioners might be easier or harder to parallelize, therefore making them
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more or less worthy to be accelerated on hardware, respectively. The single vector calculation
that is the applying of the Jacobi preconditioner is easy to parallelize and therefore is suitable for
hardware acceleration. ILUO application, however, is not that inherently parallel but can be made
more parallel when using graph coloring (GC).

2.4 Matrix Reordering

As covered in Section 2.3, the ILUO application function does not inherently have a lot of parallelism
for a hardware accelerator to exploit. However, by reordering the matrix, some parallelism in this
function can be obtained. The goal of such a reordering is to group rows together that do not
depend on one another (i.e., that do not have non-zero values in columns that have the same index
as the row indices of other rows in the group). During our work, we have focused on two ways of
doing such a reordering: level scheduling (LS) and GC.

2.4.1 Level Scheduling. LS is a way of reordering a matrix by moving the rows and the columns
of the matrix. In other words, the rows are grouped together in colors that can be operated on in
parallel, then the columns are reordered in the same way to keep the matrix consistent in the
(re)order of the unknowns, which is required during ILUO decomposition. LS not only groups
independent rows together into “levels” but also keeps the order of dependencies of the original
matrix intact [26]. In other words, if a certain row j that depends on row i comes after row i in the
original order, then after LS, row jis (the row to which row j was moved during LS) will still come
after ijs for all possible values of i and j. An LS algorithm will go through the matrix and gather all
rows that do not depend on any other rows into the first level. Then it will go through the matrix
again and group all rows that only depend on rows in level 0 into level 1. Then it will fill level 2
with rows only dependent on rows from levels 0 and 1, and so on until every row has been added
to a level.

2.4.2 Graph Coloring. GC is a term that we use to describe the reordering of matrices into
groups (“colors”) of independent rows that do not require the maintaining the order of dependen-
cies in a matrix. To be more specific, we use the Jones-Plassmann algorithm [14] to do GC. This
algorithm assigns a random value to every row in the matrix, and then groups all rows that have a
higher number than all not-yet-grouped rows it depends on into a single color, and keeps repeat-
ing this process until all rows have been assigned a color. In this work, GC was chosen over the
other method because it is parallelizable and it allows more control over the maximum amount of
rows and columns in a color, which will alleviate some of the size restrictions a hardware design
may impose. The disadvantage of GC is that it is not guaranteed to find the minimum number of
colors, and thus the highest amount of parallelism because of its random nature.

2.4.3 Reordering Scheme Selection. Selecting one of the two matrix reordering methods de-
pends on the answer to how important it is to obtain a solution that is as close as possible to
the one obtained without reordering. If the answer is very important, then LS is the preferred re-
ordering scheme. However, when the answer is not important, because an iterative solver is already
estimating the result instead of solving the system precisely, GC can be used if the result is close
enough to the actual solution.

2.5 Sparstitioning

To increase the scalability of our design and allow it to work on larger matrices, we will use sparsti-
tioning [27]. Sparstitioning is a method for splitting both the matrix and the vector of a matrix-
vector operation into partitions so that no unnecessary data is read during the running of the
operation on each partition. However, we make two changes to the sparstitioning algorithm. First,
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we modify how the partitions are chosen to conform with the matrix reordering scheme chosen.
Concretely, every color/level will be one partition. Second, we modify how the vector partitions
are stored. When sparstitioning is used for an SpMV, the vector that is operated on is stored in a
partitioned format, which introduces some duplication of the vector data. However, storing the
vector in this way is not convenient because the non-partitioned vector is needed for the vector
operations of the solver. Therefore, instead of storing the vector partitions themselves, our design
stores an array that denotes for every partition which indices of the vector are part of that
partition. Consequently, only the relevant values are read from the vector when computations
start on each partition.

Because of the matrix reordering and sparstitioning optimization required to design an HPC
iterative solver, we modify the standard CSR matrix storage format in two ways. First, the number
of non-zeroes, rows, and vector partition indices used in each partition of the matrix need to be
known. These will be collectively referred to as the sizes of each color. Second, the vector partition
indices themselves are needed so that the solver knows which values of the matrix are accessed by
each color. To account for these CSR modifications, we introduce our own format, Compressed
Sparse Row-Offsets (CSRO), which we will formally introduce in Section 4.2.

3 RELATED WORKS
3.1 SpMV Multiplication on FPGAs

As described in Section 2.1, we focus on Conjugate Gradient (CG) solvers in this article, partic-
ularly on its general version (i.e., not only for symmetric matrices as CG is), BICGStab. Previous
research into accelerating (parts of) CG solvers using FPGA has focused until now mostly on ac-
celerating the SpMV kernel [30] for one good reason: the SpMV function has a wide range of uses
in a broad variety of domains, and because of its irregular memory accesses, it is not efficiently
performed by classical von-Neumann architectures like CPUs. This makes SpMV a perfect candi-
date to be accelerated using customizable dataflow architectures that can fully exploit application-
specific configurable memory hierarchies. Furthermore, in the context of linear algebra iterative
solvers, SpMV takes up most of the processing time, making it an even more interesting target for
acceleration. Consequently, a plethora of previous works addressed the topic of accelerating SpMV
on FPGAs. Therefore, we only list a few of the performant designs without trying to be exhaustive:

e The SpMV unit proposed by Zhuo and Prasanna [36] achieves a performance of between
350 MFLOPS and 2.3 GFLOP/s, depending on the number of PUs, the input matrix, the fre-
quency, and the bandwidth. However, to realize their design, the authors use zero-padding
and column-wise blocking of the matrix. These design choices make SpMV less efficient due
to storage overhead that becomes critical for large matrices and very inefficient to use in
combination with an ILUO preconditioner.

e Fowers et al. [12] implemented an SpMV unit that uses a novel sparse matrix encoding de-
signed with the fact that the matrix will be divided over multiple PUs in mind, and a banked
vector buffer that allows many memory accesses to the input vector at the same time. That
implementation reaches a performance of up to 3.9 GFLOP/s but does not actually outper-
form GPU or CPU implementations for large matrices.

e Dorrance et al. [8] obtain a performance of up to 19.2 GFLOP/s for their CSC-based SpMV
accelerator, which is as far as we could find the highest performance of any FPGA-based
implementation of SpMV. This high performance was thanks to the high computational effi-
ciency of the implementation paired with its 64 PUs and high bandwidth (36 GB/s). However,
as can be seen in Algorithm 3, in the applying of the ILUO preconditioner, the result of one
row is needed to calculate the result of ones after it. So, unlike the SpMV, the apply_ILUO
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cannot be done as easily with CSC as it can with CSR. In fact, the CSC is completely unsuit-
able to use in conjunction with ILUO, and as a result we will not use that storage format in
this article.

Please note that the scope of the work is not to design the fastest SpMV unit possible, but
also to integrate this in a larger and complex application that is a preconditioned linear solver.
Consequently, although some of the design choices might be sub-optimal for the design of the
fastest SpMV (e.g., using a CSR-like format instead of the more parallelizable CSC format), which
is thus not a primary goal, we focused on the complete integration and looked for the best SpMV
design options from a system-level view and not SpMV in isolation as most of previous work
considers. Nevertheless, the SpMV designed and implemented in this work is on par with the
best SpMV solution we could find in the literature when we consider normalized resources and
bandwidth as comparison parameters. Our SpMV is able to achieve up to 4.5 and 8.5 GFLOP/s in
double and single precision, respectively.

3.2 Sparse Matrix CG Solvers on FPGAs

Research into designing a complete CG solver on an FPGA has been done as well. However, proba-
bly due to the complexity of iterative solver algorithms coupled with a limited area, small on-chip
memory, and no HBMs available on previous generation FPGAs, we could find only a handful of
related works of solvers on reconfigurable hardware:

o Morris et al. [16] implement a CG solver on a dual-FPGA using both a HLL-to-HDL compiler
and custom floating point units written in VHDL. Despite the fact that using the HLL-to-HDL
compiler is probably less optimized than writing VHDL directly, they obtain a speedup over
software of 30%, showcasing the potential of FPGA in accelerating sparse CG solvers.

e Wu et al. [32] implemented a CG solver on an FPGA consisting of an efficient SpMV unit, a
vector update unit, and a diagonal preconditioner. They obtain a speedup between 4 and 9x
over their software implementation.

e Chow etal. [6] introduce a novel way of statically scheduling accesses to the on-chip memory
in a Conjugate Gradient (CG) solver on an FPGA. Despite the initial cost of performing
this scheduling, an average speedup of 4.4 over a CPU solver and of 3.6 over a GPU solver
is achieved.

However, different from the work in this article, all of this previous research focused on smaller
(i.e., dimension size up to 66,127) scale matrices that are not enough for a HPC real-world appli-
cation setting. For example, a small reservoir contains more than 10° cells and a medium more
than 10° cells, whereas a large model contains more than 107 grid cells (which translates to the
dimension N of the underlying matrix). Please note also that double precision is required to store
the model data. In this work, we focus on a small reservoir model due to the limited on-chip FPGA
BRAM resources required by our design (i.e., the NORN model used in Section 7 has a dimension
of 133,293 cells). Another issue that all of these implementations share is that no or only a very
simple preconditioner has been used. Preconditioners can improve the performance of a solver
significantly, as they reduce the amount of iterations that the solver needs to run until it reaches
its desired precision significantly. Despite costing additional time to perform each iteration, the
ILU(0) preconditioner used in this work improves the performance of all kinds of CG solvers over
cases without preconditioners or with the diagonal preconditioner [29]. Consequently, not using a
preconditioner in an iterative solver for a HPC real-world application that requires very large and
sparse matrices is not an efficient approach. Finally, using the CG solver limits the applicability of
the design to only problems that use symmetric matrices to describe the physical system.
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0 2-20-1 Columnindices: 0 3 1 2 4 0 1 2 4
4 0 0 0 O
0000 O New Row Offsets: 1 0 1 0 0 1 2 0 O
0 -3-40 1

Fig. 1. An example matrix stored in the novel CSRO format.

4 SPMV MULTIPLICATION
4.1 Design Objective

The main objective of our SpMV kernel on the FPGA is to ensure that the unit has a high com-
putational efficiency, which is required to fully exploit the HBM available on the state-of-the-art
FPGA generations such as the Xilinx Alveo U280 [33] data center accelerator card. The remainder
of this section highlights the design choices of the SpMV implementation for the HPC domain
when using the latest HBM-enhanced FPGA accelerators.

4.2 The Matrix Format

As described in Section 3.1, we have chosen to base our kernel on the row-major CSR matrix stor-
age format. CSR is also the default format used in Flow, a real-world HPC software application that
we will use in Section 7 to validate our results and benchmark the performance. However, this for-
mat poses a challenge for any HPC FPGA-based design because the CSR contains one integer per
matrix row to describe how many values are in each row. Since our design objective is to maximize
throughput of the SpMV unit, we want to feed as many non-zero values and column indices into
the SpMV unit as it can sustain on every clock cycle. Unfortunately, it is not straightforward when
using the CSR’s rowPointers to determine to which row each value belongs to. The number of rows
a given number of non-zero values in a matrix belong to can vary wildly based on the matrix’s
sparsity pattern. Consequently, the number of rowPointers that need to be read every cycle also
varies, and also depends on the values of the rowPointers of the cycle before it. A hardware imple-
mentation would by necessity need to set a maximum number of row pointers it can read every
cycle, thereby putting restrictions on the matrices it can process. To circumvent this, we introduce
a novel sparse matrix storage format based on CSR to be used by our accelerator.

Similar to CSR, this new format contains the matrix’s non-zero values and their column indices
as two arrays, but instead of the rowIndices, it contains a new row offset for every non-zero value
in the matrix. Because of the added offset array, this new format is tentatively called CSRO format.
A value in the newRowOffset array is 0 if the non-zero value at that same index is in the same
row as the non-zero value before it. If a non-zero value is not in the same row as the value before
it, then the rowOffset at the same index will be equal to 1 + the number of empty rows between
that non-zero value’s row and its predecessor’s row. To help illustrate how a matrix is stored in
the CSRO format, Figure 1 shows a matrix as it would be represented in the CSRO format. For
comparison, Figure 2 shows how that same matrix would be represented in the CSR format. Note
that the NewRowOffset value of the first value in the CSRO format is 1. This is a convention
adopted to show that the first row starts with the first value.

4.2.1 The Blocked CSR. The Open Porous Media (OPM) platform and its flow simulator do
not use regular CSR but rather blocked CSR, in which each non-zero value in the matrix is not one
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(1 0 0 3 0] NonZero Values: 1 3 2 2 -1 4 3 4 1
0 2-20-1 Columnindices: 0 3 1 2 4 0 1 2 4
400 0 0> ,

0000 O Row pointers: 0 25 6 6 9

0 -3-40 1

Fig. 2. An example matrix stored in the CSR format.

value but a 3 X 3 matrix of values. This is done to group together all relevant physical information
about a single point of the reservoir that the matrix modeled. Unfortunately, the nine values in
the 3 X 3 blocks are not convenient for an FPGA. Not only do these blocks often contain zeroes
(about half of all values in the blocks of the NORNE testcase are zeroes), but the odd number of
values in a block poses a problem when reading them over the ports of the FPGA or storing them
in its internal memories, all of which are built to consist of an even number of values. Since the
new matrix format that we introduce and the sparstitioning already require extensive reordering
of the non-zero values of the matrix, we take this opportunity to also remove the blocking from
the matrices in those steps. As a result, the FPGA solver kernel primarily works on non-blocked
matrices. The only exception to this is the division at the end of the backward substitution step in
the apply_ILUO. Here, a division by the values on the diagonal needs to be done, and this value on
the diagonal is a block. These diagonal blocks are the only blocks that could not be removed, and
as a result the hardware kernel still uses those blocks as inputs.

4.3 Design Overview

4.3.1 The SpMV Pipeline. The upper limit of the throughput of our SpMV unit design is deter-
mined by the number of multipliers in the unit. Thus, to achieve a high computational efficiency,
our design aims to stream values into those multipliers every cycle. Figure 3 shows how data is
streamed into the multipliers: non-zero values and column indices are read from the memories
that hold them, and the column indices are used as addresses at which to read elements from the
input vector, whereas the non-zero values are delayed by the delay of the vector memory. This
way, the non-zero matrix values and the corresponding vector elements arrive in the multiplier
at the same time. There is one memory that holds the vector partition for every two multiplier
units, because the BRAM blocks of an FPGA have at most two read ports. Which values of the
vector are part of a certain partition is determined by the vector partition indices of that partition.
Those values are calculated by the software during pre-processing. Each vector partition memory
contains the entire vector partition, so the data is replicated and stored in each one. Although not
the most space-efficient solution, this does allow a high number of simultaneous memory accesses
at different addresses, which is what the SpMV unit requires.

After the multiplications have finished, the SpMV unit needs to add together the multiplication
results that belong to the same matrix row together to obtain the SpMV result of that row. For this,
we designed a selective adder tree (SAT) and a reduce unit, which receive instructions about
which values to add together from a control unit. This control unit in turn obtains this information
from the new row offset data. The SAT adds all the values in a single cycle that belong to the same
row together, whereas the reduce unit adds together the SAT results from different clock cycles
that belong to the same row. SAT results that already represent the final result of a row (i.e., if all
the values of that row were in the same clock cycle) do not need to go into the reduce unit. Finally,
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Fig. 3. A high-level schematic of the SpMV unit.

a merge unit merges all of the results of the adder tree and reduce unit into a set number of output
ports that will be written to a result memory.

4.3.2 SpMV Top Level. Although the SpMV pipeline is the most important part of the SpMV
unit, as it does the calculations, some additional units are needed to keep the pipeline running
correctly. These units are as follows:

e The external read unit handles all reads from outside of the FPGA chip. At the start of the
SpMV run it reads the sizes of all colors, and it uses these to read all matrix data that is
needed during the SpMV.

e For the SpMV unit to be able to use sparstitioning with vector partition indices, the vector
values at those indices need to be able to be read quickly. To achieve this, our FPGA design
contains a single large URAM memory to store the multiplicant vector once. Due to the cur-
rent size chosen for this memory in the design, up to 262,144 values can be stored, meaning
that a matrix may not have more than 262,144 columns to be able to be multiplied by the
kernel. The internal read unit coordinates reads from this memory. It receives the vector
partition indices of the current color from the external read unit, reads the vector values at
those indices, and sends those values into vector partition memories of the SpMV pipeline.

e The results of the SpMV pipeline can be out of order, as the time some results spend in the
reduce and merge units are different from others. The write unit stores the results of the
SpMYV pipeline in a memory block that has been cyclically partitioned so that it can write
multiple results into it at the same time while also reading from it. It also keeps track of up
to which index all results have been received. Whenever it has received enough values to fill
up a cacheline, it will queue up that line to be sent to the HBM.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 20. Pub. date: December 2021.



Hardware Acceleration of HPC CFD Using HBM FPGAs 20:15

Read handshaking Matrix Data
external .
read unit SRELGUDIE
SpMV Result
A \
Off-ChIp global vector addrs Vector
DRAM Partition
Y
Write handshaking <
. . internal
write unit .
read unit
\
global ILUO results P\éftci:i(:)rn read
values addrs
A A
on-chip URAM

(multiplicant vector memory)

Fig. 4. Schematic of SpMYV top level.

An overview of the SpMV top-level unit is shown in Figure 4. Not shown in this figure is the
control logic around it that instructs the units how much data to read or write and to/from where.
To do this, the control logic keeps track of which color it is currently operating on and how many
still remain.

4.3.3  Non-Partitioned SpMV. One of the tasks the SpMV top-level unit must perform is the
reading of the vector partition data that the sparstitioning adds to the matrix data. For a large part,
this read operation can be done as look-ahead, meaning that while the SpMV pipeline operates
on one color, the vector partition data of the next color can already be read from the URAM. This
data is then stored in a BRAM block in the internal read unit. However, after the SpMV pipeline
completes, this vector partition data needs to be transferred to the vector partition memories of
the SpMV pipeline, and the vector partition indices for the next color need to be read from the
off-chip memory. This is overhead added by our choice to use sparstitioning. To determine how
much this overhead slows down the overall performance, we added the option to the design to not
use sparstitioning. This version of the design has as downside that it has a more limited maximum
matrix size that it can operate on, as the complete multiplicand vector needs to be stored multiple
times in the vector memories of the SpMV pipeline. The advantage is that these additional steps
of reading vector partition indices and transferring vector partition data no longer need to occur.
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Fig. 5. Overview of the tasks in different SpMV unit implemenrtations.

To visualize the difference in way of operating between the sparstitioned and the non-
sparstitioned SpMV unit, Figure 5(a) shows the steps the sparstitioned SpMV unit takes, whereas
Figure 5(b) shows those the non-sparstitioned SpMV unit takes. Tasks horizontally next to one
another in these figures are performed at the same time. Obviously, the flow in Figure 5(b) is much
simpler. Also note how in Figure 5(a) the reading of the next vector partition (and the reading of
the indices to read from) are already done while the SpMV unit is still working on another partition.
This hides the time these reads would normally take but also necessitates an additional memory
to read the next vector partition into, and a step in which the data is transferred from this memory
into the SpMV unit.

4.4 GPU SpMYV Kernels

For the GPU, kernels in CUDA and OpenCL are tested. Only doubles are used for non-zero values.
NVIDIA’s cuSPARSE [18] features a blocked SpMV function called cusparseDbsrmv(). For OpenCL,
Algorithm 1 from Eberhardt and Hoemmen [10] is used. In this algorithm, a warp of 32 threads is
assigned to a single block row, and threads are assigned to elements in the block row. To cover the
entire block row, a warp iterates, handling floor(32/bs?) blocks at a time, where bs is the blocksize.
A warp only operates on complete blocks, so some threads might be always idle. For 3 X 3 blocks,
a warp can cover three blocks with 27 threads and has 5 inactive threads. During initialization, a
thread calculates the index of the block row, how many blocks the row has, and which block it
is supposed to operate on. It also calculates its position within a block (row and column). Since a
warp only covers complete blocks, a thread’s assigned position in a block never changes. During
iterating, it multiplies the target element from A with the value from x, adding the product to
a running total. Once the whole block row is complete, threads with the same vertical position
(row) in the blocks reduce the values in their local registers and write the reduced output to global
memory. Reduction can be done with shuffling or via shared memory.
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5 SPARSE MATRIX SOLVER DESIGN

To expand the SpMV kernel into a kernel that can perform preconditioned BiCGStab, units to
perform both the preconditioning and the vector operations need to be added. In this section, the
design of those units is discussed, followed by a description of the complete design that links all
units and performs the complete preconditioned solve.

5.1 Applying the ILUO Preconditioner

As shown in Algorithms 2 and 3, the basic structures of the SpMV and the forward and backward
substitutions that the ILUO application performs are similar. This, combined with the fact that the
SpMV and ILUO application are never active at the same time, since the result of one is needed to
start the other, makes reusing the hardware of the SpMV unit for the ILUO apply a desired feature
to save resources. Unlike the SpMV, which goes through the matrix it operates on line by line,
the ILUO application goes through its LU matrix in a non-sequential order. First, it goes through
all of the values below the diagonal top to bottom, and then it goes through all values above and
including the diagonal bottom to top (last row first). This memory access pattern is not efficient to
use on the FPGA, as it needs to read all LU matrix data twice, ignoring about half of it each time.
Which data it needs to use and which it does not depends on the current row number and the
column index. This memory access pattern is not only inefficient for the FPGA, but in general, so
in our design the lower-triangular matrix L, the upper triangular matrix U, and the diagonal values
are split from the LU matrix, which are used as three separate data structures. First, L is read to
perform the forward substitution, and then U and the diag_vals are read to perform the backward
substitution. Since the latter step happens bottom to top, both the U matrix and the diag_vals are
stored in reverse order.

The main difference between the substitutions and the SpMV is that the substitutions modify
the vector that they are operating on, whereas the SpMV does not. All rows that are grouped into
the same color by GC can be in the pipeline at the same time, but between the colors, the results
of the previous color need to be integrated into the vector that is currently being operated on. To
achieve this, the results of the ILUO application are not only written to the URAM vector memory
but also forwarded directly into the vector partition memories so that they can be used during the
next color, without requiring the unit to wait with reading its vector partition until the previous
color finishes its computation.

There are additional operations that the forward and backward substitution needs to apply over
the SpMV. For the forward substitution, this is a subtraction of the SpMV unit result from the
p vector, and for the backward substitution, it is this subtraction followed by a division by the
diagonal value. The ILUO unit is added to the SpMV unit to perform these operations. The reading
of the P vector can be done directly from the URAM, since that is where the P vector is stored
during the ILUO application. The diagonal vector is read from off-chip memory by the external
read unit. Figure 6 shows how the original SpMV top level was modified to allow the unit to also
apply the ILUO preconditioning step. Note that this unit is not yet the top level of the complete
solver.

5.2 The Vector Operations

Over the course of a BICGSTAB run, a number of vector operations of three different kinds need
to be applied:

e A dot product, which calculates the inner product of two vectors.
e An axpy, which performs « * X + .

e A norm, which calculates the absolute value of a vector (i.e., VX * X)
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Fig. 6. Schematic of the SpMV/ILUO unit.

Of these, the dot product and norm are very similar in structure, as a norm is the square root
of an inner product of a vector with itself. All three operations are highly parallel and perform
the same basic operations (one multiplication and one addition) for every element in their input
vectors. For this reason, and to provide more flexibility in exploiting the task-level parallelism in
the solver, we designed a unit that can perform either an axpy or a dot product. This dot_axpy
unit contains an equal number of multiply and add floating point units, which can be connected
in different ways, depending on which function needs to be performed. When an axpy needs to
be performed, the adders and multipliers are connected in parallel pipelines that each perform the
axpy on one element of the input vectors at a time. For this function, an additional input port is
used for the scaling constant «, besides the two input vector and one output vector ports. Figure 7
gives an overview of how the adders and multipliers are arranged in the dot_axpy unit when it
performs an axpy operation.

For the dot products, all multipliers work in parallel, the results of which are then added together
into a single value by a tree of adders. The result of this adder tree is added together with the result
of previous cycles in the final adder, which adds a new input to its most recent output. After the
adder tree has processed all values of the input vectors, logic around the final adder continuously
feeds two subsequent valid output of that adder back into it, until one singular final result is left.
Figure 8 gives an overview of how the adders and multipliers are arranged in the dot_axpy unit
when it performs a dot product.

During the vector operations, a degree of task-level parallelism exists in the BiCGStab solver
algorithm. This parallelism can be found in the following operations (using line numbers from
Algorithm 1):
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Fig. 8. Schematic overview of the dot_axpy unit in dot mode.

20:19

e The vector subtraction in line 1 can be pipelined with the SpMV operation in that same

line so that the subtraction of each element of b happens as soon as the SpMV result in the
same position as that element is done. The dot product in line 5 can be pipelined with the

subtraction of line

1 in the same way.

o The two axpy operations in line 10 can be pipelined.
e The dot product in line 13 can be pipelined with the SpMV in line 12.
e The axpy operations in lines 15 and 16 can be done in parallel, and the dot product in line

17 can be pipelined with the axpy in line 16.
e The two dot products in line 23 can be done in parallel, and can both be pipelined with the

SpMV in line 22.
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e The axpy operations in lines 24 and 25 can be done in parallel. The dot product in line 26 can
be pipelined with the axpy in line 25, and so can the dot product in line 8 in the following
iteration.

Together, these instances of possible task-level parallelism cover all vector operations that the
BiCGStab performs. The number of vector operations that can be performed in parallel in each of
these instances is, in order: 2, 2, 1, 3, 2, and 4. The complete vector unit contains multiple dot_axpy
units to exploit this task-level parallelism; however, to avoid having dot_axpy units being idle
often, and to not increase the number of read/write ports too much (see Section 5.3), we choose to
implement 2 dot_axpy unit in the vector operations unit.

5.3 Read and Write Ports

The Xilinx Alveo U280 data center accelerator card has two different types of large memory that
the FPGA chip is connected to: an off-chip DDR memory that consists of two 16-GB DDR4 memory
banks, each of which is connected to the FPGA via a single read/write port, and an 8-GB on-chip
HBM stack that is connected to the FPGA via 32 read/write ports. Each memory port is accessed
at the kernel level either via a 512-bit wide AXI4 interface (for the DDR memory) or via a 256-
bit wide AXI3 interface (for the HBM). This memory architecture has led to the following design
decisions:

e Reading and writing delays from/to the HBM are slightly shorter than those from/to the
DDR memory, so all vectors (which all need to be read and written multiple times during
the solver run) are stored in the HBM.

e To reduce the number of memories to which the host CPU needs to transfer its data, and
to thereby reduce the initial data transfer time, all matrix data and the initial B vector are
stored on the DDR memory.

e Some vector operations read from and write to the same vector—for example, the axpy in
line 15 of Algorithm 1. To avoid conflicts and to make data buffering easier, each AXI port
is used either to read or write, hence the x, r, and p vectors are stored in two memory
locations connected to different ports. During an operation to update one of those vectors, it
is read from the port that it was written to most recently, and written to the other port. This
essentially makes use of the ping pong buffering technique used to stream data efficiently.

e All HBM ports are located on one of the two narrow sides of the FPGA chip (which has
a rectangular shape), where the HBM crossbar and memory stack are located. Moreover,
the FPGA is subdivided into three physical regions, each one being a single silicon die and
called Super Logic Region (SLR). Signals crossing these regions incur an additional delay
compared to signals routed in the same SLR. Each instance of an AXI port (required to use
an HBM port) comes with a cost in terms of routing (512 bits of data plus control bits) and
BRAMs that are used for data buffering. The main factor for the design’s logic to spill over to
another SLR, causing the additional delays due to the signals crossing between SLRs to reach
the HBM ports, is BRAM usage. To reduce such spilling, and to avoid routing congestion due
to the high number of signals used by each AXI port, we choose to limit the number of HBM
ports. We choose to use six HBM ports, because this number of read and write ports can be
efficiently used during the vector operations.

e Since the width of the read ports is 512 bits, we design our computation pipelines to be able
to accept one full cache line every cycle. For the HBM ports, which are natively 256-bit wide,
we let the implementation tools to handle the AXI port width conversion. That means each
dot_axpy unit has eight double-precision multipliers and adders.
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Fig. 9. Schematic overview of the complete solver design.

5.4 The Complete FPGA Solver

A top-level solver unit was designed to encompass both the SpMV/ILUO unit and vector operations
unit. This top-level unit instructs those units which tasks to perform and with which input/output
vectors. It also regulates the access of both units to the URAM internal vector memory and han-
dles filling of this memory during the initialization step of the solver. Figure 9 gives a schematic
overview of the top-level unit of the BiCGStab solver kernel. To not overly complicate the figure,
the signals between the units and the memory are not pictured. Besides the units already covered
in the previous sections, the figure also shows a block of floating point operators and a memory
for floating point variables. The operators are used to apply the operations that only need to be
performed on a single value at a time, such as the square root of the norm calculation or the multi-
plications and division of the f calculation in line 9 of Algorithm 1. The memory is used to stored
the results of these operations, and contains @, f, @, p, pnew and conv_threshold.

5.5 The GPU Solvers

For completeness of the evaluation and comparison of our work, we also developed a couple of
GPU solvers using first CUDA and the NVIDIA’s cuSPARSE library [18]. cuSPARSE has functions
for vector operations like dot, axpy, and norm, as well as a blocked ILUO preconditioner. Second,
we also implemented the solver using OpenCL [17], where a similar structure to the CUDA is used,
defining kernels for vector operations and applying the ILUO preconditioner. One big difference is
that the construction of the ILUO preconditioner (the decomposition) is done on the CPU. This has
not been implemented on GPU yet, whereas CUDA features an ILU0 decomposition on the GPU
in cuSPARSE.

For a high-level overview of the complete flow simulator that will be used to integrate the
different accelerated solvers, please refer to Figure 10.
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Fig. 10. A block diagram representing the full flow simulator (left) and the different linear solver implemen-
tations (right). The numbers between brackets indicate how many times a function is performed for that
implementation.

6 PERFORMANCE MODELING

To predict the performance of both the hardware design as it was in development as well as to
gauge how well the design scales, we constructed a performance model that we run in Matlab.
This model was made to emulate the data flowing through the computation units and to calculate
how many clock cycles the execution would take. This section describes first what parts of the
design are modeled and which are not, showing second the predicted modeling results.

6.1 Model Details

The performance model is composed of functions that model the individual hardware kernels: it
has a function to estimate the performance of the SpMV, one for the ILUO, and one for the vector
operations. To make the performance estimations as accurate as possible, the hardware models
work on the same data that is sent to the kernel, including the partitioning data. The exception
being that since the model does not actually perform the solving calculation, it does not read the
non-zero matrix values or any vector data. Nevertheless, the partitioning and sparsity pattern
information are needed to calculate the performance. Furthermore, the functions that calculate
the performance of the ILUO_apply and SpMV operations share the same structure, in the same
way that those operations share the same module in the hardware kernel. These functions do the
following for every color:
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e First, it calculates the time to transfer the vector partition data into the SpMV unit. It does
this by dividing the number of values in the partition by the number of ports allocated to
the internal URAM memory from which the partition is read.

o If apply_ILUO is performed, the function calculates the time the transfer of the P vector into
the ILUO unit memory would take in the manner described previously.

e Then, it calculates the time the SpMV pipeline takes. During this step, the function’s empha-
sis is on the time the reading of the matrix data takes. It assumes a set bandwidth for each of
three ports from which the three matrix arrays (non-zero values, column indices, and new
row offsets) are read and simulates reading into three FIFOs at the speed set by that band-
width. Whenever enough data is available in the FIFOs for all three arrays to fill an input
line of the SpMV pipeline, that data is removed from the FIFOs.

e After enough data has been read from all three ports for the current color, and the simulated
FIFOs are empty, a set delay is added for the SpMV pipeline to write back the result data.
Since much less data needs to be written back than needed to be read, no delay beyond the
regular write overhead of the final lines is deemed necessary.

o If apply_ ILUO is performed, a set delay for the ILUO unit is added, and the write delay is
calculated with the on-chip URAM instead of an off-chip memory.

The cycle count results of all colors are added together to find the total number of clock cycles

that the SpMV or apply_ILUO takes. The calculations done to estimate the cycle count of the vector
operations are comparatively more simple but follow the same method: first the reading of data
into FIFOs at a set bandwidth is modeled, data is removed from the FIFO whenever enough is in
it to fill up a line of inputs of the vector operation unit, and finally, when all reading is done, the
latency of the pipeline of the operation is added, as well as some writing overhead cycles for the
axpy operation.
A top-level function adds together the cycle count results of apply_ILUO, SpMV, and vector op-
erations to get to a final estimate. This top-level function has a number of variables that can be
changed to do domain space exploration and to assess the scalability of the kernel. These are as
follows:

e The number of multipliers and adders in both the vector operation and SpMV/ILUO units.

e The bandwidth to the off-chip memory in are located.

e The bandwidth to the on-chip URAM in number of ports (how many values of the vector
stored on-chip can be read simultaneously).

o The delay of the adder and multiplier units

e The matrix that is modeled for, and how long the solve of that matrix takes, in iterations.

Please note that the largest source of performance uncertainty in the design is the time the memory
operations take. Memory accesses do not happen at a constant pace, but in bursts, the size of which
and the time between them may vary based on various factors related to the memory. As a result,
the weakest part of the model is that it does not accurately capture this memory behavior. Similarly,
it does not support modeling reading two arrays of data from the same port, nor the performance
penalties from reading and writing on the same memory bank at the same time.

6.2 Modeling Results

We use the model to analyze the scalability of the design and to understand what the critical
points are in achieving the best performance. We perform a domain space exploration by varying
the model parameters, starting with the number of adders and multipliers set at 2, increasing the
bandwidth from 10 GB/s, and increasing the number of internal ports from 2. When a parameter
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Fig. 11. Domain search exploration for the ILU0-BiCGStab solver. One internal port has a maximum band-
width of around 18 GB/s at the current kernel frequency of 280 MHz. The configuration achieved in this
work for the FPGA solver was two internal ports, eight PUs, and 50-GB/s external bandwidth. This corre-
sponds to the parse line in the top middle figure that estimates a 1.6Xx speedup, which was confirmed by the
experimental results presented next.

does not give a performance increase anymore, we switch to increase the new bottleneck parame-
ter. We perform this exercise by increasing all parameters until a maximum value we select as an
upper bound of a maximum practical boundary for our design. The limit for the number of PUs
was set to 16 based on the hardware utilization results we obtained, especially the BRAM utiliza-
tion (see Table 7). A total of 32 PUs might not be realistic as the BRAM utilization would be near
100%, which would make routing the design and meeting timing very challenging. For this number
of PUs, 100 GB/s of bandwidth proved enough to approach the maximum performance for any of
our models.

Figure 11 shows the modeling results. The first conclusion we can draw from these results is
that the number of read ports to the internal vector memory has a major impact on the overall per-
formance of the solver, even if we try to hide the time these memory accesses take. With only one
port, barely any speedup can be achieved over the software implementation, whereas a speedup
of more than 6x could be achieved with 32 ports, given enough bandwidth. This serves as an indi-
cation that the FPGA, with its ability to implement specialized memory infrastructure for multiple
simultaneous random accesses, could achieve higher performances than we achieved in this work.

The second conclusion we draw from the modeling results is that doubling the PUs does not
double the performance. We can attribute this to the increasing impact of the latency of the SpMV
and ILUO pipelines as the number of PUs increases. With a higher number of PUs, more data can
go into the pipeline at the same time, decreasing the number of cycles that new data is fed into
the pipeline while the latency of the pipeline stays the same. This effect is especially pronounced
for the ILUO solve steps, which have a longer pipeline, and the latency of which cannot be hidden
by already starting operations on the next partition, because that computation depends on the
results of the previous partition. Since doubling the number of PUs almost doubles the amount of
logic and BRAMs used by the design, one must consider whether adding more PUs is worth the
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Table 2. Characteristics of the Platforms Used to Benchmark the Kernels

Host Accelerator
Short CPU Memory
Name Frequency | (#Channels/ Name Memory (Bandwidth)
(#Total Cores) .
Bandwidth)
FPGA | Xeon E5-2640V3 (16)| 2.6 GHz DDR4-2133 Xilinx Alveo U280 DDR4+HBM (498 GB/s)
(4 /59 GB/s)
DDR4-2133
1 . . 1.
GPU" | Xeon E5-2640V3 (16)| 2.6 GHz (4/59 GB/s) Nvidia K40m GDDRS5 (288 GB/s)
GPU? | Xeon E5-2698V4 (40)| 2.2 GHz DDR4-2400 |\ 4ia V100-SXM2-16GB|  HBM2 (900 GB/s)
(4 /77 GB/s)
DDR4-2400
CPU |Xeon E5-2698V4 (40)| 2.2 GHz (4/77 GB/s) - -

Table 3. SpMV Parameters of Different SpMV Implementations

Parameter | double_p | double_np | float_p | float_np
Num mults 8 8 16 16
Max rows 262,144 65,536 262,144 65,536
Read ports 4 4 4 4

additional hardware resources, and the effort of having these resources meet timing. Perhaps more
performance could be found more readily by improving the internal memory, as described earlier,
or by reducing the apply_ILUO latency.

7 EXPERIMENTAL RESULTS

Evaluation of the performance of our design is done in three stages. First, the performance of the
stand-alone SpMV unit is evaluated, followed by the performance of the complete solver stand-
alone. Finally, the FPGA solver is integrated into the flow simulator, and its performance is com-
pared to that of a CPU and a GPU. All FPGA bitstream implementations were done in Xilinx
Vitis 2019.2 and run on a Xilinx Alveo U280 data center accelerator card [33]. In this section, per-
formance for the SpMV unit will be reported in GFLOP/s (Giga FLoating-point OPerations per
Second). These are calculated by dividing the total number of floating point operations performed
by the time it took to perform them. Therefore, the total number of required operations is 2X the
number of non-zero values in the matrix that is being multiplied (since one multiplication and one
addition need to be performed on each non-zero value).

Table 2 lists the platforms we used to benchmark the kernels and the flow simulator. Each plat-
form will be then referred to in the rest of the article with its short name (e.g., FPGA).

7.1 SpMV Results

The SpMV unit has many configurable parameters that will impact both performance and FPGA
resource usage. For this performance evaluation, we choose to compare between single-precision
(float) and double-precision (double) implementations, as well as between partitioned (_p) and
non-partitioned (_np) implementations. Other parameters were set to the values in Table 3.

The resource utilization of the four chosen SpMV kernel implementations is shown in Table 4.
From this table, we can observe that the BRAM utilization sets the limit of how often this kernel
could be replicated on this same FPGA device. All implementations are able to reach a frequency
of 300 MHz, which is the maximum frequency at which the AXI memory interfaces can run.
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Fig. 12. SpMV performance. Please note that for the FPGA, the maximum aggregated HBM bandwidth is
460 GB/s; however, due to design limitations caused by implementation issues, the maximum bandwidth
used by the kernel is around 50 GB/s.

Table 4. FPGA Resource Utilization of Different SpMV Kernel
Implementations as a Percentage of the Resources
Available in the FPGA’s Dynamic Region

Resource | double_p | double_np | float_p | float_np
LUT 4.08% 4.12% 4.92% 5.00%
LUTRAM 0.70% 0.69% 0.82% 0.78%
REG 4.14% 4.45% 4.96% 5.24%
BRAM 15.27% 12.38% | 18.97% 12.38%
URAM 4.17% 6.67% 2.50% 6.67%
DSP 0.93% 0.93% 0.74% 0.74%

The sizes and types of matrices that were used to test the SpMV unit are listed in Table 5. All
of the listed matrices were obtained from the SuiteSparse matrix collection [7], except for the
NORNE matrix, which models a real-life oil field, and is a testcase in the OPM framework. As such,
this matrix was not obtained from the SuiteSparse matrix collection but instead by exporting it
from the flow simulator. Please note that all but one of the matrices are square, and of the square
matrices, three of them are non-symmetric. These matrices were chosen to prove that the SpMV
unit works on such non-symmetric and non-square matrices. However, some of these matrices are
not used as benchmarks for the BiCGSTAB solver, as it does not work for non-square matrices and
has additional limitations as explained in the next section.

In Figure 12, the performance for all matrices used to benchmark the kernel are shown. The
corresponding tabulated values can be found in Table 6. For the FPGA and GPU, those perfor-
mance numbers do not include the data transfer time between the host CPU and the on-board
memories. From this figure, we can see that the single-precision versions of the FPGA kernel
achieve almost 2x more FLOPS than their double-precision counterparts. This can be explained
by the fact that the amount of data that needs to be read for each single-precision operation is half
the amount of data that needs to be read for a double-precision one. We also observe, as expected,
that the non-partitioned version achieves a slightly higher performance than the corresponding
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Table 5. Characteristics of the Matrices Used to Benchmark the SpMV Kernel

Name Rows | Columns NNZs Density% | Symm.
nosl 237 237 2,115 1.811 Yes
epb1 14,734 14,734 95,053 0.044 No
Hummocky 12,380 12,380 121,340 0.079 Yes
bodyy6 19,366 19,366 134,748 0.036 Yes
Ip_ken_18 105,127 154,699 358,171 0.002 No
gridgena 48,962 48,962 512,084 0.021 Yes
wathen120 36,441 36,441 565,761 0.043 Yes
finan512 74,752 74,752 596,992 0.011 Yes
qa8fm 66,127 66,127 1,660,579 0.038 Yes
crystmo03 24,696 24,696 1,751,310 0.096 Yes
vanbody 47,072 47,072 2,336,898 0.105 Yes
NORNE 133,293 133,293 2,818,879 0.016 No
cfd2 123,440 123,440 3,087,898 0.020 Yes

Table 6. Performance in GFLOP/s for the SpMV Kernel

Matrix FPGA GPU? CPU
double_p | double_np | float_p | float_np | cusparse | OpenCL LS | OpenCL GC | (double)

nosl 0.34 0.34 0.34 0.34 0.20 0.08 0.08 0.00
epbl 2.50 3.17 3.57 5.76 14.62 - - 0.15
Hummocky 2.79 3.64 4.05 6.11 15.17 5.92 6.22 0.29
bodyy6 2.52 3.36 3.67 6.78 17.97 8.17 8.69 0.22
Ip_ken_18 1.25 - 1.40 - - - - -

gridgena 3.21 3.81 5.33 7.64 34.14 22.76 22.76 0.63
wathen120 3.51 3.82 6.24 7.67 40.41 23.09 23.09 0.62
crystmo03 3.69 4.34 6.69 8.29 33.36 16.44 16.22 0.88
finan512 2.89 - 3.95 - 21.71 17.56 15.92 1.41
qa8fm 3.85 - 6.90 - 55.35 43.13 43.70 2.18
vanbody 4.15 4.60 7.84 8.69 - - - -

NORNE 3.59 - 5.90 - 90.93 74.18 77.23 1.81
cfd2 3.80 - 6.89 - 57.18 43.80 43.49 6.04

partitioned version, at the trade-off that the non-partitioned version cannot operate on the larger
benchmark matrices.

7.2 Stand-Alone FPGA Solver Results

For the ILUO BiCGSTAB solver, we are only interested in a version of the solver that can run on
larger matrices with high precision, so only the double-precision, partitioned version of the solver
is benchmarked. The design parameters as listed for the double_p SpMV implementation in Table 3
hold for this solver implementation as well, except for the number of read ports, which is increased
by 1.

In Table 7, the resource utilization of the ILU0 BICGSTAB solver is compared to that of the SpMV
kernel with the same parameters. In both cases, these values refer to the percentage of resources
used over the available ones in the dynamic region (which is reconfigurable by the user), and they
include all the supporting circuitry to control the solver and access the memory on the FPGA board.
Hence, not included in these values are the resources used by the FPGA’s static region, which is
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Table 7. FPGA Resource Utilization of
the Solver Compared to the SpMV
Kernel as a Percentage of the
Resources Available in the
FPGA’s Dynamic Region

Resource SpMV | Solver
LUT 4.08% 6.93%
LUTRAM 0.70% 1.13%
REG 4.14% 6.41%
BRAM 15.27% 24.64%
URAM 4.17% 4.17%
DSP 0.93% 3.18%

Table 8. Characteristics of the Testing Matrices

Non-Zeroes

Name Dim. FPGA FPGA FPGA GPU
Matrix L Matrix | U Matrix Matrix
nosl 237 1,017 390 390 1,017

bodyy6 19,366 134,197 121,414 70,762 134,197
gridgena 48,962 513,060 421,068 315,336 513,060
crystmo03 24,696 583,770 279,519 279,522 583,770
wathen120 | 36,441 565,761 468,529 379,446 565,761
qa8fm 66,127 | 1,660,564 | 1,431,908 | 1,251,238 | 1,660,564
NORNE 133,293 | 1,314,999 | 726,369 513,512 | 2,818,879

provided by Xilinx. Due to the increased complexity of the solver over the SpMV kernel, it could
only reach a frequency of 280 MHz.

Some of the matrices used to test the SpMV unit were not usable during the testing of the solver,
because they were non-square, had zero values on their diagonals, or exceeded on-board memories
of the design. Table 8 lists the matrices that were used to test the BiCGStab solver, along with their
original sizes and the size of the derived L/U matrices used by the FPGA solver.

The performance results obtained after running the stand-alone ILUO BiCGStab solver are
shown in Figure 13. For each matrix, we present the best result obtained either by using the GC or
the LS reordering algorithms. The detailed timings are listed in Table 9, which contains the run-
time as reported by the profiling info (Solver) of the runs (only for the FPGA, used in Figure 13),
the runtime as measured by the Host (used in the figure for the CPU and GPU results), and the time
spent transferring (Transfer) the input data and the output results between the host CPU’s and the
accelerators’ on-board DRAM/HBM. In addition, the number of iterations (Ilter#) needed to solve
the system are reported. The Host time is, in all cases, higher than the Solver time, as the former
includes overhead of starting and waiting for the end of the solver kernel. The transfer times are
not included in the other two times.

In Table 10, we report the bandwidth utilization for each memory port as recorded by the pro-
filing facilities present in the FPGA solver. Each column shows a memory port, along with its
mapping (either to DDR4 memory or HBM). The bandwidth utilization is given a percentage of
the maximum bandwidth available for each individual port, which is 18.8 GB/s for ports read
0-1 (DDR4 memory, 512-bit AXI bus @ 300 MHz), whereas it is 14.1 GB/s for the remaining ports
(HBM, 256-bit AXI bus @ 450 MHz).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 20. Pub. date: December 2021.



Hardware Acceleration of HPC CFD Using HBM FPGAs 20:29

nost ™ m CPU: DUNE (max memory bandwidth: 77 GB/s) m GPU2: OpenCL GC (max memory bandwidth: 900 GB/s)
f GPU2: OpenCL LS (max memory bandwidth: 900 GB/s)® GPU2: cusparse (max memory bandwidth: 900 GB/s)
B mFPGA: (average memory read bandwidth: 37 GB/s)
bodyy6
—
) =
gridgena
—
crystm03 -
L
wathen120 -
I
E—
gasfm
__
I
NORNE
e
0 10 20 30 40 50 60 70 80

Solve time (ms)

Fig. 13. Solver execution time for selected matrices. For readability of the CPU/FPGA results, some GPU
results have been clipped. Refer to Table 9 for the actual values. Please note that for the FPGA, the maximum
aggregated HBM is 460 GB/s and the maximum aggregated DDR4 memory bandwidth is around 37 GB/s;
however, due to design limitations caused by implementation issues, the maximum bandwidth used by the
kernel is around 52 GB/s.

Table 9. Timing Results (in Milliseconds) for Solving Selected Matrices

GPU*
Matrix FPGA CPUDUNE cusparse OpenCL LS OpenCL GC
Solver | Host | Copy | Iter# | Host | Iter# | Host | Copy | Iter# | Host | Copy | Iter# | Host | Copy | Iter#
nosl 0.1 0.4 0.4 1.0 0.0 0.5 0.5 0.0 0.5 33 0.1 1.0 | 0.7 0.1 1.5
bodyyé 4.1 43 | 32 | 20 | 14 | 05 | 176 | 05 | 05 | 1365 | 05 | 1.0 | 1.9 | 05 | 2.0

gridgena 9.6 10.2 | 124 | 1.5 | 193 | 45 |528.7| 1.2 4.5 |1007.7 | 1.3 2.5 1.4 1.3 1.5
crystm03 4.4 4.9 9.4 05 | 3.2 0.5 2.1 1.6 0.5 4.2 1.7 0.5 2.3 1.7 1.0
wathen120 | 133 | 13.5| 121 | 2.0 | 2.6 0.5 | 46.3 1.1 0.5 | 3343 1.3 1.0 | 23 1.3 2.0
qa8fm 209 | 212 ] 306 | 1.0 | 124 | 05 | 554 | 34 0.5 | 179.6 | 3.6 0.5 1.9 3.7 1.0
NORNE 58.0 | 58.6 | 273 | 45 | 70.2 | 45 | 140 | 2.7 4.5 32.4 3.2 4.5 8.7 3.0 6.5

7.3 Flow Results

The ILUO BiCGStab solvers were integrated into the flow simulator in OPM [19] by replacing the
call to the simulator’s own iterative solver with calls to a function that does the required pre-
processing, sends the resulting data to the accelerator, and then reads the results from it after it is
done. The source code used was from version 2020.10-rc4, with custom modifications to integrate
our solvers. The original flow solver is an ILU0 BiCGStab solver based on the DUNE project [9],
and in Table 12, the performance results between this software solver and our solvers are com-
pared when running simulation on the NORNE testcase (file NORNE_ATW2013.DATA) [22] that
is part of the OPM project. For all runs, the parameter “-~matrix-add-wellcontributions=true” was
added to the command line (to have a fair comparison with the FPGA results, because the FPGA
solver currently does not support separated well contributions). For the NORNE case, including
well contributions will increase runtime on the CPU by approximately 20% compared to the de-
fault configuration. Moreover, for the FPGA run, the parameter “~threads-per-process=8” was also
added. This will only impact the assembly part of the simulation, not the preconditioner nor the
linear solver, in effect reducing the computational time spent outside the preconditioning and lin-
ear solve part. The reordering algorithm has been left to the default for FPGA (LS), because GC
produces in this case more colors than the ones supported by the FPGA solver. For the executions

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 20. Pub. date: December 2021.



20:30 T. Hogervorst et al.

Table 10. Read and Write Ports Bandwidth Utilization of the FPGA Solver, as %
of the Available Bandwidth

. DDRA4 HBM Aggr. | % of max
Matrix read BW | aggr.

Read 0 | Read 1 | Read 2 | Read 3 | Read 4 | Write 0 | Write 1 | Write 2 | (GB/s) | read BW
nosl 42.8 14.9 50.6 50.5 49.5 79.4 79.4 79.1 32.0 40.2
bodyy6 82.6 36.8 70.8 64.4 72.4 100 100 100 51.6 64.7
gridgena 81.7 36.2 70.0 65.8 70.2 100 100 100 51.1 64.1
crystmo03 79.8 43.2 68.3 69.2 69.3 100 100 100 52.2 65.4
wathen120 | 80.6 35.6 68.9 67.0 70.0 100 100 100 50.7 63.7
qadfm 81.4 36.0 68.6 66.5 72.1 100 100 100 51.1 64.2
NORNE 83.0 35.8 66.8 62.5 69.6 100 100 100 50.3 63.1

Table 11. Comparison Between Jacobi and ILUO as the Preconditioner on the V100

Preconditioner | Tolerance | Maxiter | Total Runtime (s) | Linear Solves | Linear Iterations No. Of.
Solves Failed
Jacobi le-2 200 592 2,036 127,768 125
le-3 300 511 1,535 159,537 55
w0 le-2 200 432 1,485 21,167 0
le-3 300 415 1,257 29,412 0

Failed linear solves did not reduce the error enough in “maxiter” iterations, and these solves are redone on the CPU
(DUNE), with default settings (ilu0, 1e-2, max 200 iterations).

using the FPGA solver, all the application’s threads were pinned to CPU #0 (i.e., the one directly
connected to the FPGA) to avoid fluctuations in bandwidth during the transfers between the host
and the FPGA memory.

The default reduction of 1e —2 was used for the results shown in Table 12 and Figure 13, whereas
a reduction of le — 6 was used for the results shown in Table 13. Please note that the reordering
of the matrix for the FPGA solver has been included in the create ILUO time, inflating the time
this pre-processing step costs compared to the other platforms. For an overview of the complete
application and how the different computational blocks are mapped to the various accelerators,
see Figure 10. For an explanation of the characteristics of each platform used to run flow, please
refer to Table 2.

To gain a better understanding of which parts of running the FPGA solver are causing it to be
slower than the software version, we timed the different functions applied by this solver during
a flow run, the results of which are shown in Table 12. During the running of the flow simulator,
the sparsity pattern of the matrix that needs to be solved does not change. This makes it possible
for functions that depend only on the sparsity pattern, like the finding of the reordering and
partitioning pattern, to be done only once during initialization. From Table 14, we observe that
the majority of solver time is actually spent running the FPGA solver, but a significant portion
of the runtime is also taken up by the creation of the preconditioner, and the data transfers
between the host and FPGA.

7.4 Discussion

In this section, we analyze all results that we presented so far, explaining the discrepancies in
the performance between the FPGA and the GPU numbers, and we discuss about the potential
of the FPGA in this domain based on the observed results and the potential performance gain
when looking at the hardware model. Nevertheless, we would like to note that the GPU results
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Table 12. Comparison of Performance for Flow with Reduction = 1e-2(default) Using
CPU, FPGA, and GPU (in Seconds)

‘ GPU! GPU?
Function CPU | FPOA I TOCL LS [OCL GC | cus [ OCLLS | OCL GC
Total time 540.6 | 751.8 | 489.7 799.6 749.3 320.1 507.6 458.5

Solver time 540.6 | 751.7 | 489.6 799.5 749.2 320.0 507.6 458.5
Assembly time 99.4 94.6 133.7 137.5 163.6 115.6 112.7 114.7
Well assembly time 43.0 | 47.1 | 21.15 21.6 26.5 13.9 14.6 16.8
Linear solve time 339.5 | 559.9 | 248.9 551.4 460.6 117.6 293.6 207.8
Linear setup time 41.8 453 38.1 39.5 47.7 33.6 35.4 43.6
Update time 57.3 54.4 67.3 70.1 84.5 53.6 56.9 71.2
Output write time 3.5 3.5 3.2 3.2 3.2 2.9 2.9 3.0
Number of linear solves 1,458 | 1,441 | 1,437 1,507 1,818 1,449 1,507 1,861
Number of linear iterations | 21,991 | 21,012 | 21,282 | 22,626 42,160 | 21,020 | 22,626 40,991
Speedup total time 1.00 | 0.72 1.10 0.68 0.72 1.69 1.07 1.18
Speedup linear solver time | 1.00 | 0.61 1.36 0.62 0.74 2.89 1.16 1.63

Table 13. Comparison of Performance for Flow with Reduction = 1e-6 Using
CPU, FPGA, and GPU (in Seconds)

. GPU! GPU?
Function CPU | FPGA I TOCL IS [OCL GC | cus [ OCL LS| OCL GC
Total time 1,254.1 | 1,512.9 | 900.0 | 1,893.0 | 1,333.3 | 484.5 950.5 579.4
Solver time 1,254.0 | 1,512.9 | 900.0 | 1,893.0 | 1,333.2 | 484.5 950.5 579.3
Assembly time 82.2 84.9 112.0 114.7 115.9 101.8 101.7 101.7
Well assembly time 36.1 42.3 17.1 17.5 17.6 11.9 12.1 12.5
Linear solve time 1,081.3 | 1,333.8 | 6914 | 1,680.1 | 1,119.5 | 303.8 768.8 397.0
Linear setup time 35.2 38.9 31.1 314 313 27.8 28.2 28.7
Update time 46.1 50.9 56.9 57.4 57.3 45.6 45.6 45.8
Output write time 3.5 3.5 3.0 3.2 3.2 2.8 2.9 2.9
Number of linear solves 1,207 1,207 | 1,202 1,207 1,207 1,207 1,207 1,207
Number of linear iterations | 79,163 | 78,275 | 78,447 | 82,673 | 117,463 | 78,958 | 82,673 | 117,294
Speedup total time 1.00 0.83 1.39 0.66 0.94 2.59 1.32 2.16
Speedup linear solver time | 1.00 0.81 1.56 0.64 0.97 3.56 1.41 2.72

in Figures 12 and 13 are shown only as a reference point to give a glimpse of the competitiveness
of the current FPGA implementation and to enable benchmarking of follow-up works. However,
we refrain from providing an in-depth analysis of the differences between the two competing
architectures because the FPGA design was not scaled to its fullest potential, which remains a
future work.

7.4.1  GPU Results. To fulfill the high-precision requirements for our target application domain,
we performed most of our experiments with double precision, except for the SpMV, for which we
present also single-precision results to facilitate easy comparison with future related works. Due to
the well-known capability of GPUs to perform double-precision computations, it is not surprising
that the GPU performed better, as evidenced by the stand-alone results presented in Figures 12
and 13. Based on those figures, we make two important observations.

First, the V100 GPU packs more resources than the Alveo U280 FPGA, with its nearly 2x
increased HBM2 bandwidth, an abundance of hard floating point (double) precision cores, and
a superior clock rate, which clearly gives it an edge in this application domain. Therefore, the
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Table 14. Breakdown of Linear Solve Time (in Seconds) Spent Running the Solvers in Flow with
Reduction = 1e-2 (Default)

. ) GPU! GpPU?

Device | Step (accumulated time) || CPU || FPGA s TOCLISTOCL GC I cus TOCL IS TOCL G

Reorder vectors - 1.10 - 1.08 1.14 - 1.14 1.30

Create ILUO 38.5 || 128.75 || 22.27 60.09 95.35 5.76 58.00 81.00

BILUO reorder - - - 20.47 27.72 - 21.30 23.60

Host BILUO decomp. - - - 31.42 57.34 - 30.20 49.60

BILUO copy to GPU - - - 5.04 5.97 - 3.79 4.63

Memory setup - 10.61 - - - - - -

CPU to accelerator - 65.95 4.70 5.10 6.18 3.83 4.46 5.59

Total solve 274.1|| 304.90 || 175.10 | 448.50 324.10 71.80 | 197.30 88.10

Accel. ILU apply 112.6 - 134.50 | 395.10 68.00 63.70 | 182.30 62.30

SpMV 127.3 - 28.40 37.30 25.50 2.60 4.40 7.70

Rest 28.9 - 8.50 12.70 223.80 4.00 8.30 14.20

Host | Accelerator to CPU - 0.76 0.27 0.35 0.16 0.26 0.34 0.16

Table 15. Some Profiled Metrics of GPU Kernels

Metric Solve L | Solve U | spmv
SM utilization (%) 31.1 291 | 53.9
Bandwidth utilization (%) 13.4 14.1 46.0
Memory throughput (GB/s) 20.5 19.2 285.2
Eligible warps per scheduler | 0.18 0.18 0.48
Achieved occupancy (%) 76.0 77.3 92.6

performance advantage is clearly justified when considering the stand-alone benchmarking of the
SpMV in Figure 12 for which the GPU seems to outperform the FPGA by 10X for our benchmark
of interest, NORNE. Please note that the same ratio is seen for the solver as well in Figure 13;
however, in that case, the run is only for the first NORNE matrix in the complete reservoir, which
for the FPGA-based accelerator leads to 1,441 different matrices, as highlighted by the “Number
of Linear Solves” calls seen in Table 12.

This leads us to the second observation we make, namely that over the course of running the
complete reservoir simulator, the performance gap between FPGA and GPU drops to only 3 to
4x. This can be attributed to the complex and deep pipeline of the solver that over the course
of running the complete flow starts to perform better overall than a single solver instance. This
is visible in the same Table 12. Therefore, it can be expected that the FPGA can equal and even
surpass the performance of the GPU when using the same amount of resources.

7.4.2  Performance Potential. To explain this performance claim, we profiled the GPU using
Nsight Compute [1] during a solve on NORNE and obtained the utilization for the three most
important kernels for the cusparse version of the solver. This is shown in Table 15. Although
the GPU has an abundance of resources, out of those, only a finite number of them are used,
which shows the GPU is not utilized efficiently. The aggregated BW utilization for the GPU is 20%
(weighted average of the L, U, and spmv kernels, where L and U have each a 40% weight in the
complete solver, and spmv only 20%). This would lead to the conclusion that only 180GB/s is used
by the GPU. This is roughly the 3 to 4x difference when compared to the FPGA, which deploys
efficiently only 50 GB/s of bandwidth in the current design. However, we can see that the FPGA is
able to utilize the bandwidth much more efficiently, at 63.1% for the NORNE use case. Therefore,
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we extrapolate that using the same amount of resources, the FPGA could equal or outperform
the performance of the GPU, a fact that can be seen in the modeling figures that predict a 6x
improvement versus software.

8 CONCLUSION

In this article, we have evaluated the potential of using FPGAs in HPC, which is a highly relevant
topic because of the rapid advances in reconfigurable hardware. To perform this study, we began
by proposing a novel CSR-based encoding to optimize a new SpMV kernel on FPGA, which can
be easily integrated with an ILUO preconditioner. We subsequently developed a hardware model
to predict and guide the design of the ILUO preconditioned BiCGStab solver, which helped us to
understand the trade-offs between area and performance when scaling the resources. Next, we
implemented the ILU0-BiCGStab preconditioned solver targeted at an HBM-enabled FPGA using
handwritten RTL to maximize the performance of the double-precision kernel. To validate our
work, we integrated the complete solver in the OPM reservoir simulator, both for FPGA and GPU.
Finally, we provided extensive evaluation results for both the stand-alone SpMV and solver kernels
as well as the complete reservoir simulation execution on a real-world use case running on three
different platforms: CPU, FPGA, and GPU.

We find that the FPGA is on par with the CPU execution and 3X slower than the GPU im-
plementation when comparing only the kernel executions. Although the obtained results show
that an FPGA is not yet competitive with the GPU, we believe that with a better on-chip sup-
port for double precision, increased number of computation units and memory ports, decreasing
the latency of the ILUO and SpMYV units by separating and specializing them further, as well as
other optimizations on the host software side (i.e., reduction of preconditioner computation time,
increased efficiency of the host-FPGA data exchange and task execution control), the FPGA can
become an alternative to speed up scientific computing. This has been illustrated by scaling our
hardware performance model beyond what it was possible to achieve in this work due to the en-
countered hardware limitations. The main reason an FPGA would be able to outperform a GPU is
because of its superior utilization of resources that better match irregular applications with long
and complex computational pipelines, a topic that was discussed in Section 7.4. In the future, we
will work to eliminate these restrictions and provide a more efficient implementation. Alternative
research could focus on developing other preconditioned solvers that might be more suitable for
an FPGA implementation.

Finally, the source codes for the RTL kernels and the integration with OPM Flow are made avail-
able in the Git repositories of the OPM project [19]. Specifically, the software modifications have
been added to the opm-simulators repository [20], whereas the FPGA-specific RTL code and imple-
mentation scripts have been added to the FPGA repository [21]. A pull request was created (#2998
in the opm-simulators repository [20] that has been merged in the main repository code), which
can be used, along with the FPGA code, to reproduce the results of this work. Please note that
since the pull request was created against the most current version of the code at the time of writ-
ing (December 2020), the performance results obtained with that code may not be exactly the same
as the results reported in this article, which were gathered with a previous release of OPM Flow
as stated in Section 7.3.
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