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ABSTRACT
Product bundling is a commonly-used marketing strategy in both
offline retailers and online e-commerce systems. Current research
on bundle recommendation is limited by: (1) noisy datasets, where
bundles are defined by heuristics, e.g., products co-purchased in the
same session; and (2) specific tasks, holding unrealistic assumptions,
e.g., the availability of bundles for recommendation directly. In this
paper, we propose to take a step back and consider the process of
bundle recommendation from a holistic user experience perspec-
tive. We first construct high-quality bundle datasets with rich meta
information, particularly bundle intents, through a carefully de-
signed crowd-sourcing task. We then define a series of tasks that
together, support all key steps in a typical bundle recommendation
process, from bundle detection, completion, ranking, to explana-
tion and auto-naming. Finally, we conduct extensive experiments
and in-depth analysis that demonstrate the challenges of bundle
recommendation, arising from the need for capturing complex re-
lations among users, products and bundles, as well as the research
opportunities, especially in graph-based neural methods. To sum
up, our study delivers new data sources, opens up new research
directions, and provides useful guidance for product bundling in
real e-commerce platforms. Our datasets are available at GitHub
(https://github.com/BundleRec/bundle_recommendation).
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1 INTRODUCTION
In e-commerce, product bundling is a critical marketing strategy
to support promotional campaigns, attract customers and increase
sales revenue [5, 19, 25, 51, 63, 65]. It typically groups a collection
of associated products that users consume as a whole under circum-
stances, e.g., limited total price [20, 22, 61], or specific intents [3, 31].
For illustration, three example bundles in the domain of Clothing,
Electronic and Food are depicted in Figure 1. For example, (a) shows
a bundle of party clothing, including handbags, dress, heels, neck-
lace and earrings. Suppose that a customer is shopping online with
an intent, e.g., purchasing fashion clothing for a party. In this case,
they may expect such a bundle with a set of well matched fashion
products, instead of items with no relationships.

As demonstrated above, bundles organize and present highly cor-
related products to customers and help them avoid tedious choices.
It benefits both customers and sellers for at least the following
reasons. (1) Bundles could help enhance user experience in dif-
ferent ways, e.g., alternative items could gather related products
for a better comparison; whilst complementary items can broaden
user horizon to help escape from monotonous choices. (2) Bundles
could increase sales revenue for sellers, e.g., by exposing users to
new items that they may not have considered in isolation. (3) Buy-
ing/selling bundles may cost less than buying/selling individual
product separately for customers/sellers. For example, promotions
and waived delivery fee are offered if the products in one order
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(a) Dress up for a Party

(b) Upgrade Your Gaming Equipment

(c) Stay Safe, Stay Home 

Figure 1: Running examples for bundles.

exceed a certain amount in e-commerce systems [3]. In this sense,
bundling is a win-win solution for both customers and sellers.

Although several approaches have been recently proposed for
bundle recommendation, they suffer from several inherent limi-
tations. 1)Most approaches are built upon noisy datasets, where
bundles are defined by unverified heuristics. For instance, most stud-
ies [6, 17, 40, 69] simply treat co-purchased products as synthetic
bundles, despite the fact that lots of such products are co-purchased
with no common underlying intents. Others directly treat user-
generated lists as bundles in specific domains such as music and
books [9–11, 30, 31, 42]. Apart from being limited in those specific
domains, those studies have not made an attempt to gain an un-
derstanding of the rationale behind product bundling. Some other
work [14, 20, 22, 41, 55] leverages bundles defined by retailers. Ob-
taining such bundles is however a long, laborious and expensive
process; and consequently, the sizes of such bundle datasets are
limited. 2) Existing studies are limited to specific tasks, e.g., they
often directly dive into the task of bundle recommendation, with
the unrealistic assumption that the historical bundles of a user are
observable to the system. We argue that to support bundle recom-
mendation, intermediate steps need to be in place such as detecting
bundles from user sessions [35, 56]; furthermore, a set of auxiliary
tasks, e.g., bundle auto-naming, need to be considered for successful
bundle recommendation in real applications.

In this study, we take a step back and consider the process of
bundle recommendation from a holistic user experience perspective.
First, to better understand the rationale behind product bundling,
we delicately design a crowd-sourcing task with the goal of lever-
aging crowd intelligence to help label potential bundles and cor-
responding intents hidden in the user session in three domains
(Electronic, Clothing and Food). Our design draws inspiration from
recent studies [35, 56] showing that users tend to explore highly-
correlated (alternative or complementary) products with a common
intent in a session [35, 56]. As a result, we obtain three high-quality
datasets with rich meta information, particularly the bundle intents.

Using such data, we then propose several important interrelated
tasks to support bundle recommendation, as illustrated in Figure 2.
In reality, a user may interact (e.g., click or purchase) with multiple
items in one session [35, 56], with or without common intents. An

essential task is therefore bundle detection, aiming to efficiently
detect potential bundle patterns hidden in the session. Accordingly,
one subsequent task is bundle completion, which seeks to expand
existing bundles by adding more relevant products for broader
choices. Afterwards, bundle ranking is then needed to rank these
enriched bundles based on user preferences for more accurate bun-
dle recommendation. Meanwhile, bundle explanation could help
interpret the results of bundle detection, completion and ranking
via user intent inference, thereby enhancing system transparency
and increasing user trust. With the inferred user intent, bundle
auto-naming could help further generate attractive bundle names,
e.g., ‘Stay Safe, Stay Home’ for the food bundle in Figure 1(c).

Lastly, to understand the research need for better bundle recom-
mendation, we critically examine and analyze a set of state-of-the-
art methods on our defined tasks through extensive experiments.
We formulate and address nine research questions, ranging from
the effectiveness of specific method design (e.g., graph-based neural
methods) to general training strategies (e.g., pre-training). Specif-
ically, we tailor the Apriori algorithm [2] for bundle detection at
item category level and devise novel metrics for evaluation.We then
adapt a number of state-of-the-arts for both bundle completion and
ranking. Due to space limitation, we leave bundle explanation and
auto-naming as our future study. From our experimental analysis,
we draw the following conclusions: (a) pattern mining facilitates the
generation of high-quality, new bundles; (b) the generative model
VAE [38] performs well in bundle completion; and (c) graph-based
neural methods [10] show the efficacy and necessity of capturing
complex relations among users, products and bundles for bundle
ranking; this also hints at the potential of graph-based methods
such as hypergraph [64] for further improvement by modeling high-
order connections among entities. Yet, (d) data sparsity remains
a major challenge confronted by all tasks, which calls for more
research, e.g., fusing side information (e.g. knowledge graph [57])
for further performance enhancement.

In summary, our main contributions lie in three folds. (1) We
introduce three new bundle datasets with enriched meta data (e.g.,
bundle intents) contributed by crowds, thereby facilitating future
research on intent-aware product bundling. (2)We define a series
of tasks for product bundling, from bundle detection, completion,
ranking, to explanation and auto-naming, pointing to new research
directions to bring forward product bundling. (3)We perform ex-
tensive experiments and in-depth analysis on the defined tasks,
showing both research challenges and opportunities. The resulting
insights can help provide guidance, and ultimately promote product
bundling in real e-commerce platforms.

2 RELATEDWORK
This section provides an overview of state-of-the-arts for bundle
recommendation, classified into eight categories.

Constraint based Methods. Early studies minimize the cost [20]
or maximize the expected reward (e.g. revenue) of a bundle [7, 69] in
e-commerce. Other methods combine constraints (e.g. season, price,
ratings, user preference) for travel package recommendation [41,
61, 68]. CourseRank [45] recommends course bundles subject to
the constraints of degree requirements.
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User Session Bundle Detection Bundle Completion Bundle Ranking Bundle Explanation Bundle Auto-Naming

Cooking at Home

Buying Party Clothes

Stay Safe, Stay Home

Dress up for a Party

Figure 2: The interrelated tasks for product bundling.

Data Mining based Methods. Association rule mining is utilized
in [17, 24] for bundle generation and recommendation. In [6], K-
means, Apriori algorithm and SVM are adopted to form and recom-
mend bundles. A probabilistic model is devised in [40] to describe
the generative process of bundle graphs and capture user prefer-
ences and motives for bundles.
Preference Elicitation basedMethods. The preference elicitation
based frameworks are proposed in [16, 62] to learn utility functions
for capturing user preference among various features (e.g., cost and
quality) over bundles via user feedback.
Factorization basedMethods. The cost-aware latent factor model
is delivered in [22] to learn user cost preference for tour bundle
recommendation. LIRE [42] and BBPR [46] train Bayesian ranking
models to simultaneously learn user preference towards items and
bundles. BBPR can further generate new bundles using a greedy an-
nealing schedule. EFM [9] jointly factorizes user-item, user-bundle
interaction matrices and item-item-bundle co-occurrence matrices,
to capture user preference over items and bundles.
Sequence based Neural Methods. BGN [3] adopts a sequence
generation model and integrates the masked beam search and DPP
selection to produce high-quality, diversified bundles. ComEmb [34]
combines product hierarchywith transaction data or domain knowl-
edge to identify bundle candidates which are then ranked via a
LSTM [52] based deep similarity model.
Attention based Methods. DAM [11] designs a factorized at-
tention network to aggregate items in a bundle to represent the
bundle and jointly models user-bundle and user-item interactions.
AttList [30] aggregates items to characterize the bundle that they
belong to, and then integrates bundles to estimate user preference,
whereby self-attentive mechanism is used to maintain item and
bundle consistency. CAR [31] combines attention-based user (gen-
eral and current) preference models via a consistency-aware gating
network to capture dynamic user preference over bundles.
Graph based Neural Methods. BundleNet [14] applies graph con-
volutional network (GCN) [58] on the user-item-bundle tripartite
graph and performs both item and bundle recommendation tasks for
a mutual enhancement. BGCN [10] unifies user-item, user-bundle
interactions and bundle-item affinity into a heterogeneous graph,
and adopts GCN to perform item- and bundle-level propagation to
learn user and bundle representations with item level semantics.
OtherRelated Studies. Some studies recommend bundles to groups
of users by aggregating user preferences within groups [47, 50]. The
effect of product characteristics (e.g., popularity) on bundling strat-
egy and its complexity have been explored in [21] and [15], respec-
tively. There are also potential item relations for bundle generation
to maintain consistency [26, 28, 37, 39, 59] and diversity [1, 44].

Despite the prosperity of current research on bundle recom-
mendation, majority studies are built on the basis of unrealistic
datasets. They directly treat either co-purchased products [40, 69]
or user-generated lists [9–11, 14, 16, 30, 31, 42, 46] as synthetic
bundles, ignoring the fact that (1) co-purchased products may not
always reflect common intents; and (2) user-generated lists are not
only limited to specific domains (e.g. music and books), but also
fail to unveil the rationale behind product bundling. Studies rely-
ing on bundles pre-defined by retailers [3, 6, 14, 17, 20, 22, 41, 55]
are however restricted by limited size of datasets due to the high
cost on producing such bundles. Furthermore, existing approaches
merely focus on specific tasks, e.g., directly diving into bundle rec-
ommendation by assuming the availability of bundles to the system.
Prior to that, a series of tasks need to be in place to support bun-
dle recommendation, e.g., detecting bundles from user sessions,
and completing them for more choices. Other auxiliary tasks, e.g.,
bundle explanation and auto-naming are also essential to promote
bundle recommendation in real e-commerce platforms.

3 CONSTRUCTING BUNDLE DATASETS
This section describes the construction process for our new bundle
datasets, considering specifically the necessity of having a con-
sistent intent in the bundle. To obtain such intent information,
we design and deploy a crowdsourcing task to identify potential
bundles in a user session and label them with user intents.

3.1 Crowdsourced Annotation Task
Data Preparation. Starting off with the Amazon datasets [27]
widely used in recommendation research, we select three domains
(i.e. Electronic, Clothing, and Food) and chronologically order the
records of each user according to the timestamp information, and
then divide them into different sessions by days. Due to the long
history of the original data (from May 1996 to July 2014), some
products may be outdated. We only consider interactions that oc-
curred in the last year of the data, i.e., from July 2013 to July 2014.
We sample 2000 sessions for each domain with lengths from 2 to
10 considering that (1) most session lengths are in the range of
[2, 10] (see Figure 3(a)); and that (2) longer sessions may contain
noisy items and increase the difficulty of annotation. To account
for the imbalance of the session length, we adopt the stratified
sampling strategy: for each domain, we divide the sessions into
4 groups based on their lengths – [2, 3], [4, 5], [6, 7], [8, 9, 10], and
then sample 500 sessions from each group. As a result, we obtain
2000 sessions with balanced length distribution from each domain.
Task Design and Execution. Our task asks workers to identify
potential bundles from user sessions and label them with corre-
sponding user intents. It mainly consists of three parts, shown in

Resource Track Paper  SIGIR ’22, July 11–15, 2022, Madrid, Spain

2902



Figure 3: (a) session length distribution for the three domains; (b) score distribution on various time intervals; and (c) session
distribution regarding the number of detected bundles and complementary bundles.

(a) First page (b) Second page - part 1 (c) Second page - part 2 (d) Third page

Figure 4: The three web-pages for our designed task.

Figure 4. In the beginning, each worker is asked to provide their
basic information at the first page, including age, gender, country,
occupation, education and online shopping frequency (Figure 4(a)).
Next, the worker will then be navigated to the second page with
the task overview, instructions and examples (Figures 4(b-c)), fol-
lowed by five user sessions that need to be annotated. For each user
session, the worker first answers the question ‘do you think these
items make a reasonable bundle (i.e. they are related to the same
user intent)?’. If the answer is yes, the worker is asked to name the
bundle intent; otherwise, a following question shows up ‘is there
any subset of items of the same intent?’. If yes, the worker is asked
to select items that form the subsets (i.e., bundles) and name the
corresponding intents. After finishing the annotation, the worker
is asked to provide their feedback on our task (Figure 4(d)).

We launch our task on Amazon Mechanical Turk (www.mturk.
com/). With a 10$ per-hour standard (higher than the minimum
wage 7.5$ per hour in the US), we pay each annotation task 1$,
where 0.3$ is the base reward, and the rest 0.7$ is the bonus for
high-quality contributions.

Quality Control Mechanisms. A key concern of crowdsourced
data annotation is the annotation quality: workers seek to maximize
theirmonetary rewards by doing tasks as fast as possible, potentially
de-prioritizing the quality of their work [18]. To deal with this
issue, we adopt some widely-used quality control mechanisms, and
beyond that, develop our own customized mechanisms in this study.

First, each sampled session is annotated by three workers, so
that we can obtain higher quality annotations via results aggre-
gation. Second, we use honeypot sessions to detect low-quality
annotations. Within the five sessions prepared in each annotation
task, we include one session with ground-truth bundles and intents
available—workers who fail to provide correct annotation for this
session is deemed to be less reliable. To create such ground-truth
sessions, we randomly sample 90 extra sessions (10 for each bundle
size) from each domain, and have three authors manually annotate
them. By carefully cross-checking with each others, a consensus
is reached for all the annotations w.r.t. both the presented bundles
and intents. Third, we record the time that each worker spends in
completing the task: those who spend too short or too long time
may indicate low-quality work [67].

While helping to build the first line of defense, those quality
control mechanisms might be too general. For example, it remains
unclear how to best set the threshold of time elapsed for filtering
annotations, and use it together with the honeypot mechanism.
Besides, given a limited budget, we seek to maximize the diversity
of the bundles, in terms of properties that go beyond bundle sizes.
With these in mind, we decide to serially launch our task in two
batches, using the first batch to get preliminary feedback and do
necessary adjustment in the second batch.

3.2 Bundle Collection Procedure
At the first batch, we randomly select 300 sessions for each domain,
and finally obtain the results contributed by 577 workers.
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Figure 5: (a) distribution of intent wording patterns; (b) difficulty feedback for two batches; and (c) general feedback for the
second batch, and we omit the results for the first batch due to space limitation, where similar trends can be observed.

Quality Assessment. To filter out low-quality annotations, we
assess the annotation quality from two aspects, namely intent cov-
erage and item coverage, denoting to what extent a worker can
find out ‘all intents’ from a session and ‘all items’ for an individual
intent, respectively. Formally,

𝑖𝑛𝑡𝑒𝑛𝑡_𝑠𝑐𝑜𝑟𝑒 = #𝑐𝑜𝑟_𝑖𝑛𝑡𝑒𝑛𝑡𝑠/#𝑎𝑙𝑙_𝑖𝑛𝑡𝑒𝑛𝑡𝑠 ∗ 100,
𝑖𝑡𝑒𝑚_𝑠𝑐𝑜𝑟𝑒 = (#𝑐𝑜𝑟_𝑖𝑡𝑒𝑚𝑠 − #𝑤𝑟𝑜_𝑖𝑡𝑒𝑚𝑠)/#𝑎𝑙𝑙_𝑖𝑡𝑒𝑚𝑠 ∗ 100,

where #𝑐𝑜𝑟_𝑖𝑡𝑒𝑚𝑠 and #𝑤𝑟𝑜_𝑖𝑡𝑒𝑚𝑠 refer to the number of correct
items and wrong items selected by the worker regarding a spe-
cific intent, respectively. We average the intent and item score to
measure the reliability of each worker.
Filtering Annotations. We divide all workers from the first batch
into two groups, viz., workers who provide correct answers for
the honeypot sessions are considered reliable, and otherwise less
reliable. Based on the above metrics, our goal is to find a sweet spot
for the threshold of the time used by workers, such that we can
keep as many high-quality annotations as possible – even from less
reliable workers – while excluding low-quality ones.

To do so, we first manually filter out workers who provide ob-
vious wrong answers with extremely short time consumed (e.g.
< 50𝑠). With our categorization, we are left with 451 workers with
277 being reliable and 174 being less reliable. Figure 3(b) depicts the
average score for the two groups of workers in different time inter-
vals (i.e., time spent in completing the task). As expected, reliable
workers perform better (i.e., gain higher score) than less reliable
workers across all intervals. The scores climb up as the time spent
increases for all workers. Accordingly, we devise a rule to help filter
high-quality annotations, viz., those from reliable workers with
more than 100𝑠 spent and from less reliable workers with more
than 500𝑠 spent. After the filtering, we are left with 752 sessions
having valid annotations for the three domains, where 533 sessions
contain bundles and the corresponding intents, and the rest 219
sessions do not contain items that can form bundles.
Item Relation Analysis. To further examine the quality of the col-
lected data, we analyze the number of bundles detected by the work-
ers and the relations (alternative or complementary [59]) among
items inside bundles for each session. Arguably, an ideal dataset
should contain more complementary items to avoid monotonous
choices. As shown in Figure 3(c), we find most sessions do not
contain any complementary bundles: there are only 140 (out of 752)
sessions containing complementary bundles, indicating the scarcity
of such bundles. To increase the number of complementary bundles
under a limited budget, we investigate how to sample sessions from
the remaining 1700 sessions (each domain) for our second batch.

Filtering Complementary Sessions. We use a data-driven ap-
proach to find characteristics of item pairs that can help us findmore
sessions with complementary items. To do so, we first manually
label item relations—complementary and non-complementary—in
the 533 sessions from our first batch, and then use these data to train
a decision tree (DT) model to help automatically mine item relations
in a session. Overall, we identify 976 pairs of complementary items
and 11811 pairs of non-complementary items. Considering the un-
balanced data distribution, we randomly sample an equal number
of item pairs for each relation type, and use 1500 pairs to train
and test the DT model. We construct five features using the meta
data (i.e. category hierarchies and item images), including image
distance calculated via ImageHash (pypi.org/project/ImageHash/),
the number of common categories, the ratio of common categories,
the depth between common category and leaf node, and the depth
between root and common category. With careful parameter tuning,
the DT reaches Precision, Recall, F1 and AUC on the test data (30%,
cross-validation) with 52.6%, 4.3%, 8%, and 69%, respectively.

Afterwards, we use the DT to classify pair-wise item relations
in the 1700 sessions for each domain: a session is classified as a
complementary session as long as it contains one complementary
item pair. As a result, we obtain 506, 338, and 463 complementary
sessions in Electronic, Clothing, and Food, respectively. We fur-
ther sample non-complementary sessions to ensure a total of 1000
sessions in each domain for the second batch while maintaining a
higher ratio of complementary sessions.

Annotation Aggregation. As each session is labelled by three
workers, there may be similar or contradictory labels. To aggregate
the annotations, we first manually analyze 200 randomly-sampled
sessions with their annotations to gain insights into worker agree-
ment in bundle identification and intent labeling. We identify three
cases: 1) same bundles (i.e., same items) with different intent expres-
sions; 2) different yet overlapping bundles with semantically similar
intents; and 3) non-overlapping bundles. For case 1, we aggregate
the intents by firstly converting them into embedding vectors (using
fastText: fasttext.cc) and then select the one closest to the centroid.
For case 2, if one bundle is the superset of the others (in terms of
the items included), we take the superset as the final bundle for the
sake of completeness; if the bundles are partially overlapped, we
take the overlapped items as the final bundle. For the last case, we
keep the bundles as they are without any aggregation.

In the above process, semantically similar intents are detected
using hierarchical clustering [43]. We use our manually-checked
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Table 1: Examples for intent wording patterns.
Wording Patterns Examples

Noun Earrings and pendants set;
Accessories for apple products;

Verb Cooking;
Baking;

Verb & Noun Traveling and taking photos;
Making a meal;

Adj & Noun Men’s jackets with different styles;
High scale photography equipment;

Verb & Adj & Noun Make hot drinks;
Make digital photos;

Adv & Adj & Verb & Noun The intent would be to upgrade Personal
PC or utilizing PC more effectively.

data to find the optimal thresholds for grouping intents, which
results in an accuracy of 90%, 92% and 96% for the three domains.

3.3 Resulting Datasets
After aggregation, we analyze the wording patterns of intents la-
belled by the workers according to POS tagging. Distribution of
the wording patterns is shown in Figure 5(a), with examples of the
patterns shown in Table 1. Note that we pre-process all intents by
removing stopwords and conducting lemmatization. The results
show that our task allows to collect a diverse set of intent patterns;
in comparison, related studies such as [8] only consider two intent
patterns, activity (verb) and audience (noun). A summary of the
statistics of our collected datasets is given in Table 2.

We note that our data is contributed by workers with diverse
background (distribution of their basic information shown in our
GitHub page). We also analyze worker feedback to our annotation
task. Results in Figure 5(b) shows that more than 80% of the work-
ers believe the task has an easy or medium difficulty; only around
10% of them feel hard to complete the task. We obtain numerous
positive feedback, e.g., good/interesting survey, enjoyable/fun/easy
task, shown in Figure 5(c). As a final remark, we note that our orig-
inal data source is Amazon where bundles can be easily identified
with workers’ general knowledge; we, therefore, believe the data
annotated by workers is representative of real-life bundles.

4 THE PROPOSED INTERRELATED TASKS
4.1 Task Definition
As analyzed in Section 2, existing studies mainly focus on bundle
recommendation. We argue that a number of tasks are essential,
e.g., detecting bundles from user sessions, to support bundle rec-
ommendation. Based on our collected datasets, we propose a series
of interrelated tasks (Figure 2), described below in detail.

BundleDetection.With the boomof e-commerce, there are tremen-
dous amount of users shopping online with e-commerce platforms
(e.g. Amazon), and leaving their footprints (e.g. view, click and pur-
chase products) everyday. Normally, during a short period (i.e. a
session), users are more likely to explore highly-correlated (either al-
ternative or complementary) products with certain intents [35, 56].
That is to say, these user generated sessions could provide rich
data sources for generating high-quality and more diverse product
bundles. Hence, one essential task is bundle detection, viz., given
user session data, it aims to efficiently detect the potential bundles.

Table 2: Statistics of datasets.
Electronic Clothing Food

#Users 888 965 879
#Items 3499 4487 3767
#Sessions 1145 1181 1161
#Bundles 1750 1910 1784
#Intents 1422 1466 1156
Avg. Bundle Size 3.52 3.31 3.58
#U-I Interactions 6165 6326 6395
#U-B Interactions 1753 1912 1785
Density of U-I Interactions 0.20% 0.15% 0.19%
Density of U-B Interactions 0.11% 0.10% 0.11%

Table 3: Important Notations.
Notation Description

𝑢, 𝑖, 𝑏, 𝑐, 𝑠, 𝑝 user, item, bundle, category, session and pattern
𝑏 = {𝑖1, · · · 𝑖 |𝑏 | } bundle 𝑏 containing items 𝑖1, · · · , 𝑖 |𝑏 |
B = {𝑏1, · · · , 𝑏 |B| } the set of bundles
C = {𝑐1, · · · , 𝑐 |C| } the set of categories
S = {𝑠1, · · · , 𝑠 |S| } the set of sessions

Bundle Completion. Given the detected bundles, bundle comple-
tion aims to add more relevant products with the same intent for
bundle expansion. It can serve a wide range of applications via
expanding bundles in an automatic fashion. For instance, if the
system detects a user browsing dress and heels in a session, which
could form a bundle. With bundle completion, it can quickly further
enrich it with, e.g., jewelry, to broaden user interest.
Bundle Ranking. Given the completed bundles, bundle ranking
aims to rank these bundles according to user preference and demand
for final recommendation. For instance, given a user session, several
potential bundles (e.g., bundles for party clothing and cooking) may
be produced via bundle detection and completion shown in Figure 2.
In this case, bundle ranking will assist in sorting bundles on the
basis of user interest, thus best satisfy user needs.
Bundle Explanation. One goal of bundle explanation is to infer
intents (topics) for the completed bundles, e.g., given a bundle of
products (e.g. dress and heels) in Figure 1(a), it can interpret as
‘buying party clothing’. Another goal is to provide explanations
for bundle recommendation. Suppose the system recommends a
cooking essential bundle in Figure 1(c) to a user, it can explain as
‘the user browsed steak and wine in this session’. This would help
enhance system transparency and increase user trust.
Bundle Auto-Naming. Given the completed bundles and inferred
intents, bundle auto-naming seeks to automatically generate attrac-
tive bundle names by exploiting pre-defined templates or generative
language models [3]. For example, regarding the food bundle in
Figure 1(c), it could generate fancy names, e.g., ‘Stay Safe, Stay
Home’. In this sense, bundle auto-naming would extensively save
human labour on manual naming and promote product bundling
in real e-commerce platforms.

4.2 Task Exploration
We now explore solutions for each defined task. Note that instead of
proposing new methods, our goal is to gain a better understanding
of these tasks by leveraging and adapting existing techniques, and
critically examining and analyzing their strengths and weaknesses.
To guide our analysis, we raise a number of research questions; by
answering these questions, we aim to point out potential research
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(a) Item-bundle distribution (b) User-bundle distribution (c) Performance on bundle detection

Figure 6: Item-bundle and user-bundle distribution as well as the performance on bundle detection across the three domains.

challenges and opportunities, as well as to provide insights and
recommendations for future studies. Due to space limitation, we
focus on the first three tasks and leave the rest for future exploration.
Table 3 shows important notations.
Bundle Detection. Given a user session, bundle detection aims
to discover potential bundles. This inspires us to mine frequent
patterns on our collected bundles, and then perform pattern match-
ing on user sessions to identify potential bundles. However, the
data sparsity issue makes it impractical to directly mine patterns at
item level. Instead, we consider item category. Specifically, we first
map items in each bundle (e.g. 𝑏1 = {𝑖1, 𝑖2, 𝑖3}) into the correspond-
ing categories (e.g. 𝑏1 = {𝑐1, 𝑐2, 𝑐3}), and then employ the Apriori
algorithm [2] to discover frequent patterns (e.g. 𝑝1 = {𝑐1, 𝑐2} or
𝑝2 = {𝑐1, 𝑐2, 𝑐3}) for bundling products with the two core parame-
ters, namely support and confidence.

As patterns are mined at category level, there may be patterns
only involving one category (e.g. 𝑝3 = {𝑐1, 𝑐1}), indicating alterna-
tive products inside a bundle; meanwhile, the order of categories
within each pattern does not matter, viz., we do not take into ac-
count antecedent and consequent. Consequently, we adapt the orig-
inal support and confidence in the Apriori algorithm to seamlessly
accommodate the unique properties in our study,

𝑆𝑢𝑝 (𝑝 = {𝑐1, 𝑐2, · · · , 𝑐𝑛 }) =
𝑐𝑜𝑢𝑛𝑡 (𝑝 = {𝑐1, 𝑐2, · · · , 𝑐𝑛 })

|B | ,

𝐶𝑜𝑛 (𝑝 = {𝑐1, 𝑐2, · · · , 𝑐𝑛 }) =
𝑐𝑜𝑢𝑛𝑡 (𝑝 = {𝑐1, 𝑐2, · · · , 𝑐𝑛 })∑𝑛

𝑘=1 𝑐𝑜𝑢𝑛𝑡 (𝑐𝑘 )
,

where |B| is the total number of bundles; 𝑐𝑜𝑢𝑛𝑡 (𝑝) means the fre-
quency of all categories within pattern 𝑝 co-occurring in B; 𝑛 ≥ 2
is the size of 𝑝 , viz., the number of categories in 𝑝 ; 𝑐𝑜𝑢𝑛𝑡 (𝑐𝑘 ) refers
to the frequency of category 𝑐𝑘 appearing in B, and is only counted
once within a bundle even if it may appear multiple times within
that bundle. As such, a pattern is valid only if its support and confi-
dence are no less than the pre-defined thresholds. With such valid
patterns, we can perform pattern matching on any given user ses-
sions for bundle detection.

In this task, we answer the following two research questions:
(RQ1) does category-level pattern mining help detect high-quality
bundles from user sessions? and (RQ2) does category-level pattern
mining help generate new bundles?
Bundle Completion. Given partial products in a bundle as con-
text, bundle completion seeks for more relevant products to further
expand the bundle. However, one major challenge confronted is: a
considerable amount of items only appear in one bundle as shown in

Figure 6(a), which aggravates the data sparsity issue and increases
the difficulty of this task. To combat this challenge, we design a
strategy to obtain pre-trained item representations via BPRMF [48]
for model initialization (details are deferred to ‘The Strategy for
Pre-training’). With such pre-trained item representations, we ulti-
mately adapt four methods for this task.

(1) ItemKNN [49] calculates item similarity through pre-trained
item representations, where the most similar items with the existing
ones in the bundle are selected for completion. Note that we do not
calculate item similarity via the bundle-item affinity matrix due to
its high sparsity. (2) BPRMF [48] factorizes the bundle-item affinity
matrix to learn bundle and item representations, and then selects
the most similar items with the target bundle for completion. (3)
mean-VAE [38] is inspired by VAE-CF [38], which takes the averaged
representation of existing items in a bundle as the input, and then
selects the items with highest probability for completion. (4) concat-
VAE [38] is similar as mean-VAE where the only difference is the
input, viz., concatenating representations of existing items in a
bundle as input. Due to the varied bundle sizes, we align the input
dimension by the padding operation.

Accordingly, in this task, we answer three research questions
as follows: (RQ3) does neural-based bundle completion methods
defeat traditional ones? (RQ4) which operation (mean-pooling or
concatenation) performs better? and (RQ5) do pre-trained item
representations help achieve better bundle completion?

Bundle Ranking. Given a number of completed bundles, bundle
ranking aims to sort them based on user preference for recommen-
dation. It is still facing the data sparsity issue, as most users only
interact with a small number of bundles as shown in Figure 6(b).
To ease this issue, the pre-trained item representations are also uni-
tized for model initialization. As such, we examine the performance
of six state-of-the-art methods on bundle ranking.

(1) ItemKNN [49] calculates bundle similarity with bundle repre-
sentations, viz., the averaged representation of items in the bundle.
Note that we do not calculate bundle similarity via the user-bundle
interaction matrix due to its high sparsity. (2) BPRMF [48] factor-
izes the user-bundle interaction matrix to learn user and bundle
representations. (3) DAM [11] designs a factorized attention net-
work to aggregate item representations in a bundle for bundle
representation and jointly models user-bundle and user-item in-
teractions in a multi-task manner. (4) AttList [30] learns user and
bundle representations via the self-attention mechanism, whereby
it aggregates items to characterize the bundle that they belong to,
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Bundles: ['DVI-HDMI Adapters',  'Monitors',  'Power Supplies'] ['Tablets',  'Cases'] 

['Cleaning & Repair',  'Watches', 'Watches']Bundles: ['Jeans', 'Shoes',  'T-shirts']

Bundles: ['Chips & Crisps', 'Fruit Snacks', 'Soft Drinks'] ['Ground Coffee', 'Tea Samplers'] 

Figure 7: The detected bundles from sessions.

and then aggregates bundles to estimate user preference. (5) GCN
applies the graph convolutional network [58] on the user-bundle-
item tripartite graph to learn user and bundle representations. (6)
BGCN [10] first constructs a heterogeneous graph by unifying user-
item, user-bundle interactions and bundle-item affinity, and then
applies propagation at both item and bundle levels to learn user
and bundle representations. We do not consider EFM [9], as the
source code for constructing its PMI matrix is not available and our
re-implementation does not achieve promising results.

Given these methods, we answer four research questions: (RQ6)
do neural-based bundle ranking methods outperform traditional
ones? (RQ7) do self-attention mechanisms facilitate better bundle
ranking? (RQ8) is it sufficient to model user-bundle interactions
only for accurate bundle ranking? and (RQ9) does bundle ranking
benefit from the pre-trained item representations?

Our Strategy for Pre-training. As observed in Table 2, the user-
bundle interaction matrix is quite sparse in the three domains. To
ensure the quality of learned representations, we adopt BPRMF
to pre-train item representations to initialize all methods; mean-
while the bundle representation is initialized with the averaged
representation of items inside this bundle. To avoid data leakage,
we sample extra user-item interactions from each domain with the
same time span as the bundle collection (i.e. July 2013 - July 2014)
for pre-training. In particular, for each item in Table 2, we first
find out all users who have interacted with it excluding those in
Table 2, and then leverage these users’ records to construct the
user-item interaction matrix for pre-training. By doing so, the con-
structed interaction data covers all items but excludes all users in
Table 2, therefore, do not leak any interactions in our collected data
in Table 2. The statistics of datasets for pre-training across the three
domains are shown in Table 4, where 80% of the interactions in each
domain are treated as training data, and the rest as test data. The
model is trained until optimal performance is observed on the test
data regarding NDCG@10 to obtain better item representations.

5 INSIGHT, CHALLENGE AND OPPORTUNITY
This section seeks to answer the nine research questions raised in
Section 4.2, thereby providing insights, and showing both research
challenges as well as opportunities regarding the defined tasks.

Bundle: ['Cardigans', 'Pants', 'Shirts', 'T-Shirts']

Bundle: ['CPU Processors', 'Memory', 'Motherboards']

Bundle: ['Chocolate Bars', 'Hard Candy', 'Suckers & Lollipops']

Figure 8: Case study of non-hit bundle patterns.

Table 4: Statistics of datasets for pre-training.
#Users #Items #Interactions

Electronic 745,911 178,443 1,951,397
Clothing 223,571 236,387 749,423
Food 143,390 54,323 325,169

5.1 Bundle Detection
We use the three collected datasets as shown in Table 2. For each
dataset, every user session corresponds to its ground-truth bundles
labelled by the workers. We divide them into training, validation
and test sets with the ratio of 8:1:1, where the training set is used to
mine frequent patterns with size ranging from 2 to 5; the validation
set is used to tune support and confidence for best performance.
Finally, we apply the valid patterns obtained from the training set
to sessions in the test set for bundle detection.

We evaluate our method at both session and bundle levels. In
particular, at session level, precision and recall are used to measure
how many patterns have been correctly predicted for each session,

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

|S𝑡 |
∑︁

𝑠∈S𝑡

#ℎ𝑖𝑡_𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠
#𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠

,

𝑅𝑒𝑐𝑎𝑙𝑙 =
1

|S𝑡 |
∑︁

𝑠∈S𝑡

#ℎ𝑖𝑡_𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠
#𝑔𝑟𝑜𝑢𝑛𝑑_𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠

,

whereS𝑡 is all sessions in the test set; #𝑔𝑟𝑜𝑢𝑛𝑑_𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 is the num-
ber of ground-truth patterns for each session 𝑠; and #ℎ𝑖𝑡_𝑏𝑢𝑛𝑑𝑙𝑒𝑠
is the number of correctly predicted patterns that match ground-
truth patterns (subsets included) for each session. Given a session,
if multiple predicted patterns are all subsets of a same ground-truth
pattern, we only retain the one with the maximum size. At bun-
dle level, we adopt coverage shown below to measure how many
categories are correctly covered by each predicted bundle pattern
compared with the ground-truth pattern, where B𝑠 is the set of
predicted bundle patterns for 𝑠 ; #𝑔𝑟𝑜𝑢𝑛𝑑_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠 is the number
of categories in the ground-truth pattern for bundle 𝑏1.

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
1∑

𝑠∈S𝑡
|B𝑠 |

∑︁
𝑠∈S𝑡

∑︁
𝑏∈B𝑠

#ℎ𝑖𝑡_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠
#𝑔𝑟𝑜𝑢𝑛𝑑_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠

Analysis and Insights. (RQ1) As reported in Figure 6(c), the
higher recall indicates that our method is able to identify majority
ground-truth bundles hidden in the sessions, whereas the relatively
low coverage suggests that not all categories within ground-truth
bundles are discovered, showing the necessity of bundle completion.
Figure 7 visualizes three sessions and the corresponding detected
bundles, where we can find that our method can help detect in-
teresting patterns, e.g., [‘Cleaning & Repair’, ‘Watches’]. (RQ2) It
1Detailed parameter tuning and settings for all tasks are reported in our GitHub.
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(a) Electronic (b) Clothing (c) Food

Figure 9: Performance on bundle completion, where the short line on each bar denote the standard deviation.

Table 5: Performance on bundle ranking, where the best results are highlighted in bold;𝑤/𝑜 𝑝𝑟𝑒 means without pre-training.
Metrics ItemKNN BPRMF BPRMF𝑤/𝑜 𝑝𝑟𝑒 DAM DAM𝑤/𝑜 𝑝𝑟𝑒 AttList AttList𝑤/𝑜 𝑝𝑟𝑒 GCN GCN𝑤/𝑜 𝑝𝑟𝑒 BGCN BGCN𝑤/𝑜 𝑝𝑟𝑒

El
ec
tr
on

ic

HR@1 0.032±0.000 0.026±0.005 0.001±0.002 0.013±0.009 0.001±0.001 0.051±0.045 0.022±0.012 0.133±0.029 0.067±0.021 0.179±0.042 0.065±0.016
HR@5 0.084±0.000 0.088±0.015 0.014±0.005 0.076±0.027 0.005±0.005 0.134±0.092 0.069±0.032 0.300±0.038 0.211±0.043 0.388±0.052 0.176±0.025
HR@10 0.154±0.000 0.141±0.013 0.043±0.013 0.152±0.035 0.015±0.008 0.171±0.107 0.130±0.038 0.382±0.038 0.316±0.050 0.522±0.044 0.282±0.035
NDCG@1 0.032±0.000 0.026±0.005 0.001±0.002 0.013±0.009 0.001±0.001 0.051±0.045 0.022±0.012 0.133±0.029 0.067±0.021 0.179±0.042 0.065±0.016
NDCG@5 0.058±0.000 0.057±0.009 0.008±0.003 0.044±0.018 0.003±0.002 0.094±0.068 0.046±0.021 0.219±0.032 0.141±0.031 0.287±0.045 0.122±0.017
NDCG@10 0.081±0.000 0.074±0.007 0.017±0.005 0.068±0.018 0.006±0.003 0.106±0.073 0.066±0.024 0.245±0.031 0.174±0.032 0.331±0.042 0.156±0.018

C
lo
th
in
g

HR@1 0.021±0.000 0.011±0.004 0.002±0.002 0.017±0.021 0.000±0.000 0.030±0.025 0.027±0.009 0.182±0.015 0.081±0.022 0.255±0.033 0.058±0.011
HR@5 0.074±0.000 0.055±0.009 0.015±0.006 0.075±0.054 0.001±0.002 0.085±0.049 0.073±0.014 0.336±0.020 0.233±0.052 0.447±0.047 0.151±0.016
HR@10 0.139±0.000 0.107±0.013 0.048±0.013 0.167±0.066 0.002±0.002 0.138±0.066 0.135±0.024 0.431±0.024 0.350±0.037 0.568±0.059 0.242±0.021
NDCG@1 0.021±0.000 0.011±0.004 0.002±0.002 0.017±0.021 0.000±0.000 0.030±0.025 0.027±0.009 0.182±0.015 0.081±0.053 0.255±0.033 0.058±0.011
NDCG@5 0.049±0.000 0.033±0.006 0.008±0.004 0.046±0.037 0.000±0.001 0.057±0.037 0.050±0.009 0.262±0.017 0.158±0.037 0.354±0.038 0.104±0.013
NDCG@10 0.070±0.000 0.049±0.006 0.018±0.006 0.075±0.041 0.001±0.001 0.074±0.042 0.070±0.012 0.293±0.018 0.196±0.044 0.394±0.043 0.134±0.014

Fo
od

HR@1 0.055±0.000 0.016±0.004 0.001±0.001 0.012±0.011 0.001±0.002 0.058±0.045 0.025±0.011 0.170±0.022 0.066±0.023 0.201±0.064 0.053±0.025
HR@5 0.133±0.000 0.081±0.012 0.019±0.007 0.077±0.039 0.003±0.004 0.122±0.079 0.089±0.029 0.336±0.026 0.205±0.067 0.405±0.066 0.161±0.024
HR@10 0.188±0.000 0.141±0.019 0.059±0.014 0.163±0.046 0.004±0.004 0.169±0.094 0.149±0.040 0.439±0.026 0.314±0.085 0.526±0.053 0.251±0.028
NDCG@1 0.055±0.000 0.016±0.004 0.001±0.001 0.012±0.011 0.001±0.002 0.058±0.045 0.025±0.011 0.170±0.022 0.066±0.023 0.201±0.064 0.053±0.025
NDCG@5 0.095±0.000 0.049±0.007 0.010±0.003 0.043±0.025 0.002±0.002 0.091±0.064 0.057±0.020 0.257±0.020 0.136±0.044 0.306±0.064 0.106±0.023
NDCG@10 0.113±0.000 0.068±0.008 0.022±0.005 0.071±0.026 0.002±0.002 0.107±0.068 0.076±0.023 0.291±0.020 0.171±0.049 0.345±0.060 0.134±0.022

Table 6: Challenges and opportunities for the defined tasks.
Tasks Challenges Opportunities

Detection • Sparse item-bundle affinity records • Use side information, e.g., category hierarchy [53], to detect bundles with different granularities
• Detect bundles with consistent yet diverse items • Use techniques, e.g., self-attention, to maintain item consistency within bundles; and e.g., DPP [3],
• Detect and evaluate new bundles to maintain item diversity within bundles

• Use semi-supervised learning [55] for bundle detection
• Debug noise items [66] within sessions to form bundles
• Design crowd-sourcing tasks for new bundle evaluation

Completion • Sparse item-bundle affinity records • Use data augmentation techniques [36] to address the sparsity issue
• Complete bundles with new items • Leverage side information, e.g., knowledge graph [52] for completion with (new) items
• Learn accurate context representations for bundles • Design e.g., multimodal systems [32, 54], to consider item category, title and images, ect.

• Use techniques, e.g., CVAE [33], to consider bundle intents as conditions
Ranking • Sparse user-bundle interaction records • Leverage user-item interaction records as complements

• Rank new bundles for users • Use meta-learning [12] to transfer knowledge from multiple source domains to the target domain
• Complex relations among users, items and bundles • Use graph-structured data (e.g., bipartite graph [58], knowledge graph [52, 57] and hypergraph [64])
• Learn accurate user, item and bundle representations to represent the relations among users, items and bundles

• Use techniques, e.g., GCN [58], hypergraph convolution and attention [4] to model high order relations
• Use self-supervised learning on graphs [60] to reinforce representation learning via self-discrimination

is easy to infer only partial predicted patterns match the ground-
truth according to the results on Precision. This naturally leads
us to ask a question: are the predicted but non-hit bundle patterns
reasonable? To this end, we randomly sample 200 such patterns
from each domain where three examples are visualized in Figure 8.
Through a careful manual check, we find that 79.5%, 92.5%, and
73.5% of them are reasonable bundles in Electronic, Clothing and
Food, respectively. This demonstrates such pattern mining indeed
facilitates the generation of high-quality new bundles.

5.2 Bundle Completion
For each domain, we split the collected bundles in Table 2 into
training, validation and test sets with the ratio of 8:1:1. Our current
study considers the scenario, viz., removing one item from each
bundle and deem the rest as context. Consequently, the goal is to
complete the missing item based on the context for each bundle
as accurate as possible. For a solid evaluation, we expand the test
set by taking one different item from a bundle as the missing one,
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and the rest as context each time. As such, one test bundle 𝑏 will
be expanded to |𝑏 | samples. To improve test efficiency, for each
test bundle, we pair 99 randomly-sampled items with its missing
(ground-truth) item, and then rank the 100 items for completion.We
adopt the widely-used Hit@𝑁 and 𝑁𝐷𝐶𝐺@𝑁 as evaluate metrics.
Generally, higher metric values indicate better results. We test each
method ten times, and report the results with (𝑚𝑒𝑎𝑛 ± 𝑆𝐷).
Analysis and Insights. Figure 9 presents the results. Overall, as
the size of the candidate list (𝑁 ) increases, the values of HR and
NDCG consistently go up for all methods across the three domains.
This is natural as larger 𝑁 enhances the probability of correct items
being selected for completion. (RQ3) Comparing different methods,
the factorization-based BPRMF outperforms the memory-based
ItemKNN, whilst being defeated by the neural-based VAE in most
cases, suggesting the superiority of the generative model VAE on
capturing bundle context for more accurate completion. (RQ4) Re-
garding the two VAE variants, concat-VAE performs slightly better
than mean-VAE, which indicates concatenation can preserve more
useful information for bundle completion. (RQ5) Due to space limi-
tation, Figure 9 only reports the results with pre-trained representa-
tions, which far exceed those without pre-trained representations.

5.3 Bundle Ranking
We use the annotated user-bundle interaction data in the three
domains in Table 2. Leave-one-out is adopted as the evaluation
protocol, viz., for each user, we randomly hold-out one bundle for
validation, one bundle for test, and the rest for training. To boost
test efficiency, we pair 99 randomly-sampled bundles that are not
interacted by the target user with the ground-truth bundle, and rank
the 100 bundles for recommendation. Hit@𝑁 and 𝑁𝐷𝐶𝐺@𝑁 are
the evaluation metrics. We test each method ten times and report
the results in the format of (𝑚𝑒𝑎𝑛 ± 𝑆𝐷)2.
Analysis and Insights. Table 5 shows the results, where inter-
esting findings can be noted. (RQ6) ItemKNN, though simple, out-
performs BPRMF and even the attention-based DAM. This is in
line with the conclusion drawn in [13], where traditional recom-
menders may defeat neural models with well-tuned parameters.
(RQ7) Regarding attention-based methods, AttList achieves better
performance than DAM due to (a) it learns hierarchical user prefer-
ence via both item- and bundle-level aggregation; and (b) it adopts
the self-attention mechanism to refine the item/bundle representa-
tion by fusing the consistency of neighboring items/bundles before
aggregation. (RQ8) Graph-based neural methods (GCN and BGCN)
perform better than others, and BGCN consistently achieves the
best performance. It helps confirm (a) the necessity of capturing
complex relations among users, items and bundles with the hetero-
geneous graph; and (b) the efficacy of convolutional propagation
on better representation learning. Such a compatible combination
(i.e. graph as data structure and GCN as technical support) greatly
assists in mitigating the scarcity of user-bundle interactions. (RQ9)
Generally, pre-training helps ensure better performance, for exam-
ple, BPRMF outperforms BPRMF𝑤/𝑜 𝑝𝑟𝑒 , which is consistent with
the conclusion drawn in existing studies [29].

2In the current study, we choose to focus on offline evaluation. Future exploration on
online evaluation, e.g., user engagements, can use other metrics such as CTR [23].

5.4 Discussion
Table 6 presents the challenges and opportunities for the defined
tasks. As shown, data sparsity is one major challenge confronted
by all tasks. To this end, we perform pattern mining at category
level for bundle detection; recurrently sample items to expand test
set for bundle completion; and design a pre-training strategy for
model initialization. While, the presence of such a challenge also
brings in new opportunities for other potential solutions, such as
fusing side information (e.g. category hierarchy [53] and knowledge
graph [52, 57]), or employing semi-supervised learning [55] for fur-
ther enhancement. Beyond that, the necessity of capturing complex
relations among users, products and bundles for bundle ranking
indicates room for further exploration, e.g., hypergraph [64] may
help better model the high order connections between users and
bundles transit by items for boosted performance.

6 CONCLUSION AND FUTUREWORK
This paper seeks for more fundamental contributions in the area
of bundle recommendation. We first delicately design a crowd-
sourcing task to construct high-quality bundle datasets with rich
meta data, particularly the bundle intents, thus facilitating a deeper
understanding of the rationale behind product bundling. With such
data, we then define a series of interrelated tasks, and perform
extensive experiments where we critically examine and analyze the
strengths and weaknesses of the state-of-the-art. We draw insights
from the experiments and point out both challenges and oppor-
tunities for future research. In a nutshell, our study delivers new
data sources, opens up new research directions and provides useful
guidance to promote product bundling in real-world platforms.

For the future work, we plan to explore possible solutions for
bundle explanation and auto-naming; meanwhile we also intent to
extend the datasets in a larger scale with more domains involved.
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