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ABSTRACT
In recent years, conversational agents (CAs) have been receiving
more attention as tools for collecting data through qualitative in-
terviews. The problem is we know little about how CAs affect both
the interviewees and interviewers. This PhD project is dedicated to
studying how to evaluate CA-mediated interviews and their effects
on participants (both interviewees and interviewers). The findings
of this project will allow us to support the interview practitioners
with the tools for interview analytics and interview data analy-
sis. It will be especially helpful in the large-scale settings which
CA-mediated interviews enable. This proposal describes State-of-
the-art on the topic and presents the motivation of a study with
key research questions to answer.

CCS CONCEPTS
• Information systems→ Information systems applications;
•Human-centered computing→ Interaction design process
and methods.

KEYWORDS
interviews, large-scale interviewing, conversational agents, chat-
bots
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1 INTRODUCTION
This paper presents a plan on studying the effects of interview
Conversational Agents (CAs) on its participants. Interviewing is a
qualitative method that is widely used (although, not limited to) by
designers to understand the users with their thoughts, experiences,
and emotions. It helps when one explores the contexts of supported
activity, generates requirements, and evaluates the product [13].
Recently, Conversational AI (CAI) has emerged in many areas of so-
ciety and business in the form of CA. Prior work presents examples
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of CAs that conduct structured [30], cognitive [16], and job [32]
interviews. Currently, most of the interviews are conducted by a
human interviewer with a small number of participants which takes
time and does not easily scale up. The adoption of CA-mediated
interviews will allow us to gather data automatically which will
help us:

(1) To gather larger bodies of data. It will bring quantitative
approaches to interview settings. Currently, large-scale in-
terview studies are resource-intensive and time-consuming,
both during the data collection and data analysis stages. This
transformation will enable us to come up with more reliable
research findings.

(2) To conduct experiments with the methodological questions
of qualitative interviewing. There are a lot of guidelines
mostly based on practical experience and theoretical reason-
ing. CA-mediated interviewing will facilitate testing them
and understanding their effects statistically.

(3) To reach a wider audience. If interviews can be outsourced
to a CA, the researchers will not need to think about time
zones and will be able to recruit more people around the
globe.

However, we know little about how CAs change interviewees dur-
ing a conversation and how it affects the data quality. We have yet
to find out how researchers will change the practice of interview-
ing when CA-mediated interviewing is mass adopted. Otherwise,
we will use systems in situations we poorly understand and will
answer questions or act upon data with low credibility. That’s why
we must explore the effects of CA’s on the human actors from both
sides of interviewing: interviewees and interviewers.
This PhD project aims to contribute to CA-mediated interviewing
in two ways: 1) To study how to evaluate interviews and highlight
methodological problems in CA-mediated interviews; 2) To analyze
how CA-mediated interviews transform research practices and to
design the tools that support researchers in such transformation.
As a result, the main beneficiaries of this work will be the designers
of interview CAI and roles that actively use interviewing in their
practice.

2 RELATEDWORKS
2.1 Overview of the CAs in qualitative

interviewing
The first conversational agent (CA) was developed half a century
ago and was called Eliza [28]. It was a social CA that could talk with
people on a variety of topics. 15 years ago Elizabeth was presented
[11] – a task-oriented CA whose purpose was to assist humans in
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qualitative research. Ten years ago [18] presented the first embod-
ied agent which combines conversational interface with a bunch of
other input tools (e.g. camera) to gather more information about
the interviewee. These initial studies, although with their limita-
tions, showed the promise in using conversational agents for data
gathering and shaped the way we design CA (e.g. how to evaluate
CA during an interview? [11]).
Recent studies explore the gamut of applications of CAs in qualita-
tive interviewing: fully structured research interviews [8, 30], job
interviews [32], cognitive interviews [16], diary studies [2, 4, 15, 17].
The group of researchers [8, 29, 30] have built a platform Juji.io.
This platform enables the interviewers to make fully structured
interviews with the capability to ask follow-up questions [30] and
paraphrase user input [29]. The same platform can be used in job
interviews [32] and allows experimenting with CA’s personality.
Platform also helps to learn how to support interview designers
by analyzing conversation and suggesting improvements of the
interview guide [8].
Minhas et al. [16] has built a CA to automatically conduct cognitive
interviews. CAs can be programmed to ask questions in a particular
way, which is vital in cognitive interviewing; however, it was un-
clear how participants would react to a CA. The authors conducted
a study and interviewees showed no negative reaction towards CA.
Some authors also apply CAs in diary-based study settings [2, 15,
17] and surveys [10] which ensures methodological triangulation
with interviews. CAs help to collect the data using text-based [2] or
a voice-based [17] input or the mix of both [17]. The last authors
built a prototype to assess how a voice-interface system would
prove itself to capture hands-free experiences. The system gathers
physical movements and records subjective reflections of humans
using voice input. Mairittha et al. [15] used CA to record partic-
ipant activities through voice utterances and compared text and
voice inputs. Chang et al. [4] used CA to help the close ones of
participants to supplement and comment on the gathered data dur-
ing experience sampling. To sum up, CAs are used in a variety of
research settings and show promise to become a new research tool
for user studies.

2.2 Advantages of CAs in qualitative
interviewing

CAs can work without communication fatigue. They allow
the collection of data from a wider audience from any part of the
world. Moreover, CAs can simultaneously communicate with many
interviewees at the same time. Zhou et al. [32] have created CA
to conduct job interviews and summarize key information in the
dashboard visualizations. The hiring manager could assess the per-
sonality traits obtained from the conversation and reach responses
to the questions for each participant. In this way, CA facilitated the
hiring process and allowed the human to process 290 applicants
in two hours. A human with no support from CA processed 400
applicants in two weeks.
CAs can follow precisely a predefined script and phrasing of
the questions. Following the script is important in some settings.
For example, cognitive interviews are used in criminology to recon-
struct memories of accidents and criminal situations. It is vital to
ask the questions as correctly as possible so that respondents do

not transform their memories in the process. Sometimes following
the phrasing is a challenge for humans. Minhas et al. [16] used a
chatbot in a cognitive interview to avoid deviation from the script
and question phrasing and it was a successful attempt.
People are more open to CAs. One of the great challenges in
interviewing is making people trust an interviewer to share per-
sonal and sensitive information. Research shows people can be
more open to CAs [10] which is helpful for interviews on sensitive
topics. The findings are consistent with another study [27] that
shows that people are more honest in impersonal communication:
a conversation with a system or a conversation with the human
through the text.

2.3 Challenges for CAs in qualitative
interviewing

We have to teach CAs to conduct flexible formats of inter-
viewing. Presented studies focus on fully-structured interviews
which allows little to no digression from the main script (e.g. with
paraphrasing or follow-up questions [29, 30]). Flexible formats,
such as semi-structured interviews, are more difficult to navigate
and manage. That’s why training CAs for it is a challenging task
that will take time for developers to figure out.
We have to teach CAs how to conduct interviews like an ex-
pert. Interviewers rely on their experience and best practices when
making decisions about interviews. Unlike humans, CAs must be
programmed beforehand to make such decisions. Before we can
program interviewers’ decisions, we need to formalize it in the set
of rules which is yet to be done. For example, how does one under-
stand if a respondent gives inconsistent or insincere responses?
CAs can affect the interview participants in unknown ways.
Research shows the difference in data gathered by human and au-
tomatic systems [10, 26]: more disclosure, less humane thought
expression from participants; however, these are the measured ef-
fects on survey data. Qualitative interviews produce different data
which requires different approaches for analysis and different met-
rics of data quality.
CAs replacing researchers in the conversation can affect the
researchers in unknown ways. Currently, interviewers interact
with participants and control the flow and outcomes of the conver-
sation. That’s why they usually have a great understanding of the
interview context which is especially helpful during analysis. Dele-
gating parts of the interviews to CA can influence how researchers
approach later steps of a study: they can observe more non-verbal
details (if present in conversation) or they can analyze unfamil-
iar data (if absent in conversation). Either way, it will change the
quality of the analysis and it is important to keep these effects in
mind.

2.4 Research Gap and the scope of this PhD
project

This PhD project is focused to overcome the last two last challenges:
the lack of understanding about how CAs affect the interviewees
and interviewers. Current research of CAs in interviewing is mostly
focused on building better systems. However, we know little about
how this new technology transforms the procedure. Research in the
area of surveys shows the influence of both the automatic systems
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(vs humans) [26] and conversational interfaces (vs traditional forms)
[10]. It is possible other conversational methods will alter as well.
This project aims to explore the effects of conversational interaction
on the procedure of the interview. The results of this project will
be useful in several ways. It will help to make informed decisions
about the automation of the interview process and facilitation of the
interviewer’s work. It will also help to build the tools supporting the
work of the experts in the area of large-scale interviews. Lastly, it
will help to connect the research in the methodology of interviews
and conversational AI, allowing to conceptualize and conduct large-
scale experiments to answer methodological questions.

3 RESEARCH QUESTIONS
As was stated earlier, the project is focused on the effects of CAs
on interviewees and interviewers. That’s why the project is aimed
to explore two research themes (Fig. 1):

Figure 1: Research themes and Research Questions

3.1 How does CA-mediated interviewing affect
interviewees and the data?

3.1.1 RQ1: How to evaluate CA-mediated interviews? De-
velopers and interviewers will have to make decisions about the
quality of CAs. When interviews are delegated to CAs, humans will
not be involved in the process as much as they do in manual proce-
dures. But they still need to detect problems and make adjustments
in the study or a CA. If CAs provide affordances for quick and
meaningful evaluation of interviews, it will allow stakeholders to
ensure the methodological quality of the procedure and to improve
systems much quicker.
With a few exceptions, prior research does not provide us with de-
tailed guidelines on how to evaluate the data quality of interviews
in general. Methodological research mostly focuses on the proce-
dure [24]. For example, Rubin and Rubin [25] highlight “credibility”
and “thoroughness”. The closest one to the evaluation of the data is
Kvale [12] who suggests assessing interviews based on the richness
and length of interviewee responses among other things. Research
of interview CA, authors mostly focus on proxy metrics such as
non-response or IDK-response rate [10]. Alternatively, they use
post-test questionnaires [2, 10] to capture respondents’ reflections
on the procedure.
Some authors [8] analyze the content of participants’ responses to
evaluate the effectiveness of interview CA. Authors have made a set
of metrics extracted from conversations: response length, answer
informativeness, engagement duration. Generally, it is accepted
to aim for longer answers rich with meaningful details [12]. Mea-
surement of these characteristics helps to evaluate the quality of
particular questions [8] and can help to evaluate interviews as a

whole.
Although these metrics are a step towards solving this problem,
there are important measurements beyond these metrics that need
to be taken. Interviewers struggle with social desirability, lack of
disclosure, inconsistency of answers, memory biases.My goal is to
try to formalize the signs of these problems so that systems
could provide stakeholders with meaningful information.

3.1.2 RQ2:What constraints andopportunities do input types
(voice or text) provide for interviewees? WhenRQ1 is answered,
I will need to test generated metrics in the study. Currently, the
goal is to apply generated metrics to explore the effects of voice-
or text-based input on the interviewees. Interviewees interact with
CAs using a technology which both supports textual and verbal
input. While CAs can recognize human speech, it is easier to build
textual input and avoid errors in understanding utterances [32].
Currently, we know little about this question but they may differ-
entiate answers drastically.
Verbalizing can lead to longer and richer but to a less structured
and less coherent answers because of the spontaneity of speech.
Also, the inexperienced users may face problems [22] with voice
interaction or be in an inappropriate context for answering with
voice [10]. All these factors can result in lower response rates and
data of lower quality [21].
Text typing is more user-friendly because more people are accus-
tomed to it and it is a more private type of interaction. Also, in
survey interviews, participants disclose sensitive information and
give precise answers more often in text rather than in voice com-
munication [27]. However, typing answers can be burdensome for
interviewees. It takes more time to type the text than to answer
vocally [9, 26]. It also requires more effort to think about the answer
and phrase it properly in written form. Moreover, typing makes it
difficult to talk with people within a particular context (e.g physical
movements [17]), which should be less of a problem with verbal
communication [7].
That is why we need to study how the input type affects inter-
viewees and the quality of gathered data in the interviews. Prior
work compares voice- and text- input in a data-gathering process
[22, 26] but it does so in the settings of surveys and it focuses on
closed-ended questions. I want to focus on studying these effects in
interviews with open-ended questions and applied metrics devel-
oped in RQ1 to learn how the input type affects the gathered data
and explore situations when one format is preferred over another.

3.2 How does CA-mediated interviewing affect
interviewers and analysis?

3.2.1 RQ3: How does CA-mediated interviewing transform
the analysis of the data? CA-mediated interviews will affect how
human interviewers approach analysis in their study. Instead of
leading a conversation human interviewers will be either observing
an interview or be absent. Both of these outcomes should change
the way interviewers take notes and analyze data and it will create
new problems to solve. Interviewers supported by CA will be able
to observe more details which should enrich the data and insights
during analysis.
However, in some settings, CA can take over interviews. It can
result in interviewers being absent from the conversation and being
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unfamiliar with gathered data when analyzing it. In addition, non-
verbal cues (e.g., facial expressions) can be poorly captured with an
absent human interviewer. Non-verbal cues play an important role
in human communication, and thus in an interview too. During
manual interviews, the interviewers may either pay attention to
non-verbal cues and take notes or entirely lose this information,
unless of course the interview is being recorded. When it comes
to CAI interviewing, it is a challenge to capture and recognize
such cues unless the human is taking notes or CA has appropriate
hardware and software to do so [18].

3.2.2 RQ4: How to support the analysis in large-scale inter-
viewing studies? CA-mediated interviews can change current
analysis practices in two ways. First, it can help us solve the prob-
lems occurring in manual interviewing and analysis. Second, it
will create new obstacles and challenges which we will need to
overcome.
Regarding the problems with manual interviewing and analysis,
two often discussed problems are personal bias of a researcher [13]
and adhering to known theoretical scheme and categorization [5].
Not only do such problems lead to questioning research reliability
but they also limit the potential richness of knowledge obtained
through the analysis.
As for new obstacles, CA-mediated interviews will allow us to
gather larger bodies of data. Manual analysis even of a small dataset
can take a considerable amount of time. You need to transcribe
recordings, explore and code the data, interpret the results, and
present insights. In the case of large-scale studies, it becomes a
practically impossible task because human resources and budgets
are limited.
CAI can solve both problems by doing automatic transcription and
exploratory analysis. Automatic transcription can speed up tran-
scription via speech-to-text technology (e.g. Google Speech-to-text
service) and prior work shows almost the same quality of the ap-
proach in comparison to human transcription [33].
There are the first attempts to conduct automatic analysis both from
computational and contextual perspectives. Computational aspects
of the problem define if we can make an automatic analysis of qual-
itative data such as conversation transcripts (e.g. [19, 31, 32]. Con-
textual aspects of the problem define what exactly should be shown
to a researcher as automatic visualization: what are the researcher
needs and routine practices of analysis. Prior work presents anal-
ysis of typical scenarios and decisions that designers make about
data analysis (e.g. [1, 14, 20].
When we understand the needs of researchers in the interview
analysis, we will be able to build systems that support such work
by summarizing the content into the topics [3, 23], extracting sen-
timents [6] or sequences of Part-of-Speech tags, and other more
advanced methods of NLP.

4 CURRENT PROGRESS AND PLANS FOR
FUTUREWORK

The PhD project has been going for 3 months. It still is in the early
phases of exploration what the state-of-the-art is and what are
the opportunities for the research. At the moment, together with
my supervisor, I submitted an overview of the use-cases of how
CAs can facilitate interviewing. An overview describes the main

steps of the interviewer in the procedure and how each step can be
supported by a conversational AI.

The next step is to conduct a literature review to answer RQ1 and
generate a set of metrics of interview quality. Once these metrics
will be generated, the next step is to test them on a meaningful
research question. At the moment, the idea is to test these met-
rics to compare experimentally how the input type (voice or text)
transforms interviewees’ responses.
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