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a b s t r a c t

In recent years, the interest in riding in cities using the two-wheeler (e.g., bicycles,
electric bicycles, electric mopeds, etc.) increases. Mixed-traffic road segments are one
of the most common traffic scenes where the mixed two-wheeler flows exist. Because
the movements are often not restricted by lanes, the two-wheeler uses lateral road
space more freely and shows obvious multilateral interactions (i.e. multi-interaction)
with others, bringing issues that endanger traffic safety. A precise estimation of its
impacts on traffic operation and safety is necessary, while the microscopic simulation
model can satisfy the need as a helpful tool. However, most existing simulation models
of these three types of two-wheelers are essentially focusing on handling the one-on-
one interaction. The capability to deal with the two-wheeler multi-interaction in mixed
traffic is still rare, and the description of what endogenous tasks are contained by the
multi-interaction has also not given by literature. To this end, this paper first defines
what the multi-interaction entails on the operational behaviour level, claiming that it
contains three intertwined processes, namely a (mental) perception, a (mental) decision,
and a physical process. The (mental) perception and decision processes represent the
recognition of interactions and the response to traffic conditions, while the physical
process refers to the execution of these mental activities. A three-layer simulation
framework has then been developed, where each layer sequentially corresponds to one
of the operational behaviour tasks. Integrated component models are also proposed in
each layer to cover these operational tasks. A Comfort Zone model is hence put forward
to dynamically perceive the multiple interactive road users, while a Bayesian network
model is developed to deal with the decision-making process under multi-interaction
situations. Meanwhile, a behaviour force model is also proposed to capture the non-
lane based movements following the selected behaviour and current interaction states.
Finally, we face validate the proposed models by the comparison between simulation
results and observations obtained from trajectory dataset. Results indicate the model
performance matches the observed interaction and motion well.
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. Introduction

Road segment separated by traffic markings is a widely adopted traffic design on urban roads [1]. In most cases, such
road segment is the mixed-traffic context where motorized vehicles (e.g., cars) and types of two-wheelers (e.g., bicycles,
lectric bicycles (e-bikes), electric mopeds (e-mopeds), etc.) commonly exist [2]. The renaissance of active modes [3] and
he obviously increasing number of e-mopeds [4] and e-bikes [5] further normalizes the mixed two-wheeler traffic on
rban roads. However, due to the non-strict using rights of road space and non-compliance with traffic regulations [6],
ifferent kinds of road users in fact move and interact on the single-surface area with the same priority, leading to many
ssues that restrict traffic safety [7]. Therefore, realistically representing of complex interactions for different types of
oad users arising in mixed-traffic road segments is necessary for the basic measurement of traffic operations [8]. For this
urpose, microscopic simulation models are helpful [9]. In previous studies, most models focus on reproducing behaviours
f a single traffic mode like vehicles [10], pedestrians [11], and bicycles [12]. However, the discussion of how two-wheelers
f various sorts interact with different road users (both inter- and intra-modal interactions) is by far not as mature as that
f other traffic modes. Therefore, a precise microscopic simulation model of mixed two-wheelers is still needed to support
he management of mixed traffic under different conditions on urban road segments. In this paper, we put attention to
he mixed two-wheeler flow that contains bicycles, e-bikes, and e-mopeds due to their extensive existence in many areas,
ike China [13], West Africa [14], and some European countries like Spain [15]. Herein, both e-bikes and e-mopeds are
pecial bicycles that are powered via electric engines (with similar dynamics performance), while the major difference
etween these two types of electric two-wheeler is their structure and size [16].
On realistic mixed-traffic road segments, we often encounter the situation where implicit interactions simultaneously

ccur between a two-wheeler and several road users [17], as shown in Fig. 1. This phenomenon is named in this paper as
he multi-interaction of two-wheelers. In such scenes, multiple interactive road users would jointly affect the current two-
heeler’s operation. It means, for any two-wheelers at any point in time, they need to simultaneously handle multilateral

nteractions with several road users during the whole operation process, which is from perceptions, decisions, to actions
ased on the traffic environment [18]. Two-wheelers interact on the two-dimensional space, performing on adjusting
rajectories by executing control dynamics based on the complex human decision-making process. Therefore, describing
he multi-interaction of two-wheelers is far from trivial. Furthermore, multiple road users who interact with the two-
heeler are not always set in stone, but constantly change following the variations of the traffic context. This is mainly
ue to each individual’s dynamics (e.g. moving direction, speed, etc.) altering while moving, which leads to the extent
f impacts of other road users on the two-wheeler’s operations constantly changing. Hence, such a dynamic feature
akes the multi-interaction become more challenging to be represented. Moreover, the multi-interaction sometimes
ccurs between a two-wheeler and several different types of road users. The differences in aspects like acceleration
bility and shape/dimension between them would also make interactions become more complex. For that, the ability of
simulation model to capture the two-wheeler dynamic multi-interaction is crucial [19,20], which determines whether

t can reproduce the realistic behaviour of two-wheelers in mixed traffic to improve simulation modelling performance
nd understand how two-wheeler multi-interaction affects traffic safety and operation.
Advances in current bicycle traffic simulation models can guide the development of simulation models for two-

heelers. This is because the bicycle is one of the typical two-wheelers. According to the definition of behaviour for
icycles made by Gavriilidou et al. [21], tasks of interaction during riding belong to the same operational level and should
e simultaneously modelled from both mental (decisions) and physical (actions) processes. For decades, several research
fforts have been made to capture the two-wheeler (mainly related to cyclists) interactions, however, they cannot well
epresent the two-wheeler behaviour to some extent. Early microscopic models such as lane-based models and most of
he commercial simulation software such as VISSIM, Transmodeller, etc. pay more attention to handling the physical
ctivities of agents based on virtual lanes [22], as shown in Fig. 2(a). Meanwhile, most mainstream models, namely
ellular Automata (CA), deal with the movements and interactions using the principle of spatial-discrete assumptions [23].
he one-on-one interaction between cells and lanes has not been adjusted to fit the operations of two-wheelers in
eality [21,24]. Even recent simulations using force-based models [25] can reflect the contact with several road users
n the two-dimensional space, they are still regarded essentially as the pure dynamics control of the operational physical
rocess that is influenced by the interactive forces from adjacent agents [26]. Some attempts based on the social force
odel are also made for operational mental process modelling. However, these models generally default the nearest front

oad users within a certain lateral space as the interaction object to simplify the interaction into the one-on-one pattern,
nd influences of other road users are still regarded as effects exerted by repulsive forces. Behaviour choice during the
ental progress is hence generally considered as a result that is only influenced by the specified agent [27,28]. This kind
f assumption restricts the ability of existing models to deal with the two-wheeler multi-interaction that is accompanied
y decision-making tasks on the two-dimensional space (Fig. 2(b)). Furthermore, several agent-based models and hybrid
odels are beneficial for capturing the whole interaction process of two-wheelers from decisions to actions [29–31]. These
odels have the ability to describe the detail of behaviours of agent and imitates the real-world heterogeneity [32,33].

n the decade, research of Lee et al. [33] and Lee and Wong [34] have provided a good reference to modelling the multi-
nteraction on the two-dimensional space for motorcycles in mixed traffic consisting of vehicles and motorcycles. Despite
hey gave good guidance of the further research, due to the different dynamics and behaviour features [3,24], models

or such a mixed bicycle flow in our study may need to be revisited and discussed to represent the multi-interaction
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Fig. 1. Multi-interactions of a two-wheeler in a real-life scenario.

Fig. 2. Comparison of general assumptions of the two-wheeler interaction and the reality.

mong bicyclists, especially for their operational mental activities. In all, most existing simulation models of two-wheelers
only including bicycles, e-bikes, and e-mopeds) roughly provide the option to simulate their interactions and behaviours.
wo-dimensional models, such as the social force model and its modified variations, bring the ability to represent the
ovement on the continuous space and contact with multiple road users on the operational physical level, however,

hey still need additional components to deal with simultaneous multi-interactions on the operational mental level. This
s likely because there are rare concepts in related literature that well represent what endogenous tasks are contained
n the operational level (especially the mental layer) when the multi-interaction happens. Models for capturing the
orresponding task of the operational mental process are also still lacking in the real two-dimensional conditions without
ane/cell-based hypotheses. When we face the need for multi-interaction modelling of such a non-motorized two-wheeler
low, the description of these endogenous tasks and their connections between the mental activities, and with the physical
rocess would also be crucial.
To this end, we first give a proper definition of what the two-wheeler multi-interaction entails on the operational

ehaviour level. We argue that three major tasks for multi-interactions are owned by the operational behaviour level,
amely, interaction perception and behaviour decision during the mental process, as well as the dynamic control for
he physical process. At the same time, we correspondingly design a three-layer simulation framework to capture the
ynamic multi-interactions throughout these operational tasks. In each layer of the framework, we develop integrated
omponents to describe connotations for each task. First, a ‘‘Comfort Zone (CZ)’’ model is introduced to specially capture
he multiple interactive road users that dynamically vary following the traffic context. Secondly, this paper develops for
he first time the use of the Bayesian network (BN) model to represent the decision-making procedure for two-wheelers
nder multi-interaction situations. Thirdly, a behaviour force model is designed to support the non-lane based movements
f two-wheelers under the guidance of the behaviour choice and multi-interaction. Finally, the proposed models are face
alidated and tested using a trajectory dataset collected on a mixed-traffic road segment in Shanghai, China, demonstrating
heir satisfactory performance.

The paper is outlined as follows. In Section 2, we review the relevant state-of-the-art and summary the research
aps. Section 3 describes the definition of the two-wheelers operational level and then explains the proposed simulation
ramework for representing two-wheeler multi-interaction. Section 4 introduces the specific methods proposed in each
ayer of the framework. In Section 5, the model calibration results are presented, along with the face validation of the
odel using simulation. Finally, Section 6 concludes the study and suggests possible directions for future research.
3
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. Related works

Over the last decade, some microscopic models dedicated to modelling operational behaviours of the two-wheeler
ave been developed (mainly about the bicycle traffic). Twaddle et al. [35] and Paulsen et al. [36] have summarized
he mainstream modelling approaches that describe the state of the art. Asaithambi et al. [37] also mentioned some
elated studies in their work. However, this section is not intended to be an additional review of methodologies, but as an
nderpinning for the proposed model we develop next. Therefore, we would discuss how these related works characterize
nd model the operational behaviours of two-wheelers in this section.
At the outset, some studies have made investigations to understand behaviour differences among distinct types of

wo-wheelers, because the two-wheeler flows generally consist of different types of road users [38,39]. Operational
erformance is the most popular topic in literature. Jin et al. [13] and Paulsen et al. [36] compiled surveys on the dynamics
f two-wheelers. The result showed the most explicit distinction between different types of two-wheelers is their speed
nd acceleration. Correspondingly, some other studies also claimed that some behaviour features of bicycles are distinct
rom that of e-mopeds and e-bikes, such as more moderate interactions [40,41], lower overtaking frequency [42], and
ore conservative yielding behaviour [43]. But essentially speaking, the main discrepancy of these results is that they
re powered in different ways, i.e. electric engines for e-mopeds and e-bikes and human physical strength for cyclists,
espectively. Hence, these features are still the manifestation of dynamics differences between these two-wheelers on
heir operational physical level. Hence, considering the mixed two-wheeler flow comprised of e-mopeds, e-bikes, and
icycles is widespread, it is beneficial to provide the measurement of their operations together by a generic simulation
odel to improve the model suitability and capability.
Actually speaking, several studies have attempted to simulate two-wheeler flows. In respect of microscopic models,

ongitudinally continuous models [44,45], Cellular automata (CA) [46,47], and force-based models [48,49] are the most
tilized underlying methods. As for the former two kinds of models, virtual lanes and cells are hypothesized as the
asic unit to simulate road users’ movements and interactions [50,51]. However, its discrete nature in space hinders
he ability to represent realistic behaviours and interactions of road users [52]. From the perspective of two-wheeler
otion, longitudinally continuous models can only capture the state change in the longitudinal direction, while CA can
nly mechanically express movements as jumps between discrete cells. More adjustments need to be made to represent
he two-dimensional movements brought by interactions with other road users. On the other hand, the force-based models
overn the movements of road users through forces exerted by desired destinations and other road users. As a result,
wo-dimensional movements of agents can be interpreted [53] and interaction with several road users can be considered.
owever, the interaction forces naturally and indiscriminately describe collisions/conflicts with other road users (or rather
hysical contacts) [3]. Therefore, they are still limited to reflecting the multi-interaction during the operational physical
rocess, and cannot consider the impact of mental activities, especially the behaviour decision-making result on the
imulated agent operations.
Based on these underlying models, previous studies also developed some agent-based models [54,55] and hybrid

odels [56,57] to capture the two-wheeler’s interactions. As for the agent-based model, a good review has been made by
azzan and Klügl [58], and it is considered as a powerful method that can be used to capture the complex movements and
nteractions of agents from the microscale to the macroscale [31]. The key task in developing an agent-based model is the
dentification of agent goals from the strategies, tactical, and operations [59]. However, most of the current agent-based
odels that aim to describe the two-wheeler operational behaviours are still developed on the basis of the CA, such
s Vasic and Ruskin’s work [60], and Zhao and Sadek’s work [61]. Therefore, they still cannot depict the two-wheeler’s
nteraction and movements on a refined operational behaviour level. Despite this, Lee and Wong [34] developed an agent-
ased model for powered motorcycles to attempt to depict their interaction on the two-dimensional space. In this model,
eadway models in both longitudinal and lateral directions are developed to first describe the motorcycle’s safety margins
nd then the path choice model is utilized to depict spacing where the motorcycle can move safely, which jointly cooperate
o deal with the motorcycle’s multi-interaction. They really provided a good reference and a feasible way for modelling the
oad user’s motion on the two-dimensional space. In recent, Mohammed et al. [31] presented the solution of the agent-
ased model for investigating the continuous trajectories of two-wheelers. The generative adversarial imitation learning
pproach in this model requires high-quality and large-amount trajectory data [62], though there is still a challenge of
ollecting enough two-wheeler trajectory data [21]. Meanwhile, the nature of this black box model also leads to its lack
f ability to explain the process of two-wheeler interactions. Another category is the hybrid model that combining several
ifferent models for achieving the simulation of road users. For example, Yang et al. [48] captured the dispersion of bicycles
nd the corresponding movements by the integration of a quadratic curve model and a force-based model. Li et al. [28]
eveloped a hybrid model to describe the movement of through bicycles from the entrance of the simulation roads to their
estinations. In this model, the interaction of agents are captured by several different force-based models, and a dynamic
oundary model is utilized to determine the available riding space. Generally, the advantage of this type of model is
hat it can realize different simulation functions by integrated models, so as to describe the interaction process more
ealistically. However, for the mixed two-wheeler flow that consisting of bicycles and electric bicycles, rare discussions
ave been made to attempt to represent the two-wheeler operational mental activities in multi-interaction situations.
Several additional mathematical methods have also been embedded into these simulation models to supplementally
iscuss the mental activities of two-wheelers while interacting, such as the heuristics constraints [25], the decision
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Fig. 3. Conceptual definitions of behaviour levels for different traffic modes [21] and for the two-wheeler multi-interaction proposed in this paper.

tree method [28], game theories [3], collision avoidance methods [63,64], and discrete choice theory [21]. For instance,
heuristics constraints are widely adopted for practices that perform the decision-making process due to their convenience
and efficiency. In its implementations, the nearest front road user in spacing usually defaults to be the interactive road
user who impacts two-wheeler behaviour choices [19]. Behaviour is selected based on the speed and relative distance
of the above specific object, while the influences of other road users are mainly considered as elements of collision
avoidance [35]. As for other approaches, they are generally integrated with the force-based model to fulfill the needs.
However, even though these models provide insight into different interaction strategies, they are still essentially limited
to solving the one-on-one interaction [19,20]. This means that, agents of these models can only handle a single interaction
with another road user in predefined situations during their mental activities, which fail to deal with interactions with
two or more objects. Hence, there is still a lack of models to represent the nature of the two-wheeler multi-interaction
governing the operational mental behaviour level. The core shortage is likely that previous models have not well defined
for two-wheelers who they perceive have impacts (interactive road users) and how they select (behaviour decisions)
based on the multi-interaction traffic context.

In summary, the primary findings of the related works are as follows: (1) Due to the universality of mixed two-
heeler flows in urban roads, a simulation model that can simultaneously represent interactions of two-wheelers with
everal types is necessary and possible for the traffic management of urban roads. (2) The force-based model is adept at
epicting the multi-interaction on the operational physical level, but additional components are still needed to represent
he movements under the guidance of behaviour decisions from mental activities. (3) Existing models for describing
ental activities can only handle the one-on-one interaction, no matter whether interacting with the predefined leader or
pecific road users in simple situations. There is a lack of conceptions and definitions to sufficiently represent and perceive
he multilateral interactions of two-wheelers on the two-dimensional space. Meanwhile, efforts are also required to deal
ith the complex decision-making process while multi-interactions. In all, models concerning two-wheelers should have
he ability to capture the multi-interaction in terms of both operational mental and physical behaviours to obtain a more
easonable formulation.

. Conceptual framework for simulation modelling

In this section, we first discuss the overall definition of what the two-wheeler operational behaviour includes, followed
y the description of the proposed simulation framework in the rest of this section.
Fig. 3 aggregates the definitions of the behavioural level for different traffic modes proposed by Michon [65],

oogendoorn and Bovy [66], and Gavriilidou et al. [21]. Referring to the definition of cycling operational behaviour in
avriilidou et al. [21], the performance of behaviour choices and automatic actions are the major processes for cyclists on
he operational level (Fig. 3). Therefore, they define the operational mental process and the operational physical process
o capture the cyclists’ decisions and actions, respectively. As mentioned in Section 2, the major operation difference
etween different types of two-wheelers is their sources of engine power. For cyclists, they execute their dynamics
hrough pedalling and steering, and for e-moped riders and e-bike riders, they are in the form of braking and steering.
owever, no matter what form they act in moving, it can still be considered as some changes in acceleration magnitudes
nd moving directions. Meanwhile, the decision-making process is the indispensable link for all of these riders/cyclists
efore the execution of movements. Therefore, we believe the definition of the operational process for cyclists can be
eneralized to represent different types of two-wheelers to some extent.
5
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Fig. 4. The structure of the proposed simulation framework based on the operational behaviour definition.

However, the definition of cyclist operational behaviour still needs improvements to represent the two-wheeler’s
perations when we consider the extension of the multi-interaction situation. To the authors’ best knowledge, the main
estriction is reflected on the operational mental level. This is because the mental process is a combination of tasks to
erform manoeuvers based on what road users perceive from the surroundings and how they context-specially respond
o the traffic context [67]. Meanwhile, human behaviour is regarded as a cognitive process with the serial tasks of
erception, decision, and action [68], of which the former two tasks belongs to the mental level. Hence, these procedures,
.e. perception and decision, should be modelled together if we want to well describe the mental activities of human traffic
articipants like two-wheelers.
Therefore, we extend the operational mental level by distinguishing two new processes to describe the two-wheeler’s

ulti-interaction, as visualized and compared in Fig. 3. We sequentially call these two processes the ‘‘operational (mental)
erception’’ process and the ‘‘operational (mental) decision’’ process. They jointly describe the inner assignments to
esolve the multi-interaction of two-wheelers while conducting their mental activities. On the mental level, the two-
heeler perceives interactive road users during the mental perception process, and then he/she selects behaviours
o interact with these captured objects. Behavioural choices refer, among other things, to freely moving, following,
vertaking, yielding, stopping, etc. After that, one of these possible behaviours would be executed. At this moment, control
ynamics of two-wheelers on the two-dimensional space are necessary, which is based on the current behaviour choice
esult and interaction state. This is the task handled in the physical layer mentioned in the definitions.

Based on the above definition, we put forward the conceptual simulation framework for representing the multi-
nteraction of two-wheelers, as shown in Fig. 4. We fit these three layers within the framework under the guidance of
he operational behaviour definition we have given above. The associations between these three layers are described as
ollows.

• Operational (mental) perception layer: This layer is the upper mental layer that provides guidance to both mental
and physical activities. In this layer, the two-wheeler captures the current multiple interactive road users based on
the current traffic context. Potential interactive road users include bicycles, e-bikes, e-mopeds, motorized vehicles,
etc., which commonly exist on mixed-traffic road segments. Subsequently, the captured interactive road users are
communicated to both the operational (mental) decision layer and operational physical layer, representing the
impacts from surroundings that need to be taken into account for decisions and actions.

• Operational (mental) decision layer: This layer focuses on describing the mental activities by considering the
behavioural decision-making process under the multi-interaction situation. A suitable behaviour choice result would
be first given here. This is described by a single decision-making model covering behaviour alternatives. After
that, the intermediate destination that corresponds to the selected behaviour would be chosen. For each selected
behaviour, the corresponding intermediate destination points the way and direction of moving. Herein, alternative
behaviours in this study include freely moving, following, and overtaking. This is because they are the most common
behaviours for two-wheelers on road segments [24,28]. One intermediate destination is the mapping of a specific
behaviour choice. As a result, the intermediate destination would be input into the operational physical layer for
execution.
6
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• Operational physical layer: This layer aims to capture the dynamics control of each individual to realize the two-
dimensional movements. Under the guidance of the behaviour decision-making result and the current interaction
state, the state of the current two-wheeler would alter in the forms of acceleration and moving direction to determine
the velocity and position of each individual two-wheeler.

The above three layers jointly express the whole mental and physical tasks for the multi-interaction. On an aggregated
cale, the two mental layers have an interaction with the physical layer. After applying the selection obtained in the two
ental layers, the new state of the current object would be updated. Then, the change in the physical layer would also

nfluence the new decision to be made during the mental activities. They together determine the behaviour and interaction
f two-wheelers on the operational level. In the next Section 4, specific methods used in each layer would be successively
resented in detail.

. Mathematical modelling

In this section, we first discuss the behavioural hypothesis regarding our proposed models in Section 4.1, followed
y the development of corresponding model for each behaviour process (Sections 4.2 and 4.3 for the operational mental
rocess and operational physical process, respectively).

.1. Model assumptions

The assumptions related to behaviours and interactions of two-wheelers on the operational level are made as follows.
1. Three types of two-wheelers, i.e., e-moped riders, cyclists, and e-bike riders, are considered.
2. The two-wheeler perceives the surrounding traffic context and captures interaction through their sensory organs in

he same way, however, perception is more sensitive to the front than the rear [69].
3. The two-wheeler would assess influential attributes from the current traffic context, and then select a suitable

ehaviour from a set of alternatives while making a decision.
4. Influential attributes are extracted from all the interactive road users at each time step, and these surrounding

nteractive road users are equally treated by the two-wheeler when he/she makes behaviour decisions.
5. The two-wheeler aims to optimize his/her physical status based on the behavioural choice produced from the

perational mental process.
6. The decision made in the operational mental layer is a real-time transition with no anticipations.
7. The movement during the physical process are open-space based with no lane discipline.
These above hypotheses form the foundation of the models we utilized to specialize each layer of the proposed

ramework. In the rest of this section, we will present the specific mathematical modelling methods in detail for each
ayer we define in the framework.

.2. Modelling the operational mental process

This process aims to realize the operational mental activities of two-wheelers while interacting with multiple road
sers. As mentioned in Section 3, two parts consist of this process in the simulation framework, i.e. the operational
mental) perception layer, and the operational (mental) decision layer.

For the upper layer, the proposed Comfort Zone (CZ) model would be implemented here to identify the dynamic multi-
nteraction for two-wheelers on the two-dimensional space, while a decision-making model would also be developed
n the lower layer to represent the complex human decision-making process while multi-interactions. The details are
resented in the rest of this section.

.2.1. Operational (mental) perception layer
In this layer, the proposed CZ model focuses on capturing multiple interactive road users to consider their influence

n the two-wheeler’s operations. It essentially characterizes the two-wheeler demand for riding space that varies with
he traffic context, so as to explain how other road users influence and interact with two-wheelers.

The model assumes that each two-wheeler is surrounded by an invisible comfort zone. This view is inspired by the
‘Behavioural Adaptation Concept’’ in the psychological area outlined by Näätänen and Summala [70] and Summala [71].
hey claim that each person is surrounded by an invisible social space, and invasions by others into this space can arouse
iscomfort and trigger responses. By analogy, we can reasonably consider that two-wheelers’ interactions are constructed
y others’ invasion of their social space. Note that, an invasion means there is one road user itself located inside the
omfort zone of the rider. As a result, by capturing others that are inside the social area, all the interactive road users can
e found and the multi-interaction of the two-wheeler can therefore be attempted to be well represented.
In this model, we claim that ‘‘comfort’’ is the feeling that the two-wheeler obtains by maintaining space and time

ith other traffic participants while riding, which determines the size of the comfort zone. This concept is similar to
he key hypothesis of the famous ‘‘task difficulty homeostasis’’ theory, which considers road users maintain driving task
ifficulty within their acceptable limit by adjusting speed and distance to other road users [72]. As for a two-wheeler,
e/she continuously makes decisions to maintain its comfort feelings of riding task by adjusting the manoeuvers and
7
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Fig. 5. Schematic diagram of a two-wheeler’s comfort zone.

dynamics. Thus, if the threat of another road user exceeds the acceptable limit of the comfort, the two-wheeler is likely
to make a response to change the relative status with this road user who locates inside his/her comfort zone. At that time,
the interaction between the current two-wheeler and the road user would be established. Hence, the core of the model
is how to quantify the size of the comfort zone for each two-wheeler to capture road users that impact its movements.

In this paper, we define the two-wheeler’s comfort zone as a bubble coupled in two-dimensional space to capture its
multiple interactive road users. We consider the ellipse is more suitable for shaping the comfort zone. This is because
traffic participants’ attention to stimuli/threats is regarded to be an anisotropic reaction [73], which explains why they
tend to react on road users that locate at orientations parallel with or orthogonal to the moving direction. Meanwhile,
because temporal indicators are considered as more suitable to reflect the influences/threats of other road users [74],
the comfort zone would be measured temporally in this paper. Furthermore, since traffic participants obtain information
from the surrounding traffic context mainly relying on their vision, they would naturally pay more attention to the front
compared with that to the rear. As such, the comfort zone is shaped as a bubble consisting of two half ellipses with
different semi-major axes, as shown in Fig. 5. The shape of the comfort zone can be described by the formula:{

x = a · cos θ

y = b · sin θ
,where a =

{
a1, if θ ∈ (−π/2, π/2)

a2, if θ ∈ (π/2, 3π/2)
(1)

here a denotes the semi-major axis (including a1 and a2, representing the forward and backward semi-major axes,
espectively); b denotes the semi-minor axis; θ denotes the angle between the line connecting the origin of each half
llipse to any point on it and the moving direction of the current object. Generally, two-wheelers’ cognitive way of the
hreat from surroundings is likely to be similar, though the attention degree is not the same [75]. Therefore, a1 and a2
an be reasonably regarded to be determined following the same law of nature, and a2 is likely to be shorter than a1.
herefore, we assume in this paper the semi-major axis a1 of the front is proportional to the semi-major axis a2 of the
ear, i.e., a1 = λ × a2. Herein, λ is a parameter that is used to capture relations between a1 and a2.

The size of a two-wheeler’s comfort zone is not fixed but varies. Since a two-wheeler’s perception of comfort is
enerally not unchanging, its comfort zone is also an attribute of the rider, which will also vary to adapt to variations
f the traffic context and the two-wheeler’s status. Besides, the comfort zone can also be expressed as a constitutional
haracteristic that is affected by the two-wheeler’s dynamics. Therefore, the current traffic environmental conditions and
he two-wheeler’s motion status are two uppermost elements that influence the size of the comfort zone. Furthermore,
he heterogeneity between different types of two-wheelers has also been found to have significant impacts on interactions
nd behaviours [8,76]. As such, variables that determine the size of the comfort zone in this paper are discussed from
he traffic environmental conditions, the two-wheeler’s motion status, as well as the different types of two-wheelers. The
efinition of the selected variables in each aspect is presented below.

• Traffic environmental conditions we select traffic density k as the influential variable. It is assumed in this paper
that the traffic density k is inversely proportional to the size of the comfort zone (because we measure the zone
temporally). This is because Guo et al. [77] found that two-wheelers’ responses to interactions differed according
to traffic density conditions. Generally, the lower the traffic density around, the larger the time spacing with others
the two-wheeler would pursue, and vice versa. Meanwhile, Saifuzzaman et al. [78] found when other conditions
being equal, the higher the spacing (spatial distance that can reflect traffic density to some extent), the more time
(temporal distance) there is available for road users to keep with others. Hence, we can infer that the traffic density
k is inversely proportional to the temporal distance keeping to other road users.

• Two-wheeler’s riding status we choose the speed v as the influential variable. We hypothesize that the temporal size
of the comfort zone varies inversely with the individual speed v. Several studies have claimed that the two-wheeler’s
8
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b

interaction would be affected by its own speed [77,79]. When other conditions being equal, the higher the speed, the
less time (temporal distance) road users maintain due to the limited travelling space, which reflects their expectation
of travel efficiency [28]. Wang et al. [80] also found that the faster the speed of a road user, the lower the road user’s
perceived safety. That is to say, with the increase of a road user’s speed, the experienced risk would increase. At this
time, road users could accept a decreasing time distance because they would invest more mental effort to cope with
it [78,81] Therefore, we can consider that the temporal distances keeping with other traffic participants are inversely
proportional with the two-wheeler’s speed v.

• Type of the two-wheeler: referred from a previous study [82], we use the coefficient St of the type to represent the
perceptual differences caused by the discrepancy of the dynamic performance of two-wheelers. As mentioned in
Section 1, the e-moped riders, e-bike riders, and cyclists are the three main types of two-wheelers we considered
in this study.

These above variables are combined in a linear summation to reflect their joint impacts. Therefore, the size of a
two-wheeler’s comfort zone can then be calculated by the following formulas:

a = fa(k, v, St , Cd) = St · Cd · (α1/v
β1 + α2/kβ2 + δ1) (2)

b = fb(k, v, St ) = St · (α3/v
β3 + α4/kβ4 + δ2) (3)

where fa(k, v, St , Cd) represents the function of the semi-major axis a and fb(k, v, St ) is the function of the semi-minor axis
. Cd denotes the direction coefficient of the semi-major axis to distinguish a1 and a2, and it has no direct value and only

helps us describe the difference between the front and the rear of the comfort zone; α1, α2, α3, and α4 are correlation
coefficients; β1, β2, β3, and β4 are also correlation coefficients that need to be calibrated; and δ1 and δ2 are constant terms.
The detailed calibration process of these coefficients would be discussed later in Section 5.2.1.

Finally, the comfort zone can be quantitatively measured to capture interactive road users. Saifuzzaman et al. [78]
explained that the estimation of distance (mainly the temporal distance because it reflects the influence of a combination
of a road user’s speed and position) is a basic skill of a traffic participant. This is also the safe margin in any situation
that the traffic participant (including two-wheelers) determines to maintain [83]. Therefore, when the temporal distance
with a road user exceeds the time the two-wheeler wants to keep with others, we can consider that the road user brings
risks and discomfort felt to the two-wheeler. As a result, if the road user insides the comfort zone, the corresponding
interaction would be established. When extending such a case to more relations between the current two-wheeler and
all of the other road users, multiple interactive road users can be captured. This can be formulaic described as follows:

Ω =
{
m|b2nx

2
m + a2ny

2
m < a2nb

2
n

}
(4)

where Ω denotes the collection of current interactive road users; an and bn represent the semi-major axis and semi-
minor axis of the current two-wheeler n, respectively; xm and ym are the longitudinal and lateral positions of a road user
m, respectively.

4.2.2. Operational (mental) decision layer
Based on the interactive road users captured by the CZ model, this layer describes the decision-making modelling of

two-wheelers at the current time step. As mentioned in Section 3, the two-wheeler would first choose a suitable behaviour
from alternatives and then build up an intermediate destination that corresponds to the selected behaviour. Therefore,
two steps jointly describe the function of this layer, i.e. behaviour decision-making and intermediate destination selection
for behaviour execution. These two steps would be sequentially introduced in detail.

(1) Behaviour decision-making
A behaviour decision-making model is developed here to choose a suitable behaviour based on the current multi-

interaction state. As mentioned in Section 3, three behaviour decisions are in the alternatives, i.e. freely moving, following,
and overtaking, in this paper. Herein, the overtaking behaviour means the process two-wheelers approach from behind
and pass another road user travelling in the same direction. Two-wheelers consider overtaking to be crossing to one side
of the road so as to pass another road user in front. Meanwhile, the following behaviour describes how a two-wheeler
in the rear follows another road user and adjusts its position, speed or acceleration to avoid rear-end collision. Besides,
the freely moving behaviour captures the trend of moving towards the final destination if there is no need to follow or
overtake other road users.

Honestly speaking, it is hard to obtain modelling variables of the model for decision-making process under the multi-
interaction scenarios. This is because the multiple interactive road users scatter on the two-dimensional space. The
interaction relationships constantly change and the number of interactive road users is not the same at each moment.
Therefore, a qualitative discussion is needed to deal with this challenge before building up the specific decision-making
model in this layer.

Benefitted from the comfort zone characterized by the CZ model, the rough position relationship between interactive
road users and the current two-wheeler can be intuitively understood to some extent. This provides us with a modelling
viewpoint: First, we group all of the interactive road users into several specific areas based on their position. Then,
the influence of interactive road users in the same area would be considered as a whole to act on the two-wheeler
9
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Fig. 6. Schematic of the influential regions, interaction groups, and variables for behaviour decisions.

ental activities. We consider such a hypothesis have the potential to handle the decision-making process with multi-
nteractions. This is because it depicts the two-wheeler’s overall assessment of the influence from a specific area to some
xtent. Meanwhile, the similar solution for explaining the driver attention has been successfully implemented in car-
ollowing behaviour modelling [84]. Therefore, we attempt to handle the decision-making process in multi-interaction
ituations by this view, i.e. dividing interactive road users into different interaction groups and considering the overall
mpact of road users from each specific group while modelling the decision-making process.

As such, we hypothesize that the two-wheeler make decisions based on four interaction groups from four certain
reas around, i.e., the lead and lag regions on its left- and right-hand sides, as shown in Fig. 6. The saddle is taken as the
eference for subdividing. Interactive road users located inside each region are regarded as an interaction group. On this
asis, influential variables for the decision-making process are extracted in units of the four interactive groups. In our
pproach, values of any variables would be the weighted average of corresponding attributes of all interactive road users
n the corresponding area.

Then, the variables for capturing the behavioural decisions can be determined. We discuss in this paper from the
ollowing four aspects:

• One perspective is the speed difference and longitudinal distance to the lead interaction groups, as they represent
the impact ahead and whether two-wheelers can efficiently move with no block to their destination.

• Another perspective is the speed difference with the lag interaction groups, which reflects the threat of the lag object
to the safety of the current two-wheeler.

• The third perspective considers the travelling space on the continuous surface, i.e. available spacing in both the
lateral and longitudinal direction.

• The last one is the type of the current two-wheeler. It represents the heterogeneity in decision-making process.

Several attributes from these above three aspects are considered in the decision-making model via the random forest
odel. Finally, a total of eight variables are selected. A full list of these influential variables’ notations and definitions is
rovided in Table 1 and also shown in Fig. 6.
In this layer, a Bayesian network (BN) method is adopted here to specialize the two-wheeler’s decision-making process

ith the consideration of the comprehensive influences from multi-interactions. The method is selected for two main
easons. First, the decision-making process with multi-interactions reflects the two-wheeler’s trade-offs of influences from
ultiple road users. Therefore, the decision model should have the ability to represent the internal connections between
ultiple road users or model attributes and explain how they collectively affect the decision results. Second, the two-
heeler behaviour decision is flexible, and they commonly do not obey fixed rules to make decisions [85]. We, therefore,
onsider the two-wheeler’s behaviour decision as an uncertainty issue with probabilistic semantics. Meanwhile, the use of
he BN method is demonstrated by its application in describing behaviour choices of other human traffic participants [86].
10
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Table 1
Variables for decision-making modelling.
Notation Definition (unit)

1VF Speed difference with the nearest interaction group in the front (m/s).
LF Longitudinal distance from the nearest interaction group in the front (m).
LS Longitudinal gap between the lead and the lag interaction groups on the left/righta (m).
GF Lateral gap with the nearest interaction group in the front (m).
GT Lateral distance between the two interaction groups in the front (m).
1VR Speed difference from the nearest interaction group behind (m/s).
GAR Lateral gap between the two interaction groups behind (m).
Tt Type of the current two-wheeler.

aNote: if the current two-wheeler is on the left side of the space, GS means the longitudinal gap between
the lead and the lag interaction groups on the right. If the current two-wheeler is on the right side of
the space, GS means the longitudinal gap between the lead and lag interaction groups on the left.

Therefore, we use a BN method to model the decision-making process of two-wheelers. Besides, to the author’s knowledge,
this paper also develops for the first time the use of the BN model to represent two-wheeler operational behaviour. More
specifically, a static BN is utilized here.

In Section 5.2.2, we would further discuss the modelling steps and results of the BN model after we introduce the
dataset utilized in this study.

(2) Intermediate destination choice for behaviour execution
To execute the selected behaviour, we should first determine the intermediate destination for each alternative

behaviour. For this purpose, we filter the dominant interactive object from the current multiple interactive road users to
capture the intermediate destination. In this paper, the interactive road user with the highest influence intensity would be
regarded as the dominant interactive object for intermediate destination choice. The dominant interactive object expresses
the most urgent interaction that needs to be dealt with. A defined concept ‘‘influence intensity’’ is proposed to capture
the dominant interactive object here. For the calculation of the influence intensity, the speed and position relationship are
the primarily considered attributes. Meanwhile, the type of interactive road user is also considered. Speed and position
relationships indicate whether the corresponding road user has influences on the two-wheeler’s behaviour. From Tao
et al. [87]’s work it can be seen that the farther the distance from the current road user to another individual, the smaller
the influence brought by the individual on the current road user, and vice versa. Meanwhile, the speed of other individuals
is often significant, which commonly shows proportional to their impact on the current road user [82]. However, it is
worth noting that when the road user locates behind the current object, it is best to consider their speed difference [88]
because this index can represent whether the road user is approaching. Furthermore, the type of road user decides to
some extent the importance that the two-wheeler attaches to it, and can also represent the influence of different road
users in mixed traffic. For example, keeping the same speed and distance, the two-wheeler generally pays more attention
to the impact of a motor vehicle, rather than a bicycle. Hence, the influence intensity of a road user m is calculated by
the following formula:

Em =

{
vm · Sm/Dm, if xn < xm

(vm − vn) · Sm/Dm, if xn ≥ xm
(5)

where Em denotes the influence of the interactive road user m; Sm and Dm are the type of m and the distance to the current
wo-wheeler n, respectively; vn and vm represent the speed of n and m, respectively; and xn and xm are the longitudinal
positions of n and m, respectively. In Eq. (5), xn < xm means the road user m is ahead of the two-wheeler n, while xn ≥

xm means m is to the rear of or next to the two-wheeler n. Herein, the values of Sm in the simulation are 1.2, 1.6, 3.6 for
the bicycle (including e-bikes), electric moped, and motorized vehicles, respectively, which is determined by each type of
the road user’s cross-sectional area that can reflect the human first-time judgment on the impact the road user can exert
on he/she.

After that, the intermediate destination can be determined based on the selected behaviour and the dominant
interactive object at each time step. Since the decision-making model selects a suitable behaviour from three alternative
behaviours, i.e. freely moving, following, and overtaking, each kind of behaviour is also designed to correspond to a specific
intermediate destination. As presented in Fig. 7, the intermediate destination is set up as follows: (1) the intermediate
destination of the freely moving behaviour is put on the two-wheeler’s final destination; (2) the intermediate destination
of the following behaviour is set at the tail of the dominant interactive object; (3) the intermediate destination of the
overtaking behaviour is located alongside the head of the dominant interactive object with a fixed distance wn, which
consists of the width of the overtaking object and an additional shy-away distance of 0.5 m [89]. Note that, the overtaking
behaviour can be executed from both the right- and left-hand sides. As such, the specific position of the intermediate

destination would also be determined by which side has more overtaking space in this model.

11
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Fig. 7. Schematic of intermediate destinations of different selected behaviours.

Fig. 8. Schematic of intermediate destinations of different selected behaviours.

4.3. Modelling the operational physical process

After selecting the intermediate destinations and behaviour at the current time, the behaviour path would be built
up from the current position to the intermediate destination to achieve the two-dimensional movement in this physical
process. The path would be specifically executed by the control dynamics of two-wheelers in the form of acceleration and
moving direction.

In this section, we develop a behaviour force model to capture the continuous movements of two-wheelers by
considering the behaviour choice and the state of multi-interactions. Of this model, the original social force model
(SFM) [90] is selected as the foundation to represent the two-wheeler’s operational physical process. This is due to the
nature of the SFM can help to depict continuous movements of agents and avoid physical contact with other road users,
which would also provide the ability to consider multi-interactions during the physical activities. Herein, the original
SFM controls the dynamics of agents by the driving force and repulsive forces exerted by final destinations and other
road users, respectively (Fig. 8(a)).

However, the implementations of social force-based models often require additional elements to consider the impact of
behaviour decisions on the simulated object’s movements. Therefore, in this paper, the behaviour force model introduces
the behaviour force fB into the original SFM to realize the dynamics control of the two-wheeler under the guidance of
the decision-making results, as shown in Fig. 8(b). Because the freely moving behaviour captures the trend of moving
towards the final destination, we can hence use the driving force to describe the freely moving behaviour and the driving
force model can also be regarded as one of the force models for alternative behaviours. Therefore, the resultant force for
this behaviour force model can be presented as follows:

dvn

dt
=

∑
f nm +

∑
f nu + f B + f D + ξ (6)
m(m̸=n) u

12
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here fnm denotes the repulsive force exerted by a road user m; fnu represents the repulsive force of an obstacle u for
he current two-wheeler n; fD denotes the driving force. When the two-wheeler selects the freely moving behaviour, fD
ould exist as the behaviour force fB of the freely moving behaviour and guides the two-wheeler move towards the final
estination; ξ is the stochastic component. Herein, fnm, fnu, as well as fD are identical to the original SFM.
In the behaviour force model, the behaviour decision result would be exerted at each time step by calculating the

orresponding behaviour force fB. The direction of a specific behaviour force directs to the corresponding intermediate
estination of the current path. The dynamics control is achieved by iterating the resultant force of the behaviour force
nd repulsive forces exerted by others. Herein, the behaviour force fB brings the change of the speed by acceleration and
lso the adjustment of the moving direction, while the repulsive force fnm ensures no collision will happen. Finally, the
ehaviour force fB, as well as repulsive forces fnm exerted by interaction road users would jointly determine the state
pdate of each simulation two-wheeler at every time step. Herein, because the traffic marking between the bicycle lane
nd the adjacent vehicle lane would not strictly limit the two-wheeler’s movement to the vehicle lane, the force of the
raffic marking would be regarded as a repulsive force exerted by a virtual object (the same type as a two-wheeler) in
he simulation [64].

Herein, one behaviour corresponds to a specific force model to calculate the related force. As mentioned above, three
lternative behaviours are involved in this study, i.e. freely moving, following, and overtaking. If an alternative behaviour
s selected on the operational mental process, the corresponding behaviour force model would be utilized to specialize
he behaviour force. The given force models of these three alternatives are listed as follows.

(1) Freely moving force model
The force fB(t) for the freely moving behaviour at time t is provided by the forward driving force model referred to

he original SFM, which is presented as follows:

f B(t) =
vded − vn

τd
,where ed(t) =

rdn − rn⏐⏐rdn − rn
⏐⏐ (7)

where vd is the desired speed, and τd denotes the relaxation time; ed(t) represents the desired direction; rdn denotes
he intermediate destination and rn represents the momentary position of the current simulation two-wheeler. For
the subsequent formulas of other behaviour forces, the calculation of ed(t) is consistent, pointing to the corresponding
ntermediate destination.

(2) Following force model
Since the effectiveness of simulating the following behaviour of two-wheelers has been proved [91], the Intelligent

river Model (IDM) developed by Treiber et al. [92] is used to represent the force fB(t) at time t for the following behaviour,
hich is calculated as follows:

f B(t) = am · (1 − (
vn

vd
)δe − (

Sd
∆S

)2) · ed(t) (8a)

Sd = s0 + s1 ·

√
vn

vd
+ Td · vn +

vn · ∆v

2
√
am · bf

(8b)

here am is the maximum acceleration of the simulation two-wheeler; Sd is the desired minimum spacing; ∆S is the
pacing from the front edge of the follower to the rear end of the leader; s0, s1 are the jam distance; Td is the desired
time headway; ∆v is the velocity difference to the leader; δe is the acceleration index; bf is the comfortable deceleration.

(3) Overtaking force model
In this study, the overtaking behaviour force is calculated based on Ni’s work [41] that decouples the force in the

lateral and longitudinal directions. The longitudinal component acceleration f xB and the lateral component acceleration f yB
s obtained by the following Eq. (9a) and (9b), respectively.

f xB(t) = (−0.12 · ∆s + 0.72) · ex (9a)

f yB(t) =
yd
2

·
π

(to)2
· cos(

to − t ′

to
· π ) · ey (9b)

here ∆s is the longitudinal distance from the current two-wheeler to the overtaken object; yd is the desired lateral offset
it is determined by the position of the intermediate destination) for the overtaking behaviour; to, t ′ are the duration time
nd start time of the lateral offset, respectively.
Last but not the least, the implementers of the repulsive force fnm in this layer would only include the multiple

nteractive road users that are captured by the CZ model (Fig. 8(b)). This can help us represent the multi-interaction on the
perational physical level. Besides, the anisotropic interaction feature [93] would be considered based on the different
alibration results of fnm for different types of road users. Furthermore, the desired speed, maximum acceleration, and
aximum turning angle would also have corresponding constraints that are determined based on the empirical dataset

o reflect different two-wheelers’ power performance in the operational physical layer.
13
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Fig. 9. Layout of the surveyed site and obtained two-wheeler trajectories.
Source: photo source [94]

5. Calibration and validation

This section presents the calibration and validation of the proposed components in the simulation framework. First,
the dataset used in this study is introduced in Section 5.1. Then, we calibrate the parameters of the CZ model and estimate
the BN model for behaviour decision-making in Sections 5.2.1 and 5.2.2, respectively, followed by the calibration of the
parameters involved in the behaviour force model in Section 5.2.3. Finally, a face validation will be given to prove the
model performance in Section 5.3.

5.1. Site and dataset description

The trajectory dataset used in this study was collected on a 110 m × 9.8 m mixed-traffic segment in urban road in
Shanghai, China (Fig. 9). The site is a shared road segment where motorized vehicles and two-wheelers (mainly consist
of e-mopeds riders, e-bike riders and cyclists) use the same road space. The speed limitation of motorized vehicles is 50
km/h, while no limitation for two-wheelers. Meanwhile, it is 40 m away from intersections, which can reduce the influence
of the traffic signal. During the investigation, the flow of the two-wheeler traffic is around 700–900 road user/h, while
that of the motorized vehicle traffic is around 400–500 veh/h. Besides, the widths of bike lane and adjacent vehicle lane
are 2.8 m and 3.5 m, respectively. At the place that is 10 m away from the beginning of the survey area, there is a lane
divider (i.e. curbstone) exists, which completely separates the bicycle lane and the adjacent vehicle lane. Subsequently,
the curbstone is replaced by a traffic marking, which makes it possible for two-wheelers to enter the adjacent vehicle lane.
Furthermore, because the curbstone is far enough from the survey area, it also ensures that interactions would not be
influenced by the curbstone. In this surveyed site, the two-wheeler moves freely and frequently interact with surrounding
road users, and the movement of road users has no obvious priority. Hence, trajectories of two-wheelers are of significant
variation. As can be seen in Fig. 9, a lot of trajectories cover on the adjacent vehicle lane. Such a phenomenon happens
all the way from the beginning to the end of the survey area. Trajectories finally locate at both the bicycle lane and the
adjacent vehicle lane, and show a leftward trend. Based on our survey, one of the reasons is that several two-wheelers
enter the adjacent vehicle lane to overtake the front road users. Meanwhile, some of them would not come back to the
bicycle lane until they leave the surveyed site. Furthermore, a number of two-wheelers ride inside the vehicle lane since
they enter the surveyed site. These truths would make trajectories distribute leftward. Several studies have reported such
a phenomenon [8,17] and this is very common in such a mixed-traffic road segment in China.

The trajectory dataset was extracted from video recordings using a high-accuracy video processing assistant software
developed by Suzuki and Nakamura [95], which has been widely used in previous studies [8,26,41,53]. Video cameras
were mounted on a nearby tall building to record the movements of two-wheelers and other road users at the surveyed
site. The video recorded traffic during the rush hour (from around 4:00 p.m. to 5:00 p.m.) on April 20, 2017. The weather
during the investigation period was fine. Furthermore, the resolution of the video is 1080p. Herein, the spatial resolution
is 1920 × 1080. Besides, the trajectories were extracted at a time resolution of 0.12 s. The near-end and far-end resolution
of the video is 0.065 and 0.125 m/pixel, respectively.

Finally, 1,256 two-wheeler’s trajectories (1,050 for e-mopeds and e-bikes, and 206 for bicycles) and 548 interactive

motorized vehicle trajectories were obtained. Note that, a few e-bikes were observed in this area. Because the number is
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Table 2
Descriptive statistics of major characteristics parameters of interaction behaviours.

Speed (m/s) Following behaviour
(following headway (s))

Overtaking behaviour
(overtaking lateral clearance)

Mean S. D. 15%
quantile

85%
quantile

Mean S. D. 15%
quantile

85%
quantile

Mean S. D. 15%
quantile

85%
quantile

Bicycles 4.5220 1.4567 3.0713 6.0887 1.6229 0.6044 1.0223 2.2058 0.2773 0.1089 0.1517 0.3886
E-bikes
/e-mopeds

7.2010 1.8797 5.4672 9.0751 1.1002 0.4192 0.6755 1.4549 0.1942 0.0721 0.1237 0.2671

not too many, we would treat these e-bikes as e-mopeds for the first step towards extensive model calibration. Besides,
the extracted trajectories contain 29,591 frames of trajectories with an interval of 0.12 s. Parameters for each frame of
trajectories include coordinates, speed, acceleration, etc.

We further extract the two-wheeler’s behaviour periods from the trajectory dataset. As already mentioned, three
ypical behaviours of two-wheelers are included in this study, i.e. freely moving, following, and overtaking. A rule-based
ilter is applied in this study to collect the trajectories of each behaviours. For the following behaviour, flitting rules are
n line with the criterion in Hoogendoorn and Daamen [89]. Besides, overtaking interactions are found preliminarily by
lotting space–time diagrams to find where the trajectories crossed, and then rules in Mohammed et al. [24] are utilized
o identify whether these potential periods are exactly overtaking periods. Last but not the least, frames not considered
s following or overtaking interactions by the filter are recognized as the freely moving behaviour. This is also because no
ther behaviours are obviously found in our surveyed site. Finally, each frame of trajectories is labelled as freely moving’’,
‘following’’, or ‘‘overtaking’’ to indicate the two-wheeler’s behaviour. Herein, 407 following periods and 170 overtaking
eriods are collected. Table 2 gives the descriptive statistics of the typical behavioural characteristics parameters of each
nteraction behaviours of two-wheelers, as well as that of the speed of different types of two-wheelers. Headway for
he following behaviour and the overtaking lateral clearance are involved in Table 2, which can characterize the main
eatures of these two behaviour. Herein, the above overtaking lateral clearance is defined in this paper as the quotient of
he overtaking lateral distance to the two-wheeler’s desired speed. Because the definition of the above term is related to
he desired speed, therefore, it is also a psychological variable that reflects the two-wheeler’s expectation of spacing in
he lateral direction while overtaking. More specifically, two-wheelers often expect to overtake the front road user in a
afe condition (no collision), therefore, they may allow ample (even redundant) lateral spacing. Since the desired speed
escribes the possible speed the two-wheeler can reach and the lateral distance is always speed-related, the definition of
he overtaking lateral clearance using the desired speed ensures a sufficient distance while interacting. At this moment,
wo-wheelers usually pursue their desired speed to make sure to overtake smoothly [96]. In this study, the desired speed
f each two-wheeler is defined as the 85th quantile of its own speed distribution. Please note, such a setting of the desired
peed is feasible in the free flow condition, adjustment may be needed for the high-density condition.

.2. Model calibration

.2.1. Calibration approach of the CZ model
In this section, several coefficients of the CZ model need to be calibrated first. Herein, a generic procedure for calibration

eeds to be provided first. We provide the calibration procedure of the CZ model in this study, and the specific operation
n each step is also discussed. The procedure is presented as follows:

Step 1 Define characteristic indicators of interactions that can represent the need for riding space of two-wheelers
ased on applied scenarios.
Step 2 Extract values of selected parameters and modelling variables from the dataset.
Step 3: Obtain model coefficients using mathematical methods and check goodness of fit.
Step 4: Face verify through numerical examples under different context, and optimize parameters.
Note that, Step 1 is the manifestation for considering interaction characteristics of two-wheelers in specific application

scenarios. This is because the comfort zone of the two-wheeler essentially describes features of interactions with others. It
represents the riding space that the two-wheeler tries to keep if he/she wants to feel comfortable while riding. Therefore,
choosing suitable indicators of interactions in a specific scenario to characterize the comfort zone of two-wheelers is
reasonable.

In the application of the CZ model in this study, we first select that the headway of the following behaviour and
the lateral clearance of the overtaking behaviour are surrogate measures for a and b. As mentioned above, the above
overtaking lateral clearance is the quotient of the overtaking lateral distance to the two-wheeler’s desired speed. This
approximation allows the interaction features and the comfort zone of two-wheelers to be expressed reasonably. This is
because the following headway represents the acceptable distance in time from the front road user that two-wheelers
try to maintain [89]. Meanwhile, the overtaking lateral clearance depicts the lateral headway needed for two-wheelers to
keep safe while executing an overtaking manoeuver [8]. Furthermore, these above selected measurable parameters are
also reported in previous methods used to quantify the comfort/safety boundary of a road user [97,98]. However, they have
15
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Fig. 10. Relationship between speed v, density k, and two related interactive feature parameters.

Table 3
Calibration results of coefficients of variables in the CZ model.
Formula Coefficient Variable Value P value Goodness of fit

fa(k, v, St , Cd)

α1 v 5.4190 0.0079* SSE = 3224
α2 k −0.3064 0.0377** R2

= 0.4145
β1 v 0.2914 0.0218** RMSE = 0.3929
β2 k −1.0000 – F-value = 414.5
δ1 – −2.0870 –

fb(k, v, St )

α3 v 4.3510 0.0052* SSE = 0.4698
α4 k −0.0038 0.0438** R2

= 0.4541
β3 v 1.9300 0.0191** RMSE = 0.0556
β4 k −1.0000 – F-value = 77.3
δ2 – 0.1027 –

Note: (1) According to the calibrated results, the parameter St for the two-wheeler’s type is set as 2.5 for e-mopeds
(including e-bikes) and 3.1 for bicycles; (2) Significance codes: < 0.01∗ and 0.05∗∗; (3) Values of β2 and β4 are assigned
due to the final model form.

not modelled for two-wheelers and have also not considered relationships between interactive feature parameters and
other environmental attributes. We attempt to serve as a bridge between the two-wheeler’s comfort zone and potential
influencing attributes that can represent the traffic context.

Secondly, we extract the values for the corresponding variables from the trajectory dataset, i.e. speed v, density k,
ollowing headway, and overtaking lateral clearance. Fig. 10 visualizes the scatter diagram to describe the relationships
etween v, k, and other above two interactive feature parameters. It can be seen that a linear combination of speed v and

density k in observations is inversely proportional to both the following headway and overtaking lateral clearance. It shows
that the order of nature in the empirical data is consistent with our model assumptions and corresponding underpinning
in literature [77,80]. Meanwhile, the performances of interactive features of different types of two-wheelers are also
inconsistent, especially of their following headway (no obvious differences between these different types of two-wheelers
because bicycles seldom execute overtaking while our observation).

Thirdly, the model coefficients needs to be determined and checked. In this study, we use the Fitting Toolbox in
MATLAB

®
by the curve-fitting method to achieve the aim. The regression results are listed in Table 3. We used the F-test

to verify whether the regression results could be confirmed. The F-value shows that the regression results are significant,
as visualized in Table 3. Therefore, the calibrated results can be considered to explain the relationships between model
variables. It also indicates the model is capable of representing the two-wheeler’s interactive features.

Finally, we qualitatively measure the effect by intuitively visualizing several numerical examples with different traffic
context. In Fig. 11(a), when the traffic density is fixed, the current two-wheeler (herein, the object is an e-moped) focuses
on road users with larger temporal distances as its speed decreases. Fig. 11(b) visualizes another scenario in which the
traffic density increases but the two-wheeler’s speed does not change. When the density is higher, the two-wheeler’s
comfort zone becomes smaller and the two-wheeler will be more concerned about interactions with temporally closer
road users. The findings of previous study [99] confirm that road users pay more attention to others at smaller temporal
distances when their speeds are faster and the traffic density is lower because these objects pose a greater threat to safe
movement, which is consistent with the performance of the CZ model. As such, we can consider the calibration results of
the CZ model is reasonable.
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Fig. 11. Schematic diagrams of the variation of the comfort zone in different scenarios.

Table 4
Results of the decision-making model (SBN) for training and testing datasets.
Dataset Observed Predicted

Freely moving Following Overtaking Correct prediction (%)

Training

Freely moving 10,957 34 161 98.25%
Following 77 469 13 83.90%
Overtaking 458 61 2,566 83.18%
Overall percentage (%) 94.57%

Testing

Freely moving 10,946 30 179 98.13%
Following 79 467 9 84.14%
Overtaking 422 81 2,582 83.70%
Overall percentage (%) 94.59%

5.2.2. Estimation of the decision-making model
The proposed BN-based behaviour decision-making model is calibrated and validated based on the trajectory dataset

entioned in Section 4.1. Three steps are required to construct a SBN model: attribute selection, structure learning, and
arameter estimation [100].
Attributes in SBN consist of two parts: the hidden state and the observations in the graph. The hidden state stands for

he estimation results, i.e., the two-wheeler’s decision results in this study, represented as a single random attribute. Each
bservation, i.e., model variables (as shown in Table 1) that have influences on the two-wheeler’s behaviour decisions,
orresponds to a unique node in the graph and stores the joint probability distribution of this node for all its direct parent
odes. Values of these attributes are obtained from the trajectory dataset mentioned above. As mentioned in Section 5, a
otal of 29.591 frames of trajectories are contained in the dataset, and each of them has the corresponding behaviour label.
ere, we utilized all of them to train and test the decision model. Besides, to guarantee the data requirements for SBN
earning, we further use the zero-mean normalization method to eliminate the dimensional differences between variables.
eanwhile, the equal depth method is also adopted to discretize the original continuous values [101]. Meanwhile, we also
eed to consider that pieces of different behaviours should be evenly distributed in the training and testing dataset. Finally,
he dataset was then divided into training and testing datasets in a ratio of approximately 1:1.

As for the further two steps required to build a SBN, we adopt the K2 algorithm presented by Cooper and Her-
kovits [102] to determine the structure and utilize the expectation–maximization (EM) algorithm based on maximum
17
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Fig. 12. The BN model structure.

Table 5
Variables calibration of force-related models.
Type of parameter Parameter Value Description Corresponding

Model

Measurable
parameters vd

9.08 Mean value of e-bikes/e-mopeds’ desired speed (m/s) -6.09 Mean value of bicycles’ desired speed (m/s)

Calibrated
parameters

Arb
mn 0.42 Repulsive force of bicycles

Repulsive
force model

Brb
mn 6.43

Amb
mn 0.76 Repulsive force of e-bikes/e-mopeds

Bmb
mn 7.11

Acar
mn 1.63 Repulsive force of motorized vehiclesBcar
mn 9.31

τd
5.06 Buffer time of e-bikes/e-mopeds Freely moving

force model3.41 Buffer time of bicycles

am
1.17 Maximum acceleration/deceleration of e-bikes/mopeds (m/s2)

Following
force model

0.55 Maximum acceleration/deceleration of bicycles (m/s2)

δe
4.00 Acceleration exponent of e-bikes/e-mopeds
4.00 Acceleration exponent of bicycles

bf
0.94 Comfortable deceleration of e-bikes/e-mopeds (m/s2)
0.43 Comfortable deceleration of bicycles (m/s2)

s0
1.14 Gap at standstill of e-bikes/e-mopeds (m)
0.72 Gap at standstill of bicycles (m)

Td
1.50 Desired time headway of e-bikes/e-mopeds (s)
1.96 Desired time headway of bicycles (s)

likelihood estimation [103] for parameter estimation. These works are finished through the FullBNT 1.0.4 Toolbox in
MATLAB

®
. The estimated decision-making model based on the training dataset is visualized in the following Fig. 12.

We also used the dataset to assess the accuracy of the decision-making model. The prediction results for the training
and testing datasets are shown in Table 4. Finally, the overall accuracy is 94.58%, indicating that the model can reflect
most two-wheeler real-life behaviours and can respond to context variations.

5.2.3. Calibration of the behaviour force model
The genetic algorithm (GA) is adopted to find the optimum values of parameters of the behaviour force model used in

the physical process. As a result, the calibrated parameters are given in Table 5.
Herein, the Toolbox of GA in MATLAB

®
is utilized to achieve this objective. The root mean square percentage errors

RMSPE) of the average speed is set as the objective function [104]. The population size, maximum number of generations,
nd number of stall generations of GA are set as 200, 500, and 100, respectively. If the change is less than the function
olerance, i.e. 1 × 10−6 in this study, the algorithm would stop. Besides, the calibration process is repeated 10 times
nd the set of parameters with the minimum RMSPE error are selected. Furthermore, vd is set as the 85% quantile of the
wo-wheeler’s speed distribution extracted from the trajectory dataset, which is regarded as measurable parameters.
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.3. Face validation using simulation

Based on the calibration results, simulations are implemented to validate the proposed model. Simulations are
erformed through coding in MATLAB

®
. The simulation area is a road segment, of which the size is 110 m × 9.8 m

consistent with the surveyed site mentioned in Section 4.1). Meanwhile, the interval of the simulation step is 0.12
, which is also consistent with the interval between adjacent frames of the trajectories. In this study, two types of
alidation are performed. On the one hand, the face validation [105] is utilized to prove the model effectiveness from the
erspective of individual behaviour level (Sections 5.3.1–5.3.4). On the other hand, the validation via replicated simulation
s implemented to discuss the stability and robustness of the proposed model (Section 5.3.5).

As for the simulation of the face validation, prediction results performed by the proposed model would be compared
ith the observations in the dataset. Herein, the face validation has been proven to be possible for verifying the
odel performance from a more individual behaviour level in previous studies [21,26,28,76]. The simulation utilized

he estimated models to compute the velocity and position update of simulated objects at each time step. Meanwhile,
ach simulated object would be simulated in turn until it leaves the road segment. This means that the traffic context
nformation provided for each simulated individual would always be the same as that contained by the observed
rajectories. Then, we can intuitively verify whether the model can accurately represent the realistic interaction and
ovement of each individual. The performance of simulated two-wheelers is compared with the empirical data in terms
f decision process analysis (see Section 5.3.1), overtaking interaction results (see Section 5.3.2), trajectory distribution
see Section 5.3.3), distributions of travel time, and anticipated collision time (see Section 5.3.4). Herein, the decision
rocess analysis can visualize the two-dimensional behaviour and interaction of two-wheelers on the individual level [28].
vertaking interaction results can describe the accuracy of the decision and action process while interacting [96].
rajectory distribution can overall represent the two-dimensional behaviour of two-wheelers [27]. Travel time measures
he accuracy in mobility [26] and anticipated collision time reflects the safety performance when interacting with multiple
oad users.

As for the replicated simulation, the control variable is the density of the two-wheeler flow. By varying the density
f two-wheeler flow, the flow rate and average speed can be measured at different density levels, and the fundamental
iagram can be obtained. Herein, the density is calculated by dividing the occupied area of two-wheelers by the area of
he simulated road segment, which is consistent with the previous literature [8,77]. At each density level, the simulation
ould be repeated 20 times and the length of the simulation period would be set as 3600 s. Besides, to decrease the

nfluence of the warm-up period and the initial state, the simulation data would be obtained after discarding the first
000 time steps and last 2000 time steps (i.e. 240 s). The average value of the rest time steps would be used for discussion.

.3.1. Operation mental process analysis
To verify the rationality of the proposed model in representing the operational mental and physical processes while

nteracting, we randomly choose a two-wheeler with obvious interactions as an example. We visualize its behaviour choice
esults in the simulation, along with the simulated and empirical trajectories in both lateral and longitudinal positions
ver time, as shown in Fig. 13.
Initially, the selected two-wheeler moves freely for approximately 4.5 s. Then, when approaching a slower cyclist

n front, the simulated object executes a lateral swerving movement and an overtaking interaction occurs during the
ext 5.8 s, finishing at around 10.3 s. The simulated two-wheeler then follows another traffic participant and leaves the
oad segment. From Fig. 13, we can find that the overtaking and following occasions in the simulation are close to the
bservations. Furthermore, the trajectory generated by the model has a similar locational distribution to the empirical
rajectory. During the first freely moving phase (between 0 s and 4.5 s) in Fig. 13, we can obviously see that the empirical
wo-wheeler moves rightward slightly. This is because two-wheelers commonly show a randomness feature of their
ovement by turning the handlebar. Under the freely moving condition on the two-dimensional space, such a feature
ould be more obvious and is hard to be fully captured by models. At the same time, the simulated two-wheeler would
ove forward to its destination directly based on the current behaviour decision result that is consistent with the reality.
his may be the reason for the simulated two-wheelers moving leftward but the empirical one moving rightward slightly.
t around 4.5 s, the overtaking behaviour would be triggered because the decision model on the operational mental
decision) layer accurately makes such a behaviour choice. Then, it outputs the result into the operational physical layer
o control the simulated two-wheeler to execute the selected behaviour. As shown in Fig. 13, our model successfully
aptures the moment for the overtaking interaction as well as the dynamics during the interaction. When the overtaking
nteraction ends around 10 s, the simulated two-wheeler decides to follow another front road user until it leaves the road
egment. The reason for the slightly leftward deviation of the empirical two-wheeler may still be brought by the extremely
igh degree of movement freedom of two-wheelers on the two-dimensional space. However, we can still indicate that
he proposed model can precisely capture the interaction with the decision-making process of a single two-wheeler, and
an represent the real movement progress on the whole. Furthermore, the control dynamics of the two-wheelers can also
e well characterized. Finally, we also visualize several other cases to prove the model performance, as shown in Fig. 14.
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Fig. 13. Comparison of a single two-wheeler operation process between simulation and observation.

Fig. 14. Comparison of other cases for the simulated and observed trajectories.

.3.2. Overtaking interaction results
Because overtaking is one of the most common riding interactions [24], we also face verify the model’s performance

n terms of two aspects: the overtaking prediction accuracy, and the aggregated distributions of the overtaking lateral
istance. These two indexes can help us test the performance of the proposed model from the mental and physical levels,
espectively.

We first calculate the overtaking prediction accuracy. Of the 170 overtaking interactions recorded in observations, a
otal of 156 times are captured by the proposed model in simulation. Therefore, the prediction accuracy of the overtaking
nteraction at the overall behaviour level is 91.76%, which means the model can reproduce most of the two-wheeler’s
vertaking manoeuvres. Besides, we calculate the accuracy of the decision choice at each moment during overtaking
20
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Fig. 15. Comparison of observed and predicted overtaking lateral distance interactions.

Fig. 16. Location distributions of two-wheelers’ trajectories.

interactions. A total of 6170 time step are included in overtaking interactions, while 5148 of them are predicted by
the decision model as the moment for the overtaking interaction. Hence, the prediction accuracy is around 83.44%.
Furthermore, Fig. 15 shows the cumulative distributions of the overtaking lateral distance. It can be seen that the predicted
(simulated) result is similar to the true (observed) result. These simulation results are owing to the model’s reasonable
behaviour choices on the operational mental level and the dynamics control considering decision-making results on the
operational physical level. Therefore, the model can be considered a great representation of reality.

5.3.3. Trajectory distribution
We also compare the distributions of the empirical and simulated trajectories to check whether the locations of two-

wheelers are similar on the whole. For this comparison, the whole surveyed site (110 m × 9.8 m) is divided into 0.5 m
× 0.5 m cells and the occupancy frequencies of the simulations and observations for each cell are counted. The location
distributions are presented as a heat map in Fig. 16.

It is clear from Fig. 16 that the location distributions generated by the proposed model are similar to the observations.
Meanwhile, the observed distributions of trajectories show a trend for moving on the left side of the bicycle lane, which
is well captured in the simulation. The results displayed in the two heat maps have less variance. The reason for the
small difference between observations and simulation results may because the motion of the two-wheeler on the two-
dimensional plane is highly free, and the freedom of movement in reality is certainly higher than that of the simulation.
Furthermore, we can also observe that the leftward trend of the trajectory distribution is also captured by the proposed
simulation model. It indicates that our model can represent the two-wheeler to make a behaviour decision close to the
reality, and our model can also show an accurate dynamics control of the simulated two-wheeler. When the trajectory of
the two-wheeler can be accurately reproduced in the simulation, the leftward trend of the whole trajectory distribution
would be naturally captured. Such a result is jointly realized by the cooperation of every component model in our proposed
simulation framework, and is also benefitted from our framework. First, the CZ model can capture interactions of two-
wheelers so as to provide realistic information for the next two tasks, namely, operational mental decision and operational
physical process. Based on that, our proposed SBN model can output a reasonable behaviour choice for the simulated
two-wheelers, which has been proven in Table 4. Finally, the behaviour force model can produce the smooth trajectory
on the two-dimensional space to represent the coupled movement in longitudinal and lateral directions.
21
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Fig. 17. Comparison of the travel time and ACT distributions.

Table 6
Descriptive statistics for travel time and ACT distributions.

Travel time (s) ACT (s)

Mean S. D. Mean S. D.

Empirical data 17.6336 5.7727 7.5765 3.0129
Proposed model 17.7526 5.6105 7.9031 3.2314

5.3.4. Travel time and anticipated collision time (ACT) performance
The travel time distribution and the ACT distribution are compared in this subsection to verify the performance of

he proposed model in terms of efficiency and safety aspects, respectively. Herein, the travel time is the most common
urrogate indicator used to evaluate efficiency in the traffic simulation. Meanwhile, the ACT is a surrogate safety indicator
or trajectory-based safety assessment and can consider the simultaneous interaction of multiple road users on the
wo-dimensional space [106], which can be calculated by the following Eq. (10):

ACT =

⎧⎨⎩
δ(
∂δ
∂t

) , if
∂δ

∂t
> 0

∞, otherwise
(10)

here δ denotes the shortest distance between two road users; ∂δ/∂t is the closing-in rate of the two-wheeler to another
nteractive object; Herein, The factors determining the closing-in rate ∂δ/∂t of two road users are their speed, acceleration,
eading angle, and yaw rate. The components of the closing-in rate can be described by operators that takes the vector
um of speed, acceleration, heading angle, and yaw rate, jointly.
Fig. 17 shows that both the travel time and ACT distributions generated by the simulation are closer to the empirical

ata. Table 6 also shows the means and standard deviations of the travel time and ACT distributions. Hence, these results
ndicate that the distributions of travel time and ACT of simulation and observations do not show noticeable differences,
nd the proposed model can well represent the two-wheeler dynamics. Furthermore, the ACT accuracy also indicates that
he proposed model has the potential to support the traffic safety assessment as a simulation tool.

.3.5. Model robustness performance
Fig. 18 shows the fundamental diagrams of two-wheelers under different density values in the replicated simulation.

rom Fig. 18 we can see that the relationship between the density and the speed, as well as the relationship between
he density and the flow rate, is similar to the empirical findings in the literature [77]. Therefore, the results can first
ndicate that the proposed model can generally reflect the basic law of nature of the two-wheeler traffic flow. At the
ame time, it can be also seen from Fig. 18 that the average speed and flow rate are distributed within an acceptable
ange at each density level. Therefore, it also shows that the model has good robustness to reproduce the two-wheeler
low characteristics, that is, stably describing the operation of two-wheeler traffic flow.
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Fig. 18. Flow rate and average speed as functions of density.

. Conclusions and outlook

Multi-interaction is one of the critical characteristics for two-wheelers on mixed-traffic road segments. Its negative
mpacts lead to influences in traffic operation and bring potential safety problems. Therefore, the description of the multi-
nteraction is crucial if microscopic simulation models are designed to reproduce the two-wheeler’s operations with high
ccuracy to satisfy the demand of traffic planning, facility designs, and traffic management. However, existing simulation
odels lack the ability to handle and describe the multi-interaction, no matter in terms of operational mental or physical
ctivities while moving. More attempts should be made to reach the goal of high accuracy representing of two-wheeler
perations.
In this paper, we first define the tasks that are contained by the multi-interaction on the operational behaviour level,

nd correspondingly put forward a simulation framework that supports representing the two-wheeler multi-interaction
n simulation. The framework is designed as a three-layer structure to capture the inner tasks of the multi-interaction in
erms of operational (mental) perception, operational (mental) decision, and operational physical processes. At the same
ime, we also develop corresponding components in each layer of the framework to specifically model the framework.
erein, the ‘‘Comfort Zone’’ model is developed to capture multiple interactive road users. The dynamic variation of
he interaction is captured by the size-variable comfort zone defined for each two-wheeler. Besides, the BN model
s specifically applied for the first time to describe the two-wheeler’s decision-making behaviour considering multi-
nteractions. Furthermore, a behaviour force model is developed to represent the non-lane based movement that is guided
y the behaviour decision results and current interaction states.
Using the trajectory dataset collected on a mixed-traffic road segment in Shanghai, China, proposed models are

stimated and face validated. The simulation results indicate that the two-wheeler’s operations and interactions can both
e accurately replicated. For instance, compared with the empirical data, 91.76% of the overtaking behaviours within the
ield-measured results can be reproduced in simulations, while trajectories, travel time, and ACT distributions also show no
ignificant difference with the reality. Overall, the proposed framework addresses the current shortcomings in modelling
he two-wheeler’s multi-interactions. It can also provide a foundation for microscopic simulation tools to evaluate traffic
fficiency, make safety assessments, and design infrastructure for mixed-traffic flows. The developed framework and
he models of tasks of two-wheeler multi-interactions in simulation is the major contribution of this study, which can
otentially enable the accurate performance of future simulation tools.
This study also has some room for improvement. First, it is still necessary to make step-by-step developments, which

ay be achieved by including more attributes in the CZ model, such as weather conditions, types of facilities, and human
actors such as age or gender. The improvement process could be accelerated by collecting more empirical evidence and
onducting virtual experiments. Furthermore, more data would also be collected to validate the developed model. The
ypothesis of the elliptical shape still needs to be further proven and the calibration method also needs to be improved,
specially calibrating the model at not only longitudinal and lateral directions but also other oblique directions. In
ddition to improvements aimed at higher accuracy, another research direction is the adjustment of the decision model to
onsider the effect of interactive road users’ motion trends, because the two-wheeler’s anticipation of interactive objects’
ovement may affect its behavioural decisions. Furthermore, the applicability of the framework could be verified by
xtending it to more scenarios such as some spaces shared with pedestrians, mixed-traffic scenarios with high density,
nd even for scenarios with different flow directions. Besides, the discussions of the using experience of the SBN model
23
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nd how the SFM presents the two-wheeler movement features are also worth to be further pushed forward. We aim
o collect more pieces of evidence and verify our observations through controlled experiments to achieve these potential
orks. The present study paves the way for this future research.
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