
 
 

Delft University of Technology

Bayesian decision theory
A simple toy problem
Van Erp, H. R N; Linger, R. O.; Van Gelder, P. H A J M

DOI
10.1063/1.4959058
Publication date
2016
Document Version
Final published version
Published in
Proceedings of Bayesian Inference and Maximum Entropy Methods in Science and Engineering: 35th
International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering,
MaxEnt 2015

Citation (APA)
Van Erp, H. R. N., Linger, R. O., & Van Gelder, P. H. A. J. M. (2016). Bayesian decision theory: A simple toy
problem. In Proceedings of Bayesian Inference and Maximum Entropy Methods in Science and
Engineering: 35th International Workshop on Bayesian Inference and Maximum Entropy Methods in
Science and Engineering, MaxEnt 2015 (Vol. 1757). Article 050002 American Institute of Physics.
https://doi.org/10.1063/1.4959058
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1063/1.4959058
https://doi.org/10.1063/1.4959058


Bayesian decision theory: A simple toy problem

H. R. N. van Erp, , R. O. Linger, and P. H. A. J. M. van Gelder

Citation: AIP Conference Proceedings 1757, 050002 (2016); doi: 10.1063/1.4959058
View online: http://dx.doi.org/10.1063/1.4959058
View Table of Contents: http://aip.scitation.org/toc/apc/1757/1
Published by the American Institute of Physics

http://aip.scitation.org/author/van+Erp%2C+H+R+N
http://aip.scitation.org/author/Linger%2C+R+O
http://aip.scitation.org/author/van+Gelder%2C+P+H+A+J+M
/loi/apc
http://dx.doi.org/10.1063/1.4959058
http://aip.scitation.org/toc/apc/1757/1
http://aip.scitation.org/publisher/


Bayesian Decision Theory: A Simple Toy Problem

H.R.N. van Erp1,a), R.O. Linger1 and P.H.A.J.M. van Gelder1,2

1Safety and Security Science Group, TU Delft, The Netherlands.
2Director of the TU Delft Safety and Security Institute.

a)Corresponding author: h.r.n.vanerp@tudelft.nl

Abstract. We give here a comparison of the expected outcome theory, the expected utility theory, and the Bayesian decision theory,
by way of a simple numerical toy problem in which we look at the investment willingness to avert a high impact low probability
event. It will be found that for this toy problem the modeled investment willingness under the Bayesian decision theory is minimally
three times higher compared to the investment willingness under either the expected outcome or the expected utility theories, where
it is noted that the estimates of the latter two theories seem to be unrealistically low.

INTRODUCTION

The Bayesian decision theory is very simple in structure. Its algorithmic steps are the following:

1. Use the product and sum rules of Bayesian probability theory to construct outcome probability distributions.
2. If our outcomes are monetary in nature, then by way of the Bernoulli utility function we may map utilities to

the monetary outcomes of our outcome probability distributions.
3. Maximize a scalar multiple of the sum of lower bound, expectation value, and upper bound of the resulting

utility probability distributions.

We will give in this paper a comparison of the expected outcome theory, the expected utility theory, and the
Bayesian decision theory, by way of a simple toy-problem in which we look at the investment willingness to avert a
high impact low probability event.

A SIMPLE SCENARIO

We now apply our Bayesian framework to a scenario in which a decision maker must decide on how it is willing to
invest in a further improvement of its flood defenses. The two decisions under consideration in our simple scenario
are

D1 = keep status quo,
D2 = improve flood defenses.

The possible outcomes in our risk scenario remain the same under either decision, and as such are not dependent upon
the particular decision taken. These outcomes for a given year are

O1 = flooding,
O2 = no flooding.

The hypothetical damages associated with these outcomes are, respectively,

C1 = x euros,
C2 = 0 euro, (1)
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and the investment costs associated with the additional flood defenses are expressed by the parameter

I = investment costs. (2)

Note that if we were to do an actual cost-benefit analysis, rather than a demonstration of the here proposed decision
theoretical framework, then the cost of money itself, in the form of a potential loss of interest on the investment I and
the outcomes Ci, should also be taken into account.

The decision whether to improve the flood defenses or not is of influence on the probabilities of the respective
outcomes. Under the decision to make no additional investments in flood defenses and keep the status quo, D1, the
probabilities of the outcomes will be, say,

P(O1|D1) = θ,

P(O2|D1) = 1 − θ. (3)

Under the decision to improve the flood defenses, D2, the probabilities of the flood outcomes will be decreased,
leaving us with hypothetical outcome probabilities, say,

P(O1|D2) = φ,

P(O2|D2) = 1 − φ, (4)

where φ < θ; that is, the proposed flood defenses will reduce the chances of a flooding by a factor c = θ/φ, where
c > 1.

In what follows we will give the solution of this problem of choice by way of the expected outcome theory, the
Bayesian decision theory without utility transformations, expected utility theory, and the Bayesian decision theory
with utility transformations.

THE EXPECTED OUTCOME SOLUTION

The notion of ‘expectation of profit’ was very intuitive to the first workers in probability theory. It seemed obvious
to many that a person acting in pure self-interest should always behave so as to maximize his expected profit. The
prosperous merchants in 17th century Amsterdam bought and sold mathematical expectations as if they were tangible
goods [1].

We may combine (1), (2), (3), and (4) to construct the outcome probability distributions under the decisions D1
and D2:

p(Ci|D1) =

θ, C1 = −x,
1 − θ, C2 = 0,

(5)

and

p(Ci| I,D2) =

φ, C1 = −x − I,
1 − φ, C2 = −I,

(6)

where we explicitly conditionalize on the investment parameter I, which is to be to estimated.
The expected outcomes of these probability distributions are, respectively [2],

E(C|D1) = −θ x (7)

and
E(C| I,D2) = −φ x − I. (8)

The decision theoretical equality
E(C|D1) = E(C| I,D2) (9)

represents the equilibrium situation, where we will be undecided between the decision to keep the status quo D1 and
the decision to invest in additional flood defenses. Now, if we solve for the unknown I in (9), by way of (7) and (8):

I = (θ − φ) x, (10)

then we find that investment where we will be undecided between both decisions.
Stated differently, any investment smaller than (10) will turn (9) into an inequality, where D2 becomes more

attractive than D1. If we assume that we are only motivated by monetary costs, then the equilibrium investment (10)
is the maximal investment we will be willing to make to improve our flood defenses.
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THE BAYESIAN DECISION THEORY SOLUTION WITHOUT UTILITY
TRANSFORMATIONS

In the Bayesian decision theory the mean of the lower confidence bound, expectation value, and upper confidence
bound is taken as the position measure of the underlying outcome probability distribution which is to be maximized
[3]:

R(Di) =
LB(C|Di) + E(C|Di) + UB(C|Di)

3
, (11)

where the k-sigma lower confidence bound is corrected for undershoot of the worst possible outcome a = min (Ci),
giving

LB(C|Di) =

a, E(C|Di) − k std(C|Di) < a,
E(C|Di) − k std(C|Di) , E(C|Di) − k std(C|Di) ≥ a,

(12)

and the k-sigma upper confidence bound is corrected for overshoot of the best possible outcome b = max (Ci), giving

UB(C|Di) =

E(C|Di) + k std(C|Di) , E(C|Di) + k std(C|Di) ≤ b,
b, E(C|Di) + k std(C|Di) > b.

(13)

Substituting (12) and (13) into (11), we obtain the k-sigma risk index:

R(Di) =


E(C|Di) , neither undershoot nor overshoot,
a+2E( C|Di)+k std( C|Di)

3 , undershoot and no overshoot,
2E( C|Di)−k std( C|Di)+b

3 , overshoot and no undershoot,
a+E( C|Di)+b

3 , both undershoot and overshoot,

(14)

we note that the first row of (14) corresponds with the expected outcome theory criterion of choice [1].
In the toy problem under consideration we have a high impact low probability scenario; that is, both large mone-

tary costs and small probabilities for the high-impact event, or, equivalently, x >> 0 and θ, φ << 0.5. Stated differently,
the outcome probability distributions (5) and (6) under consideration will both be highly skewed to the left and, as a
consequence, will lead to the third condition in (14): “(upper confidence bound) overshoot and no (lower confidence
bound) undershoot.”

It follows that the operating criterion of choice will be (14)

R(Di) =
2E(C|Di) − k std(C|Di) + b

3
. (15)

The best possible outcome under decision D1 is (5)

b = max (−x, 0) = 0, (16)

and the standard deviation of (5) is [2]
std(C|D1) =

√
θ (1 − θ)x. (17)

So using (7), (15), (16), and (17), the risk index under the decision to keep the status quo is:

R(D1) = −
x
(
2θ + k

√
θ (1 − θ)

)
3

. (18)

The best possible outcome under decision D2 is (6)

b = max (−x − I,−I) = −I, (19)

and the standard deviation of (6) is [2]
std(C| I,D2)=

√
φ (1 − φ)x. (20)
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So using (8), (15), (19), and (20), the risk index under the decision invest in additional flood defenses is

R(I,D2) = −
x
(
2φ + k

√
φ (1 − φ)

)
3

− I. (21)

The decision theoretical equality
R(D1) = R(I,D2) (22)

represents the equilibrium situation, where we will be undecided between the decision to keep the status quo D1 and
the decision to invest in additional flood defenses. Now, if we solve for the unknown I in (22), by way of (18) and
(21), we get

I =
1
3

[(
2θ + k

√
θ (1 − θ)

)
−

(
2φ + k

√
φ (1 − φ)

)]
x, (23)

which is the investment where we will be undecided between both decisions.
Stated differently, any investment smaller than (23) will turn (22) into an inequality, where D2 becomes more

attractive than D1. It follows that the equilibrium investment (23) is also the maximal investment we will be willing
to make to improve our flood defenses.

THE EXPECTED UTILITY SOLUTION

The utility of a given outcome is the perceived worth of that outcome. If we take the utilities that monetary outcomes
hold for us to be an incentive for our decisions, then we may perceive money to be a stimulus.

For the rich man hundred one hundred euros is an insignificant amount of money. So, the prospect of gaining or
losing hundred euros will fail to move the rich man; that is, an increment of hundred euros for him has a utility which
tends to zero. For the poor man one hundred euros will be a significant amount of money. So, the prospect of gaining
or losing one hundred euros will most likely move the poor man to action. It follows that an increment of one hundred
euros for him has a utility significantly greater than zero.

Bernoulli in 1738 derived his utility function for the subjective value of objective monies by way of a variance
argument, in which he considered the subjective effect of a given fixed monetary increment c for two persons holding
different initial wealths. Based on this variance argument he derived the utility function of going from an initial asset
position x to the asset position x + c:

u(x, x + c) = q log
x + c

x
(24)

where q is some scaling constant greater than zero [4]. An alternative consistency argument for the derivation of
Bernoulli’s utility function may be found in [3].

In expected utility theory the expectation values of the utility probability distributions are maximized. Assuming
that the decision maker has a total wealth, that is, an actual income and asset portfolio, of

M = m euros, (25)

then, using (24), we may construct from (5) and (6) the utility probability distributions under the decisions D1 and D2
as

p(Ui|D1) =

θ, U1 = q log m−x
m ,

1 − θ, U2 = q log m
m ,

(26)

and

p(Ui| I,D2) =

φ, U1 = q log m−x−I
m ,

1 − φ, U2 = q log m−I
m .

(27)

The expected outcomes of the utility probability distributions are, respectively [2],

E(U |D1) = q
(
θ log

m − x
m

)
(28)

and
E(U | I,D2) = q

(
φ log

m − x − I
m − I

+ log
m − I

m

)
. (29)
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The decision theoretical equality
E(U |D1) = E(U | I,D2) (30)

represents the equilibrium situation, where we will be undecided between decisions D1, keep the status quo, and D2,
invest in additional flood defenses. Now, if we substitute (28) and (29) into (30), then we obtain the closed expression
for that investment value where we will be undecided between both decisions:

log
m − I

m
= θ log

m − x
m
− φ log

m − x − I
m − I

. (31)

Any investment smaller than the numerical solution of I in (31) will turn (31) into an inequality, where D2
becomes more attractive than D1. It follows that the investment equilibrium solution of (31) is also the maximal
investment we will be willing to make to improve our flood defenses.

THE BAYESIAN DECISION THEORY SOLUTION WITH UTILITY
TRANSFORMATIONS

Because of the left skewness of the utility probability distributions (26) and (27), the third condition in (14) remains
to be the operating criterion of choice in the Bayesian decision theory with utility transformations:

R(Di) =
2E(U |Di) − k std(U |Di) + b

3
. (32)

The best possible outcome under decision D1 is (26)

b = max
(
q log

m − x
m

, q log
m
m

)
= q log

m
m

= 0, (33)

and the standard deviation of (26) is [2]

std(U |D1) = −q
√
θ (1 − θ) log

m − x
m

. (34)

So from (28), (32), (33), and (34), the risk index under the decision to keep the status quo is

R(D1) =
q log m−x

m

[
2θ + k

√
θ (1 − θ)

]
3

. (35)

The best possible outcome under decision D2 is (27)

b = max
(
q log

m − x − I
m

, q log
m − I

m

)
= q log

m − I
m

, (36)

and the standard deviation of (27) is [2]:

std(U | I,D2)= −q
√
φ (1 − φ) log

m − x − I
m − I

. (37)

So from (29), (32), (36), and (37), the risk index under the decision invest in additional flood defenses is

R(I,D2) =
q log m−x−I

m−I

[
2φ + k

√
φ (1 − φ)

]
3

+ q log
m − I

m
. (38)

The decision theoretical equality
R(D1) = R(I,D2) (39)

represents the equilibrium situation, where we will be undecided between decisions D1, keep the status quo, and D2,
invest in additional flood defenses. Now, if we substitute (37) and (38) into (39), then we obtain the closed expression
for that investment value where we will be undecided between both decisions:

log
m − I

m
=

1
3

[(
2θ +

√
θ (1 − θ)

)
log

m − x
m
−

(
2φ +

√
φ (1 − φ)

)
log

m − x − I
m − I

]
. (40)
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Any investment smaller than the numerical solution of I in (40) will turn (39) into an inequality, where D2 becomes
more attractive than D1. It follows that the equilibrium investment (40) is also the maximal investment we will be
willing to make to improve our flood defenses.

Note that the “Weber-constant,” q, has fallen away in both the decision theoretical equalities (31) and (40). This
will hold in general, as both the expectation values and standard deviations of the utility probability distributions (26)
and (27) are linear in the unknown constant q. It follows that we may always set, without any loss of generality, q to
one.

SOME NUMERICAL RESULTS

In our simple toy problem we have a decision maker who must decide on how much he is willing to invest in a further
improvement of his flood defenses.

After the great Dutch flooding the ‘Oosterschelde Waterkering’ was built. This was a movable dike that allowed
for an improved safety from θ = 1/100 to φ = 1/4000, while keeping the Oosterschelde connected to the North
Sea. This open connection to the North Sea was decided upon in order to keep the salt-sea ecological system of the
Oosterschelde lake intact.

The total costs of the Oosterschelde Waterkering were about 2.5 billion euros. The bulk of these costs were due
to the movable character of this dike. Had the Dutch government decided to build an immovable dike, then the costs
would only have been about 175 million euros.

The total value of the assets at risk were about 1/20th of the GDP at the time, so that in (1),

x = 3.75 × 109 euros. (41)

The wealth of the decision maker, that is, the Dutch government, was about 40% of the Dutch GDP at the time.
Aggregated over a period of five years to account for the building time of the movable Oosterschelde dike, the relevant
wealth was

m = 1.5 × 1011 euros. (42)

Right after the great flood the probability in (3) of a (catastrophic) flood had been estimated to be

θ =
1

100
, (43)

whereas the probability in (4) of a (catastrophic) flood under the improved flood defenses had been estimated as

φ =
1

4000
. (44)

Substituting the values (41) through (44) into (10), (23), (31), and (40), we obtain the solutions for the maximal
investments I:

• Expected outcome theory:
◦ Any sigma level: I = 36.6 × 106 euros

• BDT without utility transformation:
◦ 1-sigma level: I = 129.0 × 106 euros
◦ 2-sigma level: I = 233.6 × 106 euros
◦ 3-sigma level: I = 338.2 × 106 euros

• Expected utility theory:
◦ Any sigma level: I = 37.0 × 106 euros

• BDT with utility transformation:
◦ 1-sigma level: I = 129.8 × 106 euros
◦ 2-sigma level: I = 234.9 × 106 euros
◦ 3-sigma level: I = 340.1 × 106 euros.
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We note here that after the great Dutch flood the discussion was not whether to build additional flood defenses,
but, rather, whether to choose for the expensive solution which would keep the Oosterschelde salt-sea ecosystem
intact over the ‘cheap’ solution which would not. Under the expected utility theory solution the cheap solution of
an immovable dike would have been too expensive by a factor of three, whereas under the Bayesian decision theory
solution with utility transformation the cheap solution was well within the 2-sigma bounds.

We also note that the actual project was justified under neither one of the solutions. This is because the
(in)tangible costs of losing the Oosterschelde salt-sea ecosystem and the (in)tangible benefits of human safety were
not factored explicitly into this particular decision analysis. But the very fact that the Dutch chose to invest 2.5 billion
euros in a movable Oosterschelde Waterkering, rather than opt for the cheap immovable dike solution of 175 million
euros, is an important data point which shows that these additional (in)tangibles must have played an important role
in the actual decision making process.

DISCUSSION

We give here a comparison of the expected outcome theory, the expected utility theory, and the Bayesian decision
theory, by way of a simple toy problem in which we look at the investment willingness to avert a high impact low
probability event. We have demonstrated here that the adjusted criterion of choice, in which the mean of the sum of the
undershoot corrected lower confidence bound, expectation value, and overshoot corrected upper confidence bound of
either outcome or utility probability distributions are maximized, though mathematically trivial [3, 5], has non-trivial
practical implications for the modeled investment willingness for high impact low probability events. For it is found
that under the alternative criterion of choice of the Bayesian decision theory the investment willingness for such events
may increase easily with a factor three or more.
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