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A B S T R A C T   

Focus is on comparing stochastic, process-based and deterministic methods for modelling heterogeneity in hy-
draulic properties of fluvial geothermal reservoirs. Models are considered a generalized representation of a 
fluvial sequence in the upper part of the Gassum Formation in northern Denmark. Two ensemble realizations of 
process-based and stochastic heterogeneity were simulated using the state-of-the-art numerical modelling soft-
ware, Delft Advanced Research Terra Simulator (DARTS), to assess differences on a statistically relevant sample 
size. Simulator settings were optimized to achieve two orders of magnitude improvement in simulation time. Our 
general findings show that the stochastic and process-based methods produce nearly identical results in terms of 
predicted breakthrough time and production temperature decline for high net-to-gross ratios (N/G). Simple 
homogenous and layered models overestimate breakthrough and underestimate temperature decline. More 
complex representation of facies in process-based models show smaller variance in results and stay within the 
limits of ensemble runs compared to simpler facies representation. Results indicate that a multivariate Gaussian 
based stochastic representation of heterogeneity provides comparable thermal response to a process-based model 
in fluvial systems of similar quality.   

1. Introduction 

Low-enthalpy geothermal systems are used for direct heating 
worldwide and their installed capacity has increased in recent years 
(Lund and Toth, 2020). Stefansson (2005) estimated more than 70% of 
geothermal resources are in water dominated environments with rela-
tively low temperatures, below 150 ◦C. Therefore, deep sedimentary 
basins are ideal targets for geothermal exploitation, due to naturally 
occurring aquifers. Fluvial sediments especially are known to have good 
porosity and high permeability, ideal for thermal extraction. Sedimen-
tary targets are commonly exploited using simple doublet configurations 
with production and reinjection (Gringarten, 1978; Mathiesen et al., 
2020). 

In geothermal systems, modelling accurate representations of the 
subsurface can improve the quality of simulated predictions. The need 
for considering variations in thermal parameters in regional modelling 

tasks has been highlighted by Fuchs et al. (2020); Fuchs & Balling (2016) 
and Poulsen et al., (2017) using inverse parameter calibration proced-
ures (Hill and Tiedeman, 2007). In local models and shorter timescales, 
variations in hydraulic parameters control the evolution of a geothermal 
field (Vogt et al., 2010). Therefore, heterogeneity in hydraulic proper-
ties will have the largest impact on reservoir behaviour and is most often 
included in modelling studies (Hamm and Lopez, 2012; Wang et al., 
2020; Willems et al., 2017). Techniques are available now to interpret 
seismic data, using rock physics modelling and make predictions to the 
porosity and permeability distribution in the reservoir (Bredesen et al., 
2021; Feng et al., 2020). Deep sedimentary formations, suitable for 
geothermal extraction, however, often only have very limited number of 
boreholes and poor-quality seismic lines, making it difficult to use these 
advanced techniques. Therefore, most often some form of modelling is 
used to describe hydraulic properties. 

Representing facies and hydraulic properties can be carried out 
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either with stochastic or process-based methods. Approximating reser-
voir facies using a stochastic approach has been extensively used in the 
hydrocarbon industry (e.g. Haldorsen and Damsleth, 1990; Keogh et al., 
2007). The aim of stochastic modelling is to generate statistically real-
istic realizations from limited data by honouring the available data 
points and extrapolating to the rest of the formation using statistical 
rules. A collection of such realizations represents the model uncertainty, 
here the facies and hydraulic properties. Pixel based stochastic model-
ling can be based on multivariate Gaussian statistics that are described 
by choices of a mean and a covariance model (as we will consider here) 
or multiple-point statistics, that infer statistics from a training image. 
(Goovaerts, 1997; Remy et al., 2009). In other cases object-based 
modelling, which places objects such as sandstone bodies at random, 
has been the stochastic method of choice (Keogh et al., 2007; Larue and 
Hovadik, 2006). Using process-based models to simulate fluvial depo-
sition, for a more realistic spatial distribution of facies, is another 
concept that arose early on (Bridge and Leeder, 1979). These models 
have the added advantage of relating net-to-gross (N/G) directly to the 
geometry of sandstone bodies. Early models, however, were often inapt 
due to limited knowledge of the governing sedimentary processes 
(Keogh et al., 2007). With more sophisticated codes available to accu-
rately describe fluvial processes, such as the evolution of meandering 
channels, process-based methods are gaining more relevance recently 
(Cojan et al., 2005; Crosato, 2008; Flumy, 2019; Lopez et al., 2009). 

Homogeneous and stratified reservoir models with multiple homo-
geneous layers have long been used for geothermal modelling purposes 
(Daniilidis et al., 2021, 2016; Poulsen et al., 2015; Saeid et al., 2014). In 
systems where subsurface data availability is sufficient, investigating the 
thermal response of more realistic reservoirs is gaining more attention 
(Babaei and Nick, 2019; Liu et al., 2019; Mottaghy et al., 2011; Wang 
et al., 2020; Zaal et al., 2021). 

Crooijmans et al. (2016), showed that a model with random, un-
correlated facies distribution overestimates lifetime compared to 
process-based models for N/G below 70%. Above 70% N/G the different 
methods were in good agreement, but random models showed signifi-
cantly lower variance in lifetime for a given N/G ratio. Babaei and Nick 
(2019) ran a large ensemble of models where they represented hetero-
geneity with a random Gaussian distribution and used different hori-
zontal correlation lengths to assess the impact of lateral variability. They 
showed that including heterogeneity results in lower lifetime and high 
correlation length has the same effect. Moreover, recent studies have 
shown a significant overestimation of the thermal breakthrough time 
when upscaling highly heterogeneous fluvial reservoirs (Wang et al., 
2023, 2020). 

In this study we compare the dynamic thermal response of 

representing subsurface heterogeneity via a process-based, a stochasti-
cally generated and a deterministic, layered reservoir model based on 
log data. We present a systematic comparison of different methods to 
assess temperature and pressure evolution and utilize a target dataset to 
get the closest match between geological models created. We aim to 
compare the thermal response of realizations generated by stochastic 
simulation versus the process-based approach outlined above. All sim-
ulations are compared to deterministic representations, such as a ho-
mogeneous and a layered model. The two methods give comparable 
results across several metrics under high N/G conditions and reiterate 
that simplified models overestimate the lifetime of geothermal plants. 

In the following, we introduce our dataset and the methods of 
process-based and stochastic simulation. Then we describe our model 
domain and the different scenarios used in this study and comment on 
computational efficiency. Thereafter, we present a short comparison of 
the different porosity fields and comment on the validity of our 
ensemble runs. Finally, the results of our study are discussed high-
lighting the key aspects of data analysis, which allow for conclusions to 
be drawn for similar environments. 

2. Methods 

The following section describes the methods used to carry out our 
simulations. First, we introduce background and dataset, followed by 
the process-based facies generation, then we explain the statistical 
method for populating the facies model with porosity values and 
generating our stochastic realizations; followed by a description of our 
homogeneous and layered cases to which we compare our process-based 
and stochastic simulations; and finally, we describe the process of 
geothermal simulation. Fig. 1 explains our full modelling workflow from 
the generation of geological models to geothermal simulation. 

2.1. Background and input data 

Process-based models were aimed to fit a general description of the 
upper part of the Gassum Formation in Denmark (Mathiesen et al., 2020; 
Weibel et al., 2017), where a sequence of the reservoir has been iden-
tified as mainly consisting of point bar deposits of meandering origin 
(Fig. 2, personal communication, Erik Skovbjerg Rasmussen, GEUS). 
Two boreholes are available from the Thisted area for estimation of N/G 
and porosity distribution (Fig. 2). Calculated effective porosity values of 
these boreholes were used to create the target file for statistical simu-
lations. Data taken from two different boreholes are merged together to 
give a single distribution repsenting a general description of the 
sequence. We take this dataset as the basis of our models, but we extend 

Fig. 1. Full modelling workflow for both the process-based and stochastic simulations. The geological models (both stochastic and process-based) cover a larger 
domain, from which a subset is cropped around the matching well pairs. 
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the reservoir section to 50 m thickness (see section 3.1.1) and consider 
our realizations as imitating similar conditions. Models are not aimed to 
represent the exact situation in the Gassum Formation. 

Porosity values were calculated using Gaussian methods as described 
in section 2.1.2. Porosity of the reservoir facies was then converted into 
permeability using a polynomial fit to data available from the Gassum 
Formation: 

k = 196, 449⋅(Φ)
4.3762

, (1)  

where Φ is porosity (-) and k is permeability (mD). Permeability of clays 
was set to a constant value at 0.01 mD. 

2.2. Static model spatial properties 

2.2.1. Process-based facies model 
For the process-based models, we used Flumy software (Flumy, 

2019), which simulates deposition by meandering channels based on 
three processes: channel migration, aggradation processes, and channel 
wandering due to avulsions (Bubnova, 2018). The main hypothesis is 
that a meandering river can be described by a linear relationship be-
tween flow velocity close to the riverbank and lateral channel migration. 
Computer codes using this analogy have been remarkably successful in 
describing meandering channels for decades (Ikeda et al., 1981; 
Johannesson and Parker, 1989; Sun et al., 2001). In our study, the 
process-based workflow for creating facies realizations was similar to 
one used by (Crooijmans et al., 2016) and Willems et al., (2017) with the 
difference of using a Gaussian process to convert facies numbers to 
porosity distribution (see section 2.1.3). Main controlling parameters of 
the meandering channels were channel depth and width, maximum 

overbank flood deposit thickness, avulsion frequency, flood frequency 
and a floodplain topography parameter (Willems et al., 2017). The latter 
designates the distance in meters at which the overbank deposit thick-
ness decreases according to a negative exponential distribution (Flumy, 
2019). Determination of the controlling parameters was based on a 
description of the paleo environment provided by the Geological Survey 
of Denmark and Greenland (GEUS) and boreholes available in the 
Thisted area (Fig. 2). Parameters were aimed to produce realizations 
with approximately 56% N/G and large, connected sandy facies (see 
Table 1). Flumy calculates N/G to be equal to the amount of point bar 
(PB) facies in the model. As we also categorized channel lags (CL), sand 
plugs (SP) and crevasse splays (CSI) as sands, the mean N/G value of our 
resulting realizations were 85% N/G with a standard deviation of 4%. 
Applying a 15% porosity cut-off to our target dataset, this is a reasonable 
value for this small section of the reservoir (Fig. 2). 

Flumy outputs 9 different facies in fluvial mode in each model cell 
(Bubnova, 2018; Flumy, 2019) as seen on Fig. 3. To convert facies into 

Fig. 2. Sequence correlation of the Thisted-2 and Thisted-3 boreholes and our target distribution. Target distribution is assembled from combined porosity data of 
the fluvial section above SB9 (modified from (Hjuler, 2014)). 

Table 1 
Process-based simulation parameters.  

Channel width 300 m 
Channel depth 10 m 
Channel direction 30◦ from north 
Overbank deposit thickness 0.3 m 
Floodplain topography parameter 2800 m 
Flood frequency 1000 years 
Avulsion frequency 10,000 years  
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porosity, we employed a Gaussian method and used the available 
borehole information as the target of statistical simulations as described 
in Section 2.2.2. 

Porosity field of process-based models. To translate the facies numbers of 
the process-based models to a porosity field, we employed the fast 
Fourier transform moving average generator (FFT-MA), as implemented 
in the mGstat Matlab package (Hansen, 2022), which is an efficient 
numerical method to generate unconditional realizations of multivariate 
Gaussian distributions (le Ravalec et al., 2000). The normal score 
transform can be used to transform such realizations, with a 1D normal 
marginal distribution, to an arbitrary choice of 1D marginal distribution 

(Goovaerts, 1997). The method allowed us to simulate porosity distri-
bution based on a target sample, which we derived from boreholes in the 
Thisted area, Denmark (Fig. 2). Each simulation reproduced the distri-
bution of this target dataset within the selected facies. The facies were 
categorised into reservoir (CL, PB, SP, CSI) and non-reservoir (CCH, 
CSII, LV, OB, MP) units in our ensemble runs and the reservoir group was 
divided into 4 additional categories (one for each sandy facies) in our 
more complex scenarios. Porosity within each facies was varied ac-
cording to a covariance model to describe the spatial distribution in 3D. 
We used a spherical covariance model to better capture small scale 
variability and chose 400 m correlation length in the x-y direction for 
our sandy facies, as (Mottaghy et al., 2011) showed that largest variation 
is expected at ranges close to half the well distance. Since we repre-
sented all clays with a constant permeability in all our simulations, this 
property was not applicable to these facies. Correlation in the z direction 
was equal to the maximum channel depth assumed in our process-based 
realizations at 10 m (see Table 1). The simulation of the reservoir units 
was constrained to the target values from the boreholes, where a 
porosity cut-off above 15% was applied for the sand bodies. 

2.2.2. Stochastic facies models 
In our stochastic models, we used the truncated Gaussian method 

(Matheron et al., 1987) to create five distinct lithotype groups according 
to the mean ratio of the CL, PB, SP+CSI, MP facies and all other clays 
combined, taken from our process-based realizations. These five facies 
were then divided into 2 facies for our ensemble run (Fig. 4). We created 
an initial random Gaussian field (Fig. 4a) and lithotypes were obtained 
by splitting the total domain of variation into intervals, which then were 
assigned to the five distinct groups (Fig. 4b,) Beucher and Renard, 
2016). The initial Gaussian simulation is generated using FFT-MA and 
the supposed direction of deposition (30◦ from north) was mimicked by 
an angular anisotropy factor of 3 along the flow direction. Lastly, the 
facies groups were separated into reservoir and non-reservoir units and 
FFT-MA was applied once more using our target file to determine the 
porosity distribution (Fig. 4c). 

Fig. 3. Example of a single process-based realization showing the 9 different 
facies; Channel lag (CL), Point bar (PB), Sand plug (SP), Crevasse splay type 1 
(CSI), Crevasse channels (CCH), Crevasse splay type 2 (CS2), Levee (LV), 
Overbank (OB) and Mud plug (MP). 

Fig. 4. Example representation of creating stochastic realizations using the truncated Gaussian method. a, randomly generated Gaussian field with angular 
anisotropy using FFT-MA; b, truncated field where values are divided into ‘lithotype’ groups; c, populated porosity field with reservoir and non-reservoir facies. 
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2.3. Geothermal simulation 

For the purposes of geothermal modelling, we used the Delft 
Advanced Research Terra Simulator (DARTS, 2022), developed at the 
Technical University of Delft, the Netherlands. DARTS provides high 
accuracy and performance as shown in recent studies (Wang et al., 
2020a, 2020b). These capabilities are available through the 
Operator-based Linearization (OBL) approach which effectively ap-
proximates complex governing physics without compromising on ac-
curacy (Voskov, 2017). It employs discretization in the physical space in 
addition to the conventional temporal and spatial discretization. Oper-
ators are divided into two groups based on the physical state and spatial 
properties (Voskov, 2017). The former operators are represented in 
approximate form via physical supporting points and multilinear inter-
polation is used in between them, thereby simplifying the process, and 
turning the problem into a generic interpolation, calculated adaptively 
(Khait and Voskov, 2018). DARTS supports parallel execution on both 
CPU and GPU platforms to enable even faster simulation (Khait et al., 
2020; Khait and Voskov, 2018). In the following, we describe the 
formulation of the governing equations, solved in the simulation pro-
cess. The mass and energy balance for two-phase thermal simulation are 
as follows: 

∂
∂t
(Φρw) − div

(

K
ρw

μw
(∇p − γw∇D)

)

+ ρwq̃w

∑np

j=1
ρjq̃j = 0, (2)  

∂
∂t
(ΦρwUw + (1 − ϕ)Ur) − div

(

Khw
ρw

μw
(∇p − γw∇D)

)

+ div(κ∇T)

+ ρwq̃whw

= 0, (3)  

where, ϕ is porosity, ρw is the water molar density, Uw is the water in-
ternal energy, Ur is the rock internal energy, hw is the water enthalpy, k 
is the thermal conductivity, K is the permeability tensor, μw is the water 
viscosity, p is pressure, γw is the water gravity vector, D is depth, ̃qj is the 
phase rate per unit volume. Applying finite volume discretization and 
backward Euler approximation in time we get for Eqs. (2) and (3): 

V
(
(Φρw)

n+1
− (Φρw)

n)
− Δt

∑

l

(
ρl

wΓl
wΔψl)+ Δtρwqw

∑

j
ρjqj = 0, (4)  

V
[
(ΦρwUw + (1 − ϕ)Ur)

n+1
− (ΦρwUw + (1 − ϕ)Ur)

n]

− Δt
∑

l

(
hl

wρl
wΓl

wΔψl +Γl
cΔTl)+ Δtρwqwhw

= 0, (5)  

where V is a control volume and qj = q̃jV is a source of phase j. Capil-
larity is neglected for simplicity and a Two-Point Flux Approximation is 
applied with an upstream weighting. Using these simplifications Δψ l is 
the phase potential and ΔTl is a temperature difference between blocks 
connected via interface l; Γl

w = Γlkl
rw/μl

w is water transmissibility, where 
Γl is a constant geometrical part of transmissibility; Γl

c = Γlκ is thermal 
transmissibility. 

The terms in Eqs. (4) and (5) can be expressed as functions of 
physical state ω and/or spatial coordinate ξ. All state dependant oper-
ators are a function of physical state only, and therefore independent of 
spatial position, here the physical properties of the fluid and rock; space- 
dependant operators are a function of both physical state and spatial 
coordinate. Then the discretized mass conservation equation becomes: 

ϕ0V(α(ω) − α(ωn)) +
∑

l
ΔtΓlΦlβ(ω) + θ(ξ,ω, u) = 0, (6)  

where, 

α(ω) =
(
1+ cr

(
p − pref

)) ∑np

j=1
ρjsj, (7)  

Φl =
(
pb − pa) −

ρ(ω1) − ρ(ω2)

2
γw(Db − Da), (8)  

β(ω) =
∑np

j=1
ρl

j

kl
rj

μl
j
, (9)  

θ(ξ,ω, u) = Δtρwqw

∑

j
ρjqj(ξ,ω, u). (10) 

The discretized energy conservation reads: 

ϕ0V
(
αef (ω) − αef (ωn)

)
+ (1 − ϕ0)VUr(αer(ω) − αer(ωn))

+
∑

l
ΔtΓlΦlβe(ω) + ΔtΓl( Tb − Ta)

∑

l
(ϕ0(εer(ω) − εer(ωn))

+(1 − ϕ0)κr(εer(ω) − εer(ωn)))+θe(ξ,ω, u) = 0,

(11)  

where, 

αef (ω) =
(
1+ cr

(
p − pref

)) ∑np

j=1
ρjsjUj, (12)  

αer(ω) =
1

1 + cr
(
p − pref

), (13)  

βe(ω) =
∑np

j=1
hl

jρl
j

kl
rj

μl
j
, (14)  

εef (ω) =
(
1+ cr

(
p − pref

)) ∑np

j=1
sjκj, (15)  

εer(ω) =
1

(
1 + cr

(
p − pref

)) . (16) 

Here ω,ωn are state variables of the current and previous time step, 
respectively; cr is rock compressibility; pa, pb, Ta,Tb are pressures and 
temperatures, respectively, of grid block a and b connected through 
interface l. 

This formulation allows for a simplified implementation of a com-
plex framework. Complex physics are represented in an algebraic system 
of equations with abstract operators and the benefit is that all expensive 
calculations can be done at the pre-processing phase at a limited number 
of supporting points. Evaluation of the operators is then based on a 
multilinear interpolation, improving performance at the linearization 
stage (Khait and Voskov, 2018). 

3. Model setup 

3.1. Meshing grid 

In order to get an accurate realization from Flumy, we selected a high 
vertical resolution of 0.2 m, as log data is available in 0.1 m increments, 
and a moderate resolution of 40 m horizontally. To be able to fully 
capture the meandering features we selected a domain of 12 km x 8 km x 
50 m for the geological domain models. This resulted in 15 million cells 
for our geological model. 

However, the full geological domain size will not affect the thermal 
response evaluation when a single doublet is active. Therefore, a smaller 
subdomain with dimensions of 4 × 4 km box around the midpoint be-
tween the wells was cropped to reduce the computational load (Fig. 5). 
The resulting thermal model, including over- and underburden extended 
4 km x 4 km x 459 m and was comprised of 2.75 million control volumes. 
Midpoint reservoir depth is set to 1200 m. 

Well placement was decided based on calculating the L2-norm of the 
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difference between the target dataset and the resulting porosity distri-
bution in our model after population. We chose the best fitting 2% of 
model columns as possible borehole locations and then searched this 
area within a 10 m radius of the desired well spacing, 1040 m, to create 
well pairs. To avoid having well pairs positioned close to the geological 
model boundaries, a padding area of 1000 m from the edge of the 
geological model was excluded from the well pair selection domain. 

3.2. Initial and boundary conditions 

Initial conditions were set as a simple gradient between the top and 
bottom of the model for both temperature, at 30 K/km and pressure at 
100 bar/km. This resulted in an average reservoir temperature of 319.2 
K and pressure of 120 bar. Thermal conductivity and heat capacity of the 
matrix was set to 259.2 kJ/m/d/K and 2200 kJ/kg in the reservoir and 
set to 129.6 kJ/m/d/K and 2240 kJ/kg in the confining beds and non- 
reservoir units. 

Rate-control was applied to both wells using a 4800 m3/d flow rate 
boundary condition and injection temperature was set to 284.15 K. In 
the range of pressure and temperature used in our models the resulting 
density differences between injection and production are below <1.6%. 
Boundary conditions on the sides of the model were set to a constant 
pressure and temperature equal to initial conditions defined by the 
respective gradients. Each model simulation was run for 100 years. 
Table 2 summarizes thermal parameters of our model setup. 

3.3. Scenario descriptions 

All our scenarios were compared to two simplified cases. The first 
one assumed a homogeneous reservoir (Base case) and the second one 
employed a layered model (Layered case). In the latter, the porosity of 
each reservoir layer corresponded to a value taken from an averaged 
target file to fit the number of layers in our reservoir model. Table 3 
summarizes the main parameters of our different scenarios. 

3.3.1. Scenario process-based, 2 facies (Pb2f) 
Our first scenario describes the process-based cases using 2 facies. 

We generated 100 geological models using Flumy, separated facies into 
sand and clay groups and populated the domain with porosity values 
(see section 2.1.2.2). From the populated geological models, we selected 
the 10 best fitting ones based on an L2-norm fit to our target distribution. 
In the selected geological models, the best 2% of columns in each real-
ization were selected, and well pairs were picked within a 10 m radius of 
our desired well spacing of 1040 m. The geological model was then 
cropped around the wells as described in section 3.1.1 (cf. Fig. 3). These 
operations resulted in 1863 suitable thermal models. 

3.3.2. Scenario stochastic, 2 facies (St2f) 
This scenario contains the stochastic models where 200 geological 

models are generated using the truncated Gaussian method. Reasons for 
needing double the amount of realizations compared to Pb2f are dis-
cussed in Section 4.1. We again only differentiated between two sepa-
rate facies (sand and clay) and picked out the 20 best fitting geological 
realizations to our target. Similar to Pb2f we selected the top 2% of 
model columns and found suitable well pairs within 1035 – 1045 m 
distance from each other. Hereafter, we cropped the geological model to 
the described extent. This process resulted in 1829 thermal models for 
this scenario. 

3.3.3. Scenario process-based, 5 facies (Pb5f) 
To investigate the effect of small-scale heterogeneity, we selected 11 

thermal models, which closest approximated 9 evenly spaced percentiles 
(P10-P90) and the best and worst cases of our Pb2f scenario and ran 
simulations with the added complexity of 5 different facies. This allowed 
us to capture the overall variability of the ensemble runs. We differen-
tiated between four types of sandy facies (CL, PB, SP, CSI) and one 
additional group combining all clays. As we assumed our model to be 
mainly consisting of point bars, they were modelled to fit our target 
distribution (Fig. 2). Other sand facies, CL, SP, CSI were represented 
with a random uniform distribution with mean porosities of 0.26, 0.22 

Fig. 5. Geological model from a process-based realization. Cropping of the 
thermal models is illustrated by the highlighted boxes around the well loca-
tions. Colour bar shows the different facies. 

Table 2 
Parameters of the thermal model.  

Parameter Value 

dx/dy/dz (m) 40/40/0.2 
Cells (× 106) 2.75 
Porosity distribution Process-based/Stochastic 
Permeability clay/sand (mD) 0.01/Eq.(1)
Thermal conductivity clay/sand (kJ/m/d/K) 129.6/259.2 
Heat capacity clay/sand (kJ/kg) 2200/2240 
Well spacing (m) 1040 
Rate (m3/d) 4800 
Injection temperature (K) 284.15  

Table 3 
Overview of scenarios and their main parameters.  

Scenario No. of facies 
groups 

Porosity 
distribution 

Flow rate 
(m3/d) 

No. of 
simulations 

Pb2f 2 (sand, 
clay) 

Variable 4800 1863 

St2f 2 (sand, 
clay) 

Variable 4800 1829 

Pb5f 5 (4 sands, 1 
clay) 

Variable 4800 11 

Pb5c 5 (4 sands, 1 
clay) 

Constant within 
each facies 

4800 11 

Pb2f_x 2 (sand, 
clay) 

Variable 2400, 
3600, 6000 

33 

St2f_x 2 (sand, 
clay) 

Variable 2400, 
3600, 6000 

33 

Base case 1 Homogeneous 4800 1 
Layered 

case 
1 Constant in each 

layer 
4800 1 

Total number of simulations 3782  
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and 0.15, respectively. These values were selected to preserve the mean 
value of our original target distribution. 

3.3.4. Scenario process-based, 5 facies, constant porosity (Pb5c) 
Similar to Pb5f, the 11 selected thermal models were run with 5 

facies. In this case, we represented each facies with a constant porosity 
value and picked values to preserve the weighted mean porosity of our 
target distribution (Fig. 2). The exact values were CL = 0.26, PB=0. 32, 
SP=0.22, CSI=0.15 and clays = 0.1. 

3.3.5. Scenario process-based, 2 facies, rates (Pb2f_x) 
As in Pb5f, we selected 11 models representing the best and worst 

case scenario and 9 evenly spaced percentiles of Pb2f and ran the 
thermal models with discharge rates of 2400 m3/d, 3600 m3/d and 
6000 m3/d, respectively. Simulations in this scenario were compared to 
those of Pb2f. 

3.3.6. Scenario stochastic, 2 facies, rates (St2f_x) 
To assess the influence of discharge rate on our simulations we took 

the same 11 models from St2f and ran them with rates of 2400 m3/d, 
3600 m3/d and 6000 m3/d, respectively. These simulations were 
examined in relation to variability in breakthrough time and spread in 
temperature decline. 

3.4. Computational efficiency 

Special attention was paid to minimize the time required to run our 
ensemble models. DARTS platform was deployed, since it provides 
unique capabilities for simulating geothermal models entirely on GPU 
(Wang et al., 2020a, b). In addition, both model initialization and 
simulation were optimized (see Appendix). 

The improvements described in Appendix reduced the initialization 
time of each model down to only 3.74 s on average, where nearly half of 

the time was spent on transmissibility calculations. The simulation time 
of a single model varied from 85 to 128 s, taking 102 s on average. The 
total time for processing of a single model, including initialization, 
simulation, finalization and corresponding overheads was 116 s on 
average. 

All the models were added to a pool of jobs, which were dispatched 
on one of 6 available GPUs, a single model per GPU, therefore 6 models 
were processed simultaneously. Taking this into account, the average 
time of running a single model was only 19.47 s, allowing to process all 
3692 ensemble models in just under 20 h. This was an improvement of 2 
orders of magnitude compared to simulation time on a single CPU. 

4. Results and discussion 

4.1. Porosity fields comparison 

Fig. 6 shows a comparison of the resulting porosity fields from four 
different scenarios. The most obvious difference between St2f and Pb2f 
(Fig. 6a and b) is in the distribution, shape and size of the clay facies as 
the stochastic realization cannot capture the sinusoidal mud plug 
structures or the overbank ‘islands’ accurately. Instead, bigger patches 
aligned according to our chosen anisotropy direction of 30◦ from north 
are observed. In terms of the sandy facies, there is no clear difference 
between these two at first glance as both were populated using the same 
target distribution and correlation length. 

Dividing the sandy facies into 4 different groups does change the 
porosity distribution quite a bit, as high porosity point bars are now less 
connected and channel features are more evident due to the separation 
of sand plug facies (Fig. 6c). Using constant values for the 5 facies in 
Fig. 6d clearly highlights the large amount of point bars and eliminates 
the lower porosity features present in Fig. 6c within the point bar facies, 
which stem from the matching of our target distribution. Important to 
note is the absence of CSI from Fig. 6d. This is due to a systematic 

Fig. 6. Porosity distribution of selected realizations from a, St2f; b, Pb2f; c, Pb5f and d, Pb5c. The constant porosity values of the colour scale in d, correspond to the 
different facies, from top to bottom PB, CL, SP, CSI and clays. 
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underrepresentation of this facies in our process-based realizations, 
which we could not resolve despite our best efforts. 

Vertical cross-sections of porosity values along the x-axis from an 
example of Pb2f and St2f are shown in Fig. 7. The clay facies with low 
porosity have very different shapes and extent on the two plots. On the 
one hand, Pb2f mainly produces thin, U-shaped clay deposits corre-
sponding to mud plugs in abandoned channels and some thin layers of 
overbank facies, mostly on the top of the reservoir (Fig. 7a). In contrast, 
St2f has clay patches with different shapes and sizes, but generally wider 
and more evenly distributed in the domain. The differences in clay facies 
shape and distribution between Figs. 6 and 7 explains why St2f produces 
approximately half the amount of suitable thermal models per realiza-
tion compared to Pb2f. The wider, more evenly distributed clay patches 
disrupt the continuity of sandy facies and can make it more difficult to 

find good matches to our target at a given distance (see section 3.1.1). 

4.2. Result convergence 

To validate that convergence is achieved for our ensembles the 
moving average of P10, P50 and P90 of production temperature after 
100 years for both Pb2f (Fig. 8A1, A2, A3) and St2f (Fig. 8B1, B2, B3) 
versus the number of simulations (Fig. 8) was calculated. After an 
ensemble of 500 simulations, the expected value of P10, P50 and P90 
does not change significantly for either scenario and they correspond 
well with the values seen on Fig. 9 at 100 years. Therefore, sufficient 
thermal simulations are performed to be able to draw statistically rele-
vant conclusions. 

Fig. 7. Example plot of porosity cross-sections along the x-axis of the reservoir domain from a, Pb2f and b, St2f. Axes show number of cells and z-axis is exaggerated 5 
times for readability. 

Fig. 8. Moving average of P10, P50 and P90 of production temperature after 100 years for scenarios Pb2f and St2f with increasing number of realizations. A1, A2 and 
A3 are showing P10, P50 and P90 of Pb2f, respectively; B1, B2 and B3 are P10, P50 and P90 of St2f, respectively. 
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4.3. Well pressure and temperature 

Fig. 9a and c show production temperature for all simulations after 
100 years, from both Pb2f and St2f. We designate breakthrough to occur 
at the time production temperature has decreased 1 K from the starting 
temperature, in this case, when reaching 318 K for readability. In Pb2f, 
the spread in breakthrough time is approximately 16 years, and varies 
between 18.6 years and 34.6 years, while scenario St2f gives almost 
identical extremes at 18.6 and 34.2 years, respectively. This result is 
different from the findings of Crooijmans et al., (2016) who found a 
random, uncorrelated model to give significantly smaller spread in 
lifetime than a process-based counterpart. However, Crooijmans et al., 
(2016) did not investigate convergence of their ensemble dataset. 
Moreover, our stochastic model uses our target file for matching porosity 
distribution and a spherical covariance function with 400 m correlation 
length in x-y and 10 m in z direction (see section 2.1.2.2). Therefore, we 

expect to get a better match to our process-based models. Fig. 9b and 
d show pressure evolution in both I1 and P1 for the two scenarios. Here 
we see that the stochastic simulations (Fig. 9d) exhibit about 12 bars 
higher maximum pressures in I1 as the process-based counterpart 
(Fig. 9b). This pressure difference is not as apparent in median values 
however, which only show 1–2 bar higher expected pressure for sto-
chastic simulations. Observing higher maximum pressures can be 
attributed to bigger clay patches in the stochastic models which can 
affect the flow path and decreasing reservoir hydraulic conductivity 
(Figs. 6a and 7b) a similar effect is described by Crooijmans et al. (2016). 

Fig. 10 compares the P10, P50 and P90 of the ensemble runs to the 
Base and Layered cases. The layered and homogeneous temperature 
curves are almost identical, and they match well with the P10 curve of 
Pb2f and St2f for both breakthrough time (~28 years) and temperature 
decline after 100 years. This suggests that the simplified models over-
estimate the breakthrough time of the reservoir, on average, by about 3 
years and the temperature decline by ~1 K. Comparing Pb2f and St2f 
scenarios directly, all percentiles, are very close to each other in terms of 
breakthrough time, which occurs after 22.6, 25.1, and 28.6 years for 
Pb2f and 22.6, 25.1, and 28.1 years for St2f, respectively. These similar 
values imply that when using only two distinct facies with a high N/G, a 
well-designed stochastic method will give the same expected result as 
using a process-based approach. Given that generating stochastic re-
alizations is considerably faster than running process-based models, we 
can argue that in cases where conditioning data points are available and 
at high N/G ratios, using stochastic models is preferable. Even after 
taking into account the extended computation time associated with the 
fact that we needed twice as many realizations to get similar number of 
models matching our criteria. After breakthrough, the curves show a 
similar trend overall and the production temperatures after 100 years 
stay slightly higher for all three percentiles of Pb2f shown, with pre-
dicted temperatures staying within ~0.3 K (Fig. 10). 

Example realizations from both scenarios Pb2f and St2f are shown 
with production temperatures on Fig. 11a, c and the permeability dis-
tribution with corresponding well locations on Fig. 11c, d. This figure 
illustrates well the discrepancy between the number of suitable well 
pairs per realization as discussed in Section 4.1. Due to this discrepancy, 
we see higher variance in the production temperatures of the process- 

Fig. 9. Production temperature and pressure for all process-based (a, b) and stochastic realizations (c, d) in Pb2f and St2f, respectively. The dashed grey line 
represents the point of thermal breakthrough, considered as a temperature drop of 1 K from the initial production temperature. 

Fig. 10. Comparison of production temperature evolution for the Base (solid 
black curve) and Layered (dashed black curve) cases to selected percentiles of 
our ensemble runs. a, showing P10, P50 and P90 of Pb2f with solid lines; b, 
showing P10, P50 and P90 of St2f with dashed lines. 
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based models, which highlights the importance of running several 
different realizations. It is again noticeable on the permeability plots 
how the structure of the clay facies is different between the two 
methods. We see two clusters of suitable well pairs in St2f (Fig. 11d) 
versus a more even distribution for Pb2f (Fig. 11b). 

4.4. Reservoir pressure and temperature 

Reservoir pressure and temperature evolution, along with porosity 
distribution are shown in Fig. 12 for the most extreme cases of scenarios 
Pb2f and St2f. The figure shows a slice from the middle of our reservoir 
domain at 1200 m depth. We define worst case as showing largest 
decline in production temperature after 100 years and best case as 
showing the highest production temperatures at the end of the simula-
tion. Fig. 12A shows the worst case of Pb2f. From Fig. 12A1 it is clear 
that no low porosity areas obstruct the flow between the two boreholes, 
which allows easy connection between P1 and I1 and leads to quick 
breakthrough and large temperature decline. We get a pear-shaped cold 
plume which extends more into the high porosity areas, mainly to the 
east of I1 (Fig. 12A3, A4). On Fig. 12B1 we can see generally lower 
porosity values between the boreholes and some distinct clay patches 
which slow down the cold plume and a considerable part of the flow 
diverted from the producer to the west of I1 (Fig. 12B3, B4). The 
expansion of the plume is especially hindered to the south of the doublet, 
where the low porosity has a larger, connected area. Therefore, we get a 
slower decline in temperatures. For the worst case in St2f (Fig. 12C), I1 is 
located in a low porosity patch which extends far out to the southwest of 
the well (Fig. 12C1). Yet, the plume shape seems symmetric and fairly 

regular, though considerably slimmer in the east-west direction 
(Fig. 12C3 and C4). The slim plume shape indicates that the water finds 
a narrow band of high permeability sands connecting the boreholes and 
flow is concentrated in these leading to high Darcy velocity and larger 
temperature decline. The best case of St2f is shown on Fig. 12D. I1 is 
situated right at the border of a bigger low porosity area and a smaller 
clay patch, right at P1 (Fig. 12D1), seems to restrict flow considerably 
(Fig. 12D3, D4). This is especially visible on the 50-year plot, where the 
plume to the north of our doublet is significantly smaller than to the 
south (Fig. 12D3). This effect is less pronounced after 100 years 
(Fig. 12D4). Fig. 12D2 shows that pressures are also elevated compared 
to the worst case of St2f (Fig. 12C2), which we expect for a lower 
permeability field. 

4.5. Cold front position 

Taking a 1 K temperature drop compared to initial reservoir tem-
perature as the indicative position of the cold front, a good match be-
tween the process-based and the stochastic simulations is observed 
(Fig. 13). For both types of heterogeneity representation, a higher con-
centration of contours is apparent close to the production well 
(Fig. 13A1, B1). Most deviations are observed in the western part of the 
domain, along the well plane and to the west of the injector, where the 
range of the cold front position is about 500 m for Pb2f and up to 650 m 
for St2f. In all other directions the cold front position is contained within 
a circa 250–300 m band for both types of heterogeneity representation. 

Individual simulations of St2f that move away from the bulk of the 
contours have a more pronounced and directional shape compared to 

Fig. 11. Examples of one realization from Pb2f and St2f respectively. a, showing production temperature with time and b, showing the corresponding permeability 
field with borehole locations for Pb2f; c, showing production temperature and d, showing permeability and borehole locations for St2f. White rectangle denotes the 
padding distance chosen to avoid placing wells near the sides of our domain. 
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the individual realizations of Pb2f that appear more rounded with a less 
pronounced directional pattern (Fig. 13A1, B1). The vertical sections 
across the well plane show again a strong concentration of contours on 
the position of the producer (Fig. 13A2, B2). The largest differentiation 
is observed to the west of the injector well. Similar to the horizontal 
cross-section, the vertical cross-section also shows a larger variability for 
the stochastic simulations (Fig. 13A2, B2). 

4.6. Small-scale variability impact 

Fig. 14 shows the comparison of our simulations including 5 facies 
(Pb5f and Pb5c) to our process-based ensemble run (Pb2f). The 11 
models were chosen to be closest to 9 (P10-P90) evenly spaced per-
centiles of Pb2f, along with the two extreme cases, to represent the full 
variability of the ensemble. 

For both Pb5f and Pb5c scenarios, their respective ensemble spread is 
fully contained within the Pb2f percentile range throughout the whole 
100-year period. Scenario Pb5f shows lowest variability both in terms of 
breakthrough time and overall temperature decline. Our original 
ensemble, Pb2f, shows a larger spread in both subplots, whereas Pb5c 
lies in between the other two. Including 5 facies seems to improve 
lifetime overall, as both Pb5f and Pb5c retain higher production tem-
peratures after 100 years than Pb2f. In the case of Pb5f, breakthrough 
time is also slightly delayed, while retaining higher temperatures at the 
end of 100 years. We attribute this behaviour to the impact of small scale 
variability within facies, which introduces small areas of lower than 
average permeability where Darcy velocity decreases and thermal 
recharge can be higher resulting in delayed breakthrough (Daniilidis 
et al., 2020b; Wang et al., 2021). 

Fig. 12. Horizontal cross-sections across the middle of the reservoir for best and worst cases of Pb2f (A, B) and ST2f (C, D) scenarios showing porosity field (A1, B1, 
C1, D1), pressure distribution (A2, B2, C2, D2) and extent of the cold plume after 50 (A3, B3, C3, D3) and 100 years (A4, B4, C4, D4). 
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4.7. Flow rate impact 

To gain an insight into the effect of flow rate on our results, selected 
models from Pb2f and St2f were run with flow rates of 2400 m3/d, 3600 
m3/d and 6000 m3/d. Fig. 15 shows the production temperature with 
time for these simulations and Pb2f and St2f are compared for each flow 
rate value presented. For Pb2f, breakthrough is delayed due to the lower 
flow rates and the spread in breakthrough time is increased from about 
16 years for 3600 m3/d, to 26 years for 2400 m3/d, whereas 6000 m3/ 
d shows only a 5-year spread. Similarly, St2f shows highest spread in 
breakthrough for 2400 m3/d at 24.5 years and this is decreasing to 14.5 
and 6 years, for the cases of 3600 m3/d and 6000 m3/d, respectively. 
These results are in line with the findings of other researchers (e.g. 

Daniilidis et al., 2020a, 2016; Saeid et al., 2015), who showed that 
higher discharge rates produce sharper breakthrough curves and that 
discharge has the biggest influence on lifetime. Spread in production 
temperatures after 100 years is around 4 K at higher rates and drops to 
about 3 K when 2400 m3/d is used in both cases presented. We see a 
clear trend in these two scenarios, where the difference in spread of both 
breakthrough time and temperature decline is increasing with lower 
discharge rate. We explain this by the lower rates exaggerating the 
differences in flow inside the reservoir. St2f is consistently predicting 
bigger decline in temperatures for it’s worst case compared to Pb2f and 
the two best case scenarios also separate at lower rates highlighting the 
subtle difference in reservoir construction (Fig. 15). 

Fig. 13. Heat map of the contours showing a 1 K temperature drop compared to initial reservoir temperature for all simulations of scenarios Pb2f and St2f for a 
horizontal cross section across the middle of the reservoir (A1, B1) and a vertical cross section across the injector and producer well plane respectively (A2, B2). A 
lighter colour indicates higher density. All simulation data regardless of initial well orientation is aligned with the position of the injector and producer well along the 
Easting axis. Data is shown after 100 years of production for all plots. Injector and producer wells presented in red and blue colours respectively. 

Fig. 14. Comparison plot of production temperatures for the process-based scenarios. a, comparing Pb2f (green curves) to Pb5f (red curves); b, comparing Pb2f 
(green curves) to Pb5c (blue curves). Black dashed lines highlight the temperature at which we designate breakthrough to occur. 
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5. Summary and conclusions 

We have compared a process-based and purely stochastic approach 
to deterministic models for representing heterogeneity in hydraulic 
properties of fluvial reservoirs, when a target distribution is drawn from 
log data. Our two ensemble runs were divided into reservoir and non- 
reservoir facies and two additional scenarios are investigated where 
the different sandy facies are separated in the geological model. 

Our study highlights that DARTS is remarkably efficient in running 
large ensembles and initial running time for single simulation of a 
geothermal model with 5.5 million unknowns was improved by two 
orders of magnitude. 

We can conclude that for this dataset and target distribution, a 
process-based and stochastic representation give almost identical ther-
mal response for flow rates of 4800 m3/d and higher, while differences 
become more exaggerated at low flow rates. This illustrates how a well- 
designed stochastic model is capable of generating comparable hetero-
geneous fields to models that include a process-based component. 

Adding more complexity to our process-based models with the same 
dataset does not influence results drastically, which indicates that it can 
be sufficient to use only reservoir and non-reservoir units. We see some 
evidence of small-scale variability reducing spread in predicted out-
comes and retaining higher production temperatures and delaying 
breakthrough. Using detailed descriptions of porosity distribution and 
correlation in each facies could accentuate this effect. 

Our investigation was limited to a high N/G ratio with an average of 
85%. In this range connectivity is very high and no isolated sand units 
are present. The expectation is that above our investigated N/G range 
results will be similar and at lower N/G ranges we expect more differ-
ence between methods. Establishing the N/G threshold below which a 
significant, statistically converged divergence between the stochastic 
and probabilistic heterogeneity representation occurs will be further 
investigated. 
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Appendix 

Optimization of DARTS 
Detailed description of optimizing initialization and simulation time 

in DARTS. The former included: 

• Reduction of model input files down to only the rock porosity dis-
tribution. The rest of the rock properties were computed from rock 
porosity on the fly for each model.  

• Rock porosity distribution was stored in binary .npy file format using 
32-bit floating point data to guarantee fast loading time and mini-
mize disk storage requirements  

• Initial conditions were assigned using a temperature and depth 
gradient. Since the model uses a cartesian mesh, initial conditions 
could be computed for a single mesh column along the depth axis and 
consequently copied to all model mesh columns.  

• Operator-based linearization (OBL) data was computed only once 
during the run of the first model in the batch. It was then stored as a 
binary .pkl file and reused for all subsequent model runs 

The optimizations of simulation time included:  

• Relaxing of nonlinear and linear tolerances such that the absence of 
timestep cuts and accuracy of results are guaranteed, but less linear 
and nonlinear iterations are required.  

• Rather aggressive time stepping settings (with first time step of one 
day, maximum time step of 365 days and time step multiplier of 4) 
were applied with controlled time-truncation error.  

• OBL discretization was set to 16 points, which is sufficient for low 
enthalpy formulation (Khait and Voskov, 2018)  

• AMGX of opensource version 2.2.0.132 was used on the first step of 
CPR preconditioner (Naumov et al., 2015). Compared to AMGX 2.1, 
the setup stage performance was significantly improved. 

• Single precision of floating-point operations was used for ILU0 pre-
conditioner - the second step of CPR preconditioner. Despite it 
caused a slight increase in the total amount of linear iterations, each 

Fig. 15. Influence of production rate on the spread of production temperature 
decline and breakthrough time for scenarios Pb2f and St2f. Solid lines show 
Pb2f with rates of 2400 m3/d (green curves), 3600 m3/d (red curves) and 6000 
m3/d (blue curves), respectively. Dashed lines show St2f with rates of 2400 m3/ 
d (green curves), 3600 m3/d (red curves) and 6000 m3/d (blue curves), 
respectively. Black dashed line highlights the temperature at which we desig-
nate breakthrough to occur. 
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iteration became significantly cheaper, noticeably improving the 
overall linear solution time. 

The GPU version of DARTS was compiled with CUDA 11.3 toolkit, 
deployed via docker container on a cloud computing service iRender 
[https://irendering.net/, in case we need to provide a link to it]. The 
target computational node was powered by 2 x Intel(R) Xeon(R) CPU 
E5–2678 v3 and 6 x NVIDIA GeForce RTX 3090 GPU. 
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