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Joint Maximum Likelihood Estimation of
Microphone Array Parameters for a Reverberant

Single Source Scenario
Changheng Li , Jorge Martinez , and Richard Christian Hendriks , Senior Member, IEEE

Abstract—Estimation of the acoustic-scene related parameters
such as relative transfer functions (RTFs) from source to micro-
phones, source power spectral densities (PSDs) and PSDs of the
late reverberation is essential and also challenging. Existing maxi-
mum likelihood estimators typically consider only subsets of these
parameters and use each time frame separately. In this paper we
explicitly focus on the single source scenario and first propose a joint
maximum likelihood estimator (MLE) to estimate all parameters
jointly using a single time frame. Since the RTFs are typically
invariant for a number of consecutive time frames we also propose
a joint maximum likelihood estimator (MLE) using multiple time
frames which has similar estimation performance compared to a
recently proposed reference algorithm called simultaneously con-
firmatory factor analysis (SCFA), but at a much lower complexity.
Moreover, we present experimental results which demonstrate that
the estimation accuracy, together with the performance of noise
reduction, speech quality and speech intelligibility, of our proposed
joint MLE outperform those of existing MLE based approaches
that use only a single time frame.

Index Terms—Dereverberation, maximum likelihood estima-
tion, microphone array signal processing, PSD estimation, RTF
estimation.

I. INTRODUCTION

M ICROPHONE array signal processing has ubiquitous
applications like source dereverberation [1], [2], [3], [4],

noise reduction [5], [6], [7], [8], source separation [9], [10],
[11] and source localization [12]. These applications heavily
depend on acoustic-scene related parameters such as relative
transfer functions (RTFs), power spectral densities (PSDs) of
the source, PSDs of the late reverberation and PSDs of the
microphone self noise. These parameters are typically unknown
in practical scenarios. Therefore, estimation of these parameters
is an essential problem for microphone array signal processing
applications.
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As speech sources are typically non-stationary, their PSD
changes over time. Moreover, the source might be moving,
resulting in changes in the RTF as well. The estimation of
the RTF and the PSDs of the source and the late reverberation
is therefore rather challenging, especially when considering to
estimate them simultaneously at low complexity. To get a full
understanding of the problem, we constrain ourselves in this
paper to the single source reverberant scenario and focus on the
joint estimation of the source’s RTF, PSD of the early reflections
and the PSD of the late reverberation. In future work, we will
extend this towards the multi-source scenario.

There are many existing methods that consider maximum
likelihood estimation of these parameters [1], [13], [14], [15],
[16]. However, most of these methods do not estimate the
parameters in a joint manner. In [1], [13], the RTFs are assumed
to be known and the MLE for the PSDs of the source and the
late reverberation is proposed. In [2], the estimate of the late
reverberation is obtained without estimating the RTFs or the
PSDs of the source. In [14], the RTFs are estimated given that
the PSDs of the late reverberation are assumed to be known or
have been estimated. In [15], by assuming the late reverberation
is stationary, the expectation maximization (EM) method [17]
was used to estimate the RTFs and the PSD of the source.
However, in practice, the late reverberation is non-stationary and
the PSDs of the late reverberation can change from time-frame
to time-frame, which limits the scenarios to which the method
in [15] can be applied.

Apart from the fact that most reference methods only estimate
a subset of these parameters, all these methods, i.e., [1], [13],
[14], [15], [16], use each time frame separately. However, in
most practical scenes, the RTFs change slower than the PSDs
of the source and the late reverberation, and can be assumed
invariant for a number of consecutive time frames. Therefore,
better estimates of these parameters can be obtained by using
the time frames that share the same RTFs jointly. A recently
proposed method referred to as the simultaneous confirmatory
factor analysis (SCFA) method considers the joint estimation of
these parameters using multiple time frames [18] and has a much
better estimation performance compared to methods using each
time frame separately. However, since the problem formulated
in [18] is non-convex, this method suffers from a rather high
computational cost, which makes it difficult to be applied when
dealing with practical problems.
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To estimate all the aforementioned parameters of interest
jointly and accurately with low computational complexity, we
first propose a joint maximum likelihood estimator (MLE) using
a single time frame. This has a closed form solution and can
be solved efficiently. Note that recently the joint MLE using a
single time frame is also proposed in [16], but we provide an
alternative proof. More importantly, we propose an extension,
which is a joint MLE using multiple time frames. This extension
uses the rough estimates obtained by the MLE for a single
time frame as initialisation and estimates all the parameters
in an iterative manner. Since the computational cost for each
step in the proposed method mainly comes from an eigenvalue
decomposition, it has similar computational complexity as the
MLE approach for a single time frame. Experimental results
demonstrate that our proposed MLE for multiple time frames
has similar estimation performance compared to the recently
proposed SCFA method from [18], but, at a much lower com-
putational complexity. Moreover, both the proposed and SCFA
method outperform two other reference methods that consist of
combining several existing state-of-the-art methods.

In the current work we thus focus on the single source
scenario. In our recent work published in [19], we proposed
a method that can jointly estimate the RTFs as well as the
source PSDs for multiple simultaneously present sources using
multiple time frames. The method proposed in [19] also has
a much lower computational complexity compared to SCFA,
while maintaining similar estimation performance. However,
in [19], a non-reverberant environment is assumed. In the current
work we therefore also consider the late reverberation compo-
nents constrained to the single source scenario. In future work,
we will consider the joint estimation of these parameters for a
combination of the two scenarios (i.e., multiple simultaneously
present sources in a reverberant environment).

The remaining parts of the paper are structured as follows. We
present the notation, the signal model and the main goal of this
paper in Section II. In Section III, we propose the joint maximum
likelihood estimator using a single time frame in Section III-A
and using multiple time frames in Section III-B. In Section IV,
we first introduce some reference methods and compare them to
our proposed joint MLE in different acoustic scenarios. In the
last section, Section V, conclusions will be drawn.

The matlab code of the joint MLE can be downloaded from:
http://cas.tudelft.nl/Repository/

II. PRELIMINARIES

A. Notation

In this paper, we denote scalars using lower-case letters,
vectors using bold-face lower-case letters and matrices using
bold-face upper-case letters (in some cases with subscripts using
bold-face lower-case letters, e.g. Py). Matrix notation with
subscripts using two lower-case letters (e.g. Pyi,j) denotes the
element of the matrix. �(·) and �(·) represents the real part and
the imaginary part of a complex-valued variable, respectively.
Further, E(·) denotes the expected value of a random variable,
tr(·) denotes the trace of a matrix, and if not further specified, | · |
denotes the determinant of a matrix. Finally, diag[a1, . . . , aM ]

denotes a diagonal matrix with diagonal elements a1, . . . , aM
and ‖ · ‖2 denotes the Frobenius norm of a matrix.

B. Signal Model

We consider a single acoustic point source observed by a
microphone array consisting of M microphones with an arbi-
trary geometric structure in a reverberant and noisy environment.
Decomposing the signal into its direct component with its early
reflections, and the late reverberant components, we can write
the signal received at the mth microphone in the short-time
Fourier transform (STFT) domain as

ym(i, k) = em(i, k) + lm(i, k) + vm(i, k), (1)

where i is the time-frame index and k is the frequency bin
index, em(i, k) is the sum of the direct components and the
early reflections, lm(i, k) is the sum of all late reflections and
vm(i, k) is the microphone self-noise. The direct components
and early reflections are beneficial for speech intelligibility [20].
The combination of these components, denoted by em(i, k)
in (1), forms our target signal. In this work, we differentiate
between time segments (indexed by β) and time frames (indexed
by i). Each time segment consists of N time frames, i.e., for
eachβ, i = (β − 1)N + 1, . . . , βN . The target signal at themth

microphone is given by

em(i, k) = am (β, k) s(i, k), (2)

where am(β, k) is the relative transfer function (RTF) for source
s from the reference location to the mth microphone in time
segment β and s is the target source including direct and early
reflections at the reference microphone. Note that, for ease of
analyzing, we use the multiplicative transfer function (MTF) ap-
proximation instead of the convolutive transfer function (CTF)
approximation in (2). CTF can be more accurate than MTF but
has a more complicated signal model [21], [22]. We assume
that the RTFs are constant during a time segment (thus during
multiple time frames that fall in one segment) and a1 = 1, which
means that the first microphone is selected as the reference
microphone. Stacking theM microphone STFT coefficients into
a column vector, we have

y(i, k) = a (β, k) s(i, k) + l(i, k) + v(i, k) ∈ C
M×1. (3)

C. Cross Power Spectral Density Matrices

We assume the STFT coefficients of the microphone signal
have a circularly-symmetric complex Gaussian distribution,1

i.e.: y(i, k) ∼ NC(0,Py(i, k)), where Py(i, k) is the noisy
cross power spectral density (CPSD) matrix, expressing the
covariance across microphones. Assuming that all components
in (3) are mutually uncorrelated, we have

Py(i, k) = Pe(i, k) +Pl(i, k) +Pv(i, k) ∈ C
M×M , (4)

1Although a super-Gaussian distribution can better model the coeffi-
cients [23], [24], [25], the estimators based on it are much more cumbersome
than that based on the Gaussian distribution [26] and hence are not considered
in this paper.
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where Pe is given by

Pe(i, k) = p(i, k)a (β, k)aH (β, k) , (5)

and where p(i, k)= E[|s(i, k)|2] is the power spectral density
(PSD) of the source at the reference microphone with | · | the
absolute value. Note that although the mutual uncorrelation as-
sumption is commonly used, these components are not perfectly
uncorrelated in practice.

The CPSD matrix of the late reverberation component is
commonly modelled as [1], [27]

Pl(i, k) = γ(i, k)Γ(k), (6)

where the time-varying coefficient γ(i, k) is the PSD of the late
reverberation and the time-invariant matrix Γ(k) is the spatial
coherence matrix of the late reverberation. Γ(k) is assumed
to be non-singular and known in this paper. Several methods
have been proposed to measure Γ(k) by using pre-calculated
room impulse responses [28] or by using knowledge on the
microphone array geometry [29], [30]. We use the latter one
and model the coherence matrix as a spherically isotropic noise
field [31]

Γ(k) = sinc

(
2πfsk

K

di,j
c

)
, (7)

where sinc(x) = sinx
x , di,j is the inter-distance between micro-

phones i and j, fs is the sampling frequency, c denotes the speed
of sound and K is the number of frequency bins.

Lastly, the microphone self-noise component is assumed to
have slow varying statistics and its CPSD matrixPv(i, k) can be
modelled as a time-invariant diagonal matrix with itsM diagonal
elements being the PSD of the self noise corresponding to the
M microphones

Pv(k) = diag [n1(k), . . . , nM (k)] . (8)

Due to its time-invariant property, a voice activity detector
(VAD) can be used to detect the noise-only segments of the
signal such that the covariance matrix of the noise can be
estimated [32]. Moreover, the power of the microphone self-
noise is usually very small compared to the other components.
Therefore, we assume in this paper that Pv(k) is neglectable or
can be subtracted from the noisy covariance matrix.

D. Problem Formulation

Based on the assumptions made in the previous subsection
and (5) and (6), we can rewrite the noisy CPSD matrix for each
time frame i as

Py(i, k) = p(i, k)a (β, k)aH (β, k) + γ(i, k)Γ(k). (9)

Each time frame i consists of Tsf overlapping sub frames
indexed by ts, each with equal length Ns. For a visual inter-
pretation of time segments, frames and sub frames see Fig. 1.
Assuming the noisy signal is stationary within a time frame,
we can estimate the CPSD matrix per time frame i based on a

Fig. 1. Time segment (TS), time frames (TF) and sub frames (SF).

sampled covariance matrix using the sub-time frames, that is,

P̂y(i, k) =
1

Tsf

Tsf∑
ts=1

y (ts, k)y(ts, k)
H , (10)

where y(ts, k) denotes the STFT coefficients vector and the
FFT length is selected as 2�log2 Ns�, where �·� denotes taking the
next highest integer. Note that each time frame contains multiple
sub-time frames as illustrated in Fig. 1 and these sub-time frames
are used to estimate the covariance matrix of a single time frame.
Notice that across the time frames of one time segment, the RTF
vector is assumed to be constant and the PSDs of the source and
late reverberation power γ(i, k) are assumed to be time-variant.

Accurate estimation of the parameters from the signal model
in (9) is very important for speech enhancement and intelli-
gibility improvement algorithms. However, this is also very
challenging when the source is only stationary for a short time
and microphone and source positions are time varying. The
main goal of this paper therefore is to estimate the RTF vector,
the PSD of the source and the PSD of the late reverberation
simultaneously using N estimated CPSD matrices P̂y(i, k) for
i = 1, . . . , N , while the source is only stationary within a time
frame and the RTF changes from segment to segment. Since we
process the signal for each frequency bin independently, we omit
the frequency bin index k in the following sections for notational
convenience.

III. JOINT MLE

In this work, we present a novel maximum likelihood esti-
mator (MLE) to jointly estimate the parameters from the signal
model in (9). Note that MLEs have been proposed before in this
context [1], [13], [15], but typically they assume that the RTF
vector a is known and only determine the MLEs of p(i) and γ(i)
for each time frame i separately. We will first in Section III-A
propose the joint MLE estimator of p(i),a and γ(i) using the
estimated noisy CPSD matrix for a single time frame. Since the
CPSD matrices for multiple time frames in a single time segment
share the same RTF vector, we can use these matrices jointly to
obtain a better estimate of a. Therefore, we will also propose in
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Section III-B the joint MLE estimator of p(i),a and γ(i) using
the CPSD matrices for multiple time frames.

A. Joint MLE for a Single Time Frame

Assuming that theTsf sub-time frames in a single time frame i
per frequency band k are independent and identically distributed
(i.i.d.), we can write the joint PDF f(y(1, k), . . . ,y(Tsf , k)) as

f (y(1, k), . . . ,y (Tsf , k)) =

⎛
⎝exp

[
−tr

(
P̂yP

−1
y

)]
πM |Py|

⎞
⎠

Tsf

,

(11)
where P̂y is given in (10) and Py in (9). The negative log-
likelihood function with respect to (w.r.t.) p,a and γ is given by

−L (p,a, γ) = Tsf

[
log |Py|+ tr

(
P̂yP

−1
y

)]
, (12)

where the additive constant term TsfM log π has been omitted
as it is irrelevant for the parameters of interest. The MLEs of p,a
and γ are given by minimizing the cost function in (12), i.e.,

argmin
p,a,γ

log |Py|+ tr
(
P̂yP

−1
y

)
. (13)

To solve this problem, we reparameterize the signal model in
(9) as

Py = paaH + γΓ

= L
(
pL−1aaHL−H + γI

)
LH

= L
(
p̃ããH + γI

)
LH , (14)

where L is the Cholesky factor of Γ (i.e. Γ = LLH ), ã =
L−1a√
aHΓ−1a

and p̃ = paHΓ−1a. Therefore, the optimization prob-
lem in (13) can be cast as

argmin
p̃,ã,γ

log |Py|+ tr
(
P̂yP

−1
y

)
. (15)

By using this reparameterization, we can make the estimation
of ã independent of the estimation of p̃ and γ. Therefore, the
joint estimation of these parameters can be decomposed into
two simpler estimation steps, as we will show below.

The first term in (15) can be rewritten as

log |Py| = log
∣∣L (

p̃ããH + γI
)
LH

∣∣
= log

(|L| (p̃ãH ã+ γ
)
γM−1

∣∣LH
∣∣)

= log (|Γ|) + log (p̃+ γ) + (M − 1) log (γ) , (16)

where we have used the fact that ãH ã = 1. The second term in
(15) can be rewritten as

tr
(
P̂yP

−1
y

)
= tr

(
P̂y

[
L
(
p̃ããH + γI

)
LH

]−1
)

= tr
(
P̂w

(
p̃ããH + γI

)−1
)

= tr

(
P̂w

(
γ−1I− γ−2p̃ããH

1 + γ−1p̃ãH ã

))

= tr
(
γ−1P̂w

)
− tr

(
γ−2p̃

1 + γ−1p̃
P̂wããH

)

= tr
(
γ−1P̂w

)
− γ−2p̃

1 + γ−1p̃
ãHP̂wã, (17)

where P̂w = L−1P̂yL
−H and the Sherman–Morrison for-

mula [33] is used to calculate (p̃ããH + γI)
−1

.
Substituting (16) and (17) in (15) and omitting the constant

irrelevant term log(|Γ|), the cost function from (13) can even-
tually thus be expressed in the following useful form,

argmin
p̃,ã,γ

log (p̃+ γ)
(
γM−1

)
+ tr

(
γ−1P̂w

)

− γ−2p̃

1 + γ−1p̃
ãHP̂wã. (18)

Since only the last term in (18) depends on ã and γ−2p̃
1+γ−1p̃ > 0,

the estimate of ã can be obtained by solving

argmax
ã

ãHP̂wã. (19)

The solution of (19) is known as the principal eigenvector of P̂w

and the optimum value of ãHP̂wã is the principal eigenvalue
λmax of P̂w.

Substituting the optimal ã from (19) in (18), we can find the
estimates of p̃ and γ by solving

argmin
p̃,γ

f = log
[
(p̃+ γ) γM−1

]
+ tr

(
γ−1P̂w

)

− γ−2p̃

1 + γ−1p̃
λmax. (20)

Taking the partial derivatives of the cost function in (20) w.r.t. p̃
and γ and setting them equal to zero, respectively, we obtain

∂f

∂γ
=

1

p̃+ γ
+

M − 1

γ
−

tr
(
L−1P̂yL

−H
)

γ2

+
p̃ (2γ + p̃)

(γ2 + γp̃)2
λmax = 0 (21)

and

∂f

∂p̃
=

1

p̃+ γ
− λmax

(γ + p̃)2
= 0. (22)

Solving (21) and (22) for p̃ and γ, we obtain
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ˆ̃p =
Mλmax − tr

(
P̂w

)
M − 1

, (23)

γ̂ =
tr
(
P̂w

)
− λmax

M − 1
. (24)

To show that (ˆ̃p, γ̂) is the minimum point of function f , we
derive its second order derivatives

∂2f

∂γ2
= − 1

(p̃+ γ)2
− M − 1

γ2
+

2tr
(
P̂w

)
γ3

+
2λmax

(−3γ2p̃− 3γp̃2 − p̃3
)

γ3(γ + p̃)3
, (25)

∂2f

∂γ∂p̃
= − 1

(p̃+ γ)2
+

2λmax

(γ + p̃)3
, (26)

∂2f

∂p̃2
= − 1

(p̃+ γ)2
+

2λmax

(γ + p̃)3
. (27)

At point (ˆ̃p, γ̂), we have

∂2f

∂γ2

∣∣∣∣
γ=γ̂

=
(M − 1)3(

tr
(
P̂w

)
− λmax

)2 +
1

(λmax)
2 > 0, (28)

∂2f

∂p̃2

∣∣∣∣
p̃=ˆ̃p

=
1

(λmax)
2 > 0, (29)

∂2f

∂γ2

∂2f

∂p̃2
−
(

∂2f

∂γ∂p̃

)2
∣∣∣∣∣γ= γ̂

p̃ = ˆ̃p

=
(M − 1)3/(λmax)

2

(
tr
(
P̂w

)
− λmax

)2 > 0.

(30)

Furthermore, we can show that ˆ̃p, γ̂ are both positive such that
they can be used as the estimates of p̃ and γ. Since P̂w is

a positive definite matrix, we have tr(P̂w)
M < λmax < tr(P̂w).

Hence from (23) and (24) it follows that ˆ̃p > 0 and γ̂ > 0.
Note that this examination of the Hessian matrix and ˆ̃p, γ̂ being
positive is absent in [16].

Finally, we obtain the optimal estimates of p and a using the
estimated ˆ̃p and ˆ̃a by setting

â = No
(
Lˆ̃a

)
(31)

and

p̂ =
ˆ̃p

âHΓ−1â
, (32)

where No(x) means taking normalization w.r.t. the first element
of x.

As mentioned in [16], the estimation of a is consistent with
the covariance whitening method [5], [14], while we provided
an alternative proof that this estimate equals the MLE of a. More
specifically, the proof in [16] with respect to the estimation of
the PSDs does not include the examination of the Hessian matrix
and the estimates of the PSDs being positive. This examination
of the Hessian matrix being positive definite is necessary, since
setting the partial derivative to zero does not give us the optimal

estimate when the Hessian matrix is not positive definite. Also,
the examination of estimates of the PSDs being positive is
necessary, since the PSDs should always be positive. Moreover,
The proof in [16] is based on the proportion of the likelihood
function, which makes it difficult to analyze the cost function
for multiple time frames. While, in this work, our proof is based
on the likelihood function itself and the extension to multiple
time frames is straightforward.

B. Joint MLE for Multiple Time Frames

In the previous subsection we considered the joint MLE for
p, γ and a given a single time frame. As a is assumed to stay
fixed across multiple frames in a segment, we consider in this
subsection the joint ML optimal estimates of p(i), γ(i) for i =
1, . . . , N and a using all time-frames in a segment.

Assuming that the N time frames are independent, we can
write the negative log likelihood function of the STFT coeffi-
cients as

L = −
N∑
i=1

Tsf

[
log |Py(i)|+ tr

(
P̂y(i)P

−1
y (i)

)]
, (33)

where non-essential constant terms have been omitted. The joint
MLEs for p(i), γ(i)∀i = 1, . . . , N and a are the solution to the
optimization problem

argmin
p(i),a,γ(i)

N∑
i=1

log |Py(i)|+ tr
(
P̂y(i)P

−1
y (i)

)
. (34)

By reparameterizing the signal model in a similar way as
in the previous subsection, i.e., using ã = L−1a√

aHΓ−1a
and p̃ =

paHΓ−1a, the CPSD matrix for each time frame i has the form

Py(i) = L
(
p̃(i)ããH + γ(i)I

)
LH , (35)

and the optimization problem in (34) can be cast as

argmin
p̃(i),ã,γ(i)

N∑
i=1

log |Py(i)|+ tr
(
P̂y(i)P

−1
y (i)

)
. (36)

Substituting (16) and (17) in (36) and omitting the irrelevant
constant terms, the cost function can be expressed as

argmin
p̃(i),ã,γ(i)

N∑
i=1

log
[
(p̃(i) + γ(i))

(
γ(i)M−1

)]

+ tr
(
γ(i)−1P̂w(i)

)

− γ(i)−2p̃(i)

1 + γ(i)−1p̃(i)
ãHP̂w(i)ã, (37)

where similar manipulations have been carried out as in (18).
To estimate ã, we can focus on the last term of (37). Hence,

the estimation of ã is the solution of the following optimization
problem

argmax
ã

N∑
i=1

(
p̃(i)

γ(i) + p̃(i)

1

γ(i)
ãHP̂w(i)ã

)
, (38)
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which is the principal eigenvector of the matrix

N∑
i=1

p̃(i)

γ(i) + p̃(i)

1

γ(i)
P̂w(i). (39)

Note that unlike the estimation of ã in a single time frame
case where the estimate is the principal eigenvector of P̂w, the
estimate is now the principal eigenvector of a weighted sum of
the whitened CPSD matrices for all time frames and the weights
depend on the estimation of p̃(i) and γ(i) for i = 1, . . . , N .
Therefore, a closed form solution to (38) does not exist and we
propose a recursive estimation approach.

For the first step, we estimate the parameters for each time
frame independently using the method proposed in Section II-
I-A. In this case, we will obtain N different estimates of the
RTF vector, say, ˆ̃a(i), which is the principal eigenvector of
L−1P̂y(i)L

−H per frame i. Given ˆ̃a(i) for a single frame i, the
estimates of p̃(i) and γ(i) are obviously identical to expressions
in (23) and (24), that is,

ˆ̃p(i) =
Mλmax(i)− tr

(
P̂w(i)

)
M − 1

, (40)

γ̂(i) =
tr
(
P̂w(i)

)
− λmax(i)

M − 1
, (41)

where λmax(i) is the principal eigenvalue of P̂w(i).
For the second step, we use the initial estimates of p̃(i) and

γ(i) to calculate the matrix in (39) and then use its principal
eigenvector as the estimate of the RTF vector ˆ̃a. Next, we use
the estimated ˆ̃a in (37) and find new update estimates of p̃(i) and
γ(i) based on the estimate ˆ̃a which was found using the joint
information across all time frames in a segment. That is,

ˆ̃p(i) =
M ˆ̃a

H
P̂w(i)ˆ̃a− tr

(
P̂w(i)

)
M − 1

(42)

and

γ̂(i) =
tr
(
P̂w(i)

)
− ˆ̃a

H
P̂w(i)ˆ̃a

M − 1
. (43)

Note that ˆ̃a
H
P̂w(i)ˆ̃a ≤ λmax(i) < tr(P̂w(i)), hence γ̂(i) > 0.

But ˆ̃p(i) in (42) can become negative. We replace these negative
values using the initial estimates from (40) and store their
corresponding time frame indices as index set G, which will
not be included when calculating the weighted sum in (39) to
estimate the RTF vector in the next step.

In the remaining steps, we repeat the second step until the

relative change of ˆ̃a
H
P̂w(i)ˆ̃a between the current iteration and

the last iteration does not exceed a certain number ε, or a certain
number of iterations has been executed.

C. Robust Parameter Estimation

In [18], it has been shown that linear inequality constraints on
the parameters of interest can be used to improve the robustness
of the estimation. Herein, we introduce these constraints on the

RTF, the PSD of source and the PSD of the late reverberation.
Note that, after obtaining estimates in each step of our proposed
method, we can project the estimates into the constraint inter-
vals introduced below. These constraints can effectively avoid
large underestimation or overestimation errors and therefore can
improve the robustness of our proposed joint MLE for multiple
time frames.

1) Constraints for the RTFs: Considering only the direct path
component, the anechoic acoustic transfer function (ATF) has
the following equation [34]

āi =
1

4πdi
exp

(
−j2πkdi

Kc

)
, (44)

where c denotes the sound speed, K is the FFT length and di is
the distance between the source and the ith microphone (di > 0).
The RTF in the kth frequency bin is then given by (with the first
microphone selected as the reference microphone)

ai(k) =
d1
di

exp

(
−j2πk(di − d1)

Kc

)
. (45)

Using (45), for any frequency bin, a tight bound for both the real
and imaginary parts of ai is given by

−d1
di

≤ � (ai) ,� (ai) ≤ d1
di

. (46)

When not only the direct path component but also the early
reflections are considered, the RTF value might exceed the tight
bound above and we need to use a looser bound. Observing d1 ≤
d1,i + di (d1,i is the distance between the first microphone and
the ith microphone) and assuming di ≥ dmax (i.e. the distance
between the source and each microphone is not smaller than a
given small value dmax), a looser bound for RTFs is

−d1,i + dmax

dmax
≤ � (ai) ,� (ai) ≤ d1,i + dmax

dmax
. (47)

Note that after obtaining ˆ̃a at each step in our proposed method,
we first normalize it with its first element to estimate the RTF
vector â and then project the estimated RTF vector into the
interval [−d1,i+dmax

dmax
,
d1,i+dmax

dmax
]. Finally, we calculate the repa-

rameterized vector using ˆ̃a = L−1â√
âHΓ−1â

.
2) Constraints for the Source PSDs: In (9), using the fact

that a1 = 1 and Γ1,1 = 1, we have

Py1,1(i) = p(i) + γ(i). (48)

Hence, an upper bound for p(i), by using a prefixed constant δ
(with δ ≥ 1), is found as

p(i) ≤ δPy1,1(i)− γ(i), (49)

and the upper bound for the reparametrized parameter p̃(i, k) is

p̃(i) ≤
[
δPy1,1(i)− γ(i)

]
aHΓ−1a. (50)

3) Constraints for the Late Reverberation PSDs: As shown
in [18], the following constraints can be applied to ensure better
speech intelligibility performance by reducing overestimation
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errors on the PSD of the late reverberation [3], [35]

γ ≤ min [diag (Py(i))] . (51)

Since Γm,m = 1 for m = 1, . . . ,M , we have

Pym,m(i) = p(i)amaHm + γ(i), (52)

wherep(i)amam
H is positive. Hence we havePym,m(i) ≥ γ(i)

for all m and (51) holds.

IV. EXPERIMENTS

In this section, we evaluate the estimation performance of the
proposed methods as well as the performance on noise reduction,
speech quality and speech intelligibility. We will first intro-
duce the reference methods in Section IV-A and the evaluation
metrics in Section IV-B. Then, in Section IV-C, we consider
a static source scenario and use the simulated room impulse
responses (RIRs) to construct the microphone signals. At last,
in Section IV-D, we consider both the static source scenario and
the source-moving scenario and use the RIRs recorded in real
life from [36].

A. Reference Methods

1) Combination of Existing Methods: The first reference
method we consider utilizes several existing methods [2], [13],
[14] to estimate the PSD of the late reverberation, the RTF
vector and the PSD of the source successively. First, by assum-
ing a noiseless or high SNR scenario, we use the eigenvalue
decomposition-based method proposed in [2] to estimate the
PSD of the late reverberation. With this estimate, we use the
covariance whitening method in [14] to estimate the RTF vector.
Finally, we use the method proposed in [13] to estimate the PSD
of the source. Note that although this reference method is a com-
bination of existing state-of-the-art methods, this combination
has the same estimation steps as the joint MLE estimator for a
single time frame presented in Section III-A. Note also that this
reference method only considers using the CPSD matrix for a
single time frame. Therefore, when dealing with multiple time
frames in one time segment, we can either use it to estimate
parameters for all time frames independently or averaging the
CPSD matrices for all time frames in a time segment and
use it to estimate parameters with this averaged CPSD matrix.
For convenience, we refer to this first case as ‘Ref1’ and the
second case as ‘Ref2’ in each figure.

2) Simultaneous Confirmatory Factor Analysis: The re-
cently published method in [18] is also used for comparison
in all the experiments. This method is based on confirmatory
factor analysis (CFA) and non-orthogonal joint diagonalization
principles and, hence, is called the simultaneous confirmatory
factor analysis (SCFA) method. Note that the SCFA method
is very accurate and can estimate the RTF matrix, the PSDs
of the early components of the sources, the PSD of the late
reverberation, and the PSDs of the microphone-self noise jointly,
but, also has high computational complexity. With the SCFA
method, the parameters estimation problem is modelled as the

following optimization problem

p̂(i), â

γ̂(i), P̂v
= argmin

p(i),a
γ(i),Pv

N∑
i=1

log |Py(i)|+ tr
(
P̂y(i)P

−1
y (i)

)

s.t. Py(i) = Pe(i) +Pl(i) +Pv

(53)

where Pe(i), Pl(i) and Pv are defined in (5), (6), and (8),
respectively. This problem is not a convex problem and the
computational complexity is high. In [18], the problem is solved
iteratively and the fmincon procedure in the standard MATLAB
optimization toolbox is used to decrease the value of the cost
function in (53) for each iteration. The iteration terminates if a
given estimation accuracy is achieved or the iteration number
exceeds a certain number.

Although the SCFA method can estimate the RTF matrix
and the PSDs jointly, it is computationally not efficient and
sometimes may have a wrong estimate because it deals with
a non-convex problem and does not assure a global optimal so-
lution. Therefore, a set of “box constraints” is proposed in [18] to
improve the robustness of the SCFA method. In our experiments,
we used the same constraints as in (27), (38), (39) and (40)
in [18].

B. Evaluation Metrics

In all the experiments, three types of performance comparison
between the proposed method and the reference methods are
presented. We first compare the estimation error of the parame-
ters of interest. For the RTF vector, we use the Hermitian angle
measure (in rad) [37] which is averaged over all frequency bins
and time segments

Ea =

B∑
β=1

K/2+1∑
k=1

acos

( |a(β,k)H â(β,k)|
‖a(β,k)‖2‖â(β,k)‖2

)

B (K/2 + 1)
. (54)

For the PSDs of the source and the late reverberation, we use
the averaged error (in dB)

Es =

10
B∑

β=1

N∑
i=1

K/2+1∑
k=1

∣∣∣log (p(i,k)
p̂(i,k)

)∣∣∣
BN (K/2 + 1)

(55)

and

Eγ =

10
B∑

β=1

N∑
i=1

K/2+1∑
k=1

∣∣∣log (γ(i,k)
γ̂(i,k)

)∣∣∣
BN (K/2 + 1)

, (56)

where | · | denotes taking the absolute value in (54) to (56).
Then, we provide the speech intelligibility and quality com-

parison among the estimated sources constructed using param-
eters that are obtained by different methods. That is, we use
estimated parameters to calculate the following multi-channel

Authorized licensed use limited to: TU Delft Library. Downloaded on January 20,2023 at 09:00:57 UTC from IEEE Xplore.  Restrictions apply. 



702 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 31, 2023

Fig. 2. Top view of the acoustic scene. The red circle denotes the source. The
cross in the center denotes the set of microphones. A zoom-in of that set of four
microphones is provided in the little square.

Wiener filter (MWF)

ŵ =
p̂

p̂+ ŵH
MVDRR̂nnŵMVDR

ŵMVDR, (57)

where wMVDR is the minimum variance distortionless response
(MVDR) beamformer [38]

ŵMVDR =
R̂−1

nnâ

âHR̂−1
nnâ

, (58)

and

R̂nn = γ̂Γ̂. (59)

Note that Γ̂ is calculated by (7) for all methods by assuming the
distance between each microphone pair is known. For the SCFA
method, we set R̂nn = γ̂Γ̂+ P̂v , since SCFA can provide an
estimate of the PSD of the microphone self noise.

After reconstructing the estimated sources, we use the seg-
mental signal-to-noise-ratio (SSNR) [39] to measure the noise
reduction performance. In addition, we compare the speech
intelligibility performance using the speech intelligibility in bits
(SIIB) measure [40], [41]. The speech-to-reverberation modula-
tion energy ratio (SRMR) measure [42] is also calculated in each
scenario to demonstrate the speech quality and intelligibility of
all reconstructed sources.

Finally, we compare the computation time between our pro-
posed method and the reference methods.

C. Experiments With Simulated RIRs

1) Setup: To simulate room impulse responses from source
to microphones, we use the image source method [34]. The
four microphone signals are then constructed by convolving the
speech source (with a duration of 35 s) with each of the four
room impulse responses corresponding to each microphone.
The positions of four microphones and the position of the
source are shown in Fig. 2, and the dimensions of the simulated
room are set to 7 × 5 × 4 m. Since we used the SCFA method
as a reference method, the parameters used in the experiments
are similar to those used in [18]. Subsequently, microphone
self-noise is simulated by adding realizations of a zero-mean

Fig. 3. Performance vs the number of time frames.

uncorrelated Gaussian process with variance σ2
v , such that the

SNR per microphone due to the self-noise is equal to the values
as specified in each figure. Note that since we consider only
the microphone self-noise, the noise energy is relatively low
resulting in large SNR values of about 50 dB. The sampling fre-
quency is fs = 16 kHz. Per sub-time frame, the sampled noisy
microphone signals are converted to the frequency domain using
the STFT procedure, where the sub-time frames are windowed
with a square-root Hann window with a length of 512 samples
(i.e. 32 ms) and an overlap of 50% between sub-time frames.
The true RTF is set to the early reflections of the room impulse
response, which is set here as the 512-length FFT of the first 512
samples of the room impulse responses, as this equals the early
part (first 32 ms) of the impulse response that falls within a single
sub-frame. Each time frame consists ofNs = 40 overlapped sub
frames. The prefixed parameters are δ = 1.1 and dmax = 0.02
(i.e. the distance between each microphone and the source is
larger than 0.02 m).

2) Results: In Fig. 3, we fix the reverberation time T60 at
1 s and obtain noisy speech with the SNR fixed at 50 dB. We
change the number of time frames in a time segment from 1 to
8. The CPSD matrix of the microphone self noise is subtracted
from the noisy CPSD matrix for JMLE, Ref1 and Ref2 in this
scenario. The performance comparison among JMLE and the
other three reference methods is shown in Fig. 3 as the number
of time frames used in each time segment changes from 1 to

Authorized licensed use limited to: TU Delft Library. Downloaded on January 20,2023 at 09:00:57 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: JOINT MAXIMUM LIKELIHOOD ESTIMATION OF MICROPHONE ARRAY PARAMETERS 703

Fig. 4. Setup for the real RIRs.

8. When using only one time frame, JMLE, Ref1 and Ref2
have exactly the same estimates of the RTF and the PSDs
of the source and the late reverberation as expected and their
estimation performance is better than SCFA. When the number
of time frames in a time segment increases, the RTF estimation
performance for Ref1 nearly does not change since this method
always uses each time frame independently and does not use the
prior information that the RTF is constant for all time frames
in a time segment. However, for JMLE, SCFA and Ref2, the
estimation error of the RTF decreases with the increase of the
number of time frames in a time segment. For a larger number of
time frames, i.e. a longer segment, among these three methods,
JMLE and SCFA have similar performance, and both notably
outperform Ref2. The PSD estimation performance for JMLE,
SCFA and Ref1 does not change much since the PSDs can
differ time-frame by time-frame. However, the PSD estimation
performance for Ref2 decreases when the number of time frames
increases because Ref2 assumes the source is stationary during
a time segment, which is mostly not true in a practical scene.
For the noise reduction performance and the speech quality and
intelligibility performance, we can see that JMLE and SCFA
have larger SSNR, SIIB and SRMR values compared to the other
two reference methods in most cases.

D. Experiments With Recorded RIRs

The performance of all methods is now compared using
recorded room impulse responses from [36]. The reverberation
time of the RIRs include 0.36 s and 0.61 s. The positions of the
microphones and the position of the source used to record the
impulse responses are shown in Fig. 4. The source is placed at a
distance of 2 m from the center of the uniform linear microphone
array which has inter-distances of 8 cm. Although the angles of
the source include {−90◦,−75◦, . . . , 90◦} in [36], we use only
{0◦, 15◦, 30◦, 45◦, 60◦} in this work. We will first consider a
static source scenario and evaluate the performance for various
SNR values. Then, we will show the influence on the estimation
performance of all methods when the source position changes
at specific moments.

1) Static Source: For the static source scenario, we use the
RIRs for the source position fixed at 0◦ and the reverberation
time of 0.61 s. We obtain noisy speech with the SNR simulating
the microphone self noise ranging from 10 dB to 50 dB. Notice
that realistic values for microphone self noise are in the order of
40 to 50 dB. Each time segment contains 8 time frames. Note

Fig. 5. Performance vs SNR.

TABLE I
COMPUTATION TIME COMPARISON

that in this scenario, the prior information of the microphone
self noise is used by none of the methods and for JMLE, Ref1
and Ref2, we simply ignore the microphone self noise and use
the CPSD matrix of the noisy signal directly.

The performance comparison among JMLE and the other
three reference methods is shown in Fig. 5 as the SNR increases
from 10 dB to 50 dB. As shown in Fig. 5, JMLE and SCFA
outperform Ref1 in the RTF estimation performance and outper-
form Ref2 in the PSDs estimation performance (of the source and
the late reverberation). As the SNR becomes larger, all methods
have both better RTF and PSD estimation performance. How-
ever, JMLE shows the most significant improvement compared
to the other methods. For the noise reduction performance and
the speech quality and intelligibility performance, JMLE and
SCFA still outperform the other two reference methods.

In Table I we show the normalized computation time com-
parison among all methods, where we have averaged the run
time over all cases for each method. As expected, SCFA needs
significantly more time compared to the other three methods.
The computational cost of the proposed method using multiple
time frames mainly comes from the calculation of the eigenvalue
decomposition of an M ×M matrix in each iteration, which
has a complexity of order M3. The total complexity order
is thus (N +Ni)M

3 with one initial step and Ni iterative
steps. Similarly, for Ref1, its complexity order is NM3 with
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Fig. 6. Performance vs time segments (TS) with the reverberation time 0.36 s.

N the number of time frames in a time segment. For Ref2, its
complexity order is M3. Therefore, the time cost ratio among
JMLE, Ref1 and Ref2 is Ni +N : N : 1 = 18 : 8 : 1, which is
similar to the real averaged run time ratio in Table I. Note that the
proposed method using multiple time frames can be initialized
by either Ref1 or Ref2. In this work, we present only using Ref1
as the initialization step. If the Ref2 is used as the initialization,
the complexity order of JMLE will be (Ni + 1)M3.

2) Moving Source: For the moving source scenario, we place
the source at 0◦ and change the position to 60◦ in steps of 15◦

every 7 s. Since each time frame contains 40 sub-time frames of
32 ms taken with 50% overlap and each time segment contains
8 time frames, the time segment duration is about 5.12 s. The
35 s speech is divided into 6 complete time segments (the last
incomplete time segment is not used). Only the microphone
signals during the first and the fourth time segments are received
from a single source position. In all other segments, the source
position changes during the segment. We evaluate the estimation
performance of all methods for per time segment.

In Fig. 6, the reverberation time is 0.36 s. For comparison, we
show the estimation performance of all methods when the source
position is fixed at 0◦ in Fig. 6(a), 6(c) and 6(e). As shown, the
estimation performance of all methods does not change much
for different time segments, except the poor PSDs estimation
performance of the Ref2 method. In Fig. 6(b), 6(d) and 6(f),
we show the estimation performance of all methods when the
source position is moved from 0◦ to 60◦ by 15◦ every 7 s.
The vertical dashed lines in these figures denote the time point
when the source position is changed. As shown, the estimation
performance during the first and the fourth time segments is best

among others for the methods using multi-time frames in their
estimation as during these time segments, the source position
is fixed while during other time segments the source position
is changed. The RTF estimation performance is influenced the
most while the late reverberation PSD estimation performance
is influenced the least by source position change. The reason is
that the RTF contains information on the source position, while
the late reverberation can be considered as a diffuse noise field.
For the Ref1 method, its estimation performance is not affected
much since it estimates the parameters frame by frame instead
of segment by segment and only four time frames are affected
by source position change.

V. CONCLUDING REMARKS

We considered the problem of estimating the RTFs, the PSDs
of the source and the PSDs of the late reverberation jointly for
a single source scenario. We first proposed a joint maximum
likelihood estimator (JMLE) using a single time frame, which
has a closed form solution and can be solved efficiently. Then, we
proposed a joint MLE using multiple time frames that share the
same RTF and achieved similar estimation accuracy, together
with the performance of noise reduction, speech quality and
speech intelligibility, compared to the SCFA method, which
both outperform the other reference methods combining several
existing state-of-the-art methods. Moreover, it is also shown that
the proposed JMLE for multiple time frames has a much lower
computational complexity than that of the SCFA method.

To constrain the scope of this work, the focus of this work was
on a single source in a reverberant environment. Understanding
the single source scenario in future work, we will extend this
work in combination with recent results [19] towards the multi-
source formulation.
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[1] A. Kuklasiński, S. Doclo, S. H. Jensen, and J. Jensen, “Maximum like-
lihood PSD estimation for speech enhancement in reverberation and
noise,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 24, no. 9,
pp. 1599–1612, Sep. 2016.

[2] I. Kodrasi and S. Doclo, “Analysis of eigenvalue decomposition-based late
reverberation power spectral density estimation,” IEEE/ACM Trans. Audio
Speech Lang. Process., vol. 26, no. 6, pp. 1106–1118, Jun. 2018.

[3] S. Braun et al., “Evaluation and comparison of late reverberation power
spectral density estimators,” IEEE/ACM Trans. Audio Speech Lang. Pro-
cess., vol. 26, no. 6, pp. 1056–1071, Jun. 2018.

[4] O. Schwartz, S. Gannot, and E. A. P. Habets, “Joint estimation of late
reverberant and speech power spectral densities in noisy environments
using frobenius norm,” in Proc. IEEE 24th Eur. Signal Process. Conf.,
2016, pp. 1123–1127.

[5] S. Markovich, S. Gannot, and I. Cohen, “Multichannel eigenspace beam-
forming in a reverberant noisy environment with multiple interfering
speech signals,” IEEE Trans. Audio, Speech, Lang. Process., vol. 17, no. 6,
pp. 1071–1086, Aug. 2009.

[6] A. I. Koutrouvelis, R. C. Hendriks, R. Heusdens, and J. Jensen, “Relaxed
binaural LCMV beamforming,” IEEE/ACM Trans. Audio Speech Lang.
Process., vol. 25, no. 1, pp. 137–152, Jan. 2017.

[7] J. Zhang, S. P. Chepuri, R. C. Hendriks, and R. Heusdens, “Micro-
phone subset selection for MVDR beamformer based noise reduc-
tion,” IEEE/ACM Trans. Audio Speech Lang. Process., vol. 26, no. 3,
pp. 550–563, Mar. 2018.

[8] A. I. Koutrouvelis, T. W. Sherson, R. Heusdens, and R. C. Hendriks, “A
low-cost robust distributed linearly constrained beamformer for wireless
acoustic sensor networks with arbitrary topology,” IEEE/ACM Trans.
Audio Speech Lang. Process., vol. 26, no. 8, pp. 1434–1448, Aug. 2018.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 20,2023 at 09:00:57 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: JOINT MAXIMUM LIKELIHOOD ESTIMATION OF MICROPHONE ARRAY PARAMETERS 705

[9] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, “A
blind source separation technique using second-order statistics,” IEEE
Trans. Signal Process., vol. 45, no. 2, pp. 434–444, Feb. 1997.

[10] L. Parra and C. Spence, “Convolutive blind separation of non-stationary
sources,” IEEE Speech Audio Process., vol. 8, no. 3, pp. 320–327,
May 2000.

[11] R. Mukai, H. Sawada, S. Araki, and S. Makino, “Frequency-domain blind
source separation of many speech signals using near-field and far-field
models,” EURASIP J. Adv. Signal Process., vol. 2006, pp. 1–13, 2006.

[12] M. Farmani, M. S. Pedersen, Z.-H. Tan, and J. Jensen, “Informed sound
source localization using relative transfer functions for hearing aid appli-
cations,” IEEE/ACM Trans. Audio Speech Lang. Process., vol. 25, no. 3,
pp. 611–623, Mar. 2017.
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