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RAST: Risk-Aware Spatio-Temporal Safety
Corridors for MAV Navigation in Dynamic

Uncertain Environments
Gang Chen , Siyuan Wu , Moji Shi , Graduate Student Member, IEEE, Wei Dong , Member, IEEE,

Hai Zhu , and Javier Alonso-Mora , Senior Member, IEEE

Abstract—Autonomous navigation of Micro Aerial Vehicles
(MAVs) in dynamic and unknown environments is a complex and
challenging task. Current works rely on assumptions to solve the
problem. The MAV’s pose is precisely known, the dynamic obsta-
cles can be explicitly segmented from static ones, their number is
known and fixed, or they can be modeled with given shapes. In
this letter, we present a method for MAV navigation in dynamic
uncertain environments without making any of these assumptions.
The method employs a particle-based dynamic map to represent the
local environment and predicts it to the near future. Collision risk
is defined based on the predicted maps and a series of risk-aware
spatio-temporal (RAST) safety corridors are constructed, which
are finally used to optimize a dynamically-feasible collision-free
trajectory for the MAV. We compared our method with several
state-of-the-art works in 12000 simulation tests in Gazebo with the
physical engine enabled. The results show that our method has
the highest success rate at different uncertainty levels. Finally, we
validated the proposed method in real experiments.

Index Terms—Aerial systems, collision avoidance, motion and
path planning, perception and autonomy.

I. INTRODUCTION

AUTONOMOUS navigation of micro aerial vehicles
(MAVs) in complex, dynamic, and unknown environments

has drawn significant attention in recent years, yet it remains an
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Fig. 1. Autonomous MAV navigation using our risk-aware spatio-temporal
(RAST) safety corridors in a dynamic environment. The safety corridors are
shown with semi-transparent green cuboids and the flight trajectory is illustrated
by a white curve.

open problem due to many challenges [1]. These challenges in-
clude collision avoidance with both complex static obstacles and
an unknown number of dynamic obstacles in the environment,
and dealing with uncertainties arising from the MAV’s noisy
obstacle sensing and inaccurate localization.

To tackle these challenges, existing methods for the prob-
lem typically make one or more assumptions. For example, a
popular pipeline for autonomous flight of MAVs is to use an
occupancy grid map [2] to represent the complex environment,
then construct a safe flight corridor [3] in it and finally op-
timize a collision-free trajectory within the safe corridor [4],
[5]. However, these methods assume the environment is static.
Other works that consider dynamic obstacles typically assume
that they can be explicitly segmented from static obstacles [6],
their number is known and fixed [7], or they can be modeled
with given shapes, e.g. ellipsoids [8], [9] and polytopes [10].
However, these assumptions can hardly be satisfied in many
real-world scenarios, where an unknown number of arbitrarily-
shaped dynamic or static obstacles can appear, and the MAV’s
sensing and localization contain non-negligible noise.

In this letter, we present a method for autonomous navigation
of MAVs in dynamic uncertain environments without making
any of the above assumptions. The novelty of our method is to
construct risk-aware spatio-temporal (RAST) safety corridors
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See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 20,2023 at 14:51:37 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-0124-2752
https://orcid.org/0000-0003-1487-1571
https://orcid.org/0000-0003-1274-654X
https://orcid.org/0000-0003-2640-1585
https://orcid.org/0000-0002-9780-5053
https://orcid.org/0000-0003-0058-570X
mailto:chg947089399@sjtu.edu.cn
mailto:siyuanwu99@gmail.com
mailto:m.shi-5@student.tudelft.nl
mailto:h.zhu@tudelft.nl
mailto:j.alonsomora@tudelft.nl
mailto:dr.dongwei@sjtu.edu.cn


CHEN et al.: RAST: RISK-AWARE SPATIO-TEMPORAL SAFETY CORRIDORS FOR MAV NAVIGATION IN DYNAMIC UNCERTAIN ENVIRONMENTS 809

from a particle-based map, which takes obstacle sensing and lo-
calization uncertainties into account. Specifically, first, the dual-
structure particle-based (DSP) map [11] is adopted to represent
the environment. The map can model arbitrarily-shaped static
and dynamic obstacles simultaneously with particles and in-
herently considers the MAV’s environment measurement noise.
We then predict the map to the near future taking into account
the MAV’s localization uncertainty and define a risk metric to
evaluate the collision risk of any region in the map. Based on
this information, we generate the RAST safety corridors for the
MAV, as shown by the green cuboids in Fig. 1. Unlike the safety
corridors developed in previous works that guarantee a free
space in static environments [3], [12], [13], our RAST safety
corridors guarantee that the risk of staying inside the corridors
during a future time interval is lower than a specified threshold.
With the RAST safety corridors as constraints, we solve a
quadratic programming (QP) problem to find a collision-free
and dynamically-feasible trajectory for the MAV.

The main contributions of this letter are:
1) A method for autonomous flight of MAVs in dynamic

uncertain environments without making specific assump-
tions on the obstacles.

2) An approach to construct RAST safety corridors from
a particle-based map representation that considers the
MAV’s obstacle sensing and localization uncertainties.

3) We validate our approach and compare it to state-of-the-
art approaches in extensive tests under different levels of
uncertainty.

In addition, the source code of this letter, including environ-
ment mapping, trajectory planning, and execution is released at
https://github.com/tud-amr/RAST_corridor_planning.

II. RELATED WORK

A. Obstacle Avoidance in Dynamic Environments

Obstacle avoidance in dynamic environments requires pre-
dictions of the future states of dynamic obstacles, where the
environment representation plays an important role. [8] uses
depth images to detect and track dynamic obstacles and assume
that they can be modeled with ellipsoids whose shapes are known
and positions are Gaussian distributed. Collision avoidance tra-
jectories are optimized via chance-constrained model predictive
control [7]. In [6], [9] and [14], complex static obstacles are also
considered and are modeled by a local voxel map separately [15].
Then a sampling-based [9] or optimization-based [6], [14] plan-
ner is used to plan trajectories for the MAV to avoid both static
and dynamic obstacles. However, these works also assume that
the dynamic obstacles have certain shapes such as cylinders or
ellipsoids. To represent arbitrarily-shaped static and dynamic
obstacles, researchers in [16] use the DSP map [11] to model
all obstacles with particles. Then a sampling-based planner is
used to search for a trajectory curve with a low collision cost.
However, the method was discrete and localization uncertainty
was not considered In the above works, one or more assumptions
are made to reduce uncertainties and solve the problem (as
discussed in Section I). Learning-based methods [17], [18],
[19] can cope with uncertainties implicitly by using raw sensor

data as input and letting the network learn the control policy.
However, generalizing the learned models to various scenarios
is challenging. An explicit method that tackles uncertainties
without relying on those specific assumptions is hence required.

B. Autonomous Navigation With Safety Corridors

Safety corridors for MAV navigation originated from [20] a
decade ago and were proposed to represent the free space with
convex hulls. Since they are represented by linear constraints,
trajectory optimization with safety corridors is computationally
efficient. The common pipeline to build safety corridors is first
to search for a collision-free reference path in the map and then
expand convex hulls along with it. In [12] searches a reference
path with the A* algorithm in the Octomap [2] and generates
corridors from the nodes of the path. Corridors are expressed
in the voxel form. To include more free space in the safety
corridor, [3] utilizes convex polyhedra generated from ellipsoids
to express the corridors and turns the optimization problem into
a QP problem. The reference path is searched with the Jump
Point Search algorithm [21]. In [13], the reference path is given
by a human operator’s flight path, which is designed to follow
the intention of the human operator. These safety corridors
are constructed for static environments. To deal with dynamic
environments, [22] builds spatio-temporal safety corridors, but
the number and shapes of dynamic obstacles are assumed to be
known. Spatio-temporal safety corridors have been employed
in the autonomous driving field, by using axis-aligned bounding
boxes along the reference trajectories to avoid obstacles [23],
by building semantic corridors to handle both obstacles and
traffic signals [24], or by leveraging S-T graph-based [25] and
vertical cell decomposition [26] methods. Compared to these
works, which consider deterministic obstacles, our corridor is
computed in 3D space and considers risk. This letter investigates
risk-aware safety corridors to cope with uncertainties in dynamic
environments and realize efficient trajectory optimization.

III. SYSTEM OVERVIEW

The structure of our system is shown in Fig. 2. The major
modules include:

(a) DSP map building: We provide a brief introduction
to the DSP map in Section IV-A. The DSP map is able to
represent arbitrarily-shaped static and dynamic obstacles with
particles and takes measurement uncertainty into account. In
this letter, we further consider the localization uncertainty of the
MAV when predicting the map to the near future for trajectory
planning. By propagating the particles in the map, we can predict
the collision risk of any region in the map during a given future
time interval.

(b) RAST safety corridor generation: We employ a risk-
aware kino-dynamic A* algorithm to search for a piece-wise
reference path, which is then used to initialize and expand
the RAST safety corridors. Fig. 2(b) illustrates the predicted
risk of different regions in three future time intervals and the
corresponding RAST safety corridors.

(c) Trajectory optimization: Taking the RAST safety cor-
ridors as constraints, we can optimize a flight trajectory by
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Fig. 2. System structure. The system consists of three modules: (a) DSP map; (b) RAST safety corridor generation; and (c) trajectory optimization. Black arrows
show the procedures that our system take from input data with uncertainties to output trajectory. Plots in the blue box in (a) visualize the relationship between
obstacles and point objects. The point objects form an RFS. The PHD of the RFS is estimated with particles in the SMC-PHD filter. Red ellipses outline a pedestrian.
Plots in the blue box in (b) visualize the defined risk with risk maps in three time intervals, which are t0 − t1, t1 − t2, and t2 − t3. In each risk map of a time
interval, the map space is divided into many voxel subspaces. The higher brightness of the voxel corresponds to a larger risk. The ground is painted gray. Red
ellipses outline the region with risk caused by a pedestrian. The pedestrian has a downside velocity, and thus the red ellipse moves down as the time increases.
The RAST safety corridors are shown with semi-transparent green cuboids. The yellow path in each corridor presents a piece of the reference path searched with
the risk-aware kino-dynamic A* algorithm. Three safety corridors are constructed for t0 − t3 in the figure and are shown together in a voxelized DSP map of the
current time (t0). (c) shows an optimized trajectory where the blue point is the start point, and the red point is the end point. The optimized trajectory is sent to a
PID trajectory tracker to control the MAV.

solving a QP problem. The optimized trajectory is finally sent
to a trajectory tracker to control the MAV.

IV. METHODS

We start by briefly introducing the DSP map based on our
previous work [11]. Then, we present the method to utilize this
map for MAV trajectory planning via the proposed RAST safety
corridors.

A. DSP Map Building

The DSP map [11] is an egocentric local map that can rep-
resent arbitrarily-shaped static and dynamic obstacles in the
environment and is built upon the random finite set (RFS)
theory [27]. The RFS is defined as a set that has a random
but finite number of elements, whose states are also random
and finite. In the DSP map, obstacles are represented by many
point objects, as illustrated by the green points in Fig. 2(a).
Let xt0 = [pt0 ,vt0 ]

T ∈ R6 be the state of a point object at
the current time t0, which includes its position pt0 ∈ R3 and
velocity vt0 ∈ R3. All the point objects in the map space form

a set Xt0 = {x(1)
t0

,x
(2)
t0

, . . . ,x
(K)
t0

}, where K ≥ 0 is the total
number of point objects. Since the obstacles are unknown, K

andx(k)
t0

, ∀k ∈ {1, 2, . . . ,K} are random. Meanwhile, They are
finite because the map is a local map with a limited range.
Therefore, Xt0 is an RFS.

Instead of estimating the state of each point object, the DSP
map estimates the probability hypothesis density (PHD) [27] of
the RFS Xt0 during its construction process. Denote byDXt0

the
PHD of Xt0 . It is the first-order moment of Xt0 that describes the
density of the hypotheses with different states xt0 ∈ Xt0 . The
estimation of DXt0

is realized by a sequential Monte Carlo PHD
(SMC-PHD) filter [28], where numerous particles are predicted
and updated iteratively to estimate DXt0

. The input of the SMC-
PHD filter includes two channels of data, as shown in the top
right of Fig. 2(a). One is the point cloud data from a depth
camera which is used in the update procedure. The other is the
localization data from the MAV visual odometry which is used
in the prediction procedure. The output of the DSP map is a
set of nt0 particles. Each particle i ∈ {1, . . . , nt0} has a weight

w
(i)
t0

and a state x̃(i)
t0

= [p̃
(i)
t0
, ṽ

(i)
t0
]T ∈ R6. Let DXt0

(xt0) be the
current PHD at state xt0 . According to [11], DXt0

(xt0) can be
estimated with particles by:

DXt0
(xt0) =

nt0∑
i=1

w
(i)
t0
δ
(
xt0 − x̃

(i)
t0

)
(1)
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where δ(·) is the Dirac function. x̃(i)
t0

, w(i)
t0

and nt0 are updated
dynamically in the filter. The estimation works on the basis of
the Law of Large Numbers and nt0 is usually as large as one
million [11].

With the PHD calculated with particles in (1), the current
occupancy status of any position (discretized by voxels) in the
map can be estimated by checking the number of particles within
the corresponding voxel. Details can be found in our previous
work [11]. Note that the velocities of these particles are also
estimated, which can be used to predict the map to the near fu-
ture. In the following sections, we first present a map prediction
method that takes the MAV localization uncertainty into account
(Section IV-B). Then a risk definition is given to evaluate the
collision risk of any region in the map (Section IV-C). Next, with
the predicted map and defined risk, a risk-aware spatio-temporal
(RAST) corridor is constructed (Section IV-D) which is finally
used to optimize a dynamically feasible collision-free trajectory
for the MAV (Section IV-E).

B. Map Prediction With Uncertainties

Let Xt be the RFS formed by point objects in the map space
at a near future time t and DXt

(xt) be the PHD of Xt. To predict

DXt
(xt), we first predict the future state x̃(i)

t of each particle in
the map via the constant velocity model (CVM) [29], i.e.

x̃
(i)
t = φ(x̃

(i)
t0
) =

[
I3×3 (t− t0)I3×3

03×3 I3×3

]
x̃
(i)
t0

+ u (2)

where u ∼ N (0,Σ6×6) is the added Gaussian noise of the
CVM. To take into account the MAV localization uncertainty
which is assumed to be Gaussian distributed, we further add the
uncertainty to the particle prediction:

x̃
(i)
t = φ(x̃

(i)
t0
) + u′ (3)

where u′ ∼ N (0, [Σ
′
3×3 03×3

03×3 03×3
]) and Σ′

3×3 is the position co-
variance from the odometry. When predicting each particle
using (2) and (3), u and u′ are obtained by sampling from
their distributions. Σ6×6 and Σ′

3×3 are determined empirically.
We consider the weight of particle constant during the short
prediction horizon, i.e. w(i)

t = w
(i)
t0

. Hence, DXt
(xt) can be

obtained as follows:

DXt
(xt) =

lt∑
i=1

w
(i)
t δ

(
xt − x̃

(i)
t

)
(4)

where nt is the number of particles within the map range at time
t. Since some particles may have moved out of the map range
from t0 to t, then nt ≤ nt0 .

The measurement uncertainty of the point cloud has been
inherently considered during the DSP map building step [11].
Here, we further explicitly take into account the MAV localiza-
tion uncertainty from visual odometry in the map prediction.
Thus, the dispersion of x̃(i)

t after the prediction gets larger and
will affect the defined risk regions in the environment, which
will be illustrated in the next section.

Fig. 3. Illustration of the risk calculation process. The map space is a cuboid
space where the MAV is in the center. A point object is moving to the left through
a subspace Ej from time t0 to tf . Particles with velocities follow the motion of
the point object and model the PHD at the state of point object. Gray ellipsoids
indicate the Gaussian distributions.

C. Risk Definition

The risk is defined to evaluate the safety level of a subspace
in the map during some time interval. Denote by Ej ⊂ R3 a
subspace in the map, such as a cuboid subspace shown in Fig. 3.
Then, at any time t the point objects within Ej form an RFS

XEj

t . Trivially, there is XEj

t ⊂ Xt and the PHD of XEj

t is

D
X

Ej
t

(xt) =

n
Ej
t∑

i=1

w
(i)
t δ

(
xt − x̃

(i)
t

)
(5)

where n
Ej

t ≤ nt is the number of particles within the subspace
Ej at time t.

According to the property of the PHD [27], the cardinality ex-
pectation of XEj

t , namely the predicted number of point objects
in Ej at time t, can be calculated by

E
[
|XEj

t |
]
=

∫
D

X
Ej
t (t)

(xt)dxt =

n
Ej
t∑

i=1

w
(i)
t (6)

where | · | is the cardinality and E[·] denotes the expectation.
If E[|XEj

t |] ≥ 1, the predicted number of point objects in Ej

at time t is larger than one, which suggests that Ej is likely to
contain obstacles and is risky at t.

The risk of the region Ej during some time interval [t0, tf ] is

then defined with the integral of E[|XEj

t |] from t0 to tf :

Risk(Ej , t0, tf ) =

∫ tf

t0

E
[
|XEj

t |
]

dt (7)

This risk indicates the predicted number of point objects in the
regionEj from t0 to tf . The risk gets higher if more point objects
enter Ej or the current point objects stay for a longer time. In
practice, we discretize the integral with δt. Hence, by combining
(6), we can rewrite (7) as

Risk(Ej , t0, tf ) ≈
∑

t={t0,t0+δt,...,tf }

n
Ej
t∑

i=1

w
(i)
t δt (8)

Fig. 3 shows a situation where one point object moves through
a subspace Ej from the current time t0 to a future time tf .
The motions of the particles, which represent the PHD at the
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Fig. 4. Comparison of risk maps with and without the consideration of uncer-
tainties in the same scenario as shown in Fig. 2. The predicted time interval is 0.5 s
to 1.0 s. Subfigure (a) shows the risk map without considering measurement un-
certainty or localization uncertainty. The risk map in (b) considers measurement
uncertainty as the original DSP map [11] does. In (c), the localization uncertainty
is also considered by using (4) in the prediction step of the SMC-PHD filter. The
red ellipses outline the high-risk regions corresponding to a pedestrian. The
volume of high-risk regions increases when the uncertainties are considered.

point object, are predicted using (3). Risk(Ej , t0, tf ) is eval-
uated with the summation of the weights of the particles in
Ej at {t0, t0 + δt, . . ., tf} multiplying δt (8). The risk maps
in Fig. 2(b) illustrate the risk in three future time intervals with
small voxel subspaces. Only the high-risk voxels are presented
for clear visualization. A pedestrian is moving downside in the
scenario, and thus the high-risk voxels correspond to the pedes-
trian moving downside as time increases. When the perception
uncertainties are considered, particles disperse to a larger area.
Fig. 4 reveals the dispersion with the risk map. This dispersion
increases the volume of the high-risk regions around the obsta-
cles, especially for the regions that a dynamic obstacle may pass
through in the future. As a consequence, the low-risk regions
become smaller and the flight path planned in the low-risk
regions is safer in dynamic and uncertain environments.

D. Spatio-Temporal Safety Corridor

Using the risk definition in (8), we first compute a refer-
ence path composed of motion primitives using a risk-aware
kino-dynamic A* algorithm and generate initial safety corridors.
Then the initial safety corridors are expanded to the final RAST
corridors.

The risk-aware kino-dynamic A* algorithm is modified from
the kino-dynamic A* algorithm in [30] by checking the risk
rather than the occupancy status of static grids in the feasibility
checking procedure. We illustrate the risk checking process in
Fig. 5. For visualization convenience, the process is shown on
the 2D plane, but our algorithm works in 3D spaces. Each
step in the kino-dynamic A* samples acceleration commands
and generates motion primitives to obtain new nodes. Each
motion primitive has a fixed planning time ts. Since the sampled
command is acceleration, the motion primitive is a quadratic
curve. We first calculate a rectangle envelope for the quadratic
curve, as shown in Fig. 5(a) and (b). Considering the size of the
MAV, the envelope is expanded by a safety distance d as illus-
trated in Fig. 5(c) and (d). The expanded envelope is the initial
safety corridor, denoted as Ej . The risk of a motion primitive is
evaluated by the risk of the corresponding initial safety corridor
Ej . Suppose the start time and end time of the motion primitive

Fig. 5. Illustration of risk checking for each step of the kino-dynamic A*
algorithm. Blue curves in (a) and (b) show two sampled motion primitives.
Each motion primitive is a quadratic curve. PA is the start point, and PB is the
endpoint of the curve. The rectangle envelope, shown by the red dashed box, is
composed of Line PAPB , a parallel line of PAPB tangent to the curve, and
two lines perpendicular to PAPB . The point of tangency on the parallel line
is PM , which locates at the ts

2 point on the motion primitive. PT in (b) is
the point of tangency on a line perpendicular to PAPB . PT occurs when the
sampled acceleration command is large. In 3D space, the envelope is a cuboid.
In (c) and (d), we expand the envelope by distance d, and get the initial safety
corridor Ej . Subplot (e) shows multiple motion primitives sampled in one step
of the kino-dynamic A* algorithm in an environment with a static obstacle and
a dynamic obstacle. The time interval this step takes is tj−1 to tj . The selected
motion primitive is shown in blue, while the others are in gray. The risk of
the selected motion primitive is evaluated by calculating the initial corridor
generated from this motion primitive, which is Risk(Ej ,tj−1,tj).

Fig. 6. Illustration of the safety corridor generation process. A three-piece
reference path searched by the risk-aware kino-dynamic A* is shown with the
blue curve. Red rectangles represent the initial safety corridors, which are then
expanded to the RAST safety corridors Êj . In the first RAST safety corridor Ê1,
a local coordinate is built on the initial corridor, and an intermediate state in the
expanding is shown with a gray dashed box. The expansion is conducted to +x,
−x, +y, and −y incrementally with different priorities.

are tj−1 and tj , respectively. Then the risk of the motion prim-
itive is Risk(Ej , tj−1, tj), where tj − tj−1 = ts. Considering
the trade-off between high computational efficiency and large
searching space in kino-dynamic A*, we choose ts =0.6 s in
practice. Fig. 5(e) shows multiple motion primitives generated
in one step of the kino-dynamic A* algorithm. The initial safety
corridor Ej of the selected motion primitive is shown by a red
box. No particle moves into Ej during tj−1 to tj and thus the
risk is zero.

By incrementally expanding the initial safety corridor Ej , the
final RAST safety corridor Êj can be generated. The expand-
ing process is shown in Fig. 6. To generate the RAST safety
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corridor Ê1, we set a local coordinate for the initial corridor,
and the expansion is along +x, −x, +y and −y directions of
the local coordinate. Firstly, the initial corridor is expanded to
all directions incrementally with a step distance of Δd. After
each expansion, we check the risk of the expanded corridor.
If the risk is higher than a threshold Rmax, the expanding
along the low-priority direction is banned, and the next step
will only expand towards the remaining high-priority directions.
As Fig. 6 shows, expansion along the x-axis mainly enlarges
the overlap between this corridor and the next. Since the time
step in each corridor is fixed in kino-dynamic A*, enlarging
the overlap can hardly help increase the optimization space in
practice. In comparison, expansion along the y-axis increases the
optimization space and makes it easier to find a safe trajectory
in a corridor. Therefore, ±x has a lower priority than ±y. The
priority of +y over −y is set randomly. The expansion stops
when all the directions are banned. The risk of the final RAST
safety corridor is Risk(Êj , tj−1, tj). In 3D space, the priority of
±z is between ±x and ±y. The reason is that expansion along
±z can increase the optimization space, but the maneuver along
±z is realized by thrust rather than attitude changing and, thus, is
less flexible than the maneuver along ±y [28]. Fig. 2(b) presents
an example of the RAST safety corridors in 3D space. Note that
each corridor has the same time interval (from tj−1 to tj) and
only guarantees the risk is lower than Rmax in this time interval.

E. Trajectory Optimization

The trajectory is a N -order M -piece polynomial trajectory
where M equals the number of safety corridors and N = 7,
corresponding to the minimum snap cost [20]. Let fj(t), j ∈
{1, 2, . . .,M} denote the trajectory piece in the j-th corridor.
According to Section IV-D, t ∈ [tj−1, tj ] and tj − tj−1 = ts.
Thus fj(t) can be formulated as:

fj(t) = cTj β(tj), t ∈ [tj−1, tj) (9)

where cj ∈ R3 × RN+1 is the coefficients’ vector of the poly-
nomial andβ(t) = [1, t, t2, t3, . . . , tN ]T is the natural basis. The
optimization of cj is:

min
cj

M∑
j=1

∫ tj

tj−1

∥∥∥∥d
4fj(t)

dt4

∥∥∥∥
2

dt (10a)

s.t. f1(t0) = f0, fM (tM ) = fM (10b)

fj(t) ∈ Êj , ∀t ∈ [tj−1, tj ] (10c)

fj(tj) = fj+1(tj) (10d)

f
(m)
j (t) ≤ f (m)

max, ∀t ∈ [t0, tM ], m = 1, 2 (10e)

where f0 is the initial state of the MAV given by the odome-
try; fM is the terminal state provided by the last node in the
kino-dynamic A* algorithm; f (1)

j (t) and f
(2)
j (t) are first- and

second-order derivatives, namely velocity and acceleration, of
the trajectory; f (1)

max and f
(2)
max are the velocity and acceleration

limitations. The constraints include boundary value constraints
(10b), corridor constraints (10c), continuity constraints (10d),
and maximum acceleration and velocity constraints (10e). The

Fig. 7. Simulation worlds. World A: a simple school with very sparse static
obstacles, and pedestrians walking slowly (0.5 m/s) in the same direction. World
B: a square with dense pedestrians walking in different directions. World C: a
street with oak trees and buildings in addition to pedestrians. The walking speed
in World B and C ranges from 0.8 m/s to 1.5 m/s.

corridor constraints (10c) can be transformed to the linear
constraints to the poles of each polynomial piece [12] and the
optimization problem is thus a QP problem that can be solved
very efficiently [12].

V. RESULTS

In this section, we first compare the obstacle avoidance per-
formance of our method with several state-of-the-art methods
in simulation tests. Then the real-world tests are presented to
further validate our method.

A. Simulation Tests

Simulation tests were conducted with the IRIS quadrotor run-
ning PX4 firmware in the Gazebo simulation environment on a
laptop equipped with an AMD R7-4900H CPU. The full physical
engine in Gazebo was enabled to better simulate the dynamics of
the MAV. Three simulation worlds shown in Fig. 7 were utilized
in the tests. We first tested our method with different values of
Rmax to investigate the best risk threshold. Twenty tests were
conducted in each simulation world with each risk threshold.
The average success rate and planning time at different risk
thresholds are shown in Fig. 8(a). The top average success
rate is 0.68 when Rmax = 0.2. The planning time includes
optimization, corridor generation, and A* searching time. As
Rmax increases, the size of the expanded corridor gets larger,
and the trajectory optimizer takes less time to find a safe flight
trajectory. The overall planning time decreases from 7.1 ms to
6.3 ms. Since 7.1 ms is already efficient, Rmax = 0.2 is adopted
for a high success rate. The average mapping time is 68.5 ms.
Memory usage is mainly consumed by mapping and is about
300 MB.

Then our method was compared with three recent works:
the Faster method [31], the FDF method [6], and the RAS
method [32]. In these works, Faster utilizes a corridor-based
method assuming obstacles are static. FDF and RAS use non-
corridor-based methods and consider both static and dynamic
obstacles. We did a full factorial experiment with four levels
of measurement uncertainty and five levels of localization un-
certainty. The input point cloud came from a simulated depth
camera. Let r̄ denote the accurate depth value of a pixel in the
depth image from the camera. To simulate the measurement
uncertainty, we added Gaussian noise with standard deviation
(S.D.) σm ={0, %2r̄, %5r̄, %10r̄} to the real depth r̄. Thus the
noised depth follows r ∼ N (r̄, σm), which simulates the depth
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Fig. 8. Risk threshold investigation and performance comparison between our proposed method and Faster [31], FDF [6], and RAS [9]. In (a), the bar plot shows
the average planning time with different risk thresholds and the line plot shows the average success rate. Subplot (b) shows the average success rate, freezing rate,
collision rate to dynamic obstacles, and collision rate to static obstacles of different methods in different simulation worlds. Subplot (c) and (d) present the average
success rate of different methods at different measurement noise level and localization noise level, respectively.

from a real depth camera r is then used to calculate the point
cloud with the pinhole model.

For the localization uncertainty, Gaussian noise with S.D.
σp ={0, 5, 10, 15, 20} cm was added to the ground truth odome-
try. Each method was tested 50 times under each noise condition
in each simulation world. Totally, 12000 tests were conducted.
A height limit of 1.8 m was added so that the MAV could not
fly over the dynamic obstacles. The maximum velocity was set
to 2 m/s. Σ6×6 and Σ′

3×3 are set to be the same as the variance
of measurement noise and localization noise, respectively.

We evaluate the performance with four metrics: the average
success rate, the rate of collision to static obstacles, the rate of
collision to dynamic obstacles, and the freezing rate. A freezing
happens when the planner cannot find a feasible trajectory and
the MAV is trapped. Fig. 8(b) shows the average performance
in different worlds. From World A to C, the environment is
getting more complex, and thus, the success rate decreases for
all methods. In a simple scenario World A, Faster, RAS, and ours
have similar success rates. In more complex scenarios World B
and World C, our method has a distinct advantage over other
methods. Specifically, the success rate of our method is increased
by 0.13 and 0.14, respectively, in World B and C, compared to the
second-best method. Due to the consideration of uncertainties,
our method searches for trajectories prudently, thus, its freezing
rate is usually higher but the collision rate is lower.

Fig. 8(c) shows the average success rate in all the simu-
lation worlds at different measurement noise levels. Raising
the measurement noise only has a significant influence on the
FDF method [6], whose success rate drops by 0.10 when the
measurement increases from 0 to 10%. In comparison, Faster,
RAS, and our method are robust to the measurement noise.
Fig. 8(d) presents the average success rate in all the simulation
worlds at different localization noise levels. The localization
noise has a larger influence than the measurement noise. When
S.D. increases from 0 to 5 cm, the success rate of FDF and RAS
decrease by 0.03 and 0.07, respectively, while our success rate
has no decrease. When S.D. increases to 15 cm, the success rate
of FDF and RAS decrease by 0.13 and 0.14, respectively, while
our success rate decreases by 0.07. The success rate of Faster
grows when S.D. increases from 5 cm to 15 cm because the
mapping module of Faster is prone to regard all noise points
as obstacles, and thus, the trajectories are more conservative
when the noise grows. However, when the localization S.D. is
20 cm, this conservativeness causes more collision and freezing
cases, and the success rate drops again. Overall, our method

Fig. 9. Snapshots of our MAV flying in dynamic environments. Images on
the right side show the risk map, the RAST safety corridors (semi-transparent
green cuboids), and the planned trajectory (green curve in the corridors). Current
high-risk regions in the map are shown in the voxel form colored by height. The
red dashed rectangles outline the pedestrians that MAV is avoiding.

outperforms the state-of-the-art methods in terms of navigation
success rate and collision rate and also shows robustness against
measurement and localization noise.

B. Real-World Tests

In the real-world tests, a MAV equipped with an NVIDIA
Jeston Xavier NX computing board and an Intel Realsense D455
depth camera was used. The measurement noise S.D. of the
camera is less than 2% within four meters. The position of
the MAV was given by the Optitrack system. We validated the
effectiveness of our method in obstacle avoidance tests at two
levels of localization noise, whose S.D. was 2 cm and 5 cm.
The corridors and trajectories were generated at a frequency of
about 20 Hz. To avoid the influence of the delay in trajectory
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generation, a control command buffer (composed of position,
velocity and acceleration commands from previously planned
trajectory) was maintained, and the new trajectory was planned
to start from the last element in the buffer unless the trajectory
in the buffer was not safe.

Fig. 9(a) to (c) show snapshots of an obstacle avoidance
test in an environment with two pedestrians and several static
obstacles. In (a), a pedestrian is in front of the MAV. But the
region occupied by the pedestrian currently is predicted to be
safe in the future because the pedestrian is moving to the right.
Fig. 9(b) and (c) present the process in which the MAV avoids the
second pedestrian. We conducted 43 tests in total. The success
rate is 0.67. The freezing rate is 0.12. The static and dynamic
obstacle collision rates are 0.12 and 0.09, respectively. We also
conducted the tests with the localization provided by an onboard
Intel Realsense T265 tracking camera. A snapshot is shown in
Fig. 9(d). More results can be found in the attached video.

VI. CONCLUSION

This letter presents a risk-aware autonomous navigation
method for MAVs in dynamic and uncertain environments. The
method represents the local environment with the DSP map and
builds RAST safety corridors in the map. MAV measurement
and localization uncertainties are considered in the map building
and prediction process. Within the RAST safety corridors, flight
trajectories are optimized by solving a QP problem. Simula-
tion results show that our method achieves the highest success
rate compared to the state-of-the-art methods under different
uncertainty levels. Physical experiments also proved the effec-
tiveness of our method in the real world with localization and
measurement noise embedded. However, the method is still not
robust enough for application tasks. One major reason is that the
limited FOV and the occlusion between obstacles interfere with
the perception of dynamic obstacles. In future works, we will
investigate perception-aware planning to improve the sensing
and reacting robustness.
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