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SUMMARY

W Hereas aberrating layers are typically viewed as an impediment to medical ultra-
sound imaging, they can, surprisingly, also be used to our benefit. As long as we

can model the effect of an aberrating layer, we can utilize ‘model-based imaging’, the
imaging technique explored throughout this thesis, to reconstruct ultrasound images
where traditional beamforming methods would fail, employing the ever increasing com-
putational power available to us nowadays. Not only does this allow us to image through
layers, but it also leads to interesting applications, such as 3D ultrasound imaging with
spatially undersampled data, using an aberrating ‘coding mask’. The formulation of a
measurement model, a fundamental part of model-based imaging, also gives insight into
the imaging problem mathematically, and allows us to investigate methods for estimat-
ing the effect of an aberrating layer ‘blindly’, i.e., without explicitly measuring it. In this
thesis, we thus investigate (a), imaging through a layer when the layer’s aberration ef-
fect is known, and how it can be applied to imaging with spatially undersampled data,
and (b), methods and algorithms for estimating the effect of the aberrating layer without
knowing it a priori.

In the first part of this thesis, we illustrate how using model-based imaging can be
utilized for 3D ultrasound imaging using a single ultrasound transducer, and equipping
it with a plastic coding mask. The plastic mask acts as an analog coder, that scrambles
the transmitted and received waves in a manner that is location dependent. As a re-
sult, the temporal shape of an ultrasound echo can be used instead of the traditional
method of using phase differences between sensors in a sensor array. Imaging is instead
accomplished using model-based imaging. By measuring the pulse-echo response of
each pixel, we can form an image by solving a regularized linear least squares problem,
which takes into account the measured pixel-specific pulse-echo signals. The proposed
device and imaging method is then verified experimentally.

In the following chapter, a coding mask design method is proposed for the aforemen-
tioned imaging device. A measurement model is formulated where the mask geometry is
an explicit parameter to be optimized. After forming this model, a numerical optimiza-
tion method is proposed and numerically tested. Our numerical experiments show that
optimized mask geometries exhibit an energy focusing effect on the region-of-interest,
whilst simultaneously decorrelating echo signals between pixels.

In the second part of this thesis, in contrast, we consider methods for calibrating
propagation models when the pulse-echo response per pixel is not known. The most
important calibration challenge we consider is that of imaging through an aberrating
layer in front of an ultrasound array. This could be subcutaneous fat or the human skull,
for example. In this thesis we formulate a measurement model consisting of a part where
wave propagation is known (i.e., the assumed homogeneous region behind the aberrat-
ing layer, where the contrast image of interest is located), and an unknown propagation
part, consisting of the Green’s functions from an array sensor to any point on the the
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x SUMMARY

interface of the aberrating layer and the imaging medium. We then investigate meth-
ods for finding this set of Green’s functions without explicitly measuring them (so called
‘blind’ calibration).

The first proposed method exploits the singular value decomposition of the mea-
surement data in combination with the assumed Toeplitz structure of the matrices repre-
senting the aberrating layer’s Green’s functions. However, the method is lacking in prac-
ticality since an additional set of measurements is required with a phase screen mounted
on the interface of the aberration layer and the imaging medium. The second method re-
solves these practical issues by utilizing a covariance matching technique. A sufficiently
large set of measurements is obtained where each measurement is different due to e.g.
moving particles such as blood flow or micro-bubbles. Using the covariance of the data,
algorithms are then defined that can estimate the transfer functions of the aberrating
layer from the measurement covariance data.

Finally, we propose a method for estimating the electro-mechanical impulse response
of an ultrasound sensor, by simply measuring its pulse-echo response from a flat plate
reflector in front of the sensor. Estimating the one-way (electro-mechanical) impulse
response then becomes a de-autoconvolution problem, for which we propose a method
by solving a semi-definite relaxation of the de-autoconvolution problem.



SAMENVATTING

H Oewel aberrerende lagen doorgaans als een obstakel worden gezien voor medische
echografie, kunnen ze verrassend genoeg ook in ons voordeel worden gebruikt. Zo-

lang we het effect van de aberratielaag maar kunnen modelleren, kunnen we gebruik
maken van ‘model-afgeleide beeldvorming’ (‘model-based imaging’), de beeldvormings-
techniek die wordt gebruikt in deze dissertatie, om echografische beelden te reconstrue-
ren wanneer traditionele beeldvormingstechnieken falen, gebruikmakend van de steeds
toenemende computationele kracht die ons tegenwoordig ter beschikking staat. Behalve
dat dit behulpzaam is voor beeldvorming door aberratielagen heen, leidt dit ook tot in-
teressante toepassingen zoals 3D echografie met spatieel onderbemonsterde data, door
gebruik te maken van een zogenaamd coderingsmasker. De formulatie van een meetmo-
del, een fundamenteel onderdeel van mode-afgeleide beeldvorming, geeft ook wiskun-
dig inzicht in het beeldvormingsprobleem, waardoor het mogelijk wordt om methoden
te onderzoeken die het effect van een aberratielaag blind kunnen schatten, d.w.z., zon-
der dit effect expliciet zelf te meten. In deze dissertatie doen we dus onderzoek naar (a),
beeldvorming door een aberratielaag heen wanneer het effect van deze laag al bekend
is, en hoe dit kan worden gebruikt voor beeldvorming uit spatieel onderbemonstde me-
tingen, en (b), methoden en algoritmen voor het achterhalen van van het effect van de
aberratielaag zonder dat die van tevoren bekend is.

In het eerste gedeelte van deze dissertatie illustreren we hoe model-afgeleide beeld-
vorming kan worden gebruikt voor 3D echografie met slechts een enkele sensor, door
die sensor met een plastic coderingsmasker uit te rusten. Het masker doet dienst als
een analoog coderingsmechanisme dat de uitgezonden en ontvangen echo’s verstoort
op een manier die afhankelijk is van de locatie van een reflectie. Hierdoor kan kan de
temporele vorm van de echo worden gebruikt in een model-afgeleid beeldvormingsal-
goritme, in plaats van door gebruik te maken van faseverschillen tussen een reeks senso-
ren. Door de puls-echo van elke pixel te meten kan een beeld worden achterhaald door
een geregulariseerd kleinste-kwadratenprobleem op te lossen, die rekening houdt met
de gemeten pixel-specifieke puls-echo signalen. Het voorgestelde apparaat en bijbeho-
rend reconstructiealgoritme worden daarna experimenteel geverifieerd.

In het daaropvolgende hoofdstuk wordt een methode geïntroduceerd voor het ont-
werpen van een coderingsmasker zoals gebruikt in het hiervoor besproken apparaat. Er
wordt een meetmodel geformuleerd waar de de vorm van het coderingsmasker een ex-
pliciete variabele is waarvoor kan worden geoptimaliseerd. Daarna wordt een numeriek
optimilizatiealgoritme geintroduceerd en numeriek getest. Deze experimenten tonen
aan dat de geoptimaliseerde maskers energie proberen te focusseren naar het gedefini-
eerde pixeldomein, en tegelijkertijd proberen echosignalen tussen pixels te decorrele-
ren.

In het tweede gedeelte van deze dissertatie worden methoden voor het kalibreren
van propagatiemodellen voorgesteld, waar de pulse-echo respons per pixel niet bekend
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is. De meest belangrijke uitdaging op dit gebied die wordt bekeken is die van beeldvor-
ming door een aberratielaag heen die zich direct voor een sensorreeks bevindt. Dit kan
bijvoorbeeld een laag onderhuids vet zijn, of de menselijke schedel. We formuleren een
meetmodel dat bestaat uit een deel waar de propagatie van golven wel bekend is (d.w.z.,
de homogene regio achter de aberratielaag waar de akoestische contrastafbeelding zich
bevindt), en een onbekend gedeelte, bestaande uit de Greense functies van de sensor-
reeks naar naar elk punt op het raakvlak tussen de aberrerende laag en het homogene
medium. Vervolgens worden methoden onderzocht om deze Greense functies te ach-
terhalen zonder ze expliciet te meten (zogenaamde ‘blinde’ kalibratie).

De eerst voorgestelde methode exploiteert de singulierenwaardenontbinding van ge-
meten echodata in combinatie met de veronderstelde Toeplitzstructuur in de matrices
die de Greense functies van de aberratielaag representeren. De methode is echter wei-
nig praktisch omdat een tweede set metingen met een fasemasker op het raakvlak tussen
de aberratielaag en het beeldvormingsmedium vereist is. De tweede methode lost der-
gelijke praktische problemen op door gebruik te maken van een ‘covariance matching’-
techniek. Een grote verzameling metingen wordt verkregen waar elke meting anders is
als gevold van, bijvoorbeeld, bewegende deeltjes in de bloedstroom of micro-bubbles.
Door te kijken naar de covariantie van de data kunnen vervolgens algoritmen worden
ontworpen die de overdrachtsfuncties van aberratielagen kunnen achterhalen uit de co-
variantie statistieken van de gemeten data.

Als laatste wordt een methode geïntroduceerd voor het schatten van de elektrome-
chanische overdrachtsfunctie van een ultrasone sensor, simpelweg door de puls-echo
respons van een vlakke plaat gepositioneerd voor de sensor te meten. Het schatten van
de enkele-weg (elektromechanische) impulsrespons wordt dan een
de-autoconvolutieprobleem, waarvoor een methode wordt voorgesteld door een semi-
definiete relaxatie van het originele probleem op te lossen.



1
INTRODUCTION

S Oon after launching the Hubble Space Telescope into orbit, it was discovered that
one of the lenses in the optical system contained a production error, leading to se-

vere aberrations and loss of resolution in the photos it took of distant galaxies. Service
missions were conducted where astronauts tried to repair and update the systems in or-
der to resolve the issue. The problem was partially solved by attaching an optical system
that contained the opposite error of the one in place, effectively canceling the aberrating
effect of the original system. Since engineers exactly knew the effect of the production
error, they were able to come up with a system that took the output of the old system as
an input and corrected the aberrations. Even though the original system was flawed, the
light waves could still be manipulated to obtain the correct image. In other words, in-
formation is not necessarily lost when wavefields are distorted. More importantly, if we
know how distortion occurs, we can take it into account, and still obtain a good image.

In ultrasound imaging, the central imaging modality in this thesis, a similar situation
occurs when ultrasonic waves travel through the human skull, skin, fat, or other aber-
rating layers. These layers distort ultrasonic waves in an unknown way, reducing image
quality. Interestingly, as with the Hubble telescope, this does not necessarily imply that
the information about the underlying (medical) ultrasound image is lost. We just need
to characterize the distortion, and account for it. In fact, as will be shown, it can be ben-
eficial to intentionally distort the ultrasonic waves in such a way, that more information
is extracted for a particular sensing setup.

This has enormous consequences for situations where information is scarce, or where
we would like to use fewer sensors without sacraficing imaging quality. Denser infor-
mation content in the ultrasonic echo wavefields could then help to get better images
with the same amount of sensors. Volumetric (3D) imaging, for example, would offer
much more complete information to a clinician, as opposed to conventional 2D imag-
ing. The sheer amount of sensors required for 3D imaging, however, results in enormous
engineering challenges. After all, if N sensors are needed for a linear array, N 2 sensors
are needed for a matrix array with the same resolution. This increasing sensor density
makes it challenging to connect all sensors, not to mention the enormous amount of
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cables needed to connect each sensor to a computer that processes all sensor data to
compute an image, and the much increased amount of data that needs to be processed.
For such issues (more examples are given in the next section), compressing ultrasound
waves before they are measured by sensors could offer a solution to the wiring and ca-
bling challenges mentioned above. In this thesis, it will be demonstrated that using a
‘coding mask’, an aberrating layer that intentionally distorts waves to extract as much in-
formation as possible, allows for fewer sensors to be used, which could lead to systems
using fewer output channels, less data transfer, and cheaper devices.

This way of imaging can also be considered for biological ‘masks’, or aberrating lay-
ers, such as the human skull, skin, fat, and other layers that distort waves passing through
them. Unfortunately, it is rather challenging to construct an ‘inverse’ skull, skin, or fat
layer to cancel the distortion of the skull, as was done with the Hubble telescope. In fact,
we would have to find out what that effect is in the first place, and we can’t simply re-
move the layer from a patient to characterize it. Nonetheless, it is of vital importance
that we find methods to look through aberrating layers with ultrasound. It would allow
researchers to see brain activity non-invasively using the emerging technique of func-
tional ultrasound (fUS) imaging, which could lead to better understanding of the brain,
mental diseases, and the workings of the human psyche, but would also help us to obtain
more detailed images for patients with higher fat contents or other obstructing tissue
layers, leading to improved diagnoses.

1.1. CHALLENGES IN MEDICAL ULTRASOUND IMAGING

Looking through distorting layers with ultrasound is the common theme in this disser-
tation, and is useful both for looking through aberrating layers, as well as for wavefield
compression. In both cases, we are interested in extracting as much information as pos-
sible from a (limited) set of measurements. In the case of an aberrating layer such as
bone tissue, we would like to find out how this layer distorts, since the layer cannot be
removed. In the case of compression, we would like to intentionally introduce an aber-
rating layer that distorts waves in such a way that as much information as possible about
the true image is extracted after measuring the distorted waves, potentially using a spa-
tial sampling below Nyquist rate. In either case, as long as the distortion is characterized,
it can be accounted for in the imaging algorithm. The approach of creating undistorted
ultrasound images by taking into account the entire wave propagation inside a layer is
what binds these two scenarios together, and the much increased computational power
available nowadays is what facilitates this technique. Below, these two major challenges
in ultrasound imaging that have led to the research presented in this dissertation are
discussed in more detail.

1.1.1. SENSOR DENSITY AND TRANSDUCER MINIATURIZATION

One of the first ultrasound arrays was devised in Rotterdam in the Netherlands in 1973
[1, 2], for medical imaging purposes. Each sensor-receiver in the array would transmit
a pulse, which reflects on tissue interfaces inside the human body. From the reflected
echoes measured on each sensor, a rough map of the patient’s tissue directly in front of
the corresponding sensor could be inferred, after which these so called ‘A-lines’ could be
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stitched together to form an image. Since then, image reconstruction has advanced by
using beamforming techniques [3], where not only the echoes measured on the trans-
mitting transducer, but also on all the other sensors are processed and combined to ob-
tain much better images. Beamforming techniques primarily use the differences in an
echo’s time-of-arrival between sensors to estimate from which angle an ultrasonic echo
originates. Time-of-arrival is used to estimate the depth of an echo, and the signal am-
plitude is a measure for the scattering intensity. Nowadays, 1D and 2D linear (phased)
arrays are available, which use beamforming to compute 2D and 3D images of the hu-
man body, respectively.

Ultrasound imaging quality is typically improved by increasing the amount of sen-
sors in an array. As mentioned in the introduction, beamforming with 2D arrays results
in a 3D image reconstruction, which provides much more complete information to a
clinician than a typical 2D image. However, 2D arrays generate much more measure-
ment data that need to be processed (preferably in real-time, one of ultrasound’s major
advantages over other imaging modalities such as magnetic resonance imaging (MRI)
or computed tomography (CT)), and also cause electronic design problems due to the
small amount of sensors and electronics on a small area, thus prohibiting mainstream
usage of 3D medical imaging. Such problems include the acoustic transducer design and
challenges in electrical interconnections [4].

The same issue plays an important role in spatially limited ultrasound probes, such
as ultrasound sensors mounted on intravascular catheters [4]. These catheters are used
for minimally invasive ultrasound procedures, and enable the treatment of a range of
conditions for which traditionally invasive surgery is required. Since MRI lacks temporal
resolution (and requires large, immobile and expensive machines), and CT uses harm-
ful radiation, ultrasound is an excellent candidate to assist a surgeon by visualizing the
tissue around the catheter in real time without opening the patient. However, ultrasonic
waves lack the ability to penetrate deeply with small wavelengths (for high resolution),
or to propagate through bone tissue (e.g., to look through the rib cage during cardiac
surgery) at the frequency range which is desired for high spatial resolutions. As a result,
engineers started mounting ultrasonic transducers on the catheter tip, so that the imag-
ing takes place as close to the surgical target as possible, without being obstructed, and
using small wavelengths.

Real time 3D imaging is highly desirable for catheter-based ultrasound scenarios,
and thus suffers from the same challenges in developing 2D arrays as mentioned above.
Since space is even more limited than in conventional non-invasive transducers, these
challenges become an even greater obstacle. As each sensor in an array would have to
be electronically connected to a processor outside the patient for beamforming, many
wires would be required which would simply not fit inside the catheter cable, which also
contains instruments that are required for surgery. The spatial limitations also mean it
is hardly possible to include sophisticated electronics in the catheter that would suffi-
ciently compress ultrasound signals before transmitting them. This leads to suboptimal
solutions where only 2D imaging is possible, or where the transducer has to be mechan-
ically moved to scan the region of interest (ROI) to make 3D images. Clearly, there is a
need for reducing the amount of measurement data without mechanical scanning, or
other measures that reduce frame-rate or are sensitive to motion between frames (e.g.
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cardiac motion). Addressing this issue would greatly increase the amount of information
available to a surgeon, leading to better procedures for a range of minimally-invasive
treatments.

Many researchers have approached the compression problem (i.e., reconstructing
high quality images from only a few sensors and/or measurements) using the recently
developed technique of compressed sensing (CS) [5–8]. Using CS, signals are compressed
into a smaller amount of samples by taking different linear combinations of the origi-
nal signals. The original signal can then be efficiently reconstructed from the (smaller)
compressed signal using a convex l1-regularized optimization problem. Successful re-
construction is only possible if the original signal can be represented using few non-zero
coefficients in a suitable signal basis. The theory of CS provides conditions on the linear
compression of the original signal to ensure successful signal decompression.

One of the most striking examples of the application of CS is the single-pixel camera
[9]. It consists of a single photo diode, onto which different linear combinations of the
pixels of the optical input field are projected. Since natural images can easily be sparsely
represented using wavelet bases, far fewer of such measurements are needed than there
are pixels in the final image. Naturally, this would be an interesting approach to solve the
aforementioned challenges in medical ultrasound imaging, and researchers have stud-
ied the potential of CS in the field of medical ultrasound imaging ([10–16], to name a
few). However, there has been no report of signal bases where actual ultrasound signals
or images containing speckle (a noisy component in a US image of human tissue due to
the many sub-resolution scatterers throughout the human body) are truly sparse. More-
over, compression mechanisms proposed so far would still require complex electronics
that are hard to realize in ultrasound catheters.

In the first part of this thesis, we propose a method where signals are ‘naturally’ com-
pressed by a an easily manufactured plastic ‘coding’ mask that distorts the ultrasound
fields, and by using model-based imaging, a technique that does not rely on CS or beam-
forming to reconstruct an image, but instead uses a more complete wave propagation
model and a more complicated image estimation technique for imaging. The coding
mask is homogeneous, but has a spatially varying height, strongly mixing the ‘input’
field, resulting in an output field with a strong interference pattern, while ensuring a suf-
ficient signal-to-noise (SNR) ratio by matching the acoustic impedance of water. Instead
of using compressive sensing to reconstruct images, we use ‘sparse sensing’ [17] to op-
timize the compression mask design. Of course, this imaging approach requires one to
image through an aberrating layer (the compression mask), which leads us to the second
challenge in the field of ultrasound imaging, discussed next.

1.1.2. IMAGING THROUGH ABERRATING LAYERS

Conventional beamforming techniques for ultrasound imaging implicitly assume that
the transmitted ultrasound pulse propagates to each pixel unimpededly, even if there are
reflections from scatterers during propagation. The same is assumed for echoes propa-
gating from an acoustic scatterer towards the sensor array. Moreover, it is assumed that a
secondary reflection of an echo from another scatterer is negligible. This set of assump-
tions is known as the Born approximation [18, 19]. It simplifies ultrasound modeling and
simulations, and also forms the foundation for ultrasound beamforming to compute ul-



1.1. CHALLENGES IN MEDICAL ULTRASOUND IMAGING

1

5

trasound images. The Born approximation is valid when the acoustic tissue inhomo-
geneities that cause reflections are only weakly scattering (i.e., their acoustic impedance
constitutes only a small contrast compared to the overall acoustic impedance of the
background medium). The Born approximation is a good approximation for most med-
ical ultrasound scenarios, and is often used as the de facto ultrasound model [19–22].

The Born approximation starts to lose its validity for imaging scenarios which can-
not be approximated as a homogeneous background medium with small acoustic con-
trasts. The plastic compression mask mentioned in the previous section, for example,
is such a scenario. Although the Born approximation would be valid for waves traveling
and scattering inside the tissue of a patient, the propagation through the coding mask
is not easily modeled, and needs to be characterized somehow, since waves will bounce
around inside the mask before entering the ROI (instead of propagating unimpededly as
assumed by the Born approximation).

Another important scenario would be non-invasive ultrasonic imaging of the human
brain through the skull. Inside the brain, scattering could be modeled using the Born
approximation, but the propagation of echoes or pulses through the skull is unknown,
since the skull is highly inhomogeneous, causing many reflections and distorted waves
to enter the human brain. Currently, fUS, which enables imaging of brain activity using
ultrasound arrays (much like in functional magnetic resonance imaging (fMRI), but at
higher spatiotemporal resolution, a fraction of the cost of fMRI, and better ease of use),
is only possible when the skull is partly removed (in the case of open brain surgery) [23],
or thinned (in the case of small adult rodents) [24]. Solving this problem would make it
possible to image blood flow to visualize the brain vasculature, and brain activity using
fUS [24–26], without removing part of the patient’s skull. This would help researchers
in understanding the functioning of the human brain, understanding mental disorders,
but could also be an invaluable image guidance tool for intra-operative tumor-brain de-
lineation [23].

Researchers have tried to solve this problem for the skull wall particularly using a va-
riety of approaches. Most studies assume the skull can be modeled as a phase screen,
i.e., the measured echo signal can be modeled as an unimpeded echo wavefield, with an
independent phase change applied to the field on each sensor ([27–29], to name but a
few). However, the skull is a highly aberrating layer, and such approaches may only be
effective for those parts of the skull which are relatively thin, or when sufficiently large
wavelengths are used. A more sophisticated approach is proposed by Fink et. al. [30, 31],
which use time-reversal and signal processing techniques to focus energy through the
skull, but require one to first experimentally characterize the impulse responses through
the skull. A very computationally intensive approach which does not rely on the Born ap-
proximation is proposed in [32], where the acoustic wave equations are solved directly.
However, this approach requires many sensors around the entire skull, and more impor-
tantly, its computational requirements currently make it unsuitable for quickly imaging
many ultrasound images, which need to be compounded to obtain a single Doppler or
fUS image.

In this thesis, we propose some new steps on the road towards imaging through aber-
rating layers, whether it is a compression mask or a skull layer. To this end, we propose to
model the entire aberrating layer, not as a simple phase mask, but as a full set of Green’s
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functions (transfer functions) that describe the linear propagation of a wave from one
point on one side of the layer, towards any other point on the other side (a similar model
as used in [33]). This model would be apt for any aberrating layer besides the skull. We
then analyse two methods to estimate this set of transfer functions without the need of
first characterizing the layer experimentally, which we call ‘blind calibration’, since both
the skull layer’s transfer function as well the the ultrasound contrast image are unknown.
We then use model-based imaging, the same technique we use to image using a compres-
sion mask (see the previous subsection), in order to estimate an image by incorporating
these transfer functions into the imaging algorithm.

1.2. MODEL-BASED ULTRASOUND IMAGING

In this dissertation we utilize computational imaging tools that can be used for tack-
ling more complicated ultrasound imaging scenarios, such as the two described above.
These computational approaches are able to take into account complex wavefields, such
as sophisticated interference patterns created when an ultrasound wave propagates through
a (heterogeneous) aberrating layer. We call this computational imaging approach model-
based imaging. We will demonstrate that, by this approach, and utilizing the large amount
of computer power available nowadays, we can still look through some of these layers.
In fact, we argue that such layers can be helpful to obtain more information about the
imaging scene.

Model-based imaging relies on the following two principles:

1. An accurate wave propagation model for the imaging scenario. Current imaging
methods do not necessarily take into account the full wave propagation model
that describes how echo signals look like. For example, the shape of the transmit-
ted pulse, sensor transfer functions, and the spatial interference pattern of trans-
mitted waves are typically not considered. In the first part of this thesis, we ex-
perimentally characterize the field transmitted or received through an aberrating
layer intentionally used for information compression. Only when using a model-
based imaging algorithm can a good image be reconstructed from the ultrasound
echoes. In the second part, we look for intelligent ways of characterizing an aber-
rating layer without a laborious and medically invasive characterization method.

2. The second pillar is that of using an imaging technique that tries to find the image
that best explains the measured echo signals given the propagation model from
the first principle above. To do this we typically use least squares methods, i.e.,
mathematical minimization methods, instead of traditional methods that rely on
physics-based insights or coherent summation (e.g., delay-and-sum beamform-
ing). This not only allows us to reconstruct images when aberrating layers are
present, but also to impose constraints on the reconstructions, based on prior in-
formation about, e.g., the image structure.

In Chapter 2, we will describe the physics and mathematics of model-based imaging
in more detail.
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1.3. CONTRIBUTIONS IN THIS DISSERTATION
The contributions of this thesis rely heavily on the two principles of model-based imag-
ing. The main innovations in this thesis consist of the application of model-based imag-
ing to medical ultrasound, showing that it allows us to image with strongly distorted
ultrasound fields, and that one can extract more information and create better image
reconstructions with less sensors. This way, some first steps are taken towards solving
the problem of looking through layers, and the problem of signal compression in ultra-
sound imaging. This thesis also provides methods for obtaining this required propaga-
tion model using a blind technique (both the propagation model and ultrasound image
are unknown) as well as a non-blind technique (a controlled calibration environment
with a known image is used to find the propagation model). Blind methods are espe-
cially useful for scenarios where characterization of the distorting layer is difficult, such
as imaging through the human skull.

More concretely, the contributions of this thesis are as follows:

1. Demonstrate that a 3D ultrasound image can be reconstructed from a single sen-
sor by spatially encoding the transmitted and received ultrasound field using a
simple and easily manufactured plastic coding mask. This is done by carefully
measuring the pulse-echo signal for each pixel, and by utilizing model-based imag-
ing techniques. The method is successfully tested on lab measurements of two
objects, paving the way for 3D imaging without a fully sampled 2D matrix array, as
well as simpler and smaller imaging devices. This contribution is presented in Ch.
3, and has been published as:

Kruizinga, P., van der Meulen, P., Fedjajevs, A., Mastik, F., Springeling, G., de
Jong, N., ... & Leus, G. (2017). Compressive 3D ultrasound imaging using a
single sensor. Science advances, 3(12), e1701423.

Related work to this contribution can also be found in:

Janjic, J., Kruizinga, P., van der Meulen, P., Springeling, G., Mastik, F., Leus, G.,
... & van Soest, G. (2018). Structured ultrasound microscopy. Applied Physics
Letters, 112(25), 251901.

However, we will not elaborate on this paper in this dissertation.

2. Propose and compare various numerical optimization methods for finding the
best coding mask geometry for a single sensor setup. A convex-relaxation ap-
proach, as well as a greedy algorithm are proposed, and we show that the faster
greedy algorithm works just as well as the convex approach, while being more
computationally efficient. Both methods come close to finding the globally opti-
mal mask for small problem sizes. We demonstrate that these masks find a trade-
off between the amounf of information encoded by the coding mask on the one
hand, and SNR on the other. The obtained masks outperform randomly designed
masks. This contribution is presented in Ch. 4, and has been published as:

van der Meulen, P., Kruizinga, P., Bosch, J. G., & Leus, G. (2019). Coding mask
design for single sensor ultrasound imaging. IEEE Transactions on Computa-
tional Imaging, 6, 358-373.
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Related work to this contribution can also be found in:

van der Meulen, P., Kruizinga, P., Bosch, J. G., & Leus, G. (2017). Spatial com-
pression in ultrasound imaging. In 2017 51st Asilomar Conference on Signals,
Systems, and Computers (pp. 1016-1020). IEEE.

van der Meulen, P., Kruizinga, P., Bosch, J. G., & Leus, G. (2018, October).
Joint optimization of coding mask and scan positions for compressive single
sensor imaging. In 2018 IEEE International Ultrasonics Symposium (IUS) (pp.
1-4). IEEE.

However, we will not elaborate on these papers in this dissertation.

3. A fast and simple measurement method for finding the electro-mechanical trans-
fer function of each transducer in an ultrasound array, using simple pulse-echo
measurements instead of using hydrophones or other additional transducers. These
are needed for accurate ultrasound simulations, and for more accurate model-
based imaging methods. To accomplish this, we propose a de-autoconvolution
technique based on a convex relaxation, leading to a semi-definite program, to
estimate the transfer functions. This contribution is presented in Ch. 5, and has
been published as:

van der Meulen, P., Kruizinga, P., Bosch, J. G., & Leus, G. (2017, September).
Impulse response estimation method for ultrasound arrays. In 2017 IEEE In-
ternational Ultrasonics Symposium (IUS) (pp. 1-4). IEEE.

4. A method for finding the transfer function of an aberrating layer in front of an
ultrasound array, when the ultrasound image is unknown as well. A pulse-echo
measurement model is formulated where the layer’s transfer function is an explicit
variable to be estimated. It is demonstrated that a second set of measurements
with a phase mask gives rise to a simple technique for finding the layer’s transfer
function. It is shown that the method works successfully for laterally-invariant
layers, where the layer’s transfer function matrix is Toeplitz, and that it leads to
better imaging results compared to imaging without calibration. This contribution
is presented in Ch. 6, and has been published as:

van der Meulen, P., Coutiño, M., Kruizinga, P., Bosch, J. G., & Leus, G. (2021,
January). Blind calibration for arrays with an aberration layer in ultrasound
imaging. In 2020 28th European Signal Processing Conference (EUSIPCO) (pp.
1269-1273). IEEE.

5. A second, more stable and flexible method for blindly (i.e., without knowledge of
the ultrasound contrast image) estimating the transfer function of an aberrating
layer in front of an array. Only a single set of measurements without an additional
phase mask is needed. The method measures the echoes of many random uncor-
related images, such as from blood flow. Using covariance matching to estimate
the layer’s transfer function, a manifold optimization problem is defined, and sev-
eral techniques are proposed for solving it. The technique is tested on a variety of
layers simulated in k-Wave, including a skull layer, and simulated blood flow data.
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Using the obtained transfer function allows one to obtain better images when e.g.
a skull-layer is placed in front of the array, by incorporating the layer’s transfer
function in a model-based imaging algorithm. This contribution is presented in
Ch. 7, and at the time of writing has been submitted for publication as:

van der Meulen, P., Coutiño, M., Kruizinga, P., Bosch, J. G., & Leus, G. (2022).
Ultrasonic imaging through aberrating layers using covariance matching. IEEE
Transactions on Computational Imaging, submitted for publication.

Related work to this contribution can also be found in:

van der Meulen, P., Kruizinga, P., Bosch, J. G., & Leus, G. (2018, October).
Calibration techniques for single-sensor ultrasound imaging with a coding
mask. In 2018 52nd Asilomar Conference on Signals, Systems, and Computers
(pp. 1641-1645). IEEE.

However, we will not elaborate on this paper in this dissertation.

6. Finally, the following contribution has been co-authored by the doctoral candi-
date, but is not directly related to this thesis, and will not be further discussed.

Zangabad, R. P., Iskander-Rizk, S., van der Meulen, P., Meijlink, B., Kooiman,
K., Wang, T., ... & van Soest, G. (2021). Photoacoustic flow velocity imaging
based on complex field decorrelation. Photoacoustics, 22, 100256.

The remainder of this work is organized as follows. First, in the next chapter the ba-
sics of ultrasound imaging are briefly put in place, both from a physical point of view,
as well as a mathematical point of view. This mathematical view of imaging is used
throughout this thesis, as opposed to the traditional physics-based approach. It also
contains the central equation related to the model-based imaging framework. In the
same chapter, we will then briefly explain the main research questions coming in the
subsequent chapters from this mathematical point of view, and shortly discuss the main
mathematical problems considered in each chapter. Chapters 3 through 7 contain the
main research results as described in the list above, and is divided into two parts. The
first part considers imaging with a single sensor using a coding mask to distort ultra-
sound fields in an informative way, as well as the task of finding the best coding mask.
In these chapters, the propagation model, including the effect of the coding mask, is
obtained experimentally prior to imaging, or assumed to be known otherwise. In the
second part, we consider scenarios where the propagation model is not fully known,
and cannot be easily or non-invasively obtained experimentally. We propose two meth-
ods for blindly finding the effect of an aberration layer, and a method for finding the
electro-mechanical impulse response of an ultrasound transducer in an array. Fig. 1.1
summarizes the two parts of this dissertation visually. Finally, Chapter 8 summarizes
and concludes the research in this thesis.
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2
MODEL-BASED ULTRASOUND

IMAGING

I N this chapter we introduce the basics of model-based ultrasound imaging as opposed
to conventional beamforming. Based on the linear equation central to this imaging

method, we then outline each chapter in this thesis, and show how various US imaging
problems can be expressed mathematically using this central equation. This then natu-
rally leads to various mathematical (optimization) problems, which we try to solve in the
various chapters, leading to solutions for compressive imaging and blind calibration.

NOTATION
In this chapter, a vector x is represented using lower-case bold symbols, and a matrix
X is represented by upper-case bold symbols. The operator ( . )† represents the Moore-
Penrose pseudo-inverse operator. The matrix transpose and conjugate transpose are
denoted by the operators ( . )T and ( . )H, respectively. The statistical expectation operator
is denoted as E{ . }. Finally, the l2-norm of a vector x is denoted as ‖x‖2, the l1-norm of a
vector x as ‖x‖1, and the Frobenius norm of a matrix X as ‖X‖F .

2.1. TRADITIONAL ULTRASOUND BEAMFORMING
Classical ultrasound imaging is based on the technique of delay-and-sum (DAS) beam-
forming. Since ultrasound waves travel with a more or less constant speed of sound
throughout the body, one can compute at what time an echo from a specific location
would be measured on each sensor in an array. One could then simply sum the signal
values of the envelope of the echo signals across all sensors at those computed arrival
times into a single value, and it should result in a relatively large number, since those
signals should sum coherently. Coherent summation is possible since the same pulse
is transmitted to (and reflected by) all pixels, and since we can pre-compute the time-
of-arrival of the potential echo of each pixel. Conversely, if we use the same operation
for a location where no scattering is present, the summation would be a relatively low
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Figure 2.1: Delay-and-sum beamforming works by delaying all channels based on the time-of-
arrival of the pixel being beamformed. Signals from that pixel will sum coherently if an echo is
present. Applying the same delays to a set of echoes originating from an echo at a different location
will not result in coherent summation.

number. DAS beamforming thus consists of repeating this operation for all pixels, after
which an image can be formed where high intensities correspond to scattering activity.
Fig. 2.1 contains a visual explanation of the DAS beamforming concept.

Various transmit schemes are used in medical ultrasound imaging in combination
with DAS beamforming. The most basic scheme focuses energy in one direction, and
then beamforms for only that angular sector. This is then repeated until all sectors are
covered, and as such requires multiple transmit events in time before a single image can
be formed. In order to increase framerate, one could consider to transmit a diverging
wave (or other limited diffracted wave) using e.g. a single transmitter, that illuminates
the entire ROI instead of a single angular sector. This comes at a loss of image qual-
ity since the signal-to-noise ratio (SNR) is lower for all pixels, and thus multiple of such
images are often compounded into a single, high SNR image (where each image is ob-
tained by transmitting from a different sensor in the transducer array [1]). A trade-off
between SNR and framerate has been found using coherent plane-wave compounding
[2], where all sensors transmit in such a way that a plane wave illuminates the entire
ROI, at a higher SNR than using a diverging wave. Multiple of these plane wave images
with different plane wave angles are coherently compounded to obtain a good image at
a very high frame rate. Note that, for all these techniques, the time-of-arrival of an echo
is known for each pixel, and so DAS beamforming can be applied.

The DAS approach relies on the fact that in most medical imaging situations waves
can travel uninterruptedly with only small inhomogeneities acting as scatterers, so that
the background medium speed of sound can be assumed more or less constant (so that
travel times can be computed), and it also relies on the fact that more or less the same
pulse waveform is received on each sensor in an array from each single reflection (so
that coherent summation is possible). In this dissertation we are interested in scenar-
ios where an aberrating layer is placed in front of an ultrasound transducer. In compli-
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cated layers like the skull, reflected waves will not directly travel towards the sensors, but
instead scatter and reverberate inside the layer, before reaching the sensor array. More-
over, the echo pulse shape of each pixel can be different, since the incident transmit wave
varies spatially across pixels. It invalidates the assumptions used by DAS beamforming,
which can no longer reconstruct images in such a scenario.

A more thorough approach for these kinds of scenarios would take into account that
an echo can have a non-typical time-of-arrival compared to a normal imaging situa-
tion, and, more importantly, may have a much different waveform than the pulse orig-
inally transmitted into the region of interest (ROI). The received echo waveform could
even strongly vary with pixel location, providing additional information not exploited
using DAS beamforming. Instead of delaying channels followed by coherent summa-
tion, one could then use a more sophisticated imaging technique. If we know what the
potential echo signal of each pixel in the ROI looks like, we can use simple least squares
approaches to find the image that best explains the measured echo signals, taking into
account this prior knowledge. Of course, one has to be able to estimate what the echo of
each pixel would look like, which requires extensive and accurate simulations, or could
be accomplished by directly measuring these signals experimentally.

We will refer to this approach of ultrasound imaging as model-based ultrasound imag-
ing, and it will be shortly explained in this chapter. Using this framework, each chapter
in this dissertation will then be explained based on the measurement equation central
to this approach.

2.2. BASICS OF MODEL-BASED IMAGING
We consider the scenario where a known pressure pulse is transmitted into the region of
interest (ROI), with a homogeneous background medium, and no aberrating layers (Fig.
2.2). Scattering of the pressure pulse occurs when pixels in the ROI have a contrasting
speed of sound and/or density compared to its surrounding medium. Since these con-
trasts are relatively small in biomedical imaging, we can safely ignore multiple reflections
between the scatterers. This approximation is known as the Born approximation [3, 4],
and greatly simplifies the relation between the contrast image and measurement data
(in fact, it becomes a linear relation). The output signal on a receiving sensor is now a
linear superposition of the echo of each individual pixel, since we can assume an echo is
not strongly changed by other reflectors, and thus does not generate additional echoes
with enough energy to invalidate the Born approximation. Hence, the output signal on
sensor m related to pixel n, am,n(t ), can be pre-computed for each of the N pixels. Let xn

be the scattering intensity of the n-th pixel (which is zero in case of no scattering), then
the measured output signal ym(t ) on sensor m is equal to

ym(t ) =
N∑

n=1
am,n(t )xn +nm(t ), (2.1)

where nm(t ) represents additive measurement noise. Since all am,n(t ) are known before-
hand (we know the pulse transmitted into the ROI, and at what time an echo would
be measured for each pixel), the only unknowns are the coefficients xn . Imaging thus
becomes a matter of solving the linear equation (2.1) for xn . This relation is more com-
pactly denoted using a matrix-vector formalism. After sampling the continuous signals
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Transmit/receive sensor array

Reflector

Figure 2.2: A typical ultrasound imaging scenario. One or more elements in the array transmit a
pulse into the ROI. Acoustic contrasts will cause echoes of the incident pulse, which are reflected
back towards the transducer array. To obtain an image, it is assumed secondary reflections are
negligible. Since the speed of sound of the background medium is known, it can be pre-computed
when the potential echo of each pixel should arrive, which is exploited by e.g. DAS beamforming.

ym(t ) and am,n(t ), their L samples can be stored in the vectors ym ∈CL and am,n ∈CL . For
the sake of generality, y and am,n can be complex for various reasons: e.g., one does im-
age reconstruction in the frequency domain, or the measured signals have been shifted
to baseband to obtain an IQ-signal. However, the relationship between the measure-
ments, model, and unknown image remains linear, and so everything discussed in this
chapter applies to those situations. We can now write the vectorized version of (2.1), and
stack them for all M sensors into a single equation:

y1

y2
...

yM

=


a1,1 a1,2 . . . a1,N

a2,1 a2,2 . . . a2,N
...

...
...

aM ,1 . . . . . . aM ,N




x1

x2
...

xN

 +


n1

n2
...

nM

 , (2.2)

which we shortly denote as

y = Ax+n. (2.3)

To obtain an estimated image x from y, the following optimization problem can be
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solved, to find the image x that best explains the measurements y, given the model A:

x̂ = argmin
x

‖y−Ax‖2
2. (2.4)

Unfortunately, A is typically an ill-posed matrix, so that a small change in y, e.g., due
to measurement noise or model errors, can cause a wildly different solution x. For this
reason, one typically adds a penalty term to the cost function above:

x̂ = argmin
x

‖y−Ax‖2
2 +λ f (x), (2.5)

where the scalar parameterλ determines the trade-off between the penalty function and
the model error. Although model-based imaging takes into account more information
using the matrix A, one now has to choose an appropriate regularizer function f (x) and
tune the regularization weight parameter λ [5]. A typical example is the Tikhonov regu-
larizer f (x) = ‖x‖2

2, which penalizes large values in x. As a result, there is a unique and
stable solution, at the cost of smoothing x, causing a loss in resolution. In the field of
compressive sensing [6–9], it was discovered that the the l1 regularizer f (x) = ‖x‖1 can
exactly reconstruct x if the true x is known to be sparse, and under certain conditions on
A. The regularizer function can therefore be used to exploit prior information about the
solution x̂. Since model-based imaging is computationally intensive compared to DAS,
it is often not used for typical imaging scenarios with no aberration layer present. DAS
is computationally more efficient, does not require the pre-computation or storage of a
large matrix, and typically leads to comparable resolution.

An imaging method that does not fully solve (2.3), but is more computationally effi-
cient, is the estimated solution

x̂ = AHy, (2.6)

known as the matched filter estimator in communication and radar literature. If AHA is
approximately equivalent to the identity matrix, it is straightforward to see that the esti-
mator approximately solves (2.3). This estimator (2.6) acts as a correlator, since it takes
the inner product of each column of A with y: it checks how similar the expected echo
signals for each pixel are compared to the measurement y by computing the unnormal-
ized correlation coefficient through the inner product of the two vectors. As pointed out
in [10], for typical ultrasound imaging scenarios without an abberating layer this reduces
to the DAS beamformer if one has no knowledge about the ultrasound pulse transmit-
ted into the imaging medium. If the pulse is unknown, one would assume a delta-pulse
δ(t ) is transmitted and reflected by scatterers. Thus, each vector am,n in (2.1) consists of
zeros and has unity magnitude on the sample at which an echo is expected to arrive for
pixel n at sensor m. The matched filter would thus simply sum M values from y (since
each column in A has only M non-zero entries) for each pixel, namely the samples in y
at which an echo is expected at sensor m. Denoting the n-th column vector of A as an ,
using τm,n as the expected time-of-arrival for an echo from pixel n on sensor m, and us-
ing the DAS matrix ADAS as just described, we have for the corresponding matched filter
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estimate:

x̂n,DAS = aH
n y (2.7)

=
M∑

m=1
aH

m,n ym (2.8)

=
M∑

m=1
ym[τm,n], (2.9)

where ym[τ] represents the signal y at sensor m at sample τ. This is thus equivalent to
delay-and-sum beamforming.

The model-based imaging approach has been applied to (medical) ultrasound imag-
ing without abberrating layers already in the 1990’s [11, 12], and in various other works
throughout time [13, 14]. Recently, it is of interest to researchers due to the increased
amount of computational resources and in the context of compressive sensing [10, 15].
The model-based imaging approach becomes more interesting for scenarios where one
can no longer beamform based purely on time-of-arrival information. In contrast, model-
based imaging is able to reconstruct images in non-conventional scenarios where waves
are strongly distorted, but the Born approximation still holds. At the other end of the
spectrum, as opposed to DAS-based beamforming, there is full waveform inversion (FWI),
an imaging algorithm that gained immense popularity in seismic imaging [16, 17]. In-
stead of using the Born approximation, it tries to solve the acoustic wave equations using
gradient descent techniques. Although this is not a convex optimization problem, very
good results are obtained. This method is in the same spirit of model-based imaging,
since it does not make any assumptions on the background medium wave speed, trans-
mitted pulses, and even foregoes the Born approximation. However, this comes at the
cost of much larger computational times, which are tolerable in seismic imaging since
real-time imaging is not required. With model-based imaging we try to find a balance
between the computational imaging burden and imaging quality, where DAS and FWI
would form the two outer extremes on this scale. There are many CPU and memory effi-
cient algorithms to solve (2.5) available for various regularizer functions, and there is still
an active research community for (efficiently) solving ill-posed linear inverse problems.

In this thesis we discuss a few scenarios where model-based imaging is required,
the common theme being that of imaging through aberrating layers located just in front
of an (array of) ultrasound sensor(s). These scenarios will be briefly discussed in the
remainder of this chapter, where we will give an extended outline of this thesis based
on the preceding equations. Each chapter discussed below is based on a corresponding
research paper, which is mentioned at the beginning of each chapter.

2.3. DISSERTATION OUTLINE

2.3.1. 3D ULTRASOUND IMAGING WITH A SINGLE SENSOR AND A CODING

MASK
In Chapter 3 we show a first example of a scenario where DAS is no longer useful, and the
use of model-based imaging is required. It considers a large single transducer, equipped
with a coding mask, capable of reconstructing 3D images using only a single sensor. The
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Figure 2.3: Ultrasound imaging with a single sensor and a coding mask (Chapter. 3). In (A) no
coding mask is used. The echo signal of each scatterer at the same range will look the same, and
arrive at the same time, denying the possibility of resolving two or more scatterers. In (B) a cod-
ing mask distorts waves in such a way that a different echo signal is received from each scatterer.
Since we can characterize the echo of each pixel using a calibration procedure, we known them
beforehand, and the two scatterers can now be resolved based on their pulse-shape.

transmitted ultrasound pulses travel through the coding mask, which strongly distorts
the transmitted ultrasound field, so that a different pulse is scattered toward each pixel
(Fig. 2.3). In this case the DAS algorithm would not be able to reconstruct an image,
since there is not an array of sensors to exploit time-of-arrival differences between sen-
sors. With model-based imaging, however, we can experimentally measure the response
of each pixel, use those measurements to construct A, and solve (2.4) to successfully
obtain an estimate of a contrast image. Not only does this demonstrate the usefulness
of model-based imaging, but it also shows it can play a role in reducing the number of
sensors needed for 3D imaging, and furthermore paves the way for miniaturized ultra-
sound devices for e.g. minimally-invasive intravascular imaging applications. Only a
single sensor is needed, strongly reducing data output and the amount of cables needed
to transfer measurement data.

2.3.2. OPTIMIZING THE GEOMETRY OF A CODING MASK FOR SINGLE SEN-
SOR IMAGING

Building on the work presented in Chapter. 3, we try to find the aberrating mask that
enables the best imaging performance in Chapter. 4. We specifically consider the type of
coding masks used in Chapter. 3: a homogeneous plastic disc with varying thickness to
create local phase changes, resulting in a coded echo field (Fig. 2.4). In order to design
these pressure fields, an approximate model for the output field based on the local mask
thicknesses is utilized. Similarly structured phase masks and signal models have also
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Figure 2.4: The coding mask geometry used in Chapter. 4. It consists of a homogeneous material
with a different speed of sound than the ROI medium. Due to the different heights of the pillars,
echo wavefields are distorted, enabling distinction between scatterers at the same range. In Chap-
ter. 4 we assume a separate transmitter is used to illuminate the ROI.

been used to design arbitrary pressure fields by other researchers [18, 19]. Each pillar
in the mask is seen as an independent channel that delays the incident wavefield based
on its length (Fig. 2.5). In our work, we use this approximate model to pre-compute the
A-matrix. The resulting A-matrix can then be used to predict how well images can be
reconstructed from measurements obtained with the corresponding coding mask.

To this end, we assume the scattering coefficients in x are normally distributed with
known covariance matrix Cx. We fill further assume that a Wiener estimator is used to
estimate x, which takes into account the covariance matrix of the distribution of x. Under
this assumption, we can compute the error covariance matrix when using the Wiener
estimator [20] as

Ce = E
(
(x− x̂)(x− x̂)H

)
(2.10)

=
(
C−1

x +AHC−1
n A

)−1
, (2.11)

where Cn is the known noise covariance matrix, and x̂ represents the estimated image.
After discretizing the mask surface into pillars, we collect the heights of all pillars in the
ordered set W . If W is known, we can also compute A based on the aforementioned
approximate delay-based model. Thus, A becomes parameterized by W , which we will
denote as A(W ). We will try to find an optimized mask by minimizing the mean squared
error (MSE) under additive zero-mean i.i.d. white Gaussian measurement noise, which
is a function of Ce. That is, we will use the sum of the error variances over all pixels.
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Figure 2.5: The approximate model used to predict the echo signal for each pixel in Chapter 4.
Each mask pillar is seen as an independent channel which delays the local part of the incoming
wavefront based on its length and mask speed of sound. The final output signal y(t ) is the integral
of all delayed channel signals. We optimize the mask by finding the best length for each pillar, such
that echo signals from different pixels are resolvable.

Substituting A(W ) into (2.11), we thus want to minimize the function

f (W ) = trace(Ce) (2.12)

= trace

((
C−1

x +A(W )HC−1
n A(W )

)−1
)

, (2.13)

with respect to W . This results in a discrete optimization problem, for which we propose
a convex relaxation approach, as well as a greedy discrete optimization approach. We
are able to show that the optimized masks come close to the true optimal mask for small
problem sizes. For realistic scenarios, we observe that the optimized masks try to fo-
cus energy in the ROI, increasing SNR, while at the same time maximizing decorrelation
between echo signals (i.e., columns of A) of neighbouring pixels.

2.3.3. IMPROVING THE ACCURACY OF THE SCATTERING MODEL BY ESTI-
MATING THE TRANSMITTED ULTRASOUND PULSE

In Part 2 of this thesis, we consider how to increase the accuracy of the A-matrix. It
goes without saying that errors in A will lead to imaging artifacts in estimates of x. This
ranges from a (slight) loss of resolution for imaging through (subcutaneous) fat layers, to
completely incomprehensible images when imaging through bone tissue. In case of the
latter, such as the human skull, waves are distorted so strongly that the A matrix typically
used for free propagation of waves in a homogeneous medium no longer corresponds to
reality, resulting in catastrophic image reconstructions when using a ‘normal’ A matrix.

In Chapter 5, we start with finding the electro-mechanical transfer function of each
element in an ultrasound array, so that it can be included in A, potentially leading to
improved imaging results. Typically, one controls the pulse that is sent to a transmit-
ter. This is not necessarily the same pulse that will propagate inside the ROI, mostly
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due to the electro-mechanical transfer function of the transducer that is applied on both
transmit and receive. The combination of the transmit pulse and the application of the
electro-mechanical transfer function on both transmit and receive form the actual mea-
surements in the data vector y, and thus needs to be included in A.

One way to measure the forward field of a transducer would consist of exciting it
with a single δ-like pulse, and using a hydrophone to measure the actual transmitted
pulse. The pulse-echo impulse response for each combination of transmit and receive
elements in an array can then be found by convolving the impulse responses of the cor-
responding array elements. However, hydrophones are expensive, measurements are
sensitive to the position of the hydrophone, and the procedure becomes laborious for
large arrays.

For that reason, a method is presented where a flat plate reflector is placed in front
of the transducer array, which acts as a mirror. In that case, one would measure a de-
layed version of the impulse response h(t ) convolved with itself, repeated for each array
element. The problem considered in this chapter is how to estimate h(t ) from the mea-
surement signal x(t ) = h(t )∗h(t ). Repeating this simple procedure for each element in
an ultrasound array would then give the one-way electro-mechanical impulse response
of each transducer. We present a de-autoconvolution algorithm using semi-definite pro-
gramming, exploiting the circular convolution property of the DFT transform of x(t ).

2.3.4. BLIND ESTIMATION OF THE EFFECT OF AN ABERRATING LAYER

In the remainder of Part 2, we are interested in finding the A matrix without measuring
the pulse-echo signal of each pixel explicitly. We call this a ‘blind’ calibration approach,
since neither x nor A is known. In Chapters 6 and 7, we propose two techniques for
blind calibration when there is an aberrating layer placed between the ultrasound array
and the ROI (Fig. 2.6). The first one based on obtaining two measurements using an
additional auxiliary coding mask is discussed in Chapter. 6, and a second, more flexible
and stable method based on covariance matching [21] is presented in Chapter. 7.

The first step towards solving this problem is the insight that it is well known how
waves propagate between the aberration layer and pixels in the ROI. Suppose a non-
aberrated pulse is transmitted into the ROI with a homgeneous background medium
with a known speed of sound, and propagates to each pixel. Acoustically contrasting
pixels will scatter the pulse towards the aberrating layer. The component in the A matrix
covering the propagation path up until this point is known, and is easily computed. The
only unknown factor, then, is the propagation from the ‘input’-field on the virtual array
in Fig. 2.6 towards the true sensor array. Even though there is scattering and reverbera-
tion inside the layer, we can still assume the propagation is linear, ignoring non-linear
effects such as absorption. In other words, there is a Green’s function from each point
on the virtual array to each sensor in the actual array. Consequently, the ‘output’-field of
the aberrating layer as measured by the true array, is a linear combination of the entire
input field on the virtual array.

This enables us to define a new measurement equation, where the matrix A now de-
scribes the propagation from a (point-like) transmitter that does not suffer from aber-
ration, towards pixels, and then towards the virtual array. We further define the matrix
H, which defines the linear operation exercised by the aberrating layer on input fields in
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Figure 2.6: The imaging scenario considered in Chapters 6 and 7. An aberrating layer is present in
front of the ultrasound array. Its effect on incoming wavefronts is seen as a linear transformation
from the virtual array just in front of the layer, toward the true array sensors. In these chapters, we
present algorithms for estimating this linear transformation without knowing the acoustic contrast
image x.

the virtual array. We then obtain the following measurement equation, which is used in
both Chs. 6 and 7:

y = HAx+n. (2.14)

Thus, we have separated the complete A-matrix into known and unknown propagation
components. This strongly reduces the amount of unknowns, especially since we can
typically expect some kind of structure in H that can be exploited. Having obtained this
equation, the question is: how to estimate H and x, knowing A, and measuring y? This is
a bi-linear measurement equation, and these are typically hard to solve.

In Chapter 6 we make a first attempt at blind calibration. There, we assume that a
set of P images X = [x1 x2 . . . xP ] can be measured, so that we have a first set of measure-
ments

Y1 = HAX. (2.15)

Next, we use a phase mask (similar to the one used in Chs. 3 and 4), that locally changes
the phase of the ‘input’ field placed directly in front of the aberrating layer. Using the
same set of images, we then obtain a second set of measurements:

Y2 = HΘAX, (2.16)

where Θ is a diagonal matrix containing the phase shift per channel of the phase mask.
Now, the difference between Y1 and Y2 can be exploited by multiplying the pseudo-
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inverse of one with the other. Defining Z = Y2Y†
1, we have:

Z = Y2Y†
1 (2.17)

= HΘAX(AX)†H−1 (2.18)

= HΘH−1. (2.19)

SinceΘ is a diagonal matrix, H can be obtained as the eigenvector matrix of Z. Of course,
H is only known up to a column permutation and a scaling per column, which can be re-
solved by using prior knowledge on the structure of H, and using the fact thatΘ is known.
Moreover, it is required that H is invertible, that the second set of measurements can be
obtained using the same X as in the first set of measurements, and that AX is full row-
rank. Furthermore, ill-posedness of Y1 can make the method sensitive to noise in Y2.

In Chapter 7 we propose a more flexible and stable technique for estimating H, com-
pared to the previous technique. It does not require two measurements, nor the use of
an additional phase mask. It exploits the second-order statistics of y instead of working
with the raw data directly. A single set of measurements are obtained, which are viewed
as realizations of a random process with covariance matrix Cx. In that case, the covari-
ance matrix Cy of y is defined as:

Cy = E{yyH} = E{HAxxHAHHH}+E{nnH} (2.20)

= HACxAHHH +Cn, (2.21)

where Cn is the noise covariance matrix. As a result of working with covariance data,
we no longer need to know x, but only the covariance matrix of x, which is a much less
demanding requirement. For example, one could obtain many measurements of blood
flowing inside a patient, assuming there is enough time between measurements such
that images are uncorrelated, and thus Cx = I. Blood flow is easily separated from static
scattering in a set of measurements by applying a high-pass filter on each sample across
the frame-dimension.

Using covariance matching [21], we would then like to find the H that best explains
the measured Cy, by minimizing:

Ĥ = argmin
H

‖Ĉy −HACxAHHH −Cn‖2
F , (2.22)

where Ĉy is the estimated measurement data covariance matrix which is estimated from
a large set of measurements. However, this problem is hard to solve since the term within
the Frobenius norm is quadratic w.r.t. H. A straightforward solution, in the noiseless
case, to estimate H from Cy is found as:

Ĥ = Cy
1
2 B− 1

2 , (2.23)

where B = ACxAH. This can be verified by inserting Ĥ into (2.21). However, any orthogo-
nal matrix Q, such that

Ĥ = Cy
1
2 QB− 1

2 , (2.24)
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will also solve (2.21) for H. Our solution is to enforce a structure on H, which can be
obtained by simulating various aberration layers and analyzing their corresponding H
matrix in accurate wavefield simulators such as k-Wave [22] (an accurate ultrasound
simulator cabaple of simulating the propagation of waves inside an aberrating layer).
We will denote the parameters of this parameterization by θ, and the parameterized H
matrix as H(θ). We then try to minimize the following cost function, ensuring a solution
is found that lies within the parameterized space for H, while also solving (2.21):

{θ̂,Q̂} = argmin
θ,Q

‖C
1
2
y QB− 1

2 −H(θ)‖2
F , s.t. Q ∈Q, (2.25)

where Q represents the set of orthogonal matrices (i.e., Q lies on the Stiefel manifold).
Various ways of solving this optimization problem are proposed in Chapter. 7, and the
algorithm is tested on a variety of aberration layers, simulated in the k-Wave toolbox. We
demonstrate that it allows imaging through a skull layer, and also shows that measure-
ments from a blood flow vasculature can serve as random images with Cx = I. Hence,
one could calibrate through a skull-layer using blood flow to generate random images,
followed by B-mode, power Doppler, or fUS imaging of that same data.
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3
COMPRESSIVE 3D ULTRASOUND

IMAGING USING A SINGLE SENSOR

Three-dimensional ultrasound is a powerful imaging technique, but it requires thousands
of sensors and complex hardware. Very recently, the discovery of compressive sensing has
shown that the signal structure can be exploited to reduce the burden posed by traditional
sensing requirements. In this spirit, we have designed a simple ultrasound imaging de-
vice that can perform three-dimensional imaging using just a single ultrasound sensor.
Our device makes a compressed measurement of the spatial ultrasound field using a plas-
tic aperture mask placed in front of the ultrasound sensor. The aperture mask ensures
that every pixel in the image is uniquely identifiable in the compressed measurement. We
demonstrate that this device can successfully image two structured objects placed in water.
The need for just one sensor instead of thousands paves the way for cheaper, faster, simpler,
and smaller sensing devices and possible new clinical applications.

Parts of this chapter have been published in Science Advances, 2017, 3(12), [1].
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3.1. INTRODUCTION

U Ltrasound imaging is a widely used technique in medical decision-making, mainly
due to the fact that ultrasound devices use nonionizing radiation and are relatively

low-cost. By carefully aiming the transducer, the operator can use ultrasound to obtain
real-time images of specific cross sections of the body. The contrast in ultrasound images
is due to sound speed and density differences between tissues. This is why, for example,
a baby’s skull in a watery womb forms a clear picture in ultrasound imaging. Almost all
ultrasound images are made with transducers composed of many tiny sensors (between
64 and 10,000) that can transmit short ultrasonic bursts (typically 1 to 40 MHz). These
bursts are then reflected by the tissue and recorded by the same sensor array. The time
delay between transmission of the burst and detection of the echoes defines where the
tissue is located. The strength of the reflected echo contains information on the density
of the tissue.

The sensors that make up these arrays are made mainly from piezoelectric crystals.
When a voltage is applied to the material, the crystal vibrates and produces a short ultra-
sonic burst of a few cycles [2]. When the sensors are activated with appropriate delays,
the emitted ultrasound wave travels along a straight line (in the form of a narrow beam)
and can be focused on a point of interest. With these focused beams, a whole volume
can be scanned (Fig. 3.1A). In terms of receiving the signal reception, similar delays
can be used to selectively enhance the signals from scatterers along the beam of inter-
est. This type of focusing that uses delayed signals in transmitting and/or receiving is
named beamforming and has been a source of active academic research for many years
[3]. One advantage of applying beamforming in receive mode is that it can be carried out
digitally after the received ultrasound field has been recorded (Fig. 3.1B). An alternative
technique applied in ultrasound imaging is to use an unfocused (“plane”) wave during
transmission. The focus is then regained upon reception, allowing for a faster frame rate
because the medium is not “scanned” line by line with a focused beam.

The majority of ultrasound imaging is performed using transducer arrays that have
their sensors distributed along one dimension (Fig. 3.1, A and B), thereby offering a two-
dimensional (2D) cross-sectional view of the inside of the human body. To obtain a full
3D view, one needs to mechanically move or rotate the 1D array or to create a 2D array
that allows beam steering in two directions. These 2D arrays have been shown to pro-
duce stunning high-resolution 3D images, for example, of faces of fetuses [4, 5]. How-
ever, 3D ultrasound imaging is a long way from achieving the popularity of 2D ultra-
sound imaging apart from in certain medical disciplines, such as obstetrics, cardiology,
and image-guided intervention. This is surprising given that a full 3D view should in
almost all cases allow for a better assessment of the specific medical question. One of
the main reasons for this low acceptance of 3D ultrasound imaging is that 3D imaging
requires a high hardware complexity (>1000 sensors on a small footprint, integrated elec-
tronics, high data rates, etc.). Most of this is necessary to cope with the constraints im-
posed by the Nyquist theorem when sampling the received radio frequency ultrasound
signals.

Fortunately, as shown by recent discoveries in statistics [6–8], the classical idea that
digitization of analog signals (such as ultrasound waves) demands uniform sampling at
rates twice as high as the highest frequency present (known as the Nyquist theorem) is
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Figure 3.1: Techniques of ultrasound imaging formation. Conventional ultrasound imaging re-
quires an array of sensors to (A) focus the transmitted and received wave field or (B) only the
received wave field by postprocessing the individual signals after analog-to-digital conversion
(ADC). We propose using only one sensor without focusing in transmission or receive (C).

no longer a rule carved in stone. This discovery has opened up a very active field of
research known as compressive sensing (CS) [9]. One of the leading thoughts in CS is
that signals generally contain some natural structure. This structure can be exploited to
compress the signal to one that is many times smaller than the original, as is done, for
example, in jpeg compression of images. However, until recently, this size reduction was
always done after the signal had been acquired at full Nyquist rate. CS now allows the
compression to be merged with the sensing. As an immediate consequence, the number
of measurements required to recover the signal of interest can be drastically reduced,
potentially leading to cheaper, faster, simpler, and smaller sensing devices. In the case of
ultrasound imaging, this has already led to the development of successful new strategies
for sampling and image reconstruction [10–13].

One of the most striking implementations of CS has been the design of the single-
pixel camera by Duarte et al. [14]. Here, the authors managed to reconstruct images us-
ing an adjustable mirror mask and a single photodetector. By projecting the image onto
the photodetector using random mask patterns, they were able to recover the actual im-
age from a number of measurements much less than the number of image pixels, hence
the name compressive imaging. This work has inspired many others to try and use the
idea in a similar way for different applications [15–17], including within the ultrasound
research community.
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Our work follows the concept central to compressive imaging: that of projecting the
object/image information through a set of incoherent functions onto a single measure-
ment. A successful strategy for obtaining these compressed measurements is to apply a
so-called “coded aperture” [18–20], In this case, the information—whether it entails dif-
ferent light directions, different frequency bands, or any other information that is con-
ventionally needed to build up an image—is coded into the available aperture and as-
sociated measurement. Smart algorithms are then needed to decode the retrieved mea-
surements to form an image.

Along these lines, here we introduce for the first time in ultrasound imaging a simple
compressive imaging device that can create 3D images. Our device contains one large
piezo sensor that transmits an ultrasonic wave through a simple plastic coding mask.
Local variations in the mask thickness (Fig. 3.1C) cause local delays, which scrambles
the phase of the wave field. Similar techniques were demonstrated by Melde et al. [21]
and Brown et al. [22] to produce holograms that generate predefined (photo)acoustic
fields. This enables a complex interference pattern to propagate inside the volume, re-
moving ambiguity among echoes from different pixels, as illustrated in Fig. 3.2. The
interference pattern propagates through the medium, scatters from objects within the
medium, and then propagates back through the coding mask onto the same ultrasound
sensor, providing a single compressed ultrasound measurement of the object.

Figure 3.2: A spatiotemporally varying ultrasound field allows for compressive imaging. (A) One
sensor (transmitter and receiver) cannot distinguish between two objects when the transmitted
wave field has no spatiotemporal diversity. (B) A simple coding mask can introduce a spatiotem-
porally varying wave field, which allows unique signal separation between two objects.
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Using our device, we aim to mitigate the hardware complexity associated with con-
ventional 3D ultrasound. The manufacturing costs of our device will be much lower. A
simple, cheap, single-element transducer is used, and the plastic coding mask can be
produced for less than a euro. These lower costs enable broader use of these 3D com-
pressive imaging devices, for example, for long-term patient monitoring. Because the
imaging is 3D, finding and maintaining the proper 2D view does not require a trained
operator. One could also envision other applications, such as minimally invasive imag-
ing catheters that are too thin to accommodate the hundreds or thousands of electrical
wires currently needed for 3D ultrasound imaging. Here, we discuss this new imaging
concept and demonstrate experimentally that a simple setup with a coding mask allows
for 3D ultrasound imaging—thereby paving the way for an entirely new method of imag-
ing in which the complexity is shifted away from the hardware and toward computing
power.

3.2. RESULTS

3.2.1. ULTRASOUND WAVE FIELD DIVERSITY USING A CODED APERTURE

For single-sensor compressive imaging, the 3D object information needs to be projected
onto a set of incoherent basis functions via a coded aperture. This is accomplished by
breaking the phase uniformity of the ultrasound wave in both transmission and recep-
tion. Conventionally, the loss of phase uniformity (for example, through aberration) is
unwanted because it leads to blurring and artifacts in the image. In our case, however,
the pattern of this interference is known and is used to our benefit.

The coding mask placed in front of the ultrasound sensor consists of a plastic mate-
rial that supports ultrasound propagation with a speed of around 2750 m/s, in contrast
to the speed in water, which is 1480 m/s at room temperature. Varying the mask thick-
ness consequently varies the time the ultrasound wave spends within the plastic before
entering the medium, in our case water. For an ultrasound wave with a central frequency
of 5 MHz to be delayed by a full wavelength with respect to the rest of the wave requires
a local thickness increase of 641 µm. When the thickness of the plastic varies spatially,
the phase uniformity of the propagating wave is broken, initiating a random determin-
istic interference pattern in the medium. The mask covers the complete aperture of the
sensor (diameter, 12.7 mm), and the thickness randomly varies between 0.1 and 1 mm.
For more details, see the Materials and Methods section. It is important to note that
the mask generates an interference pattern that essentially stretches in four dimensions
(three spatial and one temporal). So for every location in 3D space (every pixel), we have
one unique ultrasound signal that originates from that location. Figure 3.3 and movie
S1 show how the natural focusing of the ultrasound sensor is altered after we place our
coding mask in front of the sensor.

After excitation with a short high-voltage pulse, the piezo sensor used to insonify
the medium produces a short ultrasound burst. Although short, the limited bandwidth
ensures the burst has a certain length (time) and contains several (positive-negative)
cycles. After propagating through the mask, the pulse length increases further due to the
distortion of the wavefront by the coding mask (Fig. 3.4A). These waves will propagate
spherically in the medium and will interfere constructively and destructively, a process
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Figure 3.3: A random delay coding mask breaks the phase uniformity of the ultrasound trans-
mission to enable compressive imaging. The top panel shows the ultrasound field transmitted
from a normal piezoelectric sensor recorded by a small microphone (hydrophone) in front of the
sensor. Note that the transmitted wave focuses naturally into a narrower bundle after propagation.
The bottom panel shows the same transmitted wave field after propagation through the plastic
coding mask. Here, the phase uniformity of the wave is completely lost. The images in (A) and
(D) show one time sample (at 8.75 µs) of the transmitted wave field in a 2D plane (12.7 mm away
from the sensor surface) perpendicular to the propagation axis, before and after the addition of
the coding mask. The images in (B) and (E) show a projection of the total ultrasound energy over
time in the same 2D plane that is used for (A) and (D). The images (C) and (F) show the energy
projection over time in a 2D plane parallel to the ultrasound propagation axis.

that stretches out longer in time than an undistorted wavefront does. Consequently, the
available spatial bandwidth increases compared to an undistorted burst by a mask-less
sensor. This effect is highlighted in Fig. 3.4B, which shows two spatial frequency spectra:
one at the beginning of the pulse and one spectrum a few microseconds later. Here, we
assume that most of the acoustic energy is directly transmitted through the coding mask;
yet, in reality, some of the energy will be reflected back from the mask-water interface
and possibly redirected in the medium through the mask in a second pass after bouncing
back from the mask-transducer interface, thereby increasing the spatial variability even
more.

Any ultrasound imaging problem requires information about the spatial ultrasound
field, typically acquired by array sampling. By modeling the aperture mask as a collec-
tion of point sensors, each having different transmit/receive delays, the mask can still
be regarded as a sensor array. However, all these point sensor signals are subsequently
summed by the piezo sensor just after they have passed though the mask, resulting in a
single compressed measurement, as depicted in the right panel of Fig. 3.1 (for a further
comparison between a sensor array and a single sensor with a coding mask, see text S2
and Figs. 3.1 and 3.7). The delays produced by the mask create complex spatiotempo-
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Figure 3.4: Spatiotemporal diversity as well as wave field rotation provides a unique signal for
every pixel. (A) A 2D slice (time and y dimension) of the 4D ultrasound field (time and three spatial
dimensions), where x = 0 and z = 12.7 mm. Every time sample of this 4D wave field has unique
spatial properties, as is shown in (B) and (C). (B) The spatial ultrasound field at a later point in
time contains higher spatial frequencies, which is desirable for reconstructing objects with high
resolution. The possibility of rotating the mask offers another dimension of signal variation to
be used for image reconstruction. (C) Analysis of two samples based on their spatial properties
with respect to coding mask rotation. For pixels further away from the center, the local variance is
higher than for pixels closer to the center.

ral interference patterns that ensure that each pixel generates a unique temporal signal
in the compressed measurement. This unique pixel signature enables direct imaging
without the need for uncompressed spatial measurements.

Because of the limitations in temporal bandwidth, as well as in mask thickness dis-
tribution, it is not guaranteed that all pixel echo signals are uncorrelated. To introduce
more diversity between the pixels, we chose to rotate the mask in front of the sensor
such that the interference pattern is rotated along with it, thereby obtaining additional
measurements containing new information. Mask translations (in x, y , or z dimension)
would provide similar pixel diversity. Note that for a sufficiently good mask, mask rota-
tion or translation is not necessarily required but significantly decreases interpixel cor-
relations. The result on the ultrasound field as received by every pixel in one x y plane is
depicted in Fig. 3.4C, where the effect of rotation in terms of temporal variety is shown
at two points in time for three different pixels in the field of view.

3.2.2. PIXEL DIVERSITY
If we model the ultrasound field of the coded aperture by approximating the mask aper-
ture as a collection of point sources and sensors (see Materials and Methods section),
we can analyze the coding performance of the aperture. To this end, we compute the
pulse-echo signals for pixels in the central (x y plane) area at a fixed depth (z) relative
to the sensor and then compute their cross-correlations. Ideally, all signals are uncor-
related, so that any superposition of pulse-echo signals can be uniquely broken down
into its composing individual pulse-echo signals (as in Fig. 3.2), in which case the sig-
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nals for each pixel can be unambiguously resolved. Figure 3.5B shows the histogram of
interpixel correlations for a plane parallel to the sensor surface at a depth of 12.7 mm
(aperture diameter size). We computed these correlations without a mask for several
rotations. Because the wave field phase without using a mask is highly uniform, most
pulse-echo signals are highly correlated. However, adding a mask to the single sensor
causes the distribution to be zero-mean and removes the high correlations around +1
and -1. As expected, these results illustrate that adding more measurements by rotating
the mask causes correlations to be distributed more narrowly around zero; pulse-echo
signals become more orthogonal. This tells us that the use of rotation removes ambigu-
ities and consequently increases resolvability of scatterers. Here, we do not include the
signal correlations over the depth dimension, because generally speaking, the decorre-
lation in the acoustic propagation direction comes naturally with the pulse-echo delay,
or in other words, using only one sensor, we can estimate the depth of an object, but we
cannot see whether the object is located left or right from the sensor.

Instead of looking at the pixel-pixel correlation in an entire x y imaging plane, we can
also observe the local correlations. Such observations are demonstrated in Fig. 3.5D,
which visualizes the correlations between the center pixel and all other local pixels. A
higher correlation between pixels results in lower resolution due to their increased am-
biguity. These figures show that the resolution in x and y worsens as the depth increases
and that the resolution in z is better than that in x y , which is often the case for ultra-
sound imaging.

For a more detailed analysis, we can also use the Cramer-Rao lower bound (CRLB)
and apply it in the aforementioned approximate model [23]. The CRLB is a bound on
the best attainable estimation variance for any unbiased estimator (for example, the es-
timated parameter can be the image itself). That is, the CRLB is related to the average
squared estimation error. Hence, a lower CRLB suggests that the best obtainable resolu-
tion is lower as well. The actual estimator (beamformer) used in this paper is described
in the next section and does not necessarily achieve the CRLB. Consequently, the error
covariance of the actual estimator is typically greater than the CRLB, but the CRLB is a
good measure to study trends in the resolution. The CRLB is derived for the case of esti-
mating the position of a single scatterer given a pulse-echo measurement with additive
Gaussian noise (see the Materials and Methods section for more details). For a 3D prob-
lem, this results in estimating three unknowns (x, y , and z coordinates) from N mea-
surements, where N is the total number of samples. Although position estimation and
imaging are not the same, one could argue that the best value obtained for positional
error spread (for example, 3 SD of error) nevertheless is indicative for the achievable
imaging resolution.

To analyze the behavior and performance of the mask, we compute the CRLB for sev-
eral points in 3D space, comparing the bounds for measurements obtained with no and
four rotations (Fig. 3.5E). We distinguish two main factors that contribute to the CRLB.
First, rotation of the mask significantly reduces the CRLB, and a very large performance
gain is obtained by using more than one rotation. This effect is apparent when compar-
ing the CRLB for several rotations in the graphs in Fig. 3.5E. Second, when we analyze
the CRLB for no rotation, we see that the geometry of the problem determines the per-
formance, which is visible in the second panel in Fig. 3.5E. That is, the performance
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Figure 3.5: Random delays in the coding mask generate signal variability for unique pixel re-
construction. (A) Schematic drawing of the approximated ultrasound field in a plane inside the
medium parallel to the sensor surface. For every pixel in this plane, we want the echo signals to
be as uncorrelated/orthogonal as possible. (B) The histograms show the cross-correlation values
of a large set of pixels in the plane, obtained using an approximate simulation model. When the
plastic delay mask is rotated, the cross-correlation values distribute closer to zero, which suggests
better image reconstruction. (C) Mask layout where the gray values indicate the thickness varia-
tions, causing local delays of the ultrasound field. (D) Local correlations for a pixel at a fixed (x, y)
position at several depths using 72 mask rotations. (E) CRLB analysis. The leftmost panel shows
the level curves for one SD of position estimation error for a depth z of 12.7 mm. The center graphs
show the SD in x, y , and z over radius (distance to the center of rotation) at depth of 12.7 mm, and
over depth for a pixel at a distance of 3 mm from the center. The rightmost graph shows how the
CRLB changes as more measurements are added by rotation for a pixel at a distance of 3 mm from
the center and at a depth of 12.7 mm.
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for a small radial distance is dependent on the specific mask layout and worsens as the
received energy decreases inversely proportional to the distance from the sensor. For
computing the CRLB graphs, we used a constant noise energy such that the signal-to-
noise ratio of a pixel at (x, y, z) = (0, 0, 12.7 mm) is equal to 10 dB.

3.2.3. SIGNAL MODEL AND IMAGE RECONSTRUCTION
Because only one sensor is used, there is no possibility of applying standard beam-
forming techniques typically used in conjunction with sensor arrays. These techniques
mainly consider the geometry of the problem and do not require detailed information on
the ultrasound transmission itself. In our case, it is essential that this detailed informa-
tion is available because we only have one sensor observation. Thus, instead of applying
a standard geometric operation to multiple sensor observations, we attempt to explain
the received signal as a linear combination of point scatterer echo signals [24, 25]. With-
out loss of generality, let us represent the unknown true image by a vector v, containing
N pixels at a desired resolution. In our case, we use a pixel size smaller than two times
the smallest wavelength detected (0.120 mm). We found that this discretization size was
a good trade-off between model accuracy and memory usage. Furthermore, we assume
that the data obtained by the measurement device are linearly related to the image v and
can be modeled as

u = Hv,

where u is an M-dimensional vector containing the sampled pulse-echo signals, which
are concatenated when using multiple rotations, such that M is equal to the number of
time samples times the number of rotations. The M-dimensional vector n represents
the additive noise. Note that in this model, the system matrix or so-called observation
matrix H is determined by the measurement device (hardware) and contains all pulse-
echo signals of all the pixels in v. For more details on the dimensions of H, a comparison
to multisensor arrays, and the relation to CS, see text and figs. S2 and movie S3.

Having defined u, H, and v, and assuming that a linear propagation and scattering
model holds, imaging can be accomplished using a wide variety of linear inversion meth-
ods. To demonstrate the system, we imaged two plastic letters that were positioned at a
distance of 17 and 23 mm away from the sensor. Here, H contained pulse-echo signals
for all pixels within a 3D volume containing the scattering objects and was constructed
using the calibration method discussed in the next section. As seen in Fig. 3.6 (B, D,
and F), both letters were successfully reconstructed, demonstrating the 3D imaging ca-
pabilities of the presented methods. For Fig. 3.6 (B and D), we imaged a small volume
containing each letter and applied regularized least squares inversion using the LSQR
algorithm [26] with limited iterations to regularize the problem, which is known to be
equivalent to a filtered singular value decomposition inversion [27].

For the full 3D reconstruction shown in Fig. 3.6F, we made use of the sparsity of these
two letters in water by applying the sparsity-promoting basis pursuit denoising (BPDN)
algorithm [28]. As can be seen, this prior knowledge about the image could be effectively
exploited to improve image quality, significantly improving the dynamic range from 15
to 40 dB. Unlike in CS reconstructions, sparsity is not necessary for linear inversion due
to the local correlations of the encoding. However, sparsity can be exploited to improve
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Figure 3.6: Compressive 3D ultrasound imaging using a single sensor. (A) Schematic sketch of
the signal model involved in this type of compressive imaging. Each column of the observation
matrix H contains the ultrasound pulse-echo signal that is associated with a pixel in 3D space,
which is contained in the image vector v. By rotating the coding mask in front of the sensor, we
obtain new measurements that can be stacked as additional entries in the measurement vector
u and additional rows in H. (B) Result of solving part of the image vector v using an iterative
least squares technique. The two images are mean projections of six pixels along the z dimension
[individual z slices shown in (D)]. (C) Schematic overview of the complete imaging setup. A single
sensor transmits a phase uniform ultrasound wave through a coding mask that enables the object
information (two plastic letters “E” and “D”) to be compressed to a single measurement. Rotation
of the mask enables additional measurements of the same object. (D) Reconstruction of the letter
“E” in six adjacent z slices. A small tilt of the letter (from top left corner to bottom right corner)
can be observed, demonstrating the potential 3D imaging capabilities of the proposed device. (E)
Image showing the two 3D-printed letters and the plastic coding mask with a rubber band for
rotating the mask over the sensor. The two right-hand panels show close-ups of the plastic coding
mask. (F) 3D rendering of the complete reconstructed image vector v, obtained by BPDN. The
images shown in (B) and (D) were obtained using 72 evenly spaced mask rotations, and the full 3D
image in (F) was obtained using only 50 evenly spaced rotations to reduce the total matrix size.
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the reconstruction as discussed in 3.C.

3.2.4. CONSTRUCTING THE SYSTEM MATRIX H
For computing the column signals of H, it is crucial to know the entire spatiotemporal
wave field. To this end, we adopt a simple calibration measurement in which we spa-
tially map the impulse signal (using a small hydrophone and a translation stage) in a
plane close to the mask surface and perpendicular to the ultrasound propagation axis
(Fig. 3.6C). This recorded wave field can then be propagated to any plane that is paral-
lel to the recorded plane using the angular spectrum approach [29, 30]. Note that this
procedure is required only once and is unique for the specific sensor and coding mask.
According to the reciprocity theorem, we are able to obtain the pulse-echo signal by per-
forming an autoconvolution of the propagated hydrophone signal with itself [31]. Us-
ing these components, we can then compute the pulse-echo ultrasound signal for every
point in 3D space and subsequently populate the columns of H. The additional rota-
tion of the coding mask can be regarded as a rotation of the ultrasound field inside the
medium. Because every rotation provides a new measurement of the same image v, we
can make use of this information by stacking these new signals as additional rows in the
matrix H. The more independent rows we add to H, the better conditioned our image
reconstruction problem becomes.

More formally, let ui denote the i th sampled pulse-echo signal of length K , where K
is the number of temporal samples obtained from one pulse-echo measurement and i
indexes the various measurements obtained from different rotation angles. Let Hi de-
note the measurement matrix for rotation i of size K × N , where N is the number of pix-

els. Then, if R rotations are performed, u and H are defined as follows: u = [
uT

0 uT
1 . . .uT

R−1

]T

and H = [
HT

0 HT
1 . . .HT

R−1

]T
, where u is length M , with M = K R, and H has size M ×N .

Furthermore, because each Hi is obtained by propagating and rotating the same cali-
bration measurement (see “Acoustic calibration procedure” section in the Materials and
Methods), each Hi can be computed from a reference measurement matrix H̃: Hi =
f (H̃,φi ), where φi is the angle of rotation corresponding to measurement i , and the
function f (H̃,φi ), computes the matrix Hi from the reference matrix H̃ and input an-
gle φi by appropriately rotating the acoustic field implicitly stored in H̃. Consequently,

H is expressed as H = [
f (H̃,φ0)T f (H̃,φ1)T . . . f (H̃,φR−1)T]T

.

3.3. DISCUSSION
We have demonstrated that compressive 3D ultrasound imaging can be successfully per-
formed using just a single sensor and a simple aperture coding mask, instead of the thou-
sand or more sensors conventionally required. The plastic mask breaks the phase unifor-
mity of the ultrasound field and causes every pixel to be uniquely identifiable within the
received signal. The compressed measurement contains the superimposed signals from
all object pixels. The objects can be resolved using a regularized least squares algorithm,
as we have proved here by successfully imaging two letters (“E” and “D”). Furthermore,
we have provided an in-depth analysis of the qualities of our coding aperture mask for
compressive ultrasound imaging. We believe that this technique will pave the way for an
entirely new means of imaging in which the complexity is shifted away from the hard-
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ware side and toward the power of computing.

The calibration procedure that we use and our imaging device both share common
ideas with the time-reversal work conducted by Fink and co-workers [31–35]. Time-
reversal ultrasound entails the notion that any ultrasound field can be focused back to
its source by re-emitting the recorded signal back into the same medium. Consequently,
the ultrasonic waves can be focused onto a particular point in space and time if the im-
pulse signal of that point is known. Using a reverberant cavity to create impulse signal
diversity and a limited number of sensors, Fink et al. have shown that a 3D medium can
be imaged by applying transmit focusing with respect to every spatial location. Hence,
they need as many measurements as there are pixels, resulting in an unrealistic scenario
for real-time imaging. Our work differs in the fact that rather than focusing our ultra-
sound waves to a single point, we encode the whole 3D volume onto one spatiotemporal
varying ultrasound field, from which we then reconstruct an image based on solving a
linear signal model. This has the advantage of requiring only a few measurements to im-
age an entire 3D volume, in contrast to time-reversal work. This difference in acquisition
time is crucial for medical imaging where the object changes over time, for example, in a
beating heart. Another important distinction is the small impedance difference between
our coding mask and imaging medium (less than a factor of 2). As a consequence, there
is very little loss of acoustic energy as compared to reverberant cavities that inherently
require high impedance mismatch to ensure signal diversity [34, 35].

Besides the time-reversal work, our technique also shares some common ground
with the 2D localization work by Clement et al. [36–38]. They successfully showed that
frequency-dependent wave field patterns can be used to localize two point scatterers in
a 2D plane using only one sensor in receive. Instead of solving a linear system as we pro-
pose here, the authors used a dictionary containing measured impulse responses and
a cross-correlation technique to find the two point scatterers. By contrast, we propose
to induce signal diversity using local delays in both transmit and receive. This type of
“wave field coding” can be applied to many other imaging techniques and seems to offer
a much higher dynamic range than the slowly varying frequency-dependent wave fields.
As a result, we are able to move beyond the localization of isolated point scatterers but
perform actual 3D imaging as we show in this paper.

The findings reported in this paper demonstrate that compressive imaging in ultra-
sound using a coded aperture is possible and practically feasible. Our device has dis-
advantages and limitations and does not deliver similar functionality as existing 3D ul-
trasound arrays. For example, we cannot focus the transmission beam, making tech-
niques such as tissue harmonic imaging that require high acoustic power less acces-
sible [38]. In addition, the mechanical rotation of the mask is expected to introduce
a fair amount of error in the prediction of the ultrasound field and limits the usability
when it comes down to imaging moving tissue or the application of ultrasound Doppler.
Besides, a rotating wave field becomes less effective at pixels closer to the center of
rotation—assuming a spatially uniform generation of spatial frequencies. Future sys-
tems should consider the incorporation of other techniques to introduce signal varia-
tion, such as controlled linearized motion, or a mask that can be controlled electroni-
cally, similar to the digital mirror devices used in optical compressive imaging [14]. Fur-
thermore, the angular spectrum approach method that predicts the ultrasound field in-
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side the medium is not flawless in cases where the medium contains strong variations
in sound speed and density. These issues may possibly be solved, however, by incorpo-
rating more advanced ultrasound field prediction tools that can deal with these kinds of
variations [39]. This will increase the computational burden of the image reconstruction
even further but may potentially lead to better results than what we have shown here.

One of the fundamental ideas of this paper is to prove that spatial wave compression
allows for compressive imaging. Hence, this technique is applicable not only to ultra-
sound but also to many other imaging and localization techniques that normally rely on
spatial sampling of coherent wave fields. With respect to clinical ultrasound, we believe
that the proposed technique may prove to be useful in cases where signal reduction is
beneficial, for example, in minimally invasive imaging catheters. Furthermore, we think
that a coded aperture mask could potentially be used in conjunction with conventional
1D ultrasound arrays to better estimate the out-of-plane signals and possibly extend the
normal 2D imaging capabilities to 3D.

Alternative coded aperture implementations for ultrasound compressive imaging are
certainly possible. However, the range of the physical parameters that we can vary to cre-
ate a useful coded aperture for ultrasound seems less diverse compared to optics. The
properties of light are such that it can easily be blocked very locally (for example, by
absorption), which is hardly possible with ultrasound waves because of their mechan-
ical nature and larger wavelengths. The idea of applying local delays in the ultrasound
field to uniquely address every pixel therefore seems more practical. Ultimately, it will
be these kinds of physical parameters that will dictate whether and to what extent true
compressive imaging is possible. Restricting ourselves to local time delays, we have suc-
cessfully shown in this paper that the physics of ultrasound allow for the ultimate com-
pression of a 3D volume in a few measurements with a single sensor and a simple coding
mask.

3.4. MATERIALS AND METHODS

3.4.1. MASK MANUFACTURING

Our aim was to make a spatiotemporally varying ultrasound field by locally introducing
phase shifts in the wave transmitted by the sensor. We did so by introducing a mask
that delays the wave locally, similar to the function of a phase spatial light modulator
in optics [40]. The aberration mask that we put in front of the sensor was made from
an 11-mm-thin circular plastic layer (Perspex), in which we had drilled holes 1 mm in
diameter (Fig. 3.5C). The depth and positions of these holes were randomly chosen by
an algorithm, allowing for a depth ranging between 0.1 and 1 mm and for a maximum
of 0.5-mm overlap between the holes. The holes were drilled using a computer numeric
control machine (P60 HSC, Fehlmann). The choice for 1-mm holes was made because of
convenience of manufacturing. At room temperature, the speed of sound propagation
in water is approximately 1480 m/s, whereas the speed of sound in the Perspex material
is 2750 m/s. Perspex has good properties in terms of processing, high sound speed, and
low acoustic absorption.
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3.4.2. ACOUSTIC SETUP

For the transmission and reception of ultrasonic waves, we used one large sensor of
piezocomposite material that had an active diameter of 12.7 mm and a center frequency
of 5 MHz (C309-SU, Olympus Panametrics NDT Inc.). The sensor was coupled to a
pulser/receiver box (5077PR, Olympus Panametrics NDT Inc.) that can generate a short
-100 V transmit spike and amplifies signals in receive up to 59dB. No filtering was applied
in receive. The sensor with the mask was mounted in a tank filled with water measuring
200 × 300 × 200 mm. In the water, we placed two plastic letters that had been 3D-printed
(Objet30, Stratasys Ltd.). To enhance the ultrasound reflection from these letters, we
sprayed only the letters with silicon carbide powder (size, k800). The two letters “E” and
“D” refer to the names of our academic institutions, Erasmus Medical Center and Delft
University of Technology.

The thin plastic coding mask was part of a larger round casing that fitted snugly
around the sensor (Fig. 3.6E). To this casing, we fitted a cogwheel that allows the casing
to be rotated in front of the sensor using a small rubber band and an electronic rotary
stage (T-RS60A, Zaber Technologies). By rotating the aberration mask, we were essen-
tially able to rotate the interference pattern inside the stationary medium, allowing for
multiple observations of the same object. We allowed a thin water film between the plas-
tic mask and the sensor surface to ensure optimal coupling between the piezo material
and the plastic mask. With this setup, it took about 1 min to acquire the signals needed
to reconstruct the 3D volume shown in Fig. 3.6.

3.4.3. ACOUSTIC CALIBRATION PROCEDURE

Before we could use our device for imaging, we needed to know the signature of our in-
terference pattern. That is, we needed to know what the transmission and receive wave
fields looked like in both space and time, so that we could populate our system matrix
H. Note that for every spatial point, we had a unique temporal ultrasound signal. This
calibration step is an essential component in this kind of compressive imaging [41]. The
better H is known, the better the reconstruction of the image. For our calibration proce-
dure, we recorded the transmission wave field in a plane perpendicular to the ultrasound
propagation axis using a 3D translation stage (BiSlide MN10-0100-M02-21, Velmex) and
a broadband needle hydrophone (0.5 to 20 MHz, 0.2-mm diameter; Precision Acoustics)
coupled to a programmable analog-to-digital converter (DP310, Acqiris USA) using 12
bits per sample and a 200-MHz sampling rate.

For the results presented in this paper, we recorded the wave field in a 30 × 30 mm
plane located 2.5 mm in front of the aberration mask using a step size of 0.12 mm (less
than two times the highest spatial frequency detected) in both the x and y directions
(Figs. 3.3 and 3.4). The signal of every pixel was obtained using the angular spectrum
approach to address pixels at greater depth, using autoconvolution to account for the
pulse-echo acquisition, and using linear interpolation to account for additional rota-
tion measurements; all of which were implemented in MATLAB software, release 2015b
(The MathWorks). We noticed that our sensor was not completely axisymmetric, mean-
ing that the mask wave interaction changes slightly upon mask rotation. This issue was
solved by measuring four rotated planes (0°, 90°, 180°, and 270°). We generated all in-
termediate planes by linear interpolation between each pair of neighboring planes. The
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calibration procedure took around 1.5 hours, after which the complete spatiotemporal
impulse response of the sensor was known. Note that this calibration is sensor- and
mask-specific and, in principle, only needs to be done once.

3.4.4. APPROXIMATE MODEL AND CRLB
To analyze the CRLB for the estimation of a single scatterer from one or more pulse-echo
measurements, we derived the expressions for computing the Fisher information matrix,
the inverse of which was computed numerically to obtain the CRLB covariance matrix.
The following assumptions and conventions were used:

• Any noise or other errors can be modeled as zero mean white Gaussian additive
noise, with variance σ2. Hence, this analysis is only valid if noise sources, such
as electronic, quantization, or jitter noise, can be modeled as Gaussian random
variables, and their total effect is compounded into the signal-to-noise figure.

• The ultrasound field due to the coding mask can be approximated as a collection
of point sources, where the point sources are located at the surface of the mask.
The point in time at which each virtual point source is excited is determined by
the time of arrival of the ultrasound field from the true sensor location through
the mask to the end of the mask.

• The impulse response for the main sensor is taken as being equal to a Gaussian

pulse: h(t ) = exp
(
− t 2

2l 2

)
, where l determines the pulse width or frequency band-

width.

• The origin of the spatial axes corresponds to the center of the main sensor surface,
with the sensor lying in the xy plane and the z axis perpendicular to the sensor
surface.

• The sensor is excited by a single Dirac delta pulse.

• The position of the virtual source j is denoted as s j ∈ R3, and the set of all s j is
denoted as S . Vector variables are indicated by bold typesetting.

• The i th element of a vector k is denoted as [k]i .

Under the assumptions above, the forward pressure wave field measured at position θ =[
x,y,z

]T can be written as

p(t ,θ) =
|S |−1∑

j=0
h(t −τ(θ,s j )) (3.1)

where τ(θ,s j ) = 1
c1

[s j ]z
1
c0
‖s j −θ‖2. This can be regarded as the convolution of the sensor

impulse response with the mask impulse response: p(t ,θ) = h(t )∗m(t ,θ,S ). The echo
signal can then be expressed as a(t ,θ) = h(t )∗m(t ,θ,S )∗m(t ,θ,S )∗h(t ), or simply
a(t ,θ) = p(t ,θ)∗p(t ,θ), which is equal to the autoconvolution of the forward pressure
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wave field at θ. Under the white Gaussian noise assumption, it can be shown that the
(i , j )-th entry of the Fisher information matrix I (θ) ∈ R3×3 is equal to

I (θ)i , j = 1

σ2

∂a(θ)T

∂[θ]i

∂a(θ)

∂[θ] j
(3.2)

where a(θ) is a vector representing the discretized signal a(t ,θ). Next, we derived the
derivative of a(θ). We started by computing the derivative of a(t ,θ):

d

d [θ]i
a(t ,θ) = d

[θ]i
p(t ,θ)∗p(t ,θ) (3.3)

= d

[θ]i

∫ ∞

−∞
p(t −T,θ)p(T,θ)dT (3.4)

=
∫ ∞

−∞
d

[θ]i
p(t −T,θ)p(T,θ)dT (3.5)

= 2p(t ,θ)∗ d

[θ]i
p(t ,θ). (3.6)

Using the definition of p(t ,θ) and τ(θ,s j ), we find that

d

[θ]i
p(t ,θ =

|S |∑
j=0

[θ]i − [s] j

‖θ−s j ‖2
2

h(t −τ(θ,s j ))

(
1

c0l 2 (t −τ(θ,s j ))− 1

‖θ−s j ‖2

)
(3.7)

which can be discretized to obtain da(θ)/d [θ]i for a single measurement. From I (θ), the
CRLB is found as I (θ)−1.

3.4.5. IMAGE RECONSTRUCTION
Here, we formalized our image reconstruction problem in a set of linear equations u = Hv+n.
This formalization allowed for a multitude of solvers to be applied to this problem. We
applied two inversion methods to find v from u. The first was the least squares estimate,
which finds the image v that minimizes the squared error between the model Hv and
observation u as follows: v̂ = argminv′ ‖u−Hv′‖2

2. This estimate is known to be the min-
imum variance unbiased estimator if the linear model is valid, and the noise n is the
white Gaussian. To implement this estimator, we used the LSQR algorithm [26], which
is especially appropriate for large-scale sparse systems. By limiting the number of it-
erations, one can regularize the reconstruction problem [see, for example, the study by
Hansen [27]]; this also allows for balancing of the resolution, the noise robustness, or the
contrast.

For the reconstructed letters shown in Fig. 3.6 (B and D), we used about 15 iterations,
which took several seconds to compute. The results did not seem to vary much between
7 and 40 iterations. Above 50 iterations, we observed a serious loss in contrast as the
algorithm starts to fit the solution to the noise and errors present in our H matrix. For
the complete reconstruction of the 3D volume shown in Fig. 3.6F, we applied a BPDN
algorithm [28], exploiting the sparsity of the image because we were only interested in
two reflecting letters in an otherwise empty medium (water). For this purpose, we chose
to use the iterative two-step shrinkage/thresholding algorithm, named TwIST, using l1-
norm regularization [42] for implementation, although other algorithms that are capable
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of l1-based optimization are also viable. By this approach, we minimized the BPDN cost-
function v̂ = argminv′ ‖u−Hv′‖2

2+λ‖v′‖1, where λ is a dimensionless scalar that weights
the amount of regularization. The BPDN algorithm regularization parameter λwas cho-
sen by defining a region of interest (ROI) containing the reconstructed letters and an
ROI outside the letters and computed the contrast ratio as 20log10(Iletter/Ibackground) for
a range of λ values, where Iletter or Ibackground are the average values of |v| over the pixels
in the corresponding ROI. We then chose theλ that offered the highest contrast ratio. Us-
ing this procedure, we observed a contrast of 9 dB for regularized least squares and 29 dB
for the l1 regularization. For this proof-of-principle study, it shows that selecting a suit-
able λ is possible in a similar way as in real-life clinical ultrasound imaging, where the
operator tunes some critical image reconstruction parameters (such as speed of sound)
by visual feedback on image quality. In further research, it should be investigated if λ
should be tuned for image content or a globally optimal λ can be established. If the
latter is the case, an optimal λ should be established over large sets of training images,
and its generality tested on independent test images. The 3D rendering of the letters
shown in Fig. 3.6F were performed using the open-source visualization tool ParaView
(www.paraview.org) [43].
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3.A. ON THE SIZE OF THE SYSTEM MATRIX

Standard measurement systems are designed to provide a large number of measure-
ments, generally much larger than the number of unknowns (M À N ), while guaran-
teeing that the condition number of the system matrix H is small enough, such that the
problem of estimating v from u (u = Hv + n) is a well-posed problem. In current ul-
trasound devices for instance, this can be done by transmitting a short pulse through
the tissue as a spatial beam or plane wave (repeated for several spatial beams or plane
waves), followed by high-rate sampling (above the Nyquist rate) at every sensor (see also
Fig. 3.1a and b). In compressive sensing imaging devices, however, far fewer measure-
ments are taken, thereby reducing the imaging time considerably. In such scenarios, the
number of measurements is often smaller than the number of unknowns (M ≤ N ); even
when M is larger than N , the system matrix H is typically ill-conditioned in compressive
ultrasound imaging. In our case M is typically much smaller (between 10 and 100 times)
than N . These values are highly dependent on pulse bandwidth, pulse length after the
coding mask, number of rotations, size of imaging volume, and pixel size. In our case M
is much smaller than N (10: 1 for Fig. 3.6 (b and d ) and 100:1 for Fig. 3.6 (f), thus we
need to constrain the solution space using some prior information. We describe these
in the Materials and Methods section.We attribute the successful reconstructions with
fewer measurements than pixels to the fact that the dependence between columns in H
is typically very local in space. Keeping in mind that the pixel size can be chosen arbitrar-
ily, consider a large pixel size such that H contains more measurements than unknowns.
As a consequence, the system becomes over-determined, but the modelling error due to
reflectors that lay in between pixel positions will be rather large . To reduce this type of
error, one would like to increase the pixel density by adding columns to H , resulting in
fewer measurements than unknowns. It is obvious that the columns of the pixels that
were added will be highly correlated to neighbouring pixels. Consequently , the solution
ambiguity related to an echo signal coming from that region will be locally restricted
to that image region. Combined with techniques like Tikhonov regularization, the least
squares estimator will still be able to allocate energy to the corresponding region. The
reconstruction will not be exact, but the allocated energy will be in approximately the
correct part of the image.

3.B. COMPARISON WITH MULTISENSOR ARRAY IMAGING

The imaging technique we propose relies on the inversion of complicated wavefields,
making it difficult to compare our technique one-to-one with conventional geometrical
beamforming techniques. For instance, our transmit beam is deliberately chaotic, and
we have no ability of focusing this beam , unlike with normal sensor arrays. However, in
the context of imaging by inversion we are able to compare the proposed single sensor
with coding mask with a multi-sensor array. To this end we have extended our simula-
tion analysis as described in the Materials and Methods section to further understand
the influence of adding more sensors and the use of rotations on the imaging perfor-
mance. In short, H was computed as described in “Approximate model and Cramer
-Rao lower bound”of the Materials and Methods section. We pre-defined an image v
(schematic drawing of a Toucan , in a x y-plane at a depth of 12.7 mm) and computed
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Figure 3.7: Imaging performance for a single sensor with coding mask and normal sensor ar-
rays without coding mask. We computed a system matrix H for a normal array with varying sen-
sor densities and for the proposed single sensor with coding mask with several thicknesses and
varying rotations. A pre-defined image v (schematic drawing of a Toucan, in a x y-plane at a depth
of 12.7 mm) was used to compute u via u = Hv. We then compared the estimated image v̂ with
the true image v by computing the normalized mean square error. The results are shown above.
A tradeoff in nmse between number of sensors in an array and number of rotations with a coding
mask can be observed. By increasing the mask thickness more information is compressed in the
measurement resulting in a better nmse for the same amount of measurements.

u via u = Hv+n. We then compared the estimated image v̂ with the true image v by
computing the normalized mean square error (nsme) (‖v− v̂‖2

2/‖v‖2
2). For this analysis

we used similar settings as were used for Fig. 3.5 . We considered the same aperture and
coding mask. For the case of the multi-sensor array we removed the coding mask and
subdivided the aperture in multiple sensors and excited all sensor subdivisions simulta-
neously. We compared the nmse as a function of mask rotations and number of sensors.
The idea is that every mask rotation provides one unique measurement that should be
comparable with the number of spatial measurements that can be obtained with multi-
ple sensors in an array. Since the degree of wavefield complexity largely depends on the
available delays in the coding mask, we also vary the local mask thickness from 1 to 8
mm. The overall results of these simulations can be observed in Fig. 3.7. Reconstruction
examples can be seen in Fig. 3.8 and movie S3.

3.C. ON THE RELATION TO COMPRESSIVE SENSING
For the results in Fig. 3.6f we used a technique more related to common CS methods.
Traditional CS techniques require that the image v is sparse in some domain which can
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Figure 3.8: Image reconstruction example for a sensor array and a single sensor with coding
mask for a comparable amount of measurements. Left panel shows the true image in a xy-plane
at a depth of 12.7mm that was used to simulate the measurements for a normal array and single
sensor with mask. Middle panel shows the reconstruction for an array with 80 sensors. The right
panel shows the reconstruction for a single sensor with a 8 mm mask and 81 mask rotations.

be represented by a basis matrix G. The representation w of the image in this domain
is computed as w = Gv, and assuming G is invertible, the measurement equation can
instead be written as

u = Hv = HG−1w

and solved for w. If w is sufficiently sparse in the domain represented by G, and the
matrix HG−1 satisfies the restricted isometry property (RIP) [44], CS techniques using l1-
based regularization can be used to estimate w from u, and then compute v = G−1w to
obtain an image. In our experiments, the image is already sparse in the spatial domain
itself, so that G = I (where I is the identity matrix) is a sparse basis for our problem.
For images that are not spatially sparse, bases such as the wavelet basis can be used
to exploit sparsity, although we have not further explored this option. For the full 3D
reconstruction shown in Fig. 3.6F, we made use of the sparsity of these two letters in
water by applying the sparsity promoting basis pursuit de-noising (BPDN) algorithm.
As can be seen, this prior knowledge about the image could be effectively exploited to
improve image quality, significantly improving the dynamic range from 9 to 29dB.



4
CODING MASK DESIGN FOR SINGLE

SENSOR ULTRASOUND IMAGING

We study the design of a coding mask for pulse-echo ultrasound imaging. We are inter-
ested in the scenario of a single receiving transducer with an aberrating layer, or ‘mask’,
in front of the transducer’s receive surface, with a separate co-located transmit transducer.
The mask encodes spatial measurements into a single output signal, containing more in-
formation about a reflector’s position than a transducer without a mask. The amount of
information in such measurements is dependent on the mask geometry, which we pro-
pose to optimize using an image reconstruction mean square error (MSE) criterion. We
approximate the physics involved to define a linear measurement model, which we use to
find an expression for the image error covariance matrix. By discretizing the mask sur-
face and defining a discrete number of mask thickness levels per point on its surface, we
show how finding the best mask can be posed as a variation of a sensor selection prob-
lem. We propose a convex relaxation in combination with randomized rounding, as well
as a greedy optimization algorithm to solve this problem. We show empirically that both
algorithms come close to the global optimum. Our simulations further show that the opti-
mized masks have better a MSE than nearly all randomly shaped masks. We observe that
an optimized mask amplifies echoes coming from within the region of interest (ROI), and
strongly reduces the correlation between echoes of pixels within the ROI.

Parts of this chapter have been published in IEEE Transactions on Computational Imaging, 6, 2019 [1].
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4.1. INTRODUCTION

I N recent years there has been a considerable interest in reducing the amount of mea-
sured sensor data in the ultrasound imaging field. Data compression has great po-

tential, for example, in minimally invasive surgery, where the number of data cables is
limited by the available space inside the catheter. This prohibits transferring all data
from a dense imaging array through the catheter, making it very challenging to design
high frame-rate, high quality imaging devices for this scenario. One possible approach
to avoid using a Nyquist-sampled sensor array (either in time or space), is to have the
data somehow compressed during sensing. That is, to reduce the amount of sampled
data without any complicated electronic hardware actively compressing the measured
array signals.

Recently, the field of compressed sensing (CS) showed that such compression is pos-
sible if the signal to be estimated has a sparse representation in a known domain [2–5].
This led to a large number of studies in ultrasound using CS in an attempt to get better
image reconstructions using less data (see, for example [6–12], amongst others). In com-
pressive sensing, it is assumed that the compressed data is a linear combination of the
original, uncompressed, signals. Moreover, there are probabilistic performance guaran-
tees if the compression is implemented by a random linear combination of the original
signals. However, implementing such a random linear combination in hardware is not
necessarily easy, since these compressors might have to combine samples across both
space and time, resulting in large sample buffers. Another popular compression tech-
nique is randomly subsampling in time and/or space. However, this means that a large
amount of information is not used at all (the ignored samples are not in any way present
in the compressed measurement), and additionally results in a degradation of SNR. More
importantly, we are currently not aware of a domain where ultrasound images are very
sparse.

Some of the most striking examples of CS for imaging have been demonstrated in
the field of optical imaging, the most well-known being the single-pixel camera [13].
There, random linear combinations of the image are obtained by spatial light modu-
lators (SLM), which basically integrate a different subselection of the image pixels per
measurement. This has led to a great number of works using SLM setups for compressed
imaging for a single sensor ([14–16], to name a few). Instead of subsampling or imple-
menting a (random) linear compressor in hardware, one could also place a contrasting
medium in front of the sensor array. In optics, for example, researchers have placed a
heterogeneous medium between the sensor array and the imaging scene, causing multi-
ple scatterings inside this heterogeneous medium, after which the scrambled light field
is measured [17–20]. This scrambled light field can be seen as a random linear combi-
nation of all image pixels, and CS can be used for image reconstruction. The random
compression thus occurs naturally, and is achieved without any electronic hardware.
Similar techniques (not employing CS) have also been used in the medical ultrasound
community, by transmitting randomized waves and measuring on a single sensor [21],
or by placing a heterogeneous cavity in front of a single sensor [22].

We recently demonstrated a similar approach for 3D ultrasound imaging [23, 24],
where we have shown how a single sensor with a ‘coding mask’ can successfully recon-
struct 3D objects from multiple pulse-echo measurements, facilitating the design of new
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imaging devices with reduced output data. Instead of placing a heterogeneous scatter-
ing medium in front of the single sensor, we used a homogenous, but irregularly shaped
piece of plastic, to which we refer as a ‘coding mask’ (Fig. 4.1). In contrast to CS, we have
shown that reconstruction is possible without sparse regularization techniques, remov-
ing the necessity of an a priori known sparse domain for the ultrasound images.

The main idea of this imaging approach is the following. Consider the experimental
setup shown in Fig. 4.1, but without a coding mask. Due to the lack of spatial sampling,
one has to rely on the information in the temporal dimension of the measured pulse-
echo signal. Only the distance to a reflector can be determined (based on an echo’s time-
of-arrival (TOA)), but nothing can be said about the direction-of-arrival (DOA), since the
pulse-echo signals will look roughly the same for all directions1. However, once we place
a small layer of irregularly shaped plastic in front of the receiving sensor, in which ul-
trasound waves have a different speed of sound than the imaging medium, the received
wavefields are significantly distorted. If the mask shape is designed correctly, this dis-
tortion is direction-dependent, and we are now able to infer the DOA in addition to the
distance to the object by exploiting the signal structure in the time-domain waveforms.
Through collecting additional measurements by rotating or translating the sensor with
the coding mask, the image object is probed from multiple points of view.

In our experiments so far, we used randomly shaped masks to remove ambiguities
between pixel signals. Naturally, we would like to know if random masks are a good
design choice, and if not, how the coding mask should be shaped to get the best possible
imaging performance. In this paper, we investigate coding mask design algorithms using
sensor selection techniques, and propose a convex and a greedy optimization program.
As such, this study falls within the larger framework of (sparse) ultrasound array design
[25, 26]. Using various simulations, we demonstrate that the masks obtained using our
techniques exhibit better imaging mean square error (MSE) compared to a random mask
design.

To design a mask, we will first introduce an approximate model, where the mask is
discretized in all dimensions (x, y , z). Based on this model, we want to minimize the
imaging MSE, which is a function of the error covariance matrix, and consequently, of
the measurement matrix mapping the discretized image domain to the sampled pulse-
echo measurement domain. We will show how optimization problems of this form re-
late to sensor selection problems. These problems are typically solved in literature us-
ing convex relaxations employing the `1-norm [27, 28], or using more efficient greedy
methods by formulating a sub-modular cost-function [29–33]. These are relatively well-
understood techniques, and various functions of the reconstruction error covariance
matrix can be optimized near-optimally using such convex and greedy optimization al-
gorithms. There are some fundamental differences however, between our problem and
the typical sensor selection problem.

First, the inverse error covariance matrix of the typical sensor selection problem is
linear with respect to the selection variables, whereas for our selection problem it is

1To be more accurate, the pulse-echo signal for a flat circular sensor will look exactly the same for all reflectors
on a circle with the same elevation angle, for all azimuth angles. The azimuth and elevation are with respect to
the plane in which the sensor is positioned. However, pulse-echo signals will only change slowly with respect
to the elevation angle, so there will be high ambiguity for reflectors with similar DOA.
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Figure 4.1: Experimental setup considered in this paper. A point source emits a spherical undis-
torted wave into the ROI. Reflected echoes propagate through the coding mask before being mea-
sured by a single transducer. The coding mask has a different speed of sound than its surrounding
medium, and distorts the received wavefield in a DOA-dependent manner. As a result, scatterers
can be resolved based on the information residing in the temporal waveforms of the pulse-echo
signal.

quadratic, making the cost-function non-convex. We are currently not aware of any sen-
sor selection literature studying the same problem structure. Hence, we propose to lin-
earize the problem by lifting the optimization variables to a higher dimensional space
and impose a block-matrix sparsity constraint on the matrix formed by these lifted coef-
ficients.

Second, in our optimization problem we want to select one sensor from a specific set,
select another one from another set, etc., for a given number of such sets. This second
obstacle is also considered in [34], but we are not aware of any similar studies. In [34],
each sensor position is associated with a small pool of candidate sensors, corresponding
to different sensor types. However, since the inverse covariance matrix in [34] is still a
linear function of the selection variables, we cannot employ similar techniques to solve
our problem.

In [35], we made a first attempt at mask optimization. There, we proposed a model
similar to the one in this work, but using a different convex relaxation, utilizing `1-
reweighting [36]. In this paper, we use a different convex relaxation with a smaller feasi-
ble set, without `1-reweighting, and we also propose a more efficient greedy coordinate-
descent optimization scheme. Furthermore, we provide an analysis of the optimized
masks, lacking in our previous work.

The remainder of this paper is organized as follows. In Sec. II, we describe an ap-
proximate linear measurement model for a masked transducer. In Sec. III, we show how
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this model can be parameterized using a discrete selection variable. Using this param-
eterization, we then formulate the mask optimization problem and propose a convex
relaxation, and greedy selection algorithm to find the best mask parameters. Simulation
results are discussed in Sec. IV, where we show various examples to evaluate the per-
formance of the optimized masks as compared to the true optimum and a large set of
randomly generated masks. In Sec. V the resulting masks are discussed, and the paper is
concluded in Sec. VI.

4.1.1. NOTATION

Throughout this paper we use the following notational conventions. Bold lower-case
variables (e.g., x) represent vectors, and bold upper-case variables (e.g., A) represent ma-
trices. The transpose and Hermitian transpose are denoted by T and H, respectively. We
use W º 0 to indicate that W is positive semi-definite. Alternatively, the setS+ is the set of
positive semi-definite matrices. By diag(W) we represent the vector formed by taking the
coefficients on the diagonal of W, whereas diag(w) is the diagonal matrix with the vec-
tor w on its diagonal. Next, ‖w‖0, ‖w‖1 and ‖w‖2 denote the cardinality, `1-norm, and
Euclidean norm of w, respectively. To index matrices or vectors, we use [W]i , j to repre-
sent the (i , j )-th entry of W. In the case of a 3D vector representing a (x, y, z)-coordinate
in Cartesian space, we use [r]z to index the z-component in r. Finally, 1 is the all-one
vector, I denotes the identity matrix, and E(·) represents the expectation operator. The
Gaussian and complex Gaussian distribution with mean µ and covariance matrix C are
written as N (µ,C) and C N (µ,C), respectively.

4.2. SIGNAL MODEL
We will assume a pulse-echo setup with separate co-located transmit and receive trans-
ducers (Fig. 4.1), and the coordinate system shown in the same figure. Throughout this
paper, we assume that a point source is located at (x, y, z) = (0,0,0), and the masked re-
ceive transducer in a plane at z = 0. As will be explained at the end of this section, we
cannot easily take into account the effect of the mask on the transmitted wave, so we
will assume that the transmit transducer emits a spherical wave that is unaffected by the
mask.

We first discretize the mask surface in the width and length (x and y) dimensions into
many small patches, and regard each of these discrete points as an independent sensor
channel. Each channel delays the reflected echo field according to the thickness of the
mask at the channel and the speed of sound inside the mask. Put differently, we assume
that every channel takes the received pulse-echo ultrasound field at the mask-medium
interface as channel ‘input’. The ultrasound field propagates through each channel in-
dependently to arrive at the transducer. This approximate model is visualized in Fig. 4.2.

The basic idea behind the approximate physical model just described is based on
ray-tracing physics, and relies on the assumption that the mask is thin enough to as-
sume that if a part of the echo wavefront is incident on the mask at position (x, y), it
will reach the transducer surface in a sufficiently close neighborhood of (x, y), even with
strong wave refraction. Consequently, only a phase change occurs proportional to the
mask thickness around (x, y), leading to the independent channels as shown in Fig. 4.2.
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Figure 4.2: Left: we approximate the physics of a transducer with a mask by discretizing the trans-
ducer surface into separate propagation channels. Right: approximate signal model. Each chan-
nel delays the incident wavefield, and the spatial integration by the transducer surface is approxi-
mated by summing all delayed channel signals.

Further assuming that scattering sources are not extremely close to the transducer, the
incident wave angle will be limited, reducing the effect of refraction. This requires a
proper discretization of the mask surface: if the mask patches (and consequently, the
patch size on the transducer surface) are taken too large , they do not sufficiently sam-
ple the incident wavefield, and will neither accurately approximate the incident wave
on the transducer surface, nor the output signal of the transducer. On the other hand,
as patches get smaller, it becomes possible that most of the wave starts interfering into
other channels, causing the model to lose its validity. To avoid both cases, we will use a
patch size of around 0.3 to 0.5 times the wavelength inside the mask material throughout
this work, i.e., wavefields are sampled close to the required spatial sampling (Nyquist)
rate of 0.5λ, but not strongly exceeding it.

This approximate model has been succesfully applied in the design of holographic
masks, where it was experimentally verified that these approaches can be used to de-
sign phase masks that generate a desired pressure pattern [37, 38], and we partly base
the validity of our model on these studies. We have also compared this model to a true
simulated wavefield obtained using the k-wave simulator [39] in the Supplementary Ma-
terial accompanying this paper.

Next, we will formalize the model laid out in the previous paragraphs into a linear
signal model. Assume that the output signal of the transducer, ignoring the electro-
mechanical transfer function for now, is the integral of the pressure field over the trans-
ducer surface (after propagation through the mask). If we denote the spatial 3D coordinate-
vectors that include all points in space on the transducer surface by X , then the trans-
ducer output signal y(t ), given the spatio-temporal pressure field y(t ,r) on the receiving
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transducer surface (after propagating through the mask), is:

y(t ) =
∫

r∈X
y(t ,r)dr, (4.1)

where r is a 3D spatial vector. For our model, if the sensor surface X is discretized into S
channels, this can be approximated by

y(t ) =
S−1∑
s=0

y(t ,rs ), (4.2)

where {rs }S−1
s=0 are the sampled positions on the transducer surface.

In the remainder of this work we will work in the frequency domain instead of the
time domain. Needless to say, equations (4.1) and (4.2) are equally valid in the frequency
domain if y(t ) and y(t ,rs ) are replaced by their frequency domain equivalents. We will
denote the sampled continuous time Fourier transform of y(t ) and y(t ,rs ) by y[ω] and
ys [ω], respectively, with ω ∈Ω, sampled at frequencies in the set Ω = {ω0,ω1, . . . ,ωN−1}.
We will use equidistantly taken samples in the pulse bandwidth of the positive side of
the frequency spectrum.

Next, we want to express the pressure fields ys [ω] on the transducer surface in terms
of the image we try to recover. The pixelized image consists of M pixel reflection co-
efficients, denoted by the vector x ∈ RM . We assume that the transmitted wavefield to
each pixel is known. By using the Born approximation (see e.g. [40, 41]), we can define
a measurement model that is linear with respect to the reflection coefficients; any mea-
surement ys [ω] is a superposition of the individual pulse-echo signals {as,m[ω]}M−1

m=0 of
all scatterers, ignoring multiple reflections between scatterers:

ys [ω] =
M−1∑
m=0

x[m]as,m[ω]. (4.3)

Here, x[m] is the m-th component of x, corresponding to the scattering intensity of pixel
m, and as,m[ω] is the pulse-echo signal of pixel m at frequency ω measured at position
rs .

Using the approximate model described earlier, and illustrated in Fig. 4.2, we have
the following expression for the term as,m[ω] in (4.3):

as,m[ω] = p[ω]

4π(‖rpx,m‖2 +‖rpx,m − rch,s‖2 +‖[rch,s ]z‖2)
×

exp

(
− j

ω

c0
(‖rpx,m‖2 +‖rpx,m − rch,s‖2)− j

ω

c1
‖[rch,s ]z‖2

)
. (4.4)

Here, rpx,m is the 3D position vector of pixel m, and rch,s is the 3D position vector of the
mask-medium interface of channel s. The variables c0 and c1 are the medium and mask
speed of sound, respectively. The signal p[ω] is the frequency domain representation
of the excitation pulse p(t ). The first term accounts for the geometric spreading of the
pressure field, and the exponential term is the phase shift due to the travelling distance
from the transmitting transducer to the pixel and back to the masked receive sensor. In
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other words, it is the total delay of a single path from transmit to the ‘output’ of a single
mask channel, as visualized in Fig. 4.2. This total path and its corresponding delays can
be broken down into several parts, following next. The distance ‖rpx,m‖2 is the transmit
path length from the transmitter to pixel m, and the sum ‖rpx,m − rch,s‖2 +‖[rch,s ]z‖2 is
the total receive path from pixel m to the mask-medium interface of channel s, and the
echo propagation through the channel. Similarly, the first terms in the exponent yield
a phase shift due to the transmit/receive paths in the medium, whereas the last term
represents the phase shift due to the propagation through mask channel s.

Storing all samples {ys [ω]}ω∈Ω in the vector ys ∈ CN , and all {as,m[ω]}ω∈Ω in the vec-
tors as,m ∈CN , we can use matrix-vector notation to write (4.3) as:

ys =
[
as,0 as,1 ... as,M−1

]
x

= As x. (4.5)

Similarly, we can rewrite (4.2) into its discretized, frequency domain counterpart as:

y =
S−1∑
s=0

ys =
S−1∑
s=0

As x = Ax, (4.6)

with A = ∑S−1
s=0 As . Assuming that measurements are corrupted by complex Gaussian

noise in the frequency domain, our final measurement model becomes:

y = Ax+n, (4.7)

where n ∈CN represents complex Gaussian noise with covariance matrix Cn: n ∼C N (0,Cn).
Thus, the imaging problem consists of estimating x from y. If additional measurements
are acquired by, for example, translation of the masked transducer, they can be easily in-
corporated by adding additional rows to this system of equations (see (4.10) in the next
section). In the next section, we parameterize A as a function of the mask shape in order
to optimize for the mask geometry.

In (4.6), the total measurement matrix A is separated into independent channels,
resulting in a summation of matrices. Our convex mask optimization algorithm in the
next section relies on the fact that we can pre-compute each As for a pre-determined
number of mask thickness levels. However, it is impossible to pre-compute As if it is not
known what pressure field is emitted by each scatterer, which in turn can only be known
if the transmit mask is known. Although in [23, 24] we used the same mask in transmit
and receive, in this work we assume that a separate (co-located) transducer is used for
transmit, and the masked transducer for receive. This makes it always possible to pre-
compute any As using (4.4), circumventing this problem. Specifically, throughout this
paper, we will assume that a point source (without a mask), located in the center of the
receiver, transmits a spherically diverging wave.

Finally, we point out that the greedy algorithm proposed in this paper does not suffer
from this limitation. However, for the sake of consistency and comparison to the con-
vex algorithm, we will use the non-masked co-located transmitter setup throughout this
paper for all simulations.
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Figure 4.3: Each mask channel is discretized in the mask thickness dimension, and each mask
thickness level is associated with a specific measurement matrix for that channel. The goal of the
mask optimization problem is to select one thickness level per channel such that the imaging MSE
is minimized.

4.3. MASK OPTIMIZATION BY SENSOR SELECTION

Having formulated the linear measurement model in the previous subsection, we now
want to use it to find how to optimally choose the mask thickness levels, i.e., we want to
find the best channel lengths or delays. We will again use discretization (of the channel
lengths), and show that channel length design can be posed as a sensor selection prob-
lem. Such problems are hard to optimize exactly, but can be either relaxed into a convex
problem formulation, or approximately solved using a greedy optimization algorithm.
Using a specific thickness level for a channel is equivalent to using a particular matrix
As for that channel (Fig. 4.3). Consequently, our goal is to choose one particular As per
mask channel, such that the trace of the error covariance matrix of the mask-encoded
measurement system is optimal.

First, we rewrite (4.5) in terms of the measurement matrices for all thickness levels.
Suppose there are R potential thickness levels for each channel s. Hence, there are R
candidate matrices {As,0,As,1, . . . ,As,R−1} that can be used for As at channel s. Let w[r +
Rs] ∈ {0,1} indicate whether sensor candidate r ∈ {0,1, . . . ,R −1} is used for channel s or
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not. Then (4.7) can be rewritten as

y(w) =
S−1∑
s=0

R−1∑
r=0

w[r +Rs]As,r x (4.8)

where w = [w[0], w[1], . . . , w[RS −1]]T. To make our notation simpler, we define A[r +
Rs] = As,r , and linearize s and r into a single index t = r +Rs. Consequently we can write
(4.8) as:

y(w) =
RS−1∑
t=0

w[t ]A[t ]x (4.9)

= A(w)x,

where A(w) = ∑RS−1
t=0 w[t ]A[t ] = ∑S−1

s=0
∑R−1

r=0 w[r +Rs]As,r . Note that in this formulation
only one sensor should be selected per channel, resulting in only S non-zero values for
w, and each non-zero value has to be within a specific support range of w. The vector w
is the mask optimization variable, and has to lie within the constraints just described.

In case K different pulse-echo events are taken using the same coding mask, the cor-
responding measurement equations can be stacked into a single system of equations,
assuming x does not change in between measurements:

y(w) =


y0(w)
y1(w)

...
yK−1(w)

=


A0(w)
A1(w)

...
AK−1(w)

x = A(w)x. (4.10)

For example, the sensor and the mask can be rotated (as in [23]), or translated (as in [24])
to obtain additional information of x. Note however, that the same mask is used in each
case, and that A(w) is still linear in w.

This model can also be generalized to include multiple measurements involving dif-
ferently shaped masks. In that case, a number of Q measurements with Q distinct masks
are stacked vertically into a larger system of equations:

y(w0)
y(w1)

...
y(wQ−1)

=


A(w0)
A(w1)

...
A(wQ−1)

x, (4.11)

which we denote as

y(W ) = A(W )x,

where W represents the set {wq }q∈Q , Q = {0,1, . . . ,Q − 1}. Again, A(W ) is still linear in
W . The aforementioned constraint on the number of selected channels means that if
wq,s only contains the entries of wq that correspond to the R selection coefficients for
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channel s, i.e., wq,s =
[

wq,s [0], wq,s [1], . . . , wq,s [R −1]
]T, then we want ‖wq,s‖0 = 1 for

all channels s.
To optimally select mask thickness levels, we use x̂ to denote an estimate of x, and

define the image estimation error as e = x− x̂. We will utilize the covariance matrix of
this image estimation error throughout this work, defined as

Ce = E
(
(x− x̂)(x− x̂)H

)
. (4.12)

We will try to find an optimized mask by minimizing the mean squared error (MSE) un-
der additive zero-mean i.i.d. white Gaussian measurement noise, which is a function of
Ce. Since A(W ) is typically ill-conditioned, some prior information about the solution
is required. We assume that the covariance matrix Cx of x is known, and that a Wiener
estimate of the image is used, so that we can minimize the Bayesian MSE (the error co-
variance associated with the Wiener estimator). More specifically, we minimize

f (W ) = 1

M
trace(Ce) (4.13)

= 1

M
trace

((
C−1

x +A(W )HC−1
n A(W )

)−1
)

(4.14)

where Cx and Cn are the image and noise covariance matrices, respectively. Throughout
this paper we assume that Cx =σ2

x I and Cn =σ2
n I.

With these choices for the covariance matrices, the Wiener estimator can be rewrit-
ten as a regularized least squares estimator, i.e., x̂ = argminx̂ ‖y(W )−A(W )x‖2

2 +λ‖x‖2
2,

whereλ depends on the ratio betweenσ2
x andσ2

n . In this case, λ‖x‖2
2 only serves to make

sure that a unique solution is found without large outliers in x̂, due to the ill-posedness
of the inverse imaging problem, as well as to increase robustness to noise. From this
perspective, minimizing f (W ) can also be seen as a way to decrease the ill-posedness
of the inverse imaging problem, by finding a mask that increases the orthogonality be-
tween the columns of A(W ). As a result, we expect that the resulting mask will also be
beneficial for other (non-linear) imaging algorithms besides the Wiener estimator used
here, since it is expected to decrease the ill-posedness of the problem.

Furthermore, it is expected that the optimal solution of f (W ) is not overly sensitive
to incorrect values forσ2

x andσ2
n , as long as the following two extreme cases are avoided.

The first one where the ratio of these variances causes the inverse term in f (W ) to be
dominated by C−1

x , and the second case where C−1
x is negligible, so that no regulariz-

ing term is present. By choosing these values sufficiently in between these two extreme
cases, we hope to find a mask that is relatively robust to the variances of x and n.

Ideally, the optimization problem is then posed as

min
W

f (W ) (4.15)

s.t. ‖wq,s‖0 = 1

wq ∈ {0,1}RS

for all q ∈ Q and s ∈ S . However, neither the objective function nor the constraints are
convex with respect to W , and it is hard to solve this problem exactly. Hence, we will
relax (4.15) into a problem that is convex, and also propose a more efficient coordinate
descent type algorithm.
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4.3.1. MASK OPTIMIZATION BY CONVEX RELAXATION
To find a convex relaxation of (4.15), both the cost function and the two constraints in
(4.15) have to be relaxed. We will discuss each of these separately.

1. In the typical sensor selection problem, A(W )HA(W ) is an affine function of the
selection variables W , and the resulting cost function is convex since the compo-
sition of a convex function with an affine function is convex. In our case, however,
the input matrix is not affine with respect to the selection variables, and hence our
objective function is not necessarily convex. To see that it is indeed not, note that,
using (4.9) and (4.11), A(W )HA(W ) is equal to:

A(W )HA(W ) =
Q−1∑
q=0

RS−1∑
t=0

RS−1∑
u=0

wq [t ]wq [u]A[t ]HA[u], (4.16)

which is quadratic w.r.t. W . As a simple counter-example of the convexity of (4.13),
consider the simple case where Q = 1, so that A(W ) only depends on a single se-
lection vector w, and consider that each A[t ] ∈C1×1. Then

C−1
e =σ−2

x +σ−2
n A(w)HA(w) (4.17)

=σ−2
x +σ−2

n wTBw, (4.18)

where the coefficients of B ∈ SRS×RS+ consist of the 1×1 matrices {A[t ]HA[u]}RS−1
t ,u=0

(using (4.16)). Consequently, trace(Ce) = 1/(σ−2
x +σ−2

n wTBw), and it is straightfor-
ward to see that this function is not convex with respect to w.

To circumvent this problem, we absorb the quadratic terms wq [t ]wq [u] into a
single variable Wq [t ,u]:

A(W )HA(W ) =
Q−1∑
q=0

RS−1∑
t=0

RS−1∑
u=0

Wq [t ,u]A[t ]HA[u]. (4.19)

Whereas the cost-function (4.13) was quadratic in the elements of wq , it is lin-
ear with respect to the variables Wq [t ,u]. Expression (4.16) is only equivalent to
(4.19) if the variables Wq [t ,u] have a certain structure. Specifically, if we store the
variables Wq [t ,u] in a matrix Wq such that

[
Wq

]
t ,u = Wq [t ,u], then equivalence

between (4.16) and (4.19) only holds if Wq = wq wT
q . In other words, Wq has to be

a matrix with rank(Wq ) = 1. Although the cost-function is now convex with re-
spect to Wq , the additionally required rank constraint is not. Keeping in mind that

if wq ∈ {0,1}RS , then diag(wq wT
q ) = wq , a common technique [42, 43] to relax the

constraint Wq −wq wT
q = 0 is:

Wq −wq wT
q º 0, (4.20)

diag(Wq ) = wq (4.21)

for all q ∈Q.
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2. For the second relaxation, we relax the l0 quasi-norm to the `1 norm:

‖wq,s‖1 = 1. (4.22)

Since each Wq º 0, the diagonals of each Wq are non-negative, and thus we can

write this constraint as wT
q,s 1 = 1.

3. Finally, we have to relax the binary constraint wq ∈ {0,1}RS . We relax it to the box
constraint

wq ∈ [0,1]RS . (4.23)

This constraint is already implied by the previous two relaxations. Since each
Wq º 0, the diagonals of each Wq are non-negative. Hence the entries of wq are
all greater or equal to zero. Together with this observation, due to the constraint
wT

q,s 1 = 1, the diagonal elements of each Wq cannot be larger than one. Conse-

quently, the constraint wq ∈ [0,1]RS does not have to be explicitly enforced in our
optimization routine.

So far we have not taken into account the full structure that a rank-1 matrix with en-
tries in {0,1} and ‖wq,s‖0 = 1 has. We will thus further exploit the following two properties
that Wq should exhibit.

1. First, if wq is a solution to the original problem (4.15), the matrix

Wq = wq wT
q (4.24)

=


Wq |0,0 Wq |0,1 . . . Wq |0,S−1

Wq |1,0 Wq |1,1 . . . Wq |1,S−1
...

...
. . .

...
Wq |S−1,0 Wq |S−1,1 . . . Wq |S−1,S−1


will have S block-matrices of size R ×R on its diagonal that are themselves diago-
nal. In other words, each matrix Wq|s,s is in the set D of R ×R diagonal matrices.

2. If ‖wq,s‖0 = 1 for all s and q , then there is only one non-zero entry in each subma-
trix of (4.24), and that entry should be equal to one. This implies

1TWq |s,s′1 = 1 (4.25)

for all s, s′ ∈ {0,1, . . . ,S − 1}. Seen from a different point of view, we impose an `1

sparsity constraint on all the R×R block-matrices Wq |s,s′ instead of just on all vec-

tors wq,s . In fact, the sparsity constraint 1Twq,s = 1 is implied by the two con-
straints we just described, and hence can be omitted now.

3. It is straightforward to see that each entry of W should be non-negative, so we add
the constraint

W ≥ 0. (4.26)
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We will use the set W ′ = {W0,W1, . . . ,WQ−1} to summarize the relaxed problem as follows:

min
W ′ f (W ′) (4.27)

s.t. Wq −diag(Wq )diag(Wq )T º 0

Wq |s,s ∈D

1TWq |s,s′1 = 1

W ≥ 0

for all s, s′ ∈S and q ∈Q. Note that, as discussed before, the box and sparsity constraints
are implicitly included. Since all the constraints on wq are now enforced through con-
straints on the matrices Wq , we replaced the constraints (4.20) and (4.21) by the first
constraint in (4.27).

4.3.2. RANDOM ROUNDING SCHEME
The solution to the convex program above is not guaranteed to have rank 1 with entries
according to the original discrete problem (4.15). One could take the leading eigenvec-
tor of Ŵq as the closest solution rank-1 estimate, however it will not necessarily obey
the constraints in the original problem formulation (4.15), and one would still have to
round the vector to the discrete solution set in (4.15). Instead, we will interpret Ŵq as a
covariance matrix to generate multiple candidate solutions, and project those solutions
to the original constraint set. This approach is favored in literature since it has proven
itself in many studies, and even has theoretical performance guarantees for a number
of discrete optimization problems [44–46]. Although we are currently unable to provide
a lower bound on the optimality of this approach, we have observed that this approach
typically outperforms solutions obtained from the leading eigenvector. Note that, if Ŵq

turns out to be rank-1, the random vectors generated using Ŵq as covariance matrix will
anyway be equal to the leading eigenvector of Ŵq , up to a scalar value.

To describe this in more detail, we use Ŵq as a covariance matrix, and generate many
random w̃q ∈RRS from a Gaussian distribution:

w̃q ∼N (0,Ŵq ), (4.28)

and round each w̃q by selecting the mask thickness level per channel with the highest
absolute value: [

ŵq,s
]

r =
{

1, if r = argmaxv |
[
w̃q,s

]
v |

0, otherwise
, (4.29)

assuming each ŵq,s has a unique maximum. If there are multiple maxima, we randomly
pick one of them.

The intuition behind the random rounding method comes from the following ob-
servation (adapting the interpretation in [44] for the problem discussed here). Consider
again the example in (4.17), where Q = 1, and each A[t ] ∈C1×1. The original optimization
problem cost function can then be rewritten as

min
w

(σ−2
x +σ−2

n wTBw)−1.



4.3. MASK OPTIMIZATION BY SENSOR SELECTION

4

67

One could instead replace w by a random variableνwhich has covariance W,ν∼N (0,W),
and try to minimize:

min
W∈S+

Eν

(
(σ−2

x +σ−2
n νTBν)−1

)
. (4.30)

That is, find a covariance matrix W for the random variable ν, such that the expected
value of the cost function above is minimized. Since all terms are now scalar values, this
can be rewritten as (maximizing the inverse of the above equation, using the properties
of the trace, and using EννT = W):

max
W∈S+

(σ−2
x +σ−2

n Eν

(
νTBν

)
) (4.31)

=max
W∈S+

(σ−2
x +σ−2

n Eν

(
trace(νTBν)

)
)

=max
W∈S+

(σ−2
x +σ−2

n Eν

(
trace(ννTB)

)
)

=max
W∈S+

(σ−2
x +σ−2

n trace(WB)).

This is similar in form to a lifted problem, since we have replaced ννT by a matrix W.
This result suggests that random solutions generated using W will give good solutions
on average, when W is a higher-dimensional, lifted, version of w.

4.3.3. GREEDY MASK OPTIMIZATION
In this subsection we further describe a much more efficient greedy selection algorithm,
since the convex program (4.27) scales polynomially with increasing problem size (more
channels, thickness levels, etc.). It is based on the observation that minimizing over only
a single channel has a low computational cost, since we would only have to solve the
problem

min
wq,s

f (W ), s.t. ‖wq,s‖0 = 1, (4.32)

which is easily solved by trying all R possible solutions for the current channel s and
measurement q . The algorithm operates by iterating through all channels, selecting
the thickness level that most decreases the adopted cost function per channel. This
is repeated, until either a local minimum or a maximum number of iterations Kmax is
reached. The algorithm is described in Alg. 1. In Alg. 1, we use f (wq,s ) to indicate that f
is evaluated with wq,s as a variable, but keeping all other wq ′,s′ fixed.

Referring back to the description of the approximate mask model, we point out that
one could also directly define each {As }s∈S as a function of the mask thickness parame-
ter for each channel. We were able to cast it as a discrete selection problem by sampling
the continuous variable for the mask thickness, say z ∈ RS , inside the valid mask thick-
ness range. Keeping this in mind, Alg. 1 acts as a coordinate descent algorithm on z,
by optimizing only one element (channel) in z at a time. Instead of doing a line search
over the allowed mask thickness range, it uses a one-dimensional grid search over R pre-
defined values. This line search is relatively cheap, since the maximum mask thickness
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Algorithm 1 Greedy optimization scheme

1: Input: W = {wq }Q−1
q=0 , Imax

2: Output: Ŵ = {ŵq }Q−1
q=0

3: ŵq = wq , q = 0,1, . . . ,Q −1
4: i = 0
5: do
6: fmi n = f (Ŵ )
7: for q = 0,1, . . . ,Q −1 do
8: for s = 0,1, . . . ,S −1 do
9: ŵq,s = argminwq,s f (wq,s ), s.t. ‖wq,s‖0 = 1

10: i = i +1
11: end for
12: end for
13: while f (Ŵ ) < fmi n , and i ≤ Imax

is typically confined to a small number. Using a grid search has major advantages, since
the proposed algorithm now easily avoids local minima in the current [z]s it is optimiz-
ing (if the grid on [z]s is sufficiently dense). In this way, many local minima are easily
avoided, nor does the algorithm need to compute the cost-function gradient or higher
order derivatives.

The greedy routine can either be used to refine the rounded solution (4.29) or it can
be initiated using an appropriate starting mask. In the first case, the convex solution
forms a good starting point, and Alg. 1 will improve it slightly using few iterations. In the
latter case, running the convex program (4.27) is avoided at the risk of arriving at a local
minimum. In the following numerical experiments, we will use a flat starting mask as an
initial guess for the greedy algorithm.

Finally, we point out that this algorithm is not dependent on pre-computing all A[t ],
and can be used for configurations where the transmitted pulse passes through the mask
both on transmit and receive, using the same transducer for both events. This is due to
the fact that A can be re-computed for the current selection of mask-channels per inner
iteration of Alg. 1. For the sake of comparison to the convex program, we have not further
investigated this situation.

4.4. SIMULATION RESULTS
To evaluate the proposed mask design algorithms, we consider various imaging scenar-
ios. We first consider two scenarios with a small problem size, where we show that our
methods perform well, compared to the true optimum, which we find using an exhaus-
tive search. After these example problems, we consider some larger problems where we
design masks for more realistic imaging scenarios. In all simulations, except the first
one, we use a Gaussian-modulated excitation pulse e(t ) = w(t )cos(2π f0t ), with f0 = 4
MHz. The function w(t ) = exp(−(t/ fs )2/(2σ2

w )) is a smooth Gaussian window, with fs

the sampling frequency, andσw = 3.74. This pulse is shown in Fig. 4.4. For the greedy al-
gorithm, we set Imax = 5QS in all simulations. For the medium we use a speed of sound



4.4. SIMULATION RESULTS

4

69

2 3 4 5 6

frequency [MHz]

0

0.05

0.1

0.15

0.2

0.25

0.3

s
ig

n
a

l 
m

a
g
n

it
u
d

e

-1 0 1 2 3

time [µs]

-1

-0.5

0

0.5

1

s
ig

n
a

l 
in

te
n

s
it
y

Figure 4.4: Frequency spectrum and time-domain signal of the transmit pulse used in our simu-
lated experiments.

of c0 = 1491 m/s, and we assume that the plastic mask has a speed of sound c1 = 2730
m/s. We consider the following three simulation scenarios throughout this section:

Scenario 1 Rotation of a masked circular transducer in the (x, y) plane.

Scenario 2 Linear translation of a masked linear transducer in the x direction, moving
in the x dimension.

Scenario 3 Using a different mask per measurement, with fixed transducer position.

4.4.1. SMALL EXAMPLE 1
In this example (using scenario 2), we choose all parameters such that we can find the
true optimal mask of (4.15) by an exhaustive search within reasonable time. Although
the resulting problem parameters do not correspond to a physically meaningful scenario
(due to a very small ROI, and using only a few temporal frequencies), it is the only way to
compare how our algorithms perform compared to the true optimum (and hence mostly
tests the mathematical validity of our methods). To do this, we investigate a 2D problem,
meaning that all pixel and channel positions are within the (x, z) plane with y = 0. We
use a Cartesian pixel grid of 8x2 (M = 16), with pixel coordinates equidistantly placed
between -2 and 2 mm in the x-dimension, and at 0.5 and 1.0 cm in the z-dimension, with
y = 0 for all pixel positions. The non-zero measurement frequencies are equidistantly
spaced between 5 and 6 MHz (N = 11), which corresponds to taking 120 samples in the
time-domain for a sampling frequency of 12 MHz. The mask channels (S = 8,R = 7) are
equidistantly spaced between -.45 and .45 mm in the x-dimension, at y = 0 and z = 0,
with a maximum mask thickness of 0.39 mm. This corresponds to discretization steps
2.8 times smaller than the centre wavelength in water (.37 mm) in the x-dimension (0.13
mm channel width), and 5.7 times smaller in the mask thickness dimension (0.065 mm
per channel height segment). The noise variance was chosen such that the output SNR

SNR = trace{E{yyH}}/trace{E{nnH}} (4.33)

= trace{σ2
x AAH}/trace{σ2

n I} (4.34)



4

70 4. CODING MASK DESIGN FOR SINGLE SENSOR ULTRASOUND IMAGING

0 20 40 60

0

0.5

1

1.5

2

eigenvalues lifted coefficientslifted coefficients

10 20 30 40 50

10

20

30

40

50

0

0.1

0.2

0.3

Figure 4.5: Left: optimal solution Ŵ to problem (4.27) for the simulation described in Sec. 4.4.1 .
Right: sorted eigenvalue spectrum of the matrix to the left.

of a random mask is approximately2 0 dB. To add more structure to the problem, we add
more measurements using the same mask (Q = 1,K = M = 16), by spatially shifting the
masked transducer to the same x-coordinates as the pixels in the x-dimension (scenario
2).

In Fig. 4.5, the solution Ŵ to the convex problem (4.27) is visualized. The constraints
are able to obtain a matrix that is already quite sparse, and of low rank. Fig. 4.6 shows
the MSE (4.13) distribution for a set of 10,000 randomly generated sets of masks, 10,000
masks generated using random rounding based on the solution of the convex problem
(4.27), the MSEs of the proposed methods, the MSE of the true optimum, as well as a
the MSE of a completely flat mask. The latter can still reconstruct images since multiple
spatial measurements are obtained by translation of the transducer. The random round-
ing procedure generates solutions with a higher MSE concentration close to the true
optimum than the distribution of completely random masks, and the majority of these
masks also outperform the flat mask scenario. The greedy algorithm is able to find the
true optimum, and provides a mask that is slightly better than the mask obtained using
the convex program (4.27), while being much more computationally efficient.

For a complete performance description, we take the optimized and random masks
from Fig. 4.6, and compute their MSE if the SNR changes, but the same mask is used. The
resulting MSEs are shown in Fig. 4.7 (Fig. 4.6 shows the MSE distribution for one particu-
lar SNR in Fig. 4.7). The vertical bars in Fig. 4.7 indicate the mean MSE plus or minus the
MSE standard deviation for 1,000 randomly generated masks. Even though all methods
are optimized for a particular SNR, Fig. 4.7 shows that all methods are able to generate
a mask that performs well over the entire SNR range, although most of the MSE can be
gained in the -15 to 10 dB range. As a benchmark, we also show the MSE of the optimal
mask per SNR, as well as the MSE of the mask obtained using the greedy algorithm by

2Note that, even if σ2
x is known, we can only determine ‖y‖2

2 once the mask is known, since each mask can

have a different measurement energy for the same image x. Hence, we cannot choose σ2
n to give an exact

output SNR. In this example, the exact output SNR of the optimized mask is 2.8 dB.
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Figure 4.6: MSE distribution for the problem described in Sec. 4.4.1. We show the MSE distribution
for a set of 10,000 randomly generated masks, and 10,000 masks generated using the proposed
random rounding procedure, the MSEs of the proposed methods, the MSE of the best mask, as
well as a flat mask.

optimizing per SNR (the best mask can be different for each SNR). In this example, we
can see that all proposed masks, even if they are optimized for a single SNR, are able to
perform close to optimal over the entire SNR range, demonstrating the robustness of the
optimization method to incorrect values of the noise and image covariance matrices.

Finally, we show the PSF in dB (computed as 10log10) for the second pixel (Fig. 4.8).
We define the PSF for pixel n as the image when the measurement is equal to: y = an(W ),
the n-th column of A(W ). For comparison, we took the PSF of a random mask with an
expected MSE of 0.106, close to the average performance of random masks according to
the distribution in Fig. 4.6. The PSFs of the different masks re-affirm the performance as
predicted by Fig. 4.6.

4.4.2. SMALL EXAMPLE 2
In the previous example, we constrained the problem parameters to be able to use an
exhaustive search to find the global optimum. In this second small example, we make
the problem slightly larger, by using more channels and multiple masks, and using sce-
nario 3 as described in Sec. 7.2. As a result, the global optimum cannot be found within
reasonable time, and is not shown in the results of this experiment. Furthermore, the
distribution of random masks will be further away from the true optimum, unlike in
Fig. 4.6. Using random rounding, however, we can still do well.

Instead of shifting the transducer, it remains in the same position, but uses Q = 12
different masks to obtain different measurements. We optimize the mask for 5 pixels
on a line at z = 5 mm, located between -1 and 1 mm. The mask channels are located
between -.45 and .45 mm (S = 8), with a maximum mask thickness of .26 mm (R = 5).
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Figure 4.7: Performance of various mask design strategies in terms of MSE for various output SNR
scenarios, for the problem described in Sec. 4.4.1. Each curve shows the performance of a single
mask that was optimized for an SNR of 0 dB. The crosses represent the mean MSE of 1,000 ran-
domly designed masks, with the vertical bars showing the standard deviation. The MSE of the true
optimal mask per SNR is shown, as well as the MSE obtained by using a greedy algorithm for each
SNR.

The measurement frequencies are equidistantly spaced between 5 and 6 MHz (N = 101).
We generate 1,000 random masks and 1,000 randomly rounded masks, as well as a

greedily generated mask. The MSE distributions are shown in Fig. 4.9. As mentioned
before, the random mask design strategy does not work well, and covers a higher range
of MSEs. In Fig. 4.10 the PSF is shown for the optimized image domain. As predicted
by Fig. 4.9, some performance gain is possible, although not as great as in the previous
simulation in Sec. 4.4.1.

4.4.3. MASK DESIGN FOR A SINGLE ROTATING MASK

In this subsection we optimize a single rotating mask (scenario 1). We assume that all
the channels are located within a 5 mm disc. The only difference between the measure-
ments is a rotation of the sensor and the mask relative to the pixels. We only consider the
greedy approach so that we can use realistic problem sizes with acceptable computation
times. We discretize the mask into 1245 square channels of equal size (0.13 mm), equiv-
alent to approximately 2.9 channels per wavelength. Each channel was divided into 11
uniformly distributed mask thickness levels (0.13 mm per mask thickness segment), with
a maximum mask thickness of 0.65 mm, equivalent to approximately 5.7 channels per
wavelength. The 2D ROI of 5 by 5 mm is discretized into 20 by 20 pixels at a depth of 6
mm. The transducer is rotated 40 times, evenly divided over 360 degrees (K = 40). Note
that, although there are multiple measurements, we optimize for a single mask (Q = 1).
During optimization, σ2

n was chosen such that the expected SNR of a random mask is
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Figure 4.8: PSF for a pixel at x = −1.4mm, z = 5mm for the scenario of Sec. 4.4.1. The subfigures
show slices of the PSF at different depths.

approximately 10 dB. We use the transmit pulse shown in Fig. 4.4, sampling it in the fre-
quency domain using ∆ f = 40 kHz, or N = 101.

The imaging performance for various SNRs is shown in Fig. 4.11, although the mask
was optimized for a single SNR. Again, it is clear that the optimized mask is able to con-
sistently outperform all random masks. Moreover, the MSE distribution of the random
masks is relatively narrow, meaning that it would take an enormous amount of tries to
randomly generate a mask that performs just as well as our proposed techniques. Fur-
thermore, the expected SNR (4.33) for the optimal mask is equal to 15.5 dB, whereas the
SNR averaged over 100 random masks, is equal to 9.0 dB, a gain of 6.5 dB for the opti-
mized setup.

To illustrate the imaging performance, we take a letter-shaped test image (zero-mean
and unit-energy, averaged over all pixels) to generate a noisy test measurement y. Fig. 4.12
shows the greedily optimized mask and a particular randomly generated mask. Fig. 4.13
shows some example estimated images using the masks in Fig. 4.12, choosing σ2

n such
that the optimized mask has an SNR of 20 dB for the test phantom. The random mask,
in contrast, causes measurements to have an SNR of 13.1 dB using the same noise vari-
ance and test phantom. We see from Fig. 4.13 that the optimized mask is better able to
correctly estimate the phantom.

The aforesaid SNR gain is caused by a focusing effect that becomes apparent if we
visualize the pulse-echo amplitude per pixel for a large region and a single frequency,
shown in Fig. 4.14. The mask acts as a spatial filter that boosts energy of echoes origi-
nating from the ROI, whereas a random mask does not have this capability, resulting in
a lower SNR.

In addition to an increased SNR, the optimized mask also causes lower similarity be-
tween pulse-echo signals of different pixels. We visualize this in Fig. 4.15 by plotting the
normalized PSF (computed as AHai , with each column of A normalized so that the Eu-
clidean norm is one) for various points in space. The optimized mask strongly decorre-
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Figure 4.9: MSE distribution for the problem of Sec. 4.4.2, for a set of 1,000 randomly generated
masks, as well as 1,000 masks generated using the proposed random rounding procedure, and the
MSEs of the proposed methods.

lates between pulse-echo signals from different pixels, whereas the random mask always
has relatively high correlation across almost the entire ROI. The PSF is typically best at
the edges, where the difference between different measurements obtained by rotation is
the largest.

These results show that the proposed design algorithm makes columns of A(W ) more
orthogonal. This implies that other, possibly non-linear imaging methods will also ben-
efit from the designed mask, since the increased orthogonality generally reduces ambi-
guity about x, making the estimation of x easier for any imaging method.

4.4.4. MASK DESIGN FOR MULTIPLE MASKS
For our final simulation example, we consider an experiment where the transducer is
not rotated or translated in any way, but instead the mask is changed between pulse-
echo measurements (scenario 3). We use the greedy method to find Q = 40 masks, and
compare the performance to 40 randomly generated masks. All other parameters are the
same as in the previous simulation for a single rotating mask (Sec. 4.4.3). We choose σn

such that the SNR of a random mask is approximately 10 dB.
Using the greedy approach with a flat starting mask, we obtain the masks shown in

Fig. 4.16. In Fig. 4.18 we show the corresponding SNR curves. The expected SNR of the
optimized mask is 13.7 dB, whereas the random mask SNR is 9.8 dB, averaged over 100
random masks, an SNR gain of nearly 4 dB.

Fig. 4.17 shows an example reconstruction for an SNR of 20 dB. We can see that using
the optimized masks, the true image is better reconstructed compared to a set of random
masks. From Fig. 4.18 we observe an MSE improvement for all SNRs. Since the random
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Figure 4.10: PSF for the simulations of Sec. 4.4.2 for a pixel at x = 0mm, z = 5mm.

masks show a very narrow MSE distribution, the optimized mask outperforms nearly all
random masks in terms of the MSE (4.13). Although the MSE gain may not seem like
much, the example reconstruction in Fig. 4.17 visualizes that a small MSE difference can
have a non-negligible impact on the visual reconstruction quality. We observe that the
multiple mask setup exhibits better imaging performance than a rotating mask with the
same amount of measurement data. Finally, we remark that the imaging performance
for this setup is better than the rotating mask configuration, since it does not restrict all
masks to be related by rotation (although the algorithm is free to output such a set of
masks).

4.4.5. MASK DESIGN FOR A ROTATING MASK WITH PIXELS ON A CIRCLE
In this subsection we analyse a particular example that admits an intuitive physical in-
terpretation of the results. We use a single mask (Q = 1), and obtain new measurements
by rotating the mask (K = 30). To make the results easily interpretable, we only consider
pixels uniformly spaced on a circle with a radius of 1.8 mm (M = K = 30), where the
center of the circle coincides with the center of rotation of the masked transducer.

Consider the measurement matrix Aωk , containing only the measurements for fre-
quency ωk . Assuming the angle of rotation is equivalent to the angle between pixels,
each row or column is a circular shift of the previous row. As a result, each Aωk is a circu-
lant matrix, and the total measurement matrix is a concatenation of circulant matrices:

A = [
AT
ω0

AT
ω1

. . . AT
ωK−1

]T
. (4.35)

Consequently, the singular values s ∈RM+ of the SVD of A can be expressed as the square
root of the element-wise sum of the squared magnitude of the eigenvalues over all circu-
lant submatrices:

s =
√√√√K−1∑

k=0
|sωk |2, (4.36)
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Figure 4.11: MSE performance for the scenario of Sec. 4.4.3, for various SNR scenarios, optimiz-
ing for a single rotating mask. The crosses represent the mean MSE of 100 randomly designed
masks, with the vertical bars showing the standard deviation. The IASA method is discussed in the
Discussion section of this paper.

where sωk is the vector of eigenvalues of submatrix Aωk . Since each submatrix is circu-
lant, its eigenvalues are equivalent to the DFT spectrum of its first column. Therefore,
we can replace each sk by the DFT of the first column of Aωk :

s =
√√√√K−1∑

k=0
|âωk |2, (4.37)

where âωk is such a DFT. Note that in (4.36) and (4.37), the square root and magnitude
operators are assumed to be taken element wise.

This yields an intuitive way of comparing two masks. Due to the reciprocity princi-
ple, the columns/rows of Aωk can be interpreted in two ways. First, they can be viewed
as the transducer output signal for each pixel, if only that single pixel is transmitting a
wavefield p(ω). Alternatively, they can be seen as the complex pressure field measured
at the pixel locations if the transducer is transmitting the pulse p(ω) through the mask
towards the pixel locations. Since the singular values of A can be expressed as a func-
tion of the Fourier transformed columns of the sub-matrices Aωk , the mask with the best
(i.e., slowest decrease of the) singular value spectrum is the mask that generates a pres-
sure field that has high spatial bandwidth, i.e., has a balanced spectrum with its energy
spread across all the spatial frequencies as evenly as possible and has a high total energy.

For this particular case, the mask can also be analyzed from another point of view:
the measured signal (per temporal frequency) equals a circular convolution of the image
map, and a good mask results in a filter that preserves as much frequency content of the
image as possible.
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Figure 4.12: Optimized and random mask used for the results in Fig. 4.13, using a single sensor
with a rotating mask, for the simulation scenario of Sec. 4.4.3. The mask thickness values are dis-
played as a fraction of the wavelength inside the mask.

We illustrate the preceding with a simulated example. In addition to the parameters
mentioned, we use the same transmit pulse as in Fig. 4.4 (N = 101 or ∆ f = 40 kHz). All
channels (S = 1245) are located on a circle of 5 mm radius. We define R = 6 mask thick-
ness levels up to a thickness of 0.65 mm, and M = 30 pixels on a ring of 5 mm diameter.

In Fig. 4.19, we show the spatial frequency spectra of the columns of all Aωk ,ωk ∈Ω,
in addition to s as computed in (4.37), and the singular values s sorted according to their
magnitude. We do this for the greedily optimized mask as well as for a particular random
mask. From Fig. 4.19 we observe that the optimization algorithm tries to find a mask
such that the total spatial frequency bandwidth over the ring of pixels is increased. As a
result, the singular values of the optimized matrix decrease more slowly, and are better
conditioned. This is achieved due to each temporal frequency generating energy in a
specific spatial frequency. For example, in the left panel of Fig. 4.19, the blue temporal
frequencies generate high spatial frequencies, whereas temporal frequencies in the red
spectrum focus energy in the lower spatial frequencies. The random mask is unable to
accomplish the same result, and depressions in the blue curve are not compensated by
any other temporal frequencies. We further observe that the total energy is much higher
for the optimized mask, resulting in an increased SNR.

4.5. DISCUSSION
In Figs. 4.14 and 4.19 we showed that an optimized mask (for a rotating measurement
configuration) acts as a spatial filter, enhancing echoes coming from within the ROI. In
the angular frequency domain this means that the mask should act as an angular fil-
ter with a passband for directions within the ROI. Hence, as a rule of thumb, the struc-
ture within the mask should contain spatial features within the same angular frequency
band. For example, if pixels are located in the far-field at an incident angle of 0 degrees,
the mask can coherently sum signals from this ROI using a flat mask. On the other hand,
if pixels are located at an incident angle of 90 degrees, a sinusoidal profile with the same
period as the pulse wavelength will coherently sum echoes from that direction, and av-
erage out echoes originating from 0 degrees. This is more complicated in the near field,
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Figure 4.13: Reconstruction of a letter R image for a single sensor with a rotating mask, using 40
rotations, for the simulation of scenario Sec. 4.4.3. The top figures show the true image and its
reconstructions using both the optimized mask and a random mask. The bottom figures show the
error maps for each reconstruction result.

but the same principle holds. To illustrate this point, we show several masks optimized
for ROIs parallel to the transducer (for simplicity, we only define pixels on a circle with
the same (x, y)-coordinates as the edge of the mask) at different depths (Fig. 4.20). As
the ROI is located further away, its angular range decreases, and consequently, spatial
features in the mask profile contain a lower range of spatial frequencies.

Beside angular filtering, the mask should decorrelate echoes from different pixels.
Optimized masks thus don’t consist of pure harmonics, but of more complex patterns,
in order to bring about this decorrelation. As discussed in Sec. 4.4.5, for a ring of pixels
this means that the optimized mask should cause high variation of the wavefield w.r.t.
this ring. Generalizing this to a fully sampled ROI by adding more rings is more compli-
cated, but one could imagine that different wavelength intervals in the transmitted pulse
can focus on different rings. One should, roughly speaking, try to design a mask that if
used for transmit, causes a high spatial variation in the transmitted wavefield. Hence,
an alternative design methodology would consist of first defining a wavefield at the ROI
with high spatial bandwidth, and propagate it back in time towards the transducer to ob-
tain a phase mask (similar to [37, 38]). Needless to say, this should be co-designed with
the desired angular filtering discussed before, and algorithms presented in this paper try
to find a balance between these two criteria.

Still, we have explored this alternative design strategy as suggested in the above study.
First, we designed a pressure field for a single frequency ( f = 4 MHz at z = 6 mm), with
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Figure 4.14: Normalized amplitude per pixel at f = 4 MHz for an optimized rotating mask
(Sec. 4.4.3) in Fig. 4.12, and a random mask. Note that the visualized energy extends beyond the
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Figure 4.15: Absolute PSFs for various points in space, indicated by the red circle. Top: using the
greedily optimized mask. Bottom: using a randomly selected mask. The columns in A are energy-
normalized before computing the PSFs. Simulation scenario of Sec. 4.4.3.

high spatial bandwidth, and which has most energy focused inside the pixel ROI within
this z-plane. We then use the Iterative Angular Spectrum Approach (IASA) to approxi-
mate a phase mask that generates this pressure plane, following the method proposed
in [37]. This method starts with a flat mask, finds the associated pressure field in the
image plane, and compares it to the desired pressure field. It then changes the com-
plex amplitudes in the obtained forward field to the desired amplitudes, but keeping the
phases unchanged. The field is then propagated back in time to the transducer plane,
where the mask profile is adapted to cause the required phase changes to generate the
back-propagated pressure field. This is repeated until the algorithm converges to a phase
mask. For further details on this method, we refer to the original paper [37]. As a desired
pressure field we generated a white complex Gaussian field, and applied a Gaussian win-
dow in both the space and k-space domain to obtain a focused bandlimited target field
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for the image plane. The exact details for the target field are shown in Appendix 4.A.
The general performance of the resulting mask for Gaussian images is included in

Fig. 4.11. We also visualize the reconstructed image for the resulting mask in Fig. 4.21,
where it is compared to the mask obtained with the proposed greedy method. The IASA-
based design is superior to random mask design, but is not able to surpass the method
proposed in this work, although the difference in reconstruction quality for the non-
Gaussian (sparse) phantom in Fig. 4.21 is relatively small (the reconstruction MSEs for
this particular phantom are 0.65 and 0.70 for the greedy and IASA-based method, re-
spectively). Of course, the crucial design step in this strategy amounts to choosing a
proper target field for the phase mask to produce, and in this experiment we have tried
to find a good target field by trial-and-error. However, it is not clear what the ‘best’ for-
ward field would be. Although initial investigation agrees with our suggestions in this
paragraph, (e.g., a focused forward field seemed to give better results than an unfocused
beam), broad-bandedness of the spatial target distribution does not seem to be suffi-
cient to acquire a good mask with this method. Hence, this design strategy can probably
be significantly improved by choosing a more intelligent pressure distribution than the
one used in this section.

4.5.1. MASK DESIGN FOR MULTIPLE SENSORS
The optimization framework discussed in this work could also be extended to include
multiple sensors, each with possibly their own mask. In that case, one would have the
following measurement equation for L sensors, combining equations (4.10) and (4.11):

y(W ) =


y0(w0)
y1(w1)

...
yL−1(wL−1)

=


A0(w0)
A1(w1)

...
AL−1(wL−1)

x = A(W )x, (4.38)

where each Al , (l = 0,1, . . . ,L) represents the measurement equations for sensor l . The
equations are still linear with respect to W , and the same proposed techniques can be
applied.

4.6. CONCLUSIONS
Using an approximate linear signal model, we formulated mask optimization as an ad-
ditive sensor selection problem by discretizing each mask channel in the thickness di-
mension, and optimizing for the imaging MSE, which is a function of the measurement
matrix A. Each candidate sensor corresponds to a full measurement matrix, and the final
measurement model is the summation of the individual sensors’ measurement matrices.
We have shown that this is not a conventional sensor selection problem, and proposed to
solve this problem by transforming the original variables into a larger amount of ‘lifted’
variables. By further relaxing the problem, and by exploiting the structure among the
lifted optimization variables, a convex problem is formulated. To get a solution that is
feasible in the original problem formulation, a random rounding technique was pro-
posed. In addition to the convex approach, we also proposed a greedy algorithm to solve
the same problem.
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Although the proposed algorithms are not guaranteed to provide the globally opti-
mal mask, a small numerical experiment showed that our mask design algorithms come
close to the true optimum, and all experiments showed that they outperform randomly
generated masks in terms of imaging MSE, even for images with non-white and non-
Gaussian statistics. The distribution of masks using the combination of convex op-
timization and random rounding has a lower MSE range than the distribution of com-
pletely random masks. Furthermore, the proposed greedy coordinate-descent algorithm
obtained good results close to the global optimum. Our experiments demonstrate that a
good mask is able to filter in the angular domain, enhancing echoes coming from within
the ROI, while strongly decreasing correlation between the pulse-echo signals of pixels
within the ROI.
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APPENDICES

4.A. IASA-BASED MASK DESIGN
To obtain a mask using the IASA method, one has to first choose a target pressure field
in the image plane that the phase mask is supposed to produce. We designed a focused
wavefield with maximum spatial bandwidth, by first generating a completely complex
Gaussian random pressure field. Next, we filtered this field by applying a circular, sym-
metric Gaussian window in the 2D DFT of this field. The radius of this window was cho-
sen approximately equal to the wavenumber in water, choosing f = 4 MHz, the central
frequency of the transmit pulse. After transforming back to the spatial domain, we again
applied a circular Gaussian window, so that most energy is focused in the pixel ROI. We
show the resulting pressure field in Fig. 4.22. The pressure field produced by the result-
ing mask is limited in spatial bandwidth due to the limited size of the aperture.
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Figure 4.16: A subset of the optimized masks for the problem of Sec. 4.4.4 with Q = 40, using Alg.
1. The mask thickness values are displayed as a fraction of the wavelength inside the mask. The
algorithm optimizes one mask at a time. The first mask is shown in the top left corner, while the
third mask is shown to the right of the first mask, etc. (every second mask is plotted).
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Figure 4.17: Reconstruction of a letter R image combining the measured data of 40 masks obtained
using the greedy optimization scheme, for an output SNR of 20 dB, for the simulation scenario of
Sec. 4.4.4. The top figures show the true image and its reconstructions using both the optimized
mask and a random mask. The bottom figures show the error maps for each reconstruction result.
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Figure 4.18: MSE performance distribution for various SNR scenarios, optimizing for Q = 40
masks. The optimized mask was designed assuming an SNR of 10 dB, but performs relatively
well across the entire SNR range. The crosses represent the mean MSE of 100 randomly designed
masks, with the vertical bars showing the standard deviation. Simulation scenario of Sec. 4.4.4.
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Figure 4.19: Spatial frequency and singular value spectra for the optimized mask and a partic-
ular random mask with pixels on a circle (Sec. 4.4.5). The color-coded curves show the spatial
frequency spectrum of the complex pressure field of each temporal pulse frequency ωk (starting
with low temporal frequencies in red, ending with high frequencies in blue). The black curve is
the compounded spatial frequency spectrum of all temporal frequencies, as computed per (4.37),
which is equivalent to the singular values of A. The red curve shows the singular values of A, sorted
by magnitude.
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Figure 4.20: Optimized masks for various depths. For simplicity, pixels are positioned on a ring,
and the excitation signal is a single frequency.
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Figure 4.21: Bottom left: coding mask obtained using the IASA-method [37], by finding a
phase mask that gives a focused pressure field in the image ROI with high spatial bandwidth.
Top/bottom: image reconstruction comparison between the IASA-based mask design method and
the proposed method in this work.
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Figure 4.22: Top: target pressure field for f = 4 MHz in the image plane. Bottom: the field in
the image plane produced with the mask obtained through the IASA method. All figures show the
magnitude of the complex pressure fields. The red box indicates the pixel ROI used for optimiza-
tion in Sec. 4.4.3.
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5
IMPULSE RESPONSE ESTIMATION

METHOD FOR ULTRASOUND ARRAYS

We present a method for estimating the one-way electro-mechanical impulse response or
transfer function of self-reciprocal ultrasound transducers. The one-way impulse response
is needed for forward field simulations, or for pulse-echo simulations and excitation code
design when the one-way impulse response per array element is different. Using a flat
plate reflector that is positioned parallel to the transducer surface, the resulting pulse-
echo signal is measured. Since the transducer is self-reciprocal, the transmit and receive
impulse responses are equivalent. Consequently, the measured signal is the autoconvolu-
tion of the one-way impulse response. We propose a new de-autoconvolution algorithm
to obtain the one-way impulse response from such a signal. The proposed measurement
procedure is especially time-efficient for large arrays, and does not rely on hydrophones or
additional transducers. Experimental results are shown to demonstrate the effectiveness
of the proposed method.

Parts of this chapter have been published in Proceedings of 2017 IEEE International Ultrasonics Symposium
(IUS), 2017, [1].
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5.1. INTRODUCTION

A Ccurate knowledge of the one-way electro-mechanical impulse response or transfer
function is important for e.g. model-driven beamforming techniques and accurate

ultrasound simulations. Typical transducer calibration procedures (e.g. [2, 3]) result in
an estimate of the pulse-echo impulse response, which are only useful for pulse-echo
simulations: they estimate the combined effect of the transmit and receive impulse re-
sponses. For computing the forward field, however, the one-way impulse response is of
interest. Another example is that of an array transducer where each element may have
a somewhat different impulse response, e.g. due to imprecisions in the transducer pro-
duction process. As a result, the pulse-echo impulse response from one array element to
another may be different for each combination of elements. In this case, it is convenient
to know the pulse-echo response for each combination of transmit and receive elements
for either simulations, model-based imaging, or excitation code design.

Even if one is only interested in the pulse-echo transfer function, measuring the
pulse-echo impulse response for each combination of transmit and receive elements is a
very laborious process for large arrays. In that case, it would be more convenient to use
a hydrophone to measure the transmitted pulse of each transducer excited by a delta-
pulse. The pulse-echo impulse response between transmit/receive pairs is then found
by convolving the corresponding impulse responses. However, hydrophone setups are
expensive, the procedure is time-consuming, and the measurement is sensitive to the
hydrophone position relative to the transducer. Our proposed method does not rely
on hydrophone measurements, but uses the pulse-echo measurement of the reflection
from a flat reflector. An additional benefit of this method over the hydrophone-based
characterization is that the signal to noise ratio (SNR) of the pulse-echo measurements
may be much better if the transducer under test has a large measurement surface com-
pared to the hydrophone surface. Moreover, the transducer is more likely to have a high
sensitivity in its own bandwidth compared to hydrophones, resulting in increased SNR.

Many other characterization procedures exist to determine the one-way impulse re-
sponse, but require experimental setups that directly measure the transducer input and
output voltage and currents (see e.g. [4–8]). This type of method typically requires
some knowledge of the incident or transmitted pressure field, hence involving additional
transducers, which need to be carefully aligned for each measurement in an array. Al-
ternatively, they assume a specific type of wave is transmitted to avoid using additional
transducers.

Here we present a simple procedure to estimate the one-way impulse response using
only one digitized pulse-echo measurement per array element by means of a new de-
autoconvolution algorithm, not involving hydrophones. If the transducer under test is
self-reciprocal, the transmit and receive impulse responses are equivalent [4, 9]. Conse-
quently, the measurement resulting from pulse-echo characterizations such as in [2, 3] is
the autoconvolution of the one-way impulse response. Hence we propose to retrieve the
one-way impulse response from such a measurement in conjunction with a newly de-
veloped de-autoconvolution algorithm, although other algorithms are available as well
[10–13]. More specifically, we measure the pulse-echo response of a flat plate reflector,
which is especially time-efficient for large linear arrays. The flat reflector only needs to
be aligned once after which all the measurements can be obtained for all array elements
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without any adjustments or alignments between measurements.
In Section II, we will first describe the measurement setup and the de-autoconvolution

algorithm. In Section III we show the experimental results of the proposed technique, af-
ter which we provide a conclusion and discussion in Sections IV and V.

5.2. METHODS

5.2.1. CHARACTERIZATION PROCEDURE

Here we propose a simple calibration procedure to obtain autoconvolved measurements
of the one-way impulse response. However, we would like to point out that the de-
autoconvolution algorithm described in the next section should work with any measure-
ment procedure that obtains an autoconvolved impulse response.

We suggest to place a flat plate reflector in front of the ultrasound transducer, par-
allel to the transducer surface, and measure the pulse-echo response after exciting the
transducer by a delta-pulse. Since flat reflectors act as an acoustic mirror, the reflec-
tion does not change the temporal ultrasound waveforms before reflecting. Assuming
the experiment takes place in a homogeneous medium, and assuming delta-pulse ex-
citation, the sampled pulse-echo signal x[n] can be modelled as: x[n] = ht [n]∗ g t [n]∗
gr [n]∗hr [n], where ht [n] and hr [n] are the electro-mechanical transmit and receive im-
pulse responses of the transducer, respectively, and ‘*’ denotes temporal convolution.
The signals g t [n] and gr [n] represent the Green’s functions for the wavefield propaga-
tion to and from the flat reflector (see e.g. [14–16] for convolutive ultrasound mod-
els). In the described setup, it is straightforward to see that g t [n] = gr [n]. Assuming
self-reciprocal transducers, ht [n] = hr [n], and consequently x[n] can be expressed as
x[n] = h[n]∗ g [n]∗ g [n]∗h[n]. This measurement can be de-autoconvolved to obtain
the forward field h[n]∗ g [n]. If the flat reflector is placed appropriately, g [n] = δ[n −τ],
where τ depends on the distance to the flat reflector, such that x[n] = h[n −τ]∗h[n −τ].
The time-shifted one-way impulse response h[n − τ] can then be obtained using de-
autoconvolution.

For this setup it is important to align the flat reflector parallel to the transducer sur-
face and place it at an appropriate distance to avoid sensor diffraction effects, such that
g [n] = δ[n −τ]. If one is interested in the pulse-echo response of every sensor in a linear
array, the flat reflector can simply be properly aligned with the array surface, after which
the pulse-echo signal of each array sensor is measured one by one. This way, proper
reflector alignment only needs to be done once for a large collection of sensors.

5.2.2. DE-AUTOCONVOLUTION ALGORITHM

Suppose we have measured the pulse-echo signal x[n] = h[n]∗h[n], and that the time-
of-arrival delay τ is included in h[n] from now on. Since linear convolution in the time-
domain equals multiplication in the frequency domain, the magnitude spectrum of h[n]
can be obtained by taking any square root of each frequency of the Fourier transform of
x[n]. Unfortunately, this results in a large set of solutions since all combinations of both
the positive and negative square root are valid.

If the Discrete Fourier Transform (DFT) is used instead of a Discrete Time Fourier
Transform (DTFT), multiplication in the DFT domain equals circular convolution in the
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time domain. Fortunately, linear autoconvolution can be expressed as a circular auto-
convolution by zero-padding h[n] until it has length 2N−1 samples, where N is the orig-
inal length of h[n], followed by a circular autoconvolution. Denote the set of solutions
formed by taking any combination of positive and negative roots of the DFT of x[n] by C .
Any of these solutions solve the circular autoconvolution problem, whereas we are only
interested in the linear version of the problem. It is easy to see that any solution to the
linear problem is located in the set C as well. Moreover, they can be identified since such
solutions must be a zero-padded signal. That is, a solution ĥ[n] such that ĥ[n] = 0 for
n = N +1, N +2, ...,2N −1 is a solution to the linear autoconvolution problem. Hence, to
find a solution to the linear problem we look for solutions with this structure in the set C ,
which is equivalent to finding a solution for which the energy of the ‘tail’ of the estimated
signal is zero. Next, we show how finding such a solution can be cast as a semi-definite
programming problem.

Let the matrix F̄ ∈C(N−1)×(2N−1) denote the lower half of the inverse DFT matrix, cor-
responding to the tail of the signal in the time domain if right-multiplied with a DFT
signal. Represent x[n] by the vector x ∈ R2N−1, and define the vector x̃ as the point-wise
positive square root of the DFT of x. Finally, let p be a (2N −1)-dimensional vector with
components equal to ±1, corresponding to selecting either the positive or negative root
in x̃. To minimize the tail energy, we solve the following problem:

min
p

pHdiag(x̃)
H

F̄
H

F̄diag(x̃)p s.t. pi ∈ {−1,1}, (5.1)

where H represents the conjugate transpose, and diag(x̃) represents the square matrix
where the diagonal is equal to x̃. Once p is obtained, it can be pointwise multiplied
with x̃ to obtain the estimate for h[n] in the DFT domain. Problem (5.1) is a binary
quadratic optimization problem which is known to be NP-complete. One way to still
obtain a solution that (hopefully) comes close to the optimal solution is by means of

semidefinite relaxation. After defining P = ppH and Q = diag(x̃)
H

F̄
H

F̄diag(x̃), we have
that pHQp = Tr(pHQp) = Tr(QppH) = Tr(QP). Taking into account that p in (5.1) is real,
problem (5.1) can then be equivalently written as

min
P∈R(2N−1)×(2N−1)

Tr(QP) (5.2)

s.t. [P]i i = 1,

P º 0,

rank(P) = 1

If this problem is relaxed by removing the rank constraint, the resulting convex problem
can be solved by the following semi-definite program:

min
P∈R(2N−1)×(2N−1)

Tr(QP) (5.3)

s.t. [P]i i = 1,

P º 0

To obtain a solution that still comes close to a rank one solution, we use random hyper-
plane rounding as in [17].
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De-autoconvolved pulse-echos
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Pulse-echo: tx element 15, rx element 64

Prediction

Measured

Figure 5.1: Example to illustrate estimation and validation of the one-way impulse responses, in-
cluding propagation effects, for two different elements, based on pulse-echo measurements of a
thin wire in water. Left: the measured pulse-echo responses for two different elements. Each sig-
nal is obtained by transmitting and receiving on the same element. The signals are significantly
different. Centre: the estimated one-way impulse responses obtained using de-autoconvolution.
Right: comparison of the estimated and measured pulse-echo when transmitting on element 15
and receiving on element 64. The predicted echo is obtained by convolving the estimated one-way
impulse responses. Note: we aligned pulses with different time-of-arrivals so they are more easily
compared, and only plot from the moment echoes arrive (time-scales are not absolute).

5.3. RESULTS

5.3.1. NUMERICAL SIMULATIONS

We first demonstrate the effectiveness of the de-autoconvolution on arbitrary signals.
We generated 1000 random zero-mean unit-variance white Gaussian signals h[n], and
autoconvolved them to obtain x[n]. In all cases we were able to exactly reconstruct the
original signal h[n]. Next, we simulated noisy measurements with additive zero-mean
white Gaussian noise v[n], x[n] = h[n]∗h[n]+ v[n], and using an SNR of 20 dB. In this
case, the average correlation between the estimated and true impulse response is 0.85
on average, with standard deviation 0.23. Of these simulations, 77% of the estimates has
a correlation higher than 0.9. Exact conditions for recovery and noise robustness for this
particular algorithm are a topic of future research.

5.3.2. EXPERIMENT: FLAT REFLECTOR IN WATER

We placed a flat perspex reflector parallel to a 128 element linear array (Philips/ATL L7-
4) at a distance of 25 mm, coupled to an open ultrasound system (Vantage 256 channels,
Verasonics Inc. Kirkland WA USA). To avoid diffraction effects, the reflector was placed
as parallel as possible to the array. The elements were excited one by one by a delta-like
pulse to obtain the autoconvolved impulse-responses for each element, and were then
de-autoconvolved with the proposed algorithm to obtain ĥ[n]. To validate the results we
subsequently measured pulse-echo responses from a perspex flat reflector using differ-
ent transmit and receive elements. We then compared those measurements to the con-
volution of the estimated one-way impulse responses of those elements. The compar-
ison is quantified by computing the normalized correlation between the measurement
and the estimate. Figure 5.2 shows the average normalized correlation value between
all elements in the array with the same inter-distance between transmit and receive el-
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Figure 5.2: Mean correlation between measured pulse-echo impulse response and the convolu-
tion of the estimated one-way impulse responses of those elements. The horizontal axis indicates
the distance between transmit and receive elements.

ements. For larger inter-channel distance, the angle of arrival and departure becomes
larger, and the role of diffractive effects become non-negligible. The Green’s function
g [n] can no longer be considered to be a shifted delta-pulse, and we are comparing the
estimate ĥt [n]∗ĥr [n] to the measured signal ht [n]∗g t [n]∗gr [n]∗hr [n]. This is apparent
from the downward trend in Fig. 5.2.

5.3.3. EXPERIMENT: THIN WIRE IN WATER

Instead of estimating the impulse response h[n], we now consider estimating h[n]∗g [n]
for a single point in space. To this end, we placed a thin wire in water, and kept its po-
sition fixed relative to the centre of the array, at a depth of 25 mm. By transmitting and
receiving on the same channel, we basically measure the autoconvolution of h[n]∗g [n],
which describes both the transducer transfer function as well as the propagation effects.
Since the wire is in a fixed position, g [n] is different for each element due to a different
incident angle. After estimating h[n]∗ g [n], we can predict the pulse-echo signal when
transmitting and receiving on different elements. Figure 5.1 shows some example mea-
surements and estimates. Figure 5.3 shows the radio frequency signals (RF) before and
after de-autoconvolution. After de-autoconvolution, the RF resembles an RF where the
wire itself is the ultrasound source. We further compare the normalized correlation co-
efficient similarly to the experiments with the flat reflector. The results are shown in Fig.
5.2. In this case, diffractive effects are included in the term g [n], so that the estimation
performance does not decrease as the inter-channel distance increases.
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Figure 5.3: Left: measured RF consisting of doing a pulse-echo measurement with the same trans-
mit and receive channels. Right: de-autoconvolved RF of the left panel. The time-of-arrivals are
two times shorter, and the pulse-lengths have decreased.

5.4. DISCUSSION

An inherent property of the proposed method is that it estimates the transfer function of
the entire system involved in the measurement, including the effect of the cable transfer
functions, for example. As a result, simulations are more accurate by including all these
effects and system electronics that are complicated to model [18]. An essential condition
for successful estimation using our method is the self-reciprocality of the ultrasound
transducer. This condition can be violated if different equipment or signal paths are
used on transmit or receive, prohibiting successful calibration.

Some non-causal oscillation is visible at the beginning of the predicted signal in Fig.
5.3 in the right panel. This can be caused by an incorrect selection of the sign of the root
in the vector p, resulting in an incorrect phase for the corresponding frequency compo-
nent.

Topics for future research are noise robustness, conditions for convergence of the
semi-definite relaxation, and the use of additional constraints such as the limited band-
width of a transducer, which is currently not exploited and could improve noise-robustness.
The proposed de-autoconvolution algorithm should be compared to other de-autoconvolution
methods in an ultrasound characterization context. The de-autoconvolution technique
could potentially be used for estimating transmission signals for time-reversal focusing
[19]. Finally, the fact that de-autoconvolution shortens the RF pulse-lengths could be
interesting in the context of image reconstruction.
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5.5. CONCLUSION
We outlined a de-autoconvolution algorithm and proposed a calibration procedure to
use this algorithm for estimating the one-way impulse response of self-reciprocal ultra-
sound transducers. After careful alignment of a flat reflector, all characterization mea-
surements for the entire array are rapidly obtained. We provide simulations to demon-
strate the performance of the algorithm for random Gaussian signals with a white power
spectral density. We show experimental results to illustrate its effectiveness with an array
where the one-way impulse response is different for each element. The predicted pulse-
echo signals based on the estimated one-way impulse responses correlate well with ex-
perimental measurements. We discussed the validity of the self-reciprocality condition
and provided an outlook on feature research topics.
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6
BLIND CALIBRATION FOR ARRAYS

WITH AN ABERRATION LAYER IN

ULTRASOUND IMAGING

We consider the scenario of finding the transfer function of an aberrating layer in front of
an ultrasound array. We are interested in blindly estimating this transfer function without
prior knowledge of the unknown ultrasound sources or ultrasound contrast image. The
algorithm gives an exact solution if the matrix representing the aberration layer’s transfer
function is full rank, up to a scaling and reordering of its columns, which has to be re-
solved using some prior knowledge of the matrix structure. We provide conditions for the
robustness of blind calibration in noise. Numerical simulations show that the method be-
comes more robust for shorter wavelengths, as the transfer function matrices then tend to
be less ill-conditioned. Image reconstruction from simulated data using the k-Wave tool-
box show that a well calibrated model removes some of the distortions introduced by an
uncalibrated model, and improves the resolution for some of the sources.

Parts of this chapter have been published in Proceedings of the 2020 28th European Signal Processing Confer-
ence (EUSIPCO), 2021, [1].
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IMAGING

6.1. INTRODUCTION

I N this contribution we consider the scenario of an aberrating layer in front of an ultra-
sound (US) array, as depicted in Fig. 7.1. In medical ultrasound imaging, such layers

could represent the skin and fat layers to which the ultrasound probe is pressed to image
internal organs. Furthermore, there is typically a small layer to match the impedance of
the US probe and human skin, which causes some phase changes across the array. An-
other example is the human skull, which distorts ultrasound waves too strongly to use
the resulting pulse-echo data to reconstruct an image of the brain with current imaging
techniques. Recently, we have also investigated the use of so called ‘coding masks’, thin
random phase masks, to reconstruct ultrasound images with a single US element. To
successfully image using a coding mask, precise calibration is required but the current
method measures the response of each pixel individually, which is time consuming. In
all these cases, we are interested in estimating the effect of the aforementioned layers to
incorporate it into the image reconstruction process.

A straightforward way of solving this problem would be to place sources or reflectors
in known positions of the probe’s field of view (FOV), and then adjust our model so as to
match the expected response for that particular source to the measured response. Need-
less to say, this approach becomes problematic when we desire to adjust our ultrasound
model for the human skull or the skin, since this would require us to place a multitude of
sources inside the patient’s skull or body. Moreover, such methods may be prone to po-
sitioning errors of such sources as well. Ideally, then, we would use a ‘blind’ calibration
procedure that relies on some other principle to correct layer aberrations.

In this paper, we generalize all problems above using the model as visualized in Fig.
7.1. We define a ‘virtual’ array, just in front of the aberration layer, and assume there
is a linear transfer function from each point on the virtual array to each other point on
the real array. The US field in the real array is then a linear combination of the field
incident on the virtual array. We furthermore assume that the remainder of the FOV is a
homogeneous medium, with only small inhomogeneities in the medium formed by the
US contrast image that we want to reconstruct.

The problem of correcting for phase changes due to a phase screen in front of an
US array has been studied before, using both blind and non-blind techniques. However,
most of the studies focus on thin phase layers which cause a time delay for each point on
the array (e.g., [2–4]). These methods only consider a time shift caused per element of the
array, but do not consider situations where each sensor in the array may be influenced
by multiple points on the virtual array.

Focusing ultrasound waves through the skull has been achieved using time-reversal
techniques [5], and spatiotemporal filter design [6]. Unfortunately, these methods typ-
ically require one to first measure waves inside the brain. An interesting alternative ap-
proach is one where two arrays are placed opposite to one another on each side of the
skull [7], avoiding the need for measurements inside the skull, but requiring two arrays.
Furthermore, in [7] it is assumed that one of the skull walls can be approximated as a
thin phase layer, which is not necessarily the case.
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Figure 6.1: An aberration layer distorts incident wavefields, leading to incorrect estimation of the
acoustic contrast image. We are interested in estimating the transfer function from the virtual
array just before the aberration layer to the real array.

NOTATION

We will represent a vector x in lower-case bold, and a matrix X in upper-case bold. The
operator ‖.‖F represents the Frobenius norm, ? represents the Khatri-Rao product, and
∗denotes a temporal convolution. The notation X† represents the Moore-Penrose pseudo-
inverse of X. Finally, diagc stands for a diagonal matrix with the vector c on its diagonal.

6.2. SIGNAL MODEL AND PROBLEM FORMULATION

We assume that a linear array is placed in a homogeneous medium with linear propaga-
tion of US waves. We can either consider the case of a set of sources transmitting towards
the array, or that a separate transmitter illuminates the FOV, where inhomogeneities
(acoustic contrast) in the acoustic properties of the propagation medium scatter echoes
towards the array. In the latter case, each contrast then acts as an independent source.
If the contrasts are sufficiently weak, higher order reflections between reflectors can be
ignored according to the Born approximation (see e.g. [8, 9]), which is typically used
in ultrasound imaging. In that case, all measurements are linear w.r.t. sources and/or
ultrasound contrast images, and we can use the following convolutional formulation to
model measurements [10–12]. Denote the number of array elements by M , and the mea-
surement of element m by ym(t ). We divide the FOV in N small pixels, and assume that
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each from K sources transmits a signal sk (t ). Our model then becomes:

ym(t ) =
N∑

n=1
xn g (r )

m,n(t )∗
(

K∑
k=1

g (t )
n,k (t )∗ sk (t )

)
, (6.1)

where g (r )
m,n(t ) is the Green’s function for a wave travelling from pixel n towards array

element m, and xn is the scatter intensity coefficient of pixel n. The signal g (t )
n,k (t ) is the

Green’s function from source k to pixel n. Here, the superscript (r ) refers to the receive
Green’s function (from a pixel to an array element), and the superscript (t ) refers to the
transmit Green’s function.

Typically, the transfer functions and excitation signals are known beforehand, and
the goal then is to estimate xn from ym . Since the ym ’s are completely linear w.r.t. the
xn ’s, we can stack the measurements of all sensors for a single temporal frequency bin l
into a single vector yl ∈CM , and write:

yl = Al x, (6.2)

where x ∈RN contains the coefficients xn , and Al ∈CM×N can be constructed using (6.1).
This equation is typically used for solving the inverse imaging problem, i.e., finding the
contrast image x from measurements yl , and is the equation we will try to solve for ob-
taining an image in the results section.

For the results in this paper we will mostly focus on calibration from many different
transmit signals sk (t ), using the equation below. From (6.1), we can express measure-
ments as a linear function of the sources:

yl = G(r )
l diagxG(t )

l sl

= Gl sl , (6.3)

where Gl , G(r )
l diagxG(t )

l has dimensions M × K , and sl ∈ CK . If, instead of contrast
sources scattering towards the array, there are K sources directly transmitting towards
the array themselves, we set G(t )

l = I, and x will be an all-zero vector with ones for the
pixels where a transmitting source is active. The latter will be the case for the simulations
in this paper. For the remainder of this paper, we drop the frequency subscript l , and we
assume calibration is done on each frequency bin separately.

In the case of the presence of an aberration layer, there is an additional transfer func-
tion in the frequency domain from the ultrasound field just before the aberration layer
to the ultrasound field in the positions of the array. That is, we introduce a virtual array
just before the aberration layer, and assume there is a linear transfer function from each
virtual array element to each element on the real array (Fig. 7.1). Hence, we can express
the measurements y as

y = HGs, (6.4)

where H ∈ CM×M describes the linear mapping from US fields in the virtual array to the
real array, for a single temporal frequency. Different from the original inverse imaging
problem, the problem addressed in this paper is that of estimating H using equation
(6.4) without knowledge of either s or x.
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6.3. CALIBRATION ALGORITHM
We start by trying to estimate H based on (6.4). Assume that P transmit events are used,
using a K -element transmit array. We can stack the transmitted signals {s(p) ∈ CK }, p =
1, . . . ,P in a transmit matrix S = [s(1) s(2) . . . s(P )], and denote our first set of measure-
ments as

Y1 = HGS, (6.5)

where Y1 ∈CM×P .
Next, we assume that a second set of measurements Y2 is obtained in a similar way,

using the same image x, and the same transmit sequences S, but with a thin phase layer
just in front of the virtual array. The thin phase layer causes a phase shift in the frequency
domain on each point of the virtual array, so its effect can be modeled as:

Y2 = HΘGS, (6.6)

where Θ= diagθ, with θ ∈CM being the phase shifts of the thin phase layer. Such layers
can be implemented using ‘kinoforms’ [13, 14], i.e., thin layers with a different speed of
sound which cause a different time delay for each point on its surface by spatially varying
the layer’s thickness.

The basic idea of the calibration algorithm is to combine Y1 and Y2 as follows. First,
Y2 is projected onto Y1:

Z = Y2Y†
1

= HΘGS(GS)†H−1

= HΘH−1. (6.7)

for which we require that H is invertible, and that GS is full row-rank, so that GS(GS)† = I.
This way, we obtain the matrix Z which no longer depends on x or s. Moreover, the ma-

trix Z has an eigendecomposition with eigenvectors H and eigenvalues θ. The aberration
matrix can now be found using an eigendecomposition, without any prior knowledge of
θ, provided that the eigendecomposition is unique. This can be ensured through the de-
sign of the thin phase layer, by making each delay in θ unique. Through these steps, we
have obtained the matrix H without any prior knowledge of the transmit codes s or the
matrix G. Note that this technique would also have worked with many contrast images,
using y = HAx from (6.2). In that case, GS in (6.7) would be replaced by AX and we would
obtain Z as long as AX is full row-rank.

For the algorithm to be robust to noise, it is required that the matrix Y1 is well-
conditioned, which in turn depends on H, G and S to be well-conditioned (and full-rank).
If Y1 is ill-conditioned, even small amounts of noise in Y2 can be amplified by the small
singular values of Y1, resulting in a bad estimate of Z.

This technique exploits a similar data structure as the one used in the well known
ESPRIT algorithm [15]. Both ESPRIT and our method assume that two measurements
are available, which are related by a diagonal matrix. In contrast to the ESPRIT algo-
rithm, however, we are not interested in estimating the values on the diagonal of Θ, but
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in the eigenvector matrix H. From a different point of view, (6.7) is the solution for Z for
solving the equation ZY1 = Y2. Thus, by computing the eigendecomposition of Z, we are
performing a dynamic mode decomposition [16] on the data Y1 and Y2 to obtain H and
θ.

6.3.1. UNIQUENESS
Since eigendecompositions are unique up to a reordering and scaling of the columns of
H, the order and scaling of the columns of the eigenvectors obtained from (6.7) are also
ambiguous. To find the correct ordering, we assume that θ is ordered in a known man-
ner. For example, if θm = exp(i 2πm/M), m = 1, . . . , M , we may have the prior knowledge
that {θm} are ordered by a linearly increasing phase component.

The scaling of each eigenvector of Z can be resolved according to various principles,
but is very dependent on the aberration layer being studied. For example, a class of
similar layers could be studied by simulations to find a parameterized common basis for
the corresponding class of matrices. In the results section of this contribution, we focus
on random aberration layers. We empirically found that the transfer function matrices of
such layers have a strong Toeplitz structure per frequency (see Fig. 6.2 for a typical matrix
of this class). Based on this prior knowledge, we will resolve the scaling issue by first
defining a basis for the set of matrices a constant diagonal and constant subdiagonals,
Bl ∈ CM×M , l = 1, . . . , 2M − 1. We then try to minimize the Frobenius norm between
this set of matrices and the (column-wise) scaled eigenvector matrix H0 of Z, where H0

already has its columns re-ordered:

{b̂, ĉ} = arg min
b,c6=0

‖
2M−1∑

q=1
bq Bq −H0diagc‖2

F , (6.8)

where b ∈ C2M−1 contains the coefficients bq , and c ∈ CM contains the scaling coeffi-
cients for each column of H0.

The solution of this problem, up to a complex scaling, is given by the smallest sin-
gular vector of the composite matrix [B (I?H)], with B = [vec(B1), . . .vec(B2M−1)]. The
resulting matrix Ĥ = H0diagĉ gives us an estimate of H up to a complex scaling of the
entire matrix. Consequently, there is one final ambiguity, which is especially important
when one wants to estimate an ultrasound image using all temporal frequencies jointly.
The study of this problem is beyond the scope of this contribution, but solutions are
available in literature. See e.g. [17] for tackling this problem structure, or [18–20] for
solving this problem from covariance data.

6.4. SIMULATION RESULTS
To avoid the robustness issues described in the previous section, the calibration ex-
periments have to be arranged and designed in such a way that Y1 and Y2 are well-
conditioned and full rank matrices. To that end, we will assume the following experi-
mental setup.

First, for simplicity, we will assume that a set of point sources are excited by some
signals S, which the sources transmit to the array. We will further place these sources in
the far field, evenly distributed across directions of arrival from 0 to 180 degrees w.r.t. the
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Figure 6.2: An example of a typical H matrix of the random aberration layer in Fig. 6.3 for a tem-
poral frequency of 5 MHz.
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Figure 6.3: Speed of sound and density distribution of the aberration layer used for the simulations
in this contribution.

array, causing the incident waves to be nearly plane when arriving at the aberration layer,
making G well-conditioned if all directions-of-arrival (DOAs) are covered. Note that G
can also be well conditioned by taking a sufficiently large FOV in the imaging domain.
We adopt the far-field in our simulation for simplicity for now. Second, we will use a
random aberration layer as visualized in Fig. 6.3, which we empirically found to preserve
information (i.e., H is a well-conditioned full rank matrix) relatively well. Finally, we use
a white Gaussian matrix S, so that S is full rank with high probability, and fully samples
the column space of both HG and HΘG. As a thin phase layer we choose one that causes
a different phase shift for each point on the virtual array:

θm = exp(2πi (m −M/2)/M), m = 1, . . . , M . (6.9)

We obtain the true transfer function of the random layer by sampling H column-wise
using the k-Wave ultrasound simulation toolbox [21]. The background medium in the
simulations has the acoustic properties of water. We then generate Y1 and Y2 according
to (6.5), (6.6), and (6.9), having obtained the H matrix as just described. In k-Wave, the
medium is defined on a grid with a spacing of 50 µm, and we used an array of point
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sensors with a spacing of 200 µm, with M = 20. Signals are sampled in the time-domain
using a sampling frequency of 206 MHz. For actual imaging simulations, in the next
subsection, we focus on the frequency range of approximately 3-8 MHz.

6.4.1. GENERAL PERFORMANCE
First, we assess the performance of the algorithm for a range of noise levels. We define
SNR with respect to Y1:

SNR = ‖Y1‖2
F

σ2
nK M

, (6.10)

where σ2
n is the noise variance, which we assume to be spatially and temporally white

Gaussian i.i.d. noise. For the entries of S we use a realization of an i.i.d. Gaussian
distribution, with P = 1,000. To find the correct order of the columns of H, we sort
the eigenvalues of Z according to their phase, and apply the same permutation to the
columns of H. To resolve the per-column scaling ambiguity, we solve (6.8) as described
earlier. For each frequency and SNR, we compute a noisy Y1 and Y2 100 times, and each
time we compute the normalized correlation coefficient between H and Ĥ, defined as
ρ = vec(H)Hvec(Ĥ)/(‖H‖F ‖Ĥ‖F ). As a final measure of performance, we show the mean
absolute correlation over all 100 simulations.

The resulting performance is visualized in Fig. 6.4 for a range of SNRs and various
frequencies. Performance increases with an increasing SNR, but also with increasing
frequency. For higher frequencies, the size of inhomogeneities becomes closer to the
wavelength, causing more scattering within the aberration layer, hence causing a more
diverse transfer function matrix H. For lower frequencies, the opposite happens: inho-
mogeneities are relatively small compared to the wavelength, and the layer mostly acts
as a homogeneous layer. Such layers typically have a low-pass behaviour, i.e., the wave-
field is smoothed out during propagation through the layer, reducing higher frequency
content in the original wavefield. Consequently, the corresponding H matrix tends to
be rank deficient or ill-conditioned, making it more difficult to estimate it from noisy
measurements using the proposed method.

6.4.2. IMAGING EXPERIMENT
Next, we demonstrate the difference in terms of image reconstruction of a model cal-
ibrated using the proposed method, and an uncalibrated model. The parameter and
simulation settings remain unchanged. For calibration, we use P = 1,000, using an SNR
of 30 dB, but for the image reconstruction itself we only use one transmit event from the
sources to the array. Furthermore, no noise is added to the array measurements used
for image reconstruction since errors in the image are typically dominated by side and
grating lobes. Note that in the calibration experiment we used far-field sources as de-
scribed above, whereas in this simulation we consider sources positioned between the
near and far field. All the sources inject a Gaussian pulse centered at 5 MHz, with a -6 dB
bandwidth of approximately 4.5 MHz into the medium.

To obtain an image, we use the LSQR algorithm [22] to solve (6.2), using the result
after 6 iterations to obtain a regularized estimate. For the uncalibrated model, we use
H = I to solve (6.2). The resulting image reconstructions are shown in Fig. 6.5 and 6.6. As
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Figure 6.4: Absolute correlation between the estimated transfer function matrix Ĥ and the true H
for various temporal frequencies and SNR values.

can be seen, the layer mostly distorts by spatially shifting and stretching the true image,
which is resolved by using the calibrated model. Moreover, without calibration some of
the sources are not visible, such as the fourth source in the axial slice of the image in Fig.
6.6, and the rightmost source in the lateral slice.

6.5. CONCLUSION

In this contribution we considered the problem of estimating the transfer function ma-
trix of an aberrating layer in front of an (ultrasound) array. The proposed method does
not require knowledge of the ultrasound image/sources, but is dependent on the proper
conditioning of the blind calibration problem. Consequently, blind calibration becomes
more robust to additive noise for higher temporal frequencies, where the transfer func-
tion matrices become more well-conditioned. In noiseless scenarios, the algorithm gives
an exact solution of the transfer function matrix, up to a scaling and permutation of its
columns. This ambiguity is resolved in this paper by assuming that the transfer func-
tion matrix has a strong Toeplitz structure, which we empirically found to be the case
for random aberration layers. Finally, we demonstrated that using a calibrated model for
imaging reduces the geometric distortion introduced by a random aberration layer, and
additionally is able to reveal sources that are hard to resolve for the uncalibrated model.
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7
ULTRASONIC IMAGING THROUGH

ABERRATING LAYERS USING

COVARIANCE MATCHING

We consider the scenario of finding the transfer function of an aberrating layer in front of a
receiving ultrasound (US) array. We propose a method for blindly estimating this transfer
function without exact knowledge of the ultrasound sources or acoustic contrast image,
and without directly measuring the transfer function using a separate controlled calibra-
tion experiment. Instead, the measurement data of many unknown random images is
collected, such as from blood flow, and its second-order statistics are exploited. A measure-
ment model is formulated that explicitly defines the layer’s transfer function. A covariance
domain problem is then defined to eliminate the image variable, and it is solved for the
layer’s transfer function using manifold-based optimization. The proposed approach and
calibration algorithm are evaluated on a range of challenging and realistic simulations
using the k-Wave toolbox. Our results show that, given a sufficiently efficient parameter-
ization of the layer’s transfer function, and by jointly estimating the transfer function at
multiple frequencies, the proposed algorithm is able to obtain a successful estimate. Sub-
sequent simulated imaging experiments using the obtained transfer function also show
an increased imaging performance in various aberrating layers, including a skull layer.

Parts of this chapter have been submitted for publication in IEEE Transactions on Computational Imaging
(2022) [1].
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7.1. INTRODUCTION

U Ltrasound imaging is one of the most widely used medical imaging techniques due
to its affordability, portability, its capability of imaging at very high frame rates

(more than 1,000 Hz), and its real-time feedback for a clinician. Additionally, it does
not utilize ionizing radiation or strong magnetic fields, and as such does not create po-
tential adverse health effects for patients. However, it suffers from an inherent trade-off
between resolution and penetration depth. Moreover, imaging through certain layers in
the human body, such as human skull bone tissue or fat and muscle layers, cause aber-
rations in the ultrasonic pulse-echo wavefields, resulting in imaging artifacts and loss of
resolution [2, 3]. These wavefield aberrations are a result of both non-linear distortions
(due to absorption) as well as linear distortions (due to echo time-of-arrival shifts, scat-
tering within the layer, etc.). In this paper we intend to address the linear distortions by
estimating the Green’s functions through an aberrating layer in front of an ultrasound
array.

Most imaging techniques rely on the Born approximation [4, 5], which approximates
a pulse-echo scenario by modeling transmitted waves as travelling throughout the re-
gion of interest (ROI), such as human tissue, uninterruptedly (as if there was a homo-
geneous background medium). Small inhomogeneities in human tissue cause small re-
flections of this forward field, which are also assumed to propagate to a receiving sensor
without being altered. Hence, multiple scattering is ignored, and the model consists of
an independent wave model for the propagation path from a transmitter to a scatterer,
and from a scatterer to each receiver. More importantly, the unknown ultrasound im-
age becomes linear w.r.t. the ultrasonic measurements, simplifying the imaging prob-
lem greatly. One of the conditions underlying the Born approximation is that scatter-
ers do not scatter very strongly, so that the transmit field is indeed nearly unaltered by
scatterers, and so that second-order (and higher) scattering is negligible. The Born ap-
proximation is implicitly assumed by most ultrasound beamforming algorithms, and the
resulting beamforming algorithms are successful in scenarios with no aberrating layers
and where the image mostly consists of weakly scattering contrasts.

Traditional approaches, however, are not effective when there are strongly aberrat-
ing layers placed between the sensor array and the ROI, even if scattering outside these
layers is still linear, since it is not known how echoes propagate through this layer to the
array of receiving sensors. To image correctly, we would have to know how the acoustic
field propagates through the aberrating layer, which would require one to e.g. remove
part of the skull, and thus violates the purpose of non-invasive imaging. Hence, we pro-
pose a method for blindly estimating an aberrating layer’s transfer function. That is, to
characterize it without an a priori known calibration image. Instead, we propose to mea-
sure many images of which only the second-order statistics need to be known, a condi-
tion which is much less demanding than prior knowledge of the true contrast image. We
then use the second-order statistics of the set of measured echo signals in combination
with the assumed known covariance of the images, to estimate the layer’s transfer func-
tion.

An interesting layer in the context of this paper is the human skull. As mentioned ear-
lier, it is known to cause strong aberrations, and prohibits imaging of the brain, as well
as non-invasive ablation of (malignant) tissue using high intensity focused ultrasound
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(HIFU) [2]. This is highly relevant for recent advances in ultrasound such as functional
ultrasound imaging (fUS) [6–8]. Functional US imaging allows for inferring brain ac-
tivity based on changes in the local haemodynamics that cause measureable changes
in the ultrasound Doppler signal. Compared to fMRI, fUS allows for a more affordable,
portable, and precise way of imaging brain activity [9]. It helps us to better understand
the human brain, and it is a promising tool for surgeons to more accurately distinguish
between healthy and malignant tissue when removing a brain tumor, preventing a sur-
geon from accidentally damaging healthy tissue, which could have disastrous results for
the patient [10]. All of these examples urge us to investigate more advanced imaging
techniques to deal with the distortions caused by the aforementioned layers.

Most studies address this problem by applying a time shift to each measured signal
in the array (i.e., it is assumed aberrations are modeled using a phase screen directly in
front of the array), based on a variety of goodness of fit criteria. Some examples from
many are the studies of [11–16]. However, these approaches often need to estimate a dif-
ferent phase screen for each imaging direction (direction into the ROI w.r.t. to ultrasound
array), since a single phase screen would not be able to model more complex layers for
all directions simultaneously. Moreover, one could argue such models are not accurate
for more complicated layers where e.g. internal multiple scattering takes place. In such
cases, the echo from a reflector as measured on different array elements could be differ-
ent not only by a time shift, but also by the shape of pulse-echo signal. In addition, this
makes it hard to use the methods above, as they rely on delay-and-sum beamforming,
which requires signals to be in-phase after aberration correction and delaying before
summing. A more holistic approach would view the US field in a single sensor on the
array-side of the layer to be a linear combination of the entire ‘input’ field on the other
side (Fig. 7.1).

Another large body of research is specifically focused on imaging through the hu-
man skull. In [17], time-reversal techniques are used to focus waves on transmit inside
the brain. This is useful for acoustic therapy, but less so for directly imaging the brain. In
[18], a similar goal is achieved by the design of a spatio-temporal filter. However, both of
these techniques require one to first measure the transmitted ultrasound waves inside
the brain to characterize the joint effect of the imaging setup and the skull, prohibiting
non-invasive procedures. Recently, trans-cranial brain vasculature imaging was demon-
strated using localization microscopy utilizing micro-bubbles inserted into the brain
vasculature [19]. Their work exploits the use of micro-bubbles, which can be isolated
in the back scattered echo signals (reflectors are spaced sufficiently apart in the brain
vessels to do so), to analyze aberration profiles and model them using a phase-screen
for regions in the ROI where bubbles were estimated to have roughly similar aberration
profiles.

Another approach was proposed in [20], where two opposing ultrasound arrays are
placed on the skull. The effect of the two skull layers on each side has to be estimated. To
simplify matters, the authors assume that the skull wall on one side can be approximated
as a thin phase layer, allowing for a more complex formulation and estimation of the
effect of the other skull wall. However, a thin phase screen is arguably not an accurate
approximation of the skull wall and consequently, it is possible that the estimated skull
wall’s transfer functions are sub-optimal. The technique proposed in our paper only
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involves a single skull wall’s transfer function, and it does not rely on approximations
using thin phase screens.

A more recent approach ignores the Born approximation entirely, and tries to solve
the acoustic wave equations using gradient descent optimization techniques [21], known
as full waveform inversion (FWI). Their method relies on a sufficient initial estimate of
the skull wall, and requires a measurement setup where sensors are distributed across
the entire skull, instead of using only an array. Moreover, the technique is currently very
computationally intensive, and requires many hours to obtain a single (3D) frame. This
currently makes it entirely unsuitable for Doppler or fUS imaging, where hundreds to
thousands of frames need to be imaged to obtain a single Doppler or fUS image.

Finally, we have already proposed an SVD-based technique to blindly estimate the
effect of the aberrating layer from random images or source signals in the ROI. However,
it relies on structural requirements of the aberration layer’s transfer functions, and on
the setup of the imaging scenario [22]. In the techniques we will discuss in this paper, in
contrast to existing studies, we will propose a more flexible and general method, where
many kinds of layers can be characterized blindly, and without the need for two sensor
arrays.

The method we propose in this new contribution heavily relies on model-based imag-
ing techniques. Such techniques take into account the entire wave propagation model
when forming an image, and try to find an image that, based on a model that relates the
image to measured echo signals, best explains the observed echoes. Such techniques
have been used before (see e.g., [23, 24], to just name a few), but are especially relevant to
scenarios where traditional imaging techniques like delay-and-sum cannot be utilized.
We have particularly shown this in [25, 26], where we intentionally distort transmitted
fields using an aberration layer, and show that this allows 3D imaging using just a single
sensor. In [25, 26], we carefully characterize the aberrating layer in order to incorporate
it into the wave propagation model, after which an image is formed from echo signals
based on this model. Hence, even heavily distorted signals where the echo of a single re-
flector is different on each sensor, and strongly smeared across time could be resolved,
as long as it is known how the distortion takes place.

In this contribution we will show how to explicitly incorporate an extra variable rep-
resenting the layer’s transfer function into our echo signal model, an approach which has
partly been introduced before in [20], but has not seen much use in literature. Specifi-
cally, we use the concept of a transfer function from an imaginary (virtual) array just in
front of the aberrating layer, to the true sensor after the layer (Fig. 7.1). Next, we will
show how to get rid of the contrast image variable, which we assume is unknown. This
is done by collecting many measurements, and looking at their second-order statistics,
instead of the raw measurements directly. As a result, the contrast image variable is in-
tegrated out of the signal model equations, after which the layer’s transfer function is
the only unknown. Finally, we propose a method based on covariance matching [27],
using a manifold optimization technique, to obtain an estimate of the layer’s transfer
function. Other work in ultrasound imaging exploiting second-order statistics can be
found in [28, 29], where the cross-correlations of the measured signals are used. How-
ever, these papers are still focused on time delays or assume that the aberrating layer
acts identically on each point of the layer. More general layer transfer functions with
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interaction between channels are not included.
Using covariance measurements to find the array gain and phase has been studied in

signal processing literature before, most notably by Friedlander and Weiss [30]. Covari-
ance matching for array calibration has also been applied before to antenna arrays for
radio astronomy imaging [31], and to acoustic vector sensor arrays [32]. However, only
phase and gain changes per antenna are considered (instead of linear combinations of
inputs), similar to [12, 13, 16] in ultrasonic imaging, instead of more complicated trans-
fer functions. They thus assume a specific structure for the layer’s transfer function, and
can thus be seen as a special case of our approach. The authors use alternating descent
and semidefinite programming methods, which are not directly applicable to the math-
ematical problem we discuss in this paper. As far as we know, there has been no prior
work where the estimation of general transfer functions using covariance matching is
considered.

NOTATION
We will represent a vector x in lower-case bold, and a matrix X in upper-case bold. The
operator E{.} represents the statistical expectation operator, ‖X‖F the Frobenius norm of
X, and ‖x‖2 the l2-norm of x. The notation X† represents the Moore-Penrose pseudo-
inverse of X. The matrix transpose and conjugate transpose are denoted using (.)T and
(.)H, respectively. Finally, the ⊗ symbol represents the Kronecker product.

7.2. SIGNAL MODEL AND PROBLEM FORMULATION
In the case of a homogeneous medium with an acoustic contrast image, and using the
Born approximation, we can assume the following linear measurement model for an M
element array, and a single temporal frequency l :

yl = Al x+nl , (7.1)

where yl ∈ CM groups the array pressure measurements for frequency l , x ∈ RN rep-
resents the scattering coefficients for N pixels, and Al ∈ CM×N is a known model that
relates the measurements in yl to the image x, and thus contains the expected reflected
signals at frequency l received by the array for all pixels of interest. Finally, nl represents
additive measurement noise. The matrix Al is well known when no aberration layer
is present, and the Born approximation holds. It is easily generated since the Green’s
functions for the pulse propagation paths (from transmitter, to each pixel, to each re-
ceiver) and the speed of sound are known. In that case, the received echo signal for each
such path is straightforwardly found by delaying the transmitted pulse based on the to-
tal path length. Under the Born approximation, the scattering intensity of each pixel
depends only on the difference in speed of sound and density between the pixel and
the background speed of sound (contrast image), and is thus real-valued and frequency-
independent. With no aberration layer present, image reconstruction boils down to es-
timating x from yl , knowing Al , using the entire available bandwidth instead of a single
frequency.

In the case of an abberation layer, we assume there is a linear transfer function from
each point on the virtual array in Fig. 7.1 to each element in the real array. That is,
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sensor array

aberrating layer

virtual array

acoustic contrast image

x

z

source

Figure 7.1: An aberration layer distorts incident wavefields, leading to incorrect estimation of the
acoustic contrast image. We are interested in estimating the transfer function from each point on
the virtual array just before the aberration layer, to each point on the real array.

there exists a Green’s function hi , j (t ) that represents the impulse response for the linear
time-invariant channel from point i on the virtual array to sensor j on the real array.
The measurement on any given sensor j is then the superposition of all the convolved
channel responses from each virtual sensor i to j . In the frequency domain, that means
the problem can be approached on a per-frequency basis, and we have the following
new measurement model:

yl = Hl Al x+nl , (7.2)

where Al ∈ CM×N is now related to the virtual array, and Hl ∈ CM×M contains the fre-
quency domain transfer function coefficients for frequency l , from each point on the
virtual array to each point on the true array (note that in (7.2) it is assumed that waves
travel through the aberrating layer only once1, forcing us to use a transmitter that is not
impeded by the aberrating layer). Since Hl represents the transfer function of an aber-
rating layer, it is unknown, and it is not possible to estimate x.

When considering multiple frequencies, the Al matrices of the corresponding L fre-
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quencies can be stacked vertically into a bigger matrix A ∈CML×N ,

A =


A1

A2
...

AL

 . (7.3)

Defining y ∈CML and n ∈CML in a similar way, we have a new multi-frequency measure-
ment equation

y = HAx+n. (7.4)

Since convolution in the time domain becomes a product in the frequency domain, H ∈
CML×ML will have a block diagonal structure and mostly contains zeros,

H =


H1 0 . . . 0

0 H2
...

...
. . .

0 . . . HL

 . (7.5)

Note that the measurement equation (7.2) is simply a special case of (7.4) with L = 1.
Furthermore, we point out that the usage of H generalizes all linear aberration layers. For
example, if the aberrating layer is modelled as a phase screen, H will be a diagonal matrix,
and is thus a special case of the formulation (7.4). Another example would be laterally
invariant layers (i.e., layers that vary in the z-dimension, but not in the x-dimension),
which would have a strictly Toeplitz structure.

In a blind calibration scenario, we wish to estimate H from (7.4), without knowing x.
Estimating both H and x jointly would result in a bi-linear measurement equation, which
is typically challenging to solve. Instead, we consider removing x from our measurement
equation by using covariance measurements, where x would be integrated out of the
measurement equation, and only the covariance matrix of x would have to be known.

1In (7.2) and (7.4), A contains the pulse-echo signal received across the virtual array from each pixel. This im-
plicitly relies on the known Green’s functions in a homogeneous medium from transmitter to pixel to each
point on the virtual array. Note that it is thus assumed that there is a separate transmitter from which a
pulse propagates into the imaging medium, which reflects of contrast inhomogeneities in the ROI towards
the virtual and true array. After all, if the array is used for transmission, we would not know the field that is
transmitted into the ROI. In that case, (7.4) would contain the variable H twice (as pulses would propagate
through the aberration layer both on transmit and receive), and (7.4) would become y = HAdiag(x)ATHTs
(where s ∈ CML would contain the transmitted pulses on the array, and A now represents the one-way prop-
agation in a linear medium from a pixel to a point on the virtual array). This would make it much harder
to estimate H from y, since y would be quadratic w.r.t. H (and (7.9) would be bi-quartic w.r.t. H), and the
techniques described in the next section are not trivially applicable to this equation. Hence, it is assumed
that a small transmitter is inserted into the medium. When the aberration layer consists of human tissue,
this would mean that the calibration procedure would be minimally invasive, since only a small device has
to be inserted. As a result, only one layer’s transfer function has to be estimated, instead of two (like in [20]),
and we do not have to estimate one of the layers using e.g. a thin phase mask (sometimes an insufficient ap-
proximation), thus retaining the validity of our model equation (7.4). Photoacoustic scenarios would also be
covered under the formulation in (7.4), since in that case all pixels in the optic transmit view would be excited
simultaneously, and start transmitting a pulse towards the array at the same time.
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Therefore, we will interpret x as a realization of a random process for which multiple
realizations are obtained. Consider for example a liquid medium with moving micro-
bubbles or contrast agents, so that each pulse-echo measurement has a different con-
trast image x due to the displacement of the bubbles between measurements. Instead
of bubbles, one could consider the flow of blood inside a patient. If stationary reflec-
tions are removed prior to calibration (using e.g. a high-pass filter in each pixel across
the frame-dimension), one is left with only the signals originating from moving particles
inside the blood stream. Assuming the measurement noise n is uncorrelated with the
contrast image x, and defining the covariance matrices, Cn = E{nnH}, Cy = E{yyH}, and

Cx = E{xxH}, we have the following measurement equation in the covariance domain:

Cy = E{HAxxTAHHH}+E{nnH} (7.6)

= HACxAHHH +Cn. (7.7)

Interestingly, the image variable x has been integrated out of the original measurement
equation (7.4), and we now only need to know the second-order statistics of x. This
is a much less demanding requirement. For example, if the ROI primarily consists of
blood flow, and many pulse-echo measurements of that ROI are taken with sufficient
time in between, it can be safely assumed that the corresponding x-vectors are uncor-
related, and thus Cx = I. Correlated measurements due to non-moving ‘background’
tissue can be easily removed from measurements using clutter filtering, as is common in
US Doppler imaging. The covariance data of the measurement noise Cn can be obtained
by taking measurements with no ultrasound transmission, and Cy can be estimated by
taking P measurements, and then using the estimate

Ĉy = 1

P

P∑
p=1

y(p)y(p)H −Cn, (7.8)

where the known noise covariance matrix has already been subtracted for convenience
in our derivations. We are interested, then, in estimating H from Ĉy, knowing Cx and A.
This is a covariance matching problem [27], where we want to minimize the following
cost function:

Ĥ = argmin
H

‖Ĉy −HACxAHHH‖2
F . (7.9)

This is not a trivial problem to solve since H is quartic w.r.t. Ĉy. In the next section we
will provide methods for solving this optimization problem.

7.3. CALIBRATION ALGORITHMS

7.3.1. ALTERNATING MINIMIZATION

Defining B , ACxAH, one solution to estimate H from Cy, assuming it’s perfectly known
for now, is given by

Ĥ = C
1
2
y B− 1

2 . (7.10)
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Here, we define the square root of a matrix C as any matrix C
1
2 such that C

1
2 C

H
2 = C.

However, there is a larger set of solutions, which can be described by

Ĥ = C
1
2
y QB− 1

2 . (7.11)

where Q is any orthogonal matrix, resulting in a non-unique solution.
To further narrow down the solution space, we assume that H can be parameterized

by fewer parameters than the total number of entries in H. These parameters will be
represented by θ, and the related matrix is then denoted as H(θ). Hence, to estimate H,
we would like to find the correct Q and θ by solving the following problem instead of
(7.9):

{θ̂,Q̂} = argmin
θ,Q

‖C
1
2
y QB− 1

2 −H(θ)‖2
F , s.t. Q ∈Q, (7.12)

where Q represents the set of orthogonal ML ×ML matrices. In other words, we try to
find a solution that will give a zero cost function for (7.9) (any orthogonal Q), while also
penalizing the distance to the set of parameterized matrices H(θ). Using this formu-
lation the cost function is no longer quartic w.r.t. H. However, even if H(θ) is linearly
parameterized, the problem above is not a convex problem, due to the orthogonality
constraint.

In order to arrive at a solution for this problem, we propose to alternatingly optimize
for θ and Q, as outlined in Algorithm 2. When Q is fixed, θ can be found by solving
a linear least squares problem. We assume that H can be linearly parameterized by θ
with system matrix2 G, such that vec(H(θ)) = Gθ. This way, solving for this step admits
a unique global minimum which can be found either iteratively or analytically. When θ

is fixed, (7.12) becomes a weighted orthogonal Procrustes problem (WOPP). The latter
is hard to solve, since it does not allow an analytical solution, the cost function contains
multiple local minima, and iterative methods are not guaranteed to find the global min-
imizer (see [33] and the references therein). These two problems are solved alternatingly
until the algorithm converges, or a maximum amount of iterations has been completed.
In the next subsection we propose an improved version of this algorithm that addresses
the problems mentioned above.

When jointly calibrating for multiple frequencies, the block-diagonal structure of H
in (7.5) is enforced by G, while additionally imposing a parameterization for the blocks
on the diagonal representing each Hl . Due to the block-diagonal structure of H, the
number of unknowns increases linearly with each added frequency, whereas the number
of new covariance measurements increases quadratically. This is of course limited by the
echo signal bandwidth and the Nyquist rate in both space and time. Moreover, space-
frequency samples in Cy tend to decorrelate for large frequency and space differences
between entries. The additional information in Cy consists of the cross-correlations
between temporal frequencies, which now also have to be matched by the covariance-
matching algorithm. Hence, we expect the probability of finding a unique solution for H
to increase as the bandwidth L increases.
2A basis G can be found by simulating the layer of interest in an accurate simulator such was k-Wave, and

studying the structure in H. For the sake of simplicity, we used a 2D Fourier basis in our experiments, remov-
ing the high frequencies from the basis. Finding proper bases is a topic of future research.
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The above procedure, summarized in Alg. 2, is an alternating projection algorithm,
where θ and Q are alternatingly projected onto a linear subspace, and the Stiefel mani-
fold, respectively. We have not been able to find a similar problem or algorithm in liter-
ature, and are not aware of any analyses concerning convergence and global and local
minima. However, given the non-convex constraint imposed by the Stiefel manifold, it is
likely that there are multiple local minima. Moreover, there are at least two global min-
ima, because the solutions {θ̂,Q̂} and {−θ̂,−Q̂} should have the same cost function value
in (7.12).

In [34], cyclical algorithms are proposed, which use a similar alternating minimiza-
tion problem, although the authors in [34] are not necessarily looking for a unique so-
lution, since any solution in the feasible set should suffice. In our work, however, we
are looking for a specific solution: the one that is as close as possible to the true H. The
work does not analyse local and global minima. However, similar to [34], we can point
out that (7.9) is zero if and only if (7.12) is also zero. Moreover, if the global minimum
of (7.9) is small, then (7.12) should be small as well. It is then argued that the two cost
functions are ‘nearly’ equivalent in the sense that if the global minimizer of (7.9) is suffi-
ciently small, that the sequences minimizing both cost functions can be expected to lead
to similar results. However, the cost functions are not equivalent, and will have different
local minima and minimization sequences in general.

Algorithm 2 Alternating optimization algorithm

1: Input: Ni t , C
1
2
y , B− 1

2 , G.

2: Initialize: random orthogonal matrix Q̂, n = 0.
3: repeat

4: θ̂ = G†vec(C
1
2
y Q̂B− 1

2 )

5: Ĥ = unvec
(
Gθ̂

)
6: Solve the WOPP Q̂ = argminQ ‖C

1
2
y QB− 1

2 − Ĥ‖2
F

7: n = n +1
8: until n = Ni t

7.3.2. ALTERNATING OPTIMIZATION FOR ILL-CONDITIONED B
1
2 AND LOW-

RANK Cy
1
2

Algorithm 2 has several drawbacks that we intend to address in this subsection. Most
importantly, a WOPP has to be solved in Alg. 2, which requires iterative methods with
no guarantee of obtaining a global minimizer. The altered cost function proposed in this
subsection will lead to a formulation where only an unweighted orthogonal Procrustes
problem needs to be solved, for which an analytical solution is available. Another is-

sue is that when H is low-rank, C
1
2
y is low rank as well. Consequently, there will be no

unique solution to the weighted orthogonal Procrustes problem in Alg. 2. Moreover, the
matrix A is typically ill-conditioned in the case of (multi-frequency) imaging problems,

making the inversion of B
1
2 problematic, and also causing C

1
2
y to be ill-conditioned. The
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issue of ill-conditioning is the one we encountered in our experiments, and thus of most
importance. For the sake of completeness, we also show how to deal with a low-rank Cy.

To address these issues, we start by observing that instead of solving (7.9), we can
also take the matrix square root of the terms in (7.9), similar to the work in [34], to obtain
a solution using the following minimization problem:

θ̂ = argmin
θ

‖C
1
2
y −H(θ)AC

1
2
x ‖2

F (7.13)

= argmin
θ

‖C
1
2
y −H(θ)B

1
2 ‖2

F . (7.14)

Of course, this is only one of many solutions, and similar to the previous subsection,
multiplication by an orthogonal matrix Q of the left term will also provide a solution to
the original cost function (7.9). Incorporating this term into the new cost function leads
to:

{θ̂,Q̂} = argmin
θ,Q

‖C
1
2
y Q−H(θ)B

1
2 ‖2

F , s.t. Q ∈Q. (7.15)

When θ is fixed, solving for Q now has become an OPP instead of a WOPP, and the global
optimum for the OPP in the current iteration can be found analytically. The solution for
θ when Q is fixed is found by solving a (linear) least squares problem. In case of an ill-

conditioned B
1
2 , one can use any regularization technique when solving for θ, such as

Tikhonov regularization. As discussed in the previous subsection, the local minima and
minimization sequences of (7.9) and (7.15) are not equivalent in general, although they
should have similar behaviour for small enough values of the cost functions, and (7.9)
can only be zero if (7.15) is also zero.

Next, we rewrite the problem to only solve for the column space of C
1
2
y as follows.

First, we define the economy size SVD of Cy: Cy = UΣUH, and use C
1
2
y = UΣ

1
2 UH. Here

U ∈ CML×k , where k = rank(Cy), and Σ ∈ Ck×k . Next, we rewrite the cost function in

(7.15) by left-multiplying the terms in (7.15) by UH, leading to the problem

{θ̂,Q̂} = argmin
θ,Q

‖Σ 1
2 UHQ−UHH(θ)B

1
2 ‖2

F , s.t. Q ∈Q, (7.16)

or equivalently,

{θ̂, P̂} = argmin
θ,P

‖Σ 1
2 P−UHH(θ)B

1
2 ‖2

F , s.t. P ∈Qk×ML , (7.17)

where P = UHQ, and Qk×ML represents the set of k × ML matrices with unit-norm or-
thogonal rows. The solution to (7.17) for Q (an OPP) is given by [33]:

P̂ = ŨṼH, (7.18)

where Ũ and Ṽ collect the k most significant left and right singular vectors of Z =ΣH
2 UHH(θ)B

1
2 ∈

Ck×ML , respectively.
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Although we have changed the cost function, it is now more easily solved for Q if θ
is fixed: instead of a WOPP, we only have to solve an OPP, for which a global minimum

can be found analytically. Moreover, it avoids computing the inverse of B
1
2 , and ensures

there is a unique solution to the OPP when Cy is rank-deficient, by only solving for the
column space of Cy. We will use cost function (7.17) throughout this paper to avoid the
aforementioned issues. The updated algorithm is shown in Alg. 3.

Algorithm 3 Alternating optimization for ill-conditioned B
1
2 and low-rank Cy

1
2

1: Input: Ni t , B
1
2 , G, U, Σ.

2: Initialize: random matrix P ∈Qk×ML , n = 0.
3: repeat

4: θ̂ = argminθ ‖C
1
2
y −H(θ)B

1
2 ‖2

F +λ‖θ‖2
2

5: Ĥ = unvec
(
Gθ̂

)
6: Decompose: Σ

H
2 UHĤB

1
2 = ŨΣ̃ṼH

7: P̂ = ŨṼH

8: n = n +1
9: until n = Ni t

7.3.3. MANIFOLD GRADIENT DESCENT
From Alg. 2, line 4, we can directly substitute the solution for θ into (7.12), resulting in
the following simpler cost function where Q is the only optimization variable:

Q̂ = argmin
Q∈Q

‖vec(C
1
2
y QB− 1

2 )−GG†vec(C
1
2
y QB− 1

2 )‖2
2,

= argmin
Q∈Q

‖Fvec(Q)‖2
2, (7.19)

where F = (I−GG†)(B−T
2 ⊗C

1
2
y ). Given a Q, the operator F first computes the correspond-

ing estimate of H, (B−T
2 ⊗C

1
2
y )vec(Q), and then projects it onto the nullspace of G. Tool-

boxes such as ManOpt [35] can be used to find a solution to (7.19), which uses a Rieman-
nian based gradient descent method.

In a similar fashion, (7.17) can be rewritten as

P̂ = arg min
P∈Qk×ML

‖vec(Σ
1
2 P)− (B

T
2 ⊗UH)Gθ‖2

2 (7.20)

= arg min
P∈Qk×ML

‖vec(Σ
1
2 P)− G̃G̃†vec(Σ

1
2 P)‖2

2, (7.21)

where G̃ = (B
T
2 ⊗UH)G. Defining F̃ = (I−GG†)(I⊗Σ 1

2 ), we end up with

P̂ = arg min
P∈Qk×ML

‖F̃vec(P)‖2
2. (7.22)

Our initial investigations showed that Alg. 3 converges faster with faster iterations, so
we do not consider these gradient descent methods in the Results section. On the other
hand, they show what kind of problem is being solved in a more compact manner.
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7.4. NUMERICAL AND SIMULATION RESULTS
We will evaluate the proposed algorithm using various simulated aberration layers, in
increasing complexity and difficulty. Our main approach will be as follows. First, we will
design the layer of interest in the k-Wave toolbox [36]. To avoid lengthy simulation times,
and to have a reference ground truth, we directly measure the Hl matrices in k-Wave,
from which we can form H. To do so, we transmit the excitation pulse (the same one that
we would transmit from our transmit transducer) from one point on the virtual array,
and measure the entire response on the receiving array. This single simulation is then
repeated for each virtual array point. This H will act as our ground truth throughout most
of the experiments, and will also be used to efficiently generate many measurements.
The matrix A is generated assuming wave propagation from a known source location, to
each pixel, towards the virtual array. For this, we assume a homogeneous background
medium with a speed of sound of 1490 m/s, and a density of 1000 kg/m3 (similar to
human tissue).

Since H is now known, we can generate synthetic calibration measurements using
(7.4) for many random x. To this end, we generate multiple realizations of a spatially
white zero mean i.i.d. Gaussian image, with Cx = I. The contrast images are zero mean,
because we assume that the speed of sound of the inhomogeneties (consider e.g. var-
ious moving particles in a blood stream) can be either higher or lower than the back-
ground medium speed of sound. To every measurement we add a different realization
of spatially and temporally white zero mean i.i.d. Gaussian measurement noise, using
Cn =σ2

n I. From these synthesized measurements, we use the estimated covariance ma-
trix as defined in (7.8), using Cn = σ2

n I, to estimate H. We assume the noise covariance
is known, since it could be measured, e.g., by measuring on the used ultrasound trans-
ducer without any echo signals.

Since the measured H acts as ground truth, we can compare our estimated H with
the true one. We will use the normalized correlation coefficient

ρ = vec(H)Hvec(Ĥ)/(‖H‖F ‖Ĥ‖F ) (7.23)

to do so. However, how well H describes the true propagation throughout the aberrat-
ing layer depends on (a) whether the assumption of linear propagation holds, and (b)
whether the virtual array samples the incident ultrasound field sufficiently well. Since
we will generate measurement data for estimating Cy using an assumed true H as de-
scribed above, these assumptions are automatically satisfied. However, we will verify if
we can truly obtain better imaging performance, by performing an extra imaging exper-
iment (i.e., estimating x from a single measurement y, using a y obtained directly from a
k-Wave simulation, instead of using H to generate y).

We use Alg. 3 based on the alternative cost function described in Sec. 7.3.2 for all
the results, using k = LM (i.e., we don’t use a low-rank approximation). We found it
unnecessary to use regularization as described by Alg. 3.

For the sake of simplicity, all pixels act as independent sources, omni-directionally
transmitting a Gaussian pulse centered around 5 MHz, unless otherwise specified. Note
that this does not invalidate our model assumptions, since the Born approximation ig-
nores multiple scattering, implying each acoustic contrast acts as an independent source.
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In the final experiments, we will forego these assumptions, and use contrast-based scat-
tering to validate our methods.

7.4.1. TRIPLE-LAYERED ABERRATION LAYER
First, we investigate the aberration layer in Fig. 7.2. It consists of a water-layer ‘sand-
wiched’ in between two homogeneous bone layers. It is important to realize that this
layer is laterally space-invariant, so that the spatial transfer function also becomes space-
invariant (i.e., it is only dependent on the lateral distance between the virtual and true
array element). Consequently, each Hl will have a Toeplitz structure, which was also
confirmed by inspecting the Hl matrices obtained from k-Wave simulations. Using this
Toeplitz structure, G only requires 2M − 1 basis vectors per frequency, resulting in less
unknowns. We use random scatterers in a ROI of 10 mm width by 8 mm depth for calibra-
tion. The calibration is performed for each temporal frequency independently (L = 1),
and using P = 500 frames. Both the true and virtual array have M = 20 point-like sensors,
placed at 175 µm intervals.

In Fig. 7.2, we show the calibration performance for various SNRs and temporal fre-
quencies. Since the signal power is frequency dependent, we adjust the noise power ac-
cordingly to obtain the same SNR for each frequency. In the case of joint multi-frequency
calibration in subsequent subsections we don’t do this, so that the SNR will vary per fre-
quency. The transfer functions in H are Toeplitz for all frequencies, and thus the calibra-
tion performance depends only on SNR.

Finally, the bottom half of Fig. 7.2 shows the imaging results using our calibration
method for a single point and a small collection of points. After estimating H for all tem-
poral frequencies, all frequencies are combined when estimating the contrast image x.
All measurement data y is obtained from k-Wave simulation experiments. All images
are reconstructed using the LSQR algorithm [37] to solve (7.2) for x, which is regular-
ized by limiting the amount of LSQR iterations. As can be seen from the single point,
the uncalibrated PSF deteriorates in the axial direction due to the multiple reflections in
the aberration layer, which are mistaken as echoes from separate sources when no cal-
ibration is utilized. This becomes even more clear in Fig. 7.2, bottom right, where the
calibrated model is able to resolve most scatterers, in contrast to the uncalibrated model.
The calibrated model gives much better reconstruction results, on par with the perfectly
calibrated model.

We also attempted to obtain a good image by only tweaking the speed of sound in A
(and H = I). However, we were not able to obtain a reasonable image reconstruction us-
ing this approach, since the multitude of layers reverberate, which is probably the main
limiting factor for imaging through this layer.

7.4.2. JOINT MULTI-FREQUENCY CALIBRATION: SMOOTHLY VARYING LAYER
In the previous subsection we showed that calibration is possible using a single fre-
quency if Hl has a Toeplitz structure, i.e., when the aberration layer is space-invariant
in the x-dimension. However, we have encountered significant difficulty calibrating for
a single frequency for non-Toeplitz matrices. In such cases, we typically are able to find
many solutions with a near-zero cost function.

In this subsection, we resolve this issue by using the multi-frequency approach to
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Figure 7.2: Result for the simulations in Sec. 7.4.1. Top left: Laterally space-invariant aberration
layer. Top right: Calibration performance per frequency and SNR. Bottom left: Imaging PSF perfor-
mance comparison with/without calibration, for P = 500, and an SNR of 25 dB. Bottom right: Test
image reconstruction performance comparison with/without calibration for reflectors at various
inter-distances, for P = 500, and an SNR of 25 dB.
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still obtain a good estimate of H. We simulate a homogeneous, smoothly shaped layer
as shown in Fig. 7.3. For the parameterization θ, we use the fact that the measured Hl -
matrices in k-Wave have a clear and smooth structure (Fig. 7.3, top right). Although
probably not optimal, for now we will use a 2D FFT parameterization containing only
the lower frequencies. The random images are located in a ROI of 10 mm in width by 5
mm in depth. Both the virtual and true array contain M = 20 elements, spaced at 100
µm intervals.

We calibrate jointly for equidistantly spaced temporal frequencies between 1 and 7.5
MHz using L = 36. We form G as mentioned before, using the 355 largest 2D FFT co-
efficients (out of 400). Using P = 10,000 and an SNR of 30 dB, we obtain an absolute
normalized correlation coefficient of 0.94 after 30,000 iterations. When using an SNR of
20 dB, we obtain an absolute normalized correlation coefficient of 0.91. The used param-
eterization is very general and could possibly be used for a variety of aberration layers.
Tighter parameterizations could lead to improved estimation results and are a topic of
future research, although it is encouraging that the proposed method is able to correctly
calibrate using many unknowns.

In the bottom left of Fig. 7.3 we show the corresponding cost function. Interestingly,
although we used the modified cost function of Sec. 7.3.2, both the alternative cost func-
tion and the original covariance matching error decrease in a similar manner.

In the bottom right of Fig. 7.3, we show an image reconstruction for a phantom gen-
erated using k-wave. All image reconstructions are obtained using the LSQR algorithm
with limited iterations. A number of observations can be made. Firstly, none of the re-
constructions are of particularly high quality. This can be attributed to the fact that the
Hl matrices for this aberration layer are low rank. In other words, one would not be able
to reconstruct (using e.g. a least-squares approach) the ‘input’ field to the layer from the
‘output’ field, since H is low rank or ill-posed. Thus, given the general model equation
y = HAx, information about x is lost due to the conditioning and/or rank of H. Secondly,
we observe that knowledge of H strongly improves the image reconstruction, making it
apparent that a cross-like image is present. Finally, the image result using the estimated
H comes close to the perfect calibration case, with slightly worse background artefacts
due to sidelobes etc. Note that sidelobes and other imaging artifacts do not have the
same constitution as in imaging scenarios without an aberrating layer, where traditional
imaging techniques, and their corresponding analysis, are applicable.

7.4.3. JOINT MULTI-FREQUENCY CALIBRATION: SKULL LAYER

As a more clinically relevant example, we calibrate a skull-like layer, consisting of a porous
bone layer sandwiched between two homogeneous bone layers (Fig. 7.4). We exploit the
fact that each Hl matrix can be well represented using the 2D FFT basis, omitting the
highest frequencies, so that we have to estimate 342 variables (out of 400) per frequency.
The random images are located in a ROI of 15 mm in width and 20 mm in depth. The
true and virtual arrays contain M = 20 point-like sensors, spaced at 350 µm intervals.

We calibrate for L = 46 equidistantly spaced temporal frequencies between 1.8 and
6.0 MHz. Using P = 10,000 and an SNR of 30 dB, we obtain an estimate of H with an
absolute normalized correlation coefficient of 0.75. Fig. 7.5 shows the various cost func-
tions for 30,000 iterations.
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Figure 7.4: Left: Results for the simulations in Sec. 7.4.3. Simulated skull-like aberration layer in
k-wave, used for multi-frequency calibration experiments. Right: Image reconstruction example
of simulated k-wave data of a set of point sources with varying inter-distances.

Figure 7.5: Various cost functions per iteration for the results of Sec. 7.4.3: proposed cost function
(7.17), absolute normalized correlation coefficient (7.23), covariance matching error (7.9).
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In Fig. 7.4 we show the image reconstruction from RF data obtained from a k-Wave
simulation. Image reconstructions are obtained using the LSQR algorithm to solve (7.2)
with limited iterations. In this case, an enormous reconstruction improvement is ob-
tained, as compared to imaging without any model calibration. As in the previous sub-
sections, we tried to find the best image reconstruction for the calibration-less case by
simply tweaking the speed of sound, but were not able to find a satisfactory result. The
one in Fig. 7.4 was the best one obtained using a lower speed of sound than the back-
ground medium.

7.4.4. BLIND CALIBRATION FROM BLOOD FLOW IN A VASCULATURE NET-
WORK

Next, we consider a more realistic scenario where images are not purely random. In-
stead, a vasculature tree with flowing particles is used, to emulate a more realistic and
practical imaging scenario. Additionally, we will use true contrast reflections by simulat-
ing contrast-based reflections in k-wave instead of making each reflector a source as in
the earlier results. This scenario is thus more realistic, and we can expect more model
errors since the Born approximation may not strictly hold.

We use random i.i.d. normally distributed scatterers, where the mean speed of sound
and density is that of the background medium (water). This field of random reflectors is
shifted towards the array with a fixed distance every measurement (500 µm steps). The
random reflectors only occur inside the vasculature tree, and are set to the background
medium properties when outside the vasculature. When computing the measurement
covariance matrix Ĉy from such a set of images, we found it to be nearly identical to the
measurement covariance matrix from completely random images (where Cx = I), and
hence we will assume I as the a priori known image covariance matrix. Note that we
simulate each of the P = 1,000 frames in k-Wave, instead of using H to generate many
measurements.

As an aberration layer, we use the same triple layer and Toeplitz basis as used in Sec.
7.4.1. The vasculature is positioned in a ROI from 6 to 22 mm depth, and 20 mm in
width. The measurement array consists of M = 30 sensors, each one 250 µm wide, with
50 µm between them. The virtual array consists of M = 30 point-like sensors, at 300 µm
intervals. We calibrate for equidistantly spaced temporal frequencies between 2.6 and
5.6 MHz using L = 96. We use only P = 1,000 measurements, and an SNR of 30 dB. Since
our proposed algorithm relies on the forward field being known (see the footnote in Sec.
7.2), we assume a point-like source transmits a spherical wave into the imaging medium
without being aberrated.

In order to remove stationary signals, such as the transmit wave that propagates di-
rectly towards the sensor array without scattering of pixels, we form a matrix of all the
measured frames. Similar to SVD-based power Doppler [38], the 10 highest singular val-
ues are then set to zero. After this procedure, the filtered measurements y(p) can be re-
trieved from the SVD-filtered matrix.

To evaluate the performance, we consider the estimated H matrix to beamform each
frame used in the calibration based on the LSQR algorithm with a large damping co-
efficient as regularization. We then apply a high-pass filter per pixel across all frames,
followed by summing the absolute value of all frames to obtain a single power Doppler
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Figure 7.6: Power Doppler images for P = 1,000 frames, for the results of Sec. 7.4.4. Each frame
is simulated in k-Wave, and calibration is done using flow data from the same vasculature as visu-
alized in the rightmost panel. The power Doppler images are normalized to have maximum of 1,
and the images have been scaled equally in depth to be able to show image details at larger depths.

image. The result is shown in Fig. 7.6. Since the reconstructed images were suffer-
ing from decreasing image intensity for increasing depth and increasing lateral distance
from the center (as was the case for the preceding image reconstructions in this sec-
tion), the compounded power Doppler image has been scaled in those directions for
visualization purposes. The power Doppler image using the H matrix as estimated by
the proposed algorithm shows a better resolved image compared to the case of no cal-
ibration. The improvement seems to be especially good in the ROI closer to the array,
which can be explained due to the fact that columns of A are more uncorrelated in that
region, and thus more resolution is lost there if H is unknown. As a simple calibration
procedure, the speed of sound was somewhat tweaked to compensate for the delays of
the aberration layer, but we found that using a speed of sound close to the true speed of
sound gives the best result when not using our proposed calibration method. Hence, we
expect that the multiple reflections of the sub-layers cause the loss in (axial) resolution.
Using our calibration algorithm, however, these are taken into account, leading to the
improved image in Fig. 7.6. Importantly, this result suggests that power Doppler imag-
ing (and thus, fUS imaging) through a layer is possible using the vasculature blood flow
itself as random images. This is an especially encouraging result for fUS imaging of the
brain from cerebral blood flow.

7.5. CONCLUSION & DISCUSSION
We proposed a method for estimating the transfer function of an aberrating layer in ul-
trasound imaging scenarios by formulating a measurement model in the covariance do-
main. The ultrasound images do not need to be known, and instead only the second-
order statistics of subsequent images are required, a condition that is severely less de-
manding. The proposed measurement model explicitly exhibits the aberration trans-
fer function, by observering that propagation through an aberrating layer is still a linear
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propagation process. By collecting a large number of measurements, the covariance ma-
trix of the raw RF measurements can be estimated, from which the aberration transfer
function is estimated. The differences between measurements is caused by the move-
ment of e.g. blood flow or injected micro-bubbles. If enough time is taken between each
frame/measurement, the positions of blood particles or micro-bubbles can be modelled
as a random process, with no correlation between measurement frames and pixels. We
can thus analyse data in the covariance domain where the ultrasound contrast image
variable is replaced by the contrast image covariance matrix.

The approach results in a non-convex minimization problem with orthogonality con-
straints, for which we proposed algorithms to find an estimated transfer function. The
proposed method is especially applicable for medical imaging scenarios with sufficient
blood flow across the image, such as the human brain. It is minimally invasive since
only a small transmitter would need to be inserted, whereas the much larger sensor array
can be positioned non-invasively outside the ROI and the aberration layer. Making the
method suitable for pulse-echo imaging by transmitting and receiving using the same
sensor array seems challenging as one of the main challenges observed in this paper
was the fact that the transfer function variables (in the case of non-abberated transmit
sensors) are quartic w.r.t. the observed RF data, and pulse-echo imaging would make it
bi-quartic (octic), adding another layer of mathematical complexity to the problem.

A second critique on our method is that it does not model non-linear processes such
as absorption, which may be more significant in certain aberrating layers than in soft
tissue. Consequently, since our model is a purely linear one, it may not be able to capture
these non-linear propagation effects sufficiently, and instead tries to capture it in our
linear model, leading to incorrect solutions.

Although prior knowledge of the image covariance matrix instead of the actual im-
ages themselves severely relaxes the calibration problem, there can still be a model mis-
match if there are relatively large areas in the ROI with no varying pixels (e.g. due to a
lack of blood flow), or pixels with a relatively different variance compared to other pix-
els. In that case, using the identity matrix as the image covariance matrix might lead to
faulty transfer function estimates. If an acceptable initial image can be obtained pre-
calibration, or using an initial estimate of H, such empty regions can be identified, and
omitted from A to obtain a more accurate model for Cy.

We tested our proposed technique on a range of increasingly challenging calibration
scenarios. We used k-Wave simulations to generate raw RF measurements to test our
algorithm for a varying range of aberration layers. In each case, our technique was able
to find a sufficiently good estimate of the transfer function of the aberration layer. Con-
sequently, for each tested layer, image reconstructions were much better using our cal-
ibrated model than an uncalibrated model, even enabling imaging through a simulated
skull layer.

There are currently no proofs or conditions for the existence of a unique solution to
the mathematical calibration problem as formulated in this work. Consequently, we had
to find whether this is the case for each scenario empirically. Furthermore, a parameter-
ization of the transfer function matrix is required, which is dependent on the aberration
layer characteristics. Nevertheless, we were able to successfully calibrate various lay-
ers using general FFT-based parameterizations, for various layers, including a skull layer
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with porous bone causing strong wave distortions. For tightly parameterized transfer
functions like those for laterally invariant layers, there seems to be a unique solution
when calibrating for each single frequency independently, which our algorithm is able
to find. For more challenging layers, a joint multi-frequency approach is required. More
efficient representations of the layer transfer functions could reduce the number of un-
knowns and lead to better and/or faster calibration performance, and is a topic of future
study.

We finally tested our techniques on a simulated blood flow phantom where the dis-
placement of blood acts as random images. Assuming all images are uncorrelated, we
were able to estimate the layer transfer functions, and we subsequently successfully
computed a Doppler image of the same measurement data used for calibration. This
is an encouraging result for non-invasive functional ultrasound and Doppler imaging
through the human skull, where the blood flow itself would act as random contrast im-
ages.
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8
CONCLUSION AND DISCUSSION

I N this dissertation, we introduced techniques and algorithms for imaging through
aberrating layers in the context of medical ultrasound imaging. In the first part, we

focused on compressive imaging with a single sensor and an aberrating coding mask.
The effect of the coding mask is known a priori, and was measured in an experimental
calibration setup. We experimentally demonstrated that 3D imaging is possible, and we
proposed a method for the design of an optimal coding mask. In the second part, we
considered imaging scenarios with an array and an abberating layer where the effect of
the layer is not known, and propose methods to blindly estimate its transfer function
in a minimally-invasive manner. Two techniques and their accompanying algorithms
were proposed for finding the transfer function of an aberrating layer using minimally-
invasive measurement setups, as well as a simple technique for estimating the electro-
mechanical impulse response of each sensor in an array without using hydropohones.

Besides the contributions discussed in the introduction, and each technical chapter,
this thesis demonstrated the potential of model-based imaging, the tool underlying each
contribution in this thesis. By explicitly defining a linear wave propagation and scatter-
ing model, and using simple linear algebraic formulations, we arrived at a model-based
imaging framework. It was shown that this framework is easily adapted to explicitly de-
fine and include variables for aberrating layers. These formulations then naturally lead
to algorithms for imaging through layers, optimizing a compressive coding mask, and
for blindly estimating the transfer functions of such layers. As a result, this dissertation
offers models and algorithms for complex imaging scenarios, utilizing the large amount
of computational power available nowadays, and opens the possibility of compressive
ultrasound imaging, and imaging through aberrating layers. More detailed conclusions
per chapter are summarized below.

In Chapter 3, it is demonstrated experimentally that 3D imaging is possible using
only a single ultrasound transducer. Spatial compression of the ultrasonic wavefields by
using a plastic coding mask ensures that a unique temporal pulse-echo signal per pixel in
the ROI allows for identifying the direction of an echo signal. The pulse-echo response
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of each pixel needs to be measured first, after which a linear scattering measurement
model can be defined, which can be inverted to obtain an estimated image using vari-
ous regularization methods. This chapter shows that imaging using complicated wave
interference patterns due to aberrating layers on transmit and/or receive is possible, as
long as they can be characterized. In fact, it can be used to our advantage to encode
directional information in the temporal dimension instead of inferring it from spatial
samples. The work in this chapter provides an avenue for compressive ultrasound imag-
ing, which is relevant for imaging devices where the device is limited by factors as space
and money (or other practical limitations such as electronic interconnections etc.).

Chapter 4 considers the imaging device introduced in Chapter 3, and offers optimiza-
tion algorithms for finding an optimal coding mask shape. To that end, the pillar on each
point of the mask is discretized in height, and subsequently incorporated into the linear
measurement equation. It is then assumed a Wiener estimator is used for imaging, and
the error variance of the image is minimized with respect to the mask shape parameters.
This results in a discrete optimization problem. To solve it, a semidefinite relaxation, as
well as a greedy discrete optimization algorithm are proposed. Empirical results show
that the proposed algorithms come close to the true global optimum. The algorithms try
to find masks that keep pulse-echo signals of pixels decorrelated, while focusing energy
within the ROI. This manifests itself in the mask geometry since the approximate repeti-
tion of features of the mask seems relative to the spatial (angular) bandwidth required to
focus on the defined ROI. In addition, the measurement matrix of the optimized masks
exhibit a better shaped singular value spectrum than those of random masks, improving
the conditioning of these matrices. Numerical experiments show that the masks ob-
tained this way outperform masks with a random profile.

In Part II of the thesis, it is assumed that the measurement matrix is only partially
known, and we investigate methods for estimating the unknown components of it. We
start with a normal imaging scenario using a linear array, where only the electro-mechanical
impulse response of each sensor in the array is unknown in Chapter 5. Knowledge of
this impulse response is helpful for more accurate wave simulations and models, espe-
cially if the impulse response is different for each array element. We propose a simple
calibration procedure, where a flat mirror-like reflector is placed in front of the array, af-
ter which the pulse-echo signal of each element is measured. Assuming each element
is excited with a delta-like impulse, this means that each element measures the auto-
convolved (self-convolved) impulse response of itself. To estimate the one-way impulse
response, we then propose a de-autoconvolution algorithm. The proposed procedure
is fast, simple, and does not rely on expensive hydrophones. We conclude that the esti-
mated impulse response signals are accurate by comparing convolved combinations of
them to measurements with different transmit and receive pairs.

Next, in Chapter 6, we propose a more explicit linear measurement equation for ul-
trasound imaging scenarios with an aberrating layer, and we introduce a matrix variable
representing the transfer function of an aberrating layer. We then propose a method for
estimating this layer’s transfer function by measuring the echo signals of many images,
without explicit knowledge of the ultrasound contrast images themselves. Instead, it is
only required that the matrix formed by these images is full-rank. However, the method
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has only been demonstrated to work for laterally-invariant layers, where the layer’s trans-
fer function matrix is Toeplitz, a structure that is capitalized on by the calibration algo-
rithm. In addition, a second set of measurements is necessary using the same set of
images as the first set, but using a phase screen as a second layer. The difference be-
tween these two measurements is then exploited by the calibration algorithm. However,
obtaining the second set of measurements and using the phase screen may make the
method impractical and medically invasive, since the screen needs to be placed between
the aberrating layer and the ROI (e.g., against the inside of the skull). Additionally, the
method is dependent on good conditioning of several of the matrices involved.

To address the aforementioned issues of the corresponding calibration method, we
propose a much more robust and flexible method in Chapter 7. It relies on a single set of
many contrast images, where it is assumed that only the second-order statistics of these
images is known, and utilizes covariance matching to find the layer’s transfer function
matrix that best matches the observed measurement covariance data. One could think
of a set of random images obtained by taking many measurements of blood or micro-
bubble flow, taken at subsequent points in time. The proposed technique is capable
of dealing with a variety of layers, even if their transfer function matrix is not Toeplitz.
The formulated covariance matching problem leads to a least squares cost-function with
manifold constraints, for which we propose to use an alternating projection algorithm.
Unfortunately, there is no proof or analysis about the existence of a global optimum.
The proposed technique was successfully tested on a variety of layers in the k-Wave ul-
trasound simulator, including a skull-like layer, and a blood flow phantom. After cal-
ibration, imaging performance was evaluated on simulated resolution phantoms, and
showed that the calibrated model shows a much improved image reconstruction perfor-
mance compared to a non-calibrated imaging approach. For a successful calibration, a
parameterization of the transfer function matrix is required, for which we simply used
2D FFT coefficients. Hence, the method already works without a strong reduction of pa-
rameters, and using a very general parameterization. Tighter parameterizations could
lead to increasing calibration performance, and is a topic of future research.

8.1. FUTURE RESEARCH DIRECTIONS

COMPRESSED ULTRASOUND IMAGING

The discovery of Compressed Sensing has facilitated (medical) imaging using measure-
ments sampled below Nyquist rate for medical imaging modalities, such as MRI [1] and
CT imaging [2]. In the field of medical US imaging, however, CS has not (yet) lead to
large breakthroughs that address one of the major challenges in medical US imaging:
electronic design and wiring challenges for 2D ultrasound arrays.

Although there exists a large body of studies proposing a variety of CS methods for
medical US imaging, it appears as though most of these techniques only work for images
that are already sparse in the spatial image domain. For example, excellent results are
achieved on point scatter phantoms, or on in-vivo images that have large empty regions,
such as blood vessels in images of carotids. As pointed out by A. Besson et. al [3], for
dense medical images, results are often subpar, as speckle regions tend to become darker
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than in the reference DAS images. Similar results are observed in other works, both for
compression in the array domain, as well as the time domain. A comprehensive study
was done in [4], where the compressibility of many popular bases on DAS beamformed
US images and RF signals are evaluated. It was unable to find a basis in which non-sparse
US images can be sparsely represented.

An important open question in the field of compressive sensing for medical US imag-
ing, therefore, is whether there exists any representation basis in which medical US im-
ages are truly sparse. A strong case can be made that such a basis does not actually exist,
since speckle in medical US images is due to the randomness of sub-wavelength par-
ticles in biological tissue. Of course, speckle is not random in a true sense, but for all
intents and purposes, they can be modelled as being i.i.d. normally distributed in terms
of position and scattering strength, with many such sub-wavelength scatterers in a res-
olution cell. This Gaussian model of speckle explains the universally observed Rayleigh
distribution of speckle in medical US images [5], since one often visualizes the absolute
value squared of the beamformed RF data. If this is truly the case, then speckle regions in
US images cannot be sparsely represented, since random uncorrelated signals cannot be
compressed, which would explain the results in CS US studies mentioned above. Note
that the same problem would hold for sparse reconstruction techniques for measured
RF data (instead of reconstructing the contrast image directly), since the RF data itself is
a convolution of these random scatterers and the temporal-spatial impulse response of
the imaging system.

Consequently, the randomness of US images should be taken into account in signal
models and image reconstruction algorithms. For example, consider the following sig-
nal model. We still use the equation y = Ax+n, but we add the information that x is a
realization of a white Gaussian i.i.d. process. The structure that we see in US images
comes from the fact that distinct regions of the same tissue type will have the same ran-
domness (speckle), but with a different amplitude or variance compared to other tissue
regions. In other words, what distinguishes tissue regions in US images are their spatial
second order statistics. Consequently, since the second order statistics of speckle regions
should be similar (i.e., piece-wise constant), one could consider that medical US images
are sparse in the spatial (co)variance domain, not directly in the spatial domain itself.
Future research would have to investigate how such models would be best expressed
mathematically, and what kind of (Bayesian) estimators would be needed for imaging
using such models.

NEW CODING MASK CLASSES AND CODING TECHNIQUES

The coding masks used in Chapter 3 and 4 is a homogeneous mask where the only vari-
ability is due to the height of the pillars that constitute the mask. This is only one partic-
ular class of coding masks, and one could imagine that more complex mask configura-
tions, e.g. by using a heterogeneous mix of materials, or more complex geometries, could
lead to better compression capabilities, SNR, and resolution. Such a new class of coding
masks would have to consider (a) the capability to decorrelate pulse-echo signals, (b)
maximize the amount of energy transmitted through the mask, (c) minimize the use of
mechanical translation of the coding mask for obtaining a diverse set of measurements.

One potentially interesting set of candidates to address the second point are acous-
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tic chaotic cavities, which have already been studied in the context of ultrasound imag-
ing [6–9], and more recently for ultrasound imaging with limited sensor arrays as well
[10, 11], mostly based on time-reversal techniques [12]. Since these methods use time-
reversal, they typically form an image by focusing transmit waves on each individual
pixel consecutively, leading to very low frame rates. As such, they are more suited for
therapeutic techniques like High Intensity Focused Ultrasound (HIFU), where high res-
olution and intense focal points are required on transmit in order to ablate malignant
tissue. Model-based imaging, in contrast, can create an image from much fewer frames,
since it does not have to focus on each pixel during transmit. A concern with acoustic
chaotic cavities, however, is that waves are not necessarily fully focused into the region
of interest, but also along the sensor plane or even back into sensors prior to illuminating
the ROI.

A second approach would not entirely remove sensors in a fully sampled ultrasound
array, but would keep them and apply the effect of a coding mask electronically. As a
result, the total amount of output channels would still be less than the total amount
of sensors in the array, potentially reducing the complexity of wiring and electronics of
dense (2D) ultrasound arrays. After all, an array with spatial sampling at Nyquist rate
would be able to replicate any field produced by any linear coding mask on transmit,
thus allowing us to create the best spatial transmit diversity without the inevitable losses
of a coding mask. Furthermore, the effect of the coding mask would be easy to model,
since we would have precise control over the electronic mask. Consequently, a calibra-
tion procedure to measure the A matrix would no longer be needed. Finally, this ap-
proach entirely removes all mechanical translation, and attains measurement diversity
by obtaining multiple measurements with multiple electronic coding masks.

Whether this approach would be feasible is ultimately dependent on the limits of
electronic design, and will require an investigation that considers an electronic coding
mask class with a small electronic footprint, yet being potent enough for creating spa-
tial wave diversity in the ROI. For example, one could use electronic shifts per chan-
nels, followed by spatial summation, emulating the coding principle of the masks used
in this thesis. However, there might be more interesting signal operations that can be
performed that lead to better results whilst still keeping the complexity of the electron-
ics sufficiently low. Interesting studies exploring spatially diverse wavefields transmitted
by phased arrays have been done by Clement et al. [13–15], although these studies were
not performed in the context of compressive imaging. Random excitation has been in-
vestigated for compressive sensing in [16–19], using fewer transmit events, but not ad-
dressing the electronic design challenges for 2D arrays. Preliminary research exploring
such methods and their electronic design for compressive US imaging as proposed in
this section can be found in [20, 21].

IMPROVED CODING MASK DESIGN MODELS AND ALGORITHMS

The coding mask design algorithms proposed in Chapter 4 possess a number of draw-
backs that could be addressed by improved mask design algorithms: (a) they are compu-
tationally intensive, since the A matrix needs to be calculated for each candidate mask
in this iteration; (b) since A is ill-conditioned, a regularization method is needed, result-
ing in the Wiener estimator used in this thesis. Consequently, a suitable regularization
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parameter value needs to be chosen prior to mask optimization, even though the regu-
larization parameter might be different when doing the actual imaging with the actually
used mask. It has not been checked whether the resulting coding masks perform just
as well in imaging scenarios with different regularization parameters, or using common
beamformers such as the DAS beamformer. (c) The algorithm and the resulting masks
are lacking in physical and mathematical insight as to why the resulting mask is a good
candidate, besides having a lower cost function relative to random masks.

A first recommendation for addressing most of these points is using the signal mod-
els used in Part II of this thesis, y = HAx, where H is the transfer function of the coding
mask. This gives more insight into the mathematics of the problem, and allows one to
optimize directly for H instead of A. For example, we could consider what the best H
matrix is in relation to A: we know that the row space of H should lie as much as possible
in the column space of A to preserve information (since A is often ill-posed, they should
be the K largest singular vectors if H has K rows, instead of the entire column space). Af-
ter all, if the virtual array of H is Nyquist sampled, we know that HA cannot sense more
information than the uncompressed A. In other words, a coding mask cannot infer more
information about a contrast image than a fully sampled array can.

Consequently, one could aim at finding a good H matrix by maximizing its singu-
lar values (or any other cost function promoting well-posed singular spectra, such as
tr((HHH)−1)), while at the same time constraining or promoting the solution to lie in
the subspace spanned by the singular vectors of the K largest singular values of A. The
subspace constraint ensures that the relevant pixel region is optimized for, and dictates
which information in A to encode. At the same time, the cost function ensures that the
coding mask focuses/maximizes energy into the ROI, thereby maximing SNR, while also
ensuring that the algorithm spreads information across the entire subspace instead of
e.g. just a singular vector, ensuring pulse-echo signal diversity. This gives us more tools
for evaluating candidate masks, and would reduce the size of the matrices involved in
optimization algorithms since the pixel dimension is no longer directly involved, reduc-
ing the computational complexity, and possibly eliminating the need for choosing a reg-
ularization parameter.

Additionally, using this signal model formulation gives us tools to analyze US imag-
ing with a coding mask in the context of compressive sensing. The original uncom-
pressed RF field, say s := Ax, before entering the coding mask, then relates to the coded
measurement y as y = Hs. One could attempt to reconstruct s from y using compressive
sensing theory, and design H in such a way as to minimize coherence with a suitable
representation basis for s.

BLIND CALIBRATION OF ABERRATING LAYERS

Blind calibration is an inherently difficult problem due to the bilinear nature of the mea-
surement equation when an unknown aberrating layer is present. Such equations gen-
erally do not have unique solutions, and tend to be very challenging to solve. Instead of
trying to constrain the solution space of the contrast image x and the layer transfer func-
tion H (hoping that the constraints would constrict the solution space enough to obtain
good enough solutions from local minima), this thesis presented two approaches where
x is eliminated, so that we are only left with the unknown H. The first one consists of
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averaging the image out of the measurement equations by analyzing the problem in the
covariance domain, and the second of taking different measurements of the same image
and using the difference between such measurements to estimate H.

Both of these approaches require further investigation. For the covariance matching
approach, open questions about the mathematical problem that is being solved remain:
analysis of the solution space, uniqueness of solutions and existence of global minima
all remain unanswered. Since the original covariance matching cost function is hard to
solve, future research could also search for new cost functions that should lead to simi-
lar solutions as the covariance matching solution, but may be more easy to solve. Large
improvements in the performance of this method could be obtained by strongly con-
straining the structure of the transfer function matrices. In this thesis the solution space
of H was only constrained by using a Fourier basis where the higher frequencies were re-
moved. This way, the total number of unknowns was reduced from 400 to approximately
350, a very small reduction of unknowns. It is therefore to be expected that much better
performance can be obtained by finding a basis that greatly reduces the number of un-
knowns. One could find such bases by taking the time to study the structures present in
H-matrices obtained from simulations. A simple approach would consist of measuring
the transfer function matrix H of a large number of different skull layers, and using PCA
or Machine Learning methods to find a suitable basis for H.

The work presented using differential measurements in Chapter 6 suffers from the
introduction of an invasive phase-screen. One could consider using sub-arrays instead,
as is typically done for blind beamforming techniques in communications, such as MU-
SIC and ESPRIT, so that the phase shifts of the phase screen are instead caused by the
lateral displacement of the sub-array (typically achieved by taking the first and last M−1
sensors). This approach would have to account for the fact that one cannot consider all
reflections to originate in the far-field (as is typically assumed in the field of telecommu-
nications), and would also have to consider what sort of images (that can realistically be
obtained in a medical imaging context) would be required to obtain good estimates.

Of course, alternative blind calibration methods could emerge as well. One could,
for example, search for a solution of the transfer function such that the reconstructed in-
verse image optimizes image quality. In that case, one would have to rely on images that
contain e.g. isolated scatterers, such as contrast agents or micro-bubbles, and optimize
for e.g. the sharpness of those points in the image, or contrast ratios of pixels belonging
to different types of tissue.
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