
 
 

Delft University of Technology

Limit Theorems for β-Laguerre and β-Jacobi Ensembles

Huang, Naqi; Ma, Yutao

DOI
10.1007/s10473-022-0517-x
Publication date
2022
Document Version
Final published version
Published in
Acta Mathematica Scientia

Citation (APA)
Huang, N., & Ma, Y. (2022). Limit Theorems for β-Laguerre and β-Jacobi Ensembles. Acta Mathematica
Scientia, 42(5), 2025-2039. https://doi.org/10.1007/s10473-022-0517-x

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10473-022-0517-x
https://doi.org/10.1007/s10473-022-0517-x


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Acta Mathematica Scientia, 2022, 42B(5): 2025–2039

https://doi.org/10.1007/s10473-022-0517-x

c©Innovation Academy for Precision Measurement Science

and Technology, Chinese Academy of Sciences, 2022
http://actams.apm.ac.cn

LIMIT THEOREMS FOR β-LAGUERRE AND

β-JACOBI ENSEMBLES∗

Naqi HUANG (�Aj)

Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of

Technology, Mekelweg 4, 2628 CD Delft, The Netherlands

E-mail : N.Huang-1@tudelft.nl

Yutao MA (ê�ë)†

School of Mathematical Sciences & Laboratory of Mathematics and Complex Systems of

Ministry of Education, Beijing Normal University, Beijing 100875, China

E-mail : mayt@bnu.edu.cn

Abstract We use tridiagonal models to study the limiting behavior of β-Laguerre and

β-Jacobi ensembles, focusing on the limiting behavior of the extremal eigenvalues and the

central limit theorem for the two ensembles. For the central limit theorem of β-Laguerre

ensembles, we follow the idea in [1] while giving a modified version for the generalized case.

Then we use the total variation distance between the two sorts of ensembles to obtain the

limiting behavior of β-Jacobi ensembles.

Key words beta-ensembles; largest and smallest eigenvalues; central limit theorem; total

variation distance
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1 Introduction

A β-Laguerre ensemble, also called a Wishart ensemble, is a set of non-negative random

variables λ := (λ1, λ2, · · · , λn) with the joint density function

fβ,a1
(x1, x2, · · · , xn) = Cβ,a1

L

∏

1≤i<j≤n

|xi − xj |β
n
∏

i=1

xa1−r
i e−

1
2
xi , (1.1)

where a1 > β
2 (n − 1), β > 0, r = 1 + β

2 (n − 1), and

Cβ,a1

L = 2−na1

n
∏

j=1

Γ
(

1 + β
2

)

Γ
(

1 + β
2 j
)

Γ
(

a1 − β
2 (n − j)

) .
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A β-Jacobi ensemble, also called the β-MANOVA ensemble, is a set of random variables

µ := (µ1, µ2, · · · , µn) ∈ [0, 1]n with a joint probability density function

fβ,a1,a2
(x1, x2, · · · , xn) = Cβ,a1,a2

J

∏

1≤i<j≤n

|xi − xj |β
n
∏

i=1

xa1−r
i (1 − xi)

a2−r, (1.2)

where a1, a2 > β
2 (n − 1) and r := 1 + β

2 (n − 1), and

Cβ,a1,a2

J =
n
∏

j=1

Γ(1 + β
2 )Γ(a1 + a2 − β(n − j)/2)

Γ(1 + βj/2)Γ(a1 − β(n − j)/2)Γ(a2 − β(n − j)/2)
.

In 2002, Dumitriu and Edelman proved that the β-Laguerre ensembles can be seen as the

eigenvalues of real symmetric tridiagonal random matrices, which are distributed as La1

β,n in

Table 1 ([3]). The calculations in this note are all based on the tridiagonal model. In fact, in

the same paper, Dumitriu and Eldeman also gave the random tridiagonal model of another sort

of β-ensemble, the β-Hermite ensemble, which we are not going to discuss here. The tridiagonal

model of the β-Jacobi ensembles was achieved in [7] and [10]. Jiang ([9]), Ma and Shen ([12])

used the tridiagonal model to calculate the distances between the two sorts of ensembles; this

is quite useful in terms of understanding the limiting behavior of β-Jacobi ensembles through

the β-Laguerre ensembles.

Based on the tridiagonal random matrices, Dumitriu and Edelman gave the central limit

theorem for the β-Laguerre ensembles in [2]. Let (λ1, λ2, · · · , λn) be the beta-Laguerre ensem-

bles of parameter a1 and size n, whose joint density function is given by (1.1). Assume that
nβ
2a1

→ γ ∈ (0, 1), and let γmin = (1 −√
γ)2, γmax = (1 +

√
γ)2. For any i ≥ 1, let

Xi =

n
∑

j=1

(

γ

nβ
λj

)i

− n

i−1
∑

r=0

Cr
i Cr

i−1

r + 1
γr −

(

2

β
− 1

)∫ γmax

γmin

tiµγ
L(t)dt,

where

µγ
L(x) :=











1

4
δγmax

(x) +
1

4
δγmin

(x) − 1

2π

1
√

(x − γmin)(γmax − x)
; if x ∈ [γmin, γmax],

0, otherwise.

(1.3)

Here Cm
n := n!

m!(n−m)! is the combinatorial number, with 0 ≤ m ≤ n. Then, for any integer

k ≥ 1, (X1, X2, · · · , Xk) converges weakly to a centered multivariate Guassian as n → ∞.

Set λmax = max{λ1, λ2, · · · , λn}, λmin = min{λ1, λ2, · · · , λn} and assume that nβ
2a1

→ γ ∈
(0, 1]. Then

λmax

n
→ β(1 +

√

γ−1)2 and
λmin

n
→ β(1 −

√

γ−1)2,

almost surely. This result was first reported without proof in [1], and then in [9], the proof was

given by Jiang.

Let (µ1, µ2, · · · , µn) be random variables with density function fβ,a1,a2
, defined in (1.2).

In [9], Jiang obtained similar results for extremal eigenvalues and the central limit theorem

for empirical measures. Setting µmax = max{µ1, µ2, · · · , µn}, µmin = min{µ1, µ2, · · · , µn}, and

assuming that a1 = o(
√

a2), n = o(
√

a2) and nβ
2a1

→ γ ∈ (0, 1], we then have that

a2

n
µmax → β(1 +

√
γ)2

2γ
and

a2

n
µmin → β(1 −√

γ)2

2γ
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in probability as n → +∞.

Given any integer i ≥ 1, define

Xi =

n
∑

j=1

(

2γa2

nβ
µj

)i

− n

i−1
∑

r=0

Cr
i Cr

i−1

r + 1
γr

for i ≥ 1. Similarly, assume that a1 = o(
√

a2) and that n = o(
√

a2), (X1, · · · , Xk) converges

weakly to a multivariate normal distribution for any k ≥ 1.

A considerable amount of literature has been devoted to the eigenvalue distributions of beta

ensembles. Dumitriu and Koev presented explicit formulas for the distributions of the extreme

eigenvalues of the β-Jacobi random matrix ensemble in terms of the hypergeometric function

of a matrix argument (see [3]), and Edelman and Koev presented the explicit expressions for

β-Laguerre ensembles (see [4]). Dumitriu and Paquette studied global fluctuations for linear

statistics of the β-Jacobi ensembles (see [5]). It is also worth mentioning that Killip studied

the Jacobi ensembles and proved Gaussian fluctuations for the number of points in one or more

intervals in the macroscopic scaling limit given in [6]. Trinh in [14] gave a unified way to offer

the central limit theorems via spectral measures for beta ensembles and also investigated the

Gaussian fluctuation around the limit.

The case γ := lim
n→∞

nβ
2a1

= 0 was excluded in [1, 2] and [9]. In this note, we will prove the

limit for extremal eigenvalues when γ = 0 for both β-Laguerre and β-Jacobi ensembles, modify

the central limit for β-Laguerre in [2], and generalize the central limit theorem for β-Jacobi

from a1 = o(
√

a2), n = o(
√

a2) to a1n = o(a2).

Recently, high-dimensional data has appeared in many fields, and analysis of this data

has become increasingly important in modern statistics. However, it has long been observed

that several well-known methods in multivariate analysis become inefficient, or even misleading,

when the data dimension p, which is equivalent to the parameter 2a1/β in this note, is much

larger than the sample size n. Here a high dimensional scenario n/p → 0 is considered.

1.1 Main results for β-Laguerre ensembles

The main results for β-Laguerre ensembles in this note are as follows:

Theorem 1.1 Let (λ1, λ2, · · · , λn) be the β-Laguerre ensembles of parameter a1 and size

n, whose joint density function is given by (1.1). Assume that lim
n→∞

nβ
2a1

= γ ∈ [0, 1]. Then as

n → ∞,
λmax

2a1
→ (1 +

√
γ)2,

λmin

2a1
→ (1 −√

γ)2,

almost surely.

In particular, for γ = 0, λi

2a1
→ 1 almost surely for all 1 ≤ i ≤ n.

The following theorem is an extension of Theorem 1.5 in [2]:

Theorem 1.2 Let (λ1, λ2, · · · , λn) and γ be defined as Theorem 1.1. For any k ≥ 1, set

Xk =

n
∑

i=1

(

λi

2a1

)k

− n

k−1
∑

r=0

(

nβ

2a1

)r Cr
kCr

k−1

r + 1
−
(

2

β
− 1

)∫ (1+
√

γ)2

(1−√
γ)2

tkµγ
L(t)dt, (1.4)

where µγ
L(t) is defined as in (1.3). Then, for any integer m ≥ 1, as n → ∞,

√

a1

n
(X1, X2, · · · , Xm)

w−→ (Y1, Y2, · · · , Ym).
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Here (Y1, Y2, · · · , Ym) is a centered multivariate Guassian with the covariance matrix

Cov (Yi, Yj) = S1(i, j) + S2(i, j), (1.5)

where

S1(i, j) =

i+j−1
∑

q=1

(−1)q+1γi+j−q−1
Cq

i+j

i + j

i+j
∑

l=q+1

(−1)l

Cl−1
i+j−1

∑

r+s=l
1≤r≤i
1≤s≤j

rs(Cr
i )2(Cs

j )2, (1.6)

S2(i, j) =

i+j−2
∑

q=0

(−1)q+1γi+j−q−1
Cq

i+j

i + j

i+j−2
∑

l=q

(−1)l

Cl−1
i+j−1

∑

r+s=l
1≤r≤i
1≤s≤j

(i − r)(j − s)(Cr
i )2(Cs

j )2. (1.7)

Remark 1.3 There is an inconsistency in Theorem 1.5 in [2], which we found is established

only for nβ
2a = γ, but not for the genereal case nβ

2a → γ(0 < γ ≤ 1). Take the following case as

an example:

Suppose that (λ1, λ2 · · · , λn) are the eigenvalues of La1

β,n, then

E

(

n
∑

i=1

λi

)

= E(tr(La1

β,n)) = E

(

n−1
∑

l=0

χ2
2a1−βl +

n−1
∑

l=1

χ2
βl

)

= 2a1n.

Taking scaling into account, we have that

E

(

n
∑

i=1

γλi

nβ

)

=
γ · 2a1

β
= n · γ · 2a1

βn
= n(1 + o(1)) = n + o(n). (1.8)

According to the central limit theorem from Dumitriu (Theorem 1.5 in [2]),

E

(

n
∑

i=1

γλi

nβ

)

= n +

(

2

β
− 2

)

c + o(
1

n
),

where c is a constant; this contradicts (1.8), therefore, we need to make a slight modification

and rewrite the formula as (1.4).

Remark 1.4 It is easy to see that when γ = 0,

S1(i, j) = ij; S2(i, j) = 0.

Therefore, for ∀i, j ≥ 1,

Cov (Yi, Yj) = S1(i, j) + S2(i, j) = ij.

The improvement from the result of Dumitriu and Edelman in [2] is reflected in the power

of γ in (1.6) and (1.7). In [2], the central limit theorem is only adaptable for 0 < γ ≤ 1. Here,

we obtain a more general consequence adaptable for 0 ≤ γ ≤ 1.

1.2 Main results for β-Jacobi ensembles

For Jacobi ensembles, we utilize the conclusions of β-Laguerre to yield the relative results

of β-Jacobi through the connection between the two ensembles. The following lemma was first

proved by Jiang in [9] for a1 = o(
√

a2), n = o(
√

a2), and then generalized by Ma and Shen in

[12] for a1n = o(a2) :
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Lemma 1.5 Let λ = (λ1, λ2, · · · , λn) and let µ = (µ1, µ2, · · · , µn) be the random vari-

ables with density functions (1.1) and (1.2), respectively. Denote with ||L(2(a1 +a2)µ)−L(λ)||
the total variation distance between the probability distributions of 2(a1+a2)µ and λ. Assume

that a1n = o(a2). Then

lim
n→∞

||L(2(a1 + a2)µ) − L(λ)|| = 0.

Following the method in [9], and based on Lemma 1.5 and Theorem 1.1, we can easily have

Theorem 1.6 Let (µ1, µ2 · · · , µn) be the β-Jacobi ensembles with density function fβ,a1,a2

given by (1.2). Recall that µmax = max{µ1, µ2, · · · , µn}, µmin = min{µ1, µ2, · · · , µn}. Suppose

that a1n = o(a2) and lim
a1→∞

βn
2a1

= γ ∈ [0, 1]. Then, as n → ∞,

a2

a1
µmax → (1 +

√
γ)2 and

a2

a1
µmin → (1 −√

γ)2

in probability.

Similarly, utilizing Lemma 1.5 and Theorem 1.2, we have

Theorem 1.7 Define

Zk =

n
∑

i=1

(

a2

a1
µi

)k

− n

k−1
∑

r=0

(

nβ

2a1

)r Cr
kCr

k−1

r + 1
−
(

2

β
− 1

)∫ (1+
√

γ)2

(1−√
γ)2

tkµγ
L(t)dt. (1.9)

Suppose that a1n = o(a2). Then for any given m ≥ 1,
√

a1

n
(Z1, Z2, · · · , Zm)

w−→ (Y1, Y2, · · · , Ym), as n → ∞,

where (Y1, Y2, · · · , Ym) is the same as in Theorem 1.2.

2 The Proof of Theorem 1.1: the Extremal Eigenvalues for β-Laguerre

Ensembles

We can see a set of random variables from the β-Laguerre ensembles as the eigenvalues of

the corresponding tridiagonal model, which is La1

β,n = Ba1

β,n(Ba1

β,n)T , where

Ba1

β,n ∼

















χ2a1

χβ(n−1) χ2a1−β

. . .
. . .

χβ χ2a1−β(n−1)

















,

(2.1)

and entries of the Ba1

β,n are mutually independent ([3]). Denote by λ = (λ1, λ2, · · · , λn) the

eigenvalues of La1

β,n. Through simple calculation, we have

Lemma 2.1

La1

β,n ∼

















χ2
2a1

χ2a1
χβ(n−1)

χ2a1
χβ(n−1) χ2

2a1−β + χ2
β(n−1)−β

. . .

. . .
. . . χ2a1−β(n−2)χβ

χ2a1−β(n−2)χβ χ2
2a1−β(n−1) + χ2

β

















,

(2.2)
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where

(La1

β,n)11 = χ2
2a1

,

(La1

β,n)jj = χ2
2a1−β(j−1) + χ2

β(n−j+1),

(La1

β,n)j−1,j = χ2a1−β(j−2)χβ(n−j+1)

for j = 2, · · · , n. Note that La1

β,n is a tridiagonal symmetric matrix.

In this section, we will prove the limiting behaviour of the extremal eigenvalues of La1

β,n.

The idea is borrowed from [13] (Silverstein 1985). To prove Theorem 1.1, we first introduce

two lemmas.

Lemma 2.2 χn is a chi distribution with n degrees of freedom, so χn√
n
→ 1 almost surely

as n → ∞.

Proof As χ2
n can be seen as the sum of the squares of n independent normal random

variables, according to Kolmogorov strong law of large numbers, we have that

χ2
n

n
−→ 1

almost surely as n → ∞. Note that the property of convergence is maintained under the

transformation of continuous functions, thus

χn√
n

=

√

χ2
n

n
−→ 1

almost surely as n → ∞. �

The proof of Theorem 1.1 From Theorem 6.0.5 in [1], we know that

F a1

β,n(x) → Eγ(x)

almost surely, where F a1

β,n(x) := 1
n

n
∑

i=1

1 λi
2a1

≤x
and Eγ is a cumulative distribution function with

density function

eγ(x) =







1
2πγ

√
(x−γmin)(γmax−x)

x , if x ∈ [γmin, γmax],

0, otherwise.

Here γmax = (1 +
√

γ)2 and γmin = (1 − √
γ)2. Thus, similarly to the proof in [13], we can

conclude that

lim
n→∞

λmin

2a1
≤ (1 −√

γ)2,

lim
n→∞

λmax

2a1
≥ (1 +

√
γ)2,

(2.3)

almost surely.

Next, we will prove that lim
n→∞

λmin

2a1
≥ (1−√

γ)2 and lim
n→∞

λmax

2a1
≤ (1 +

√
γ)2, almost surely.

Gerŝgorin’s theorem from [8] says that each eigenvalue z of an n×n complex matrix A = (aij)

lies in at least one of the disks |z − ajj | ≤
∑

i6=j

|aij |, j = 1, 2, · · · , n in the complex plane. Thus,

combined with Lemma 2.1, Gerŝgorin’s theorem leads to

λmin

2a1
≥ 1

2a1
min

{

χ2
2a1

− χ2a1
χβ(n−1); χ

2
2a1−β(n−1) + χ2

β − χ2a1−β(n−2)χβ; min
2≤j≤n−1

An
j

}

,
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with

An
j : = (La1

β,n)j,j − (La1

β,n)j−1,j − (La1

β,n)j+1,j

= χ2
2a1−β(j−1) + χ2

β(n−j+1) − χ2a1−β(j−2)χβ(n−j+1) − χ2a1−β(j−1)χβ(n−j).

Since χn√
n
→ 1 almost surely from Lemma 2.2, we have that

1

2a1
(χ2

2a1
− χ2a1

χβ(n−1)) → (1 −√
γ),

1

2a1
(χ2

2a1−β(n−1) + χ2
β − χ2a1−β(n−2)χβ) → 1 − γ

almost surely as n → ∞, and

lim
n→∞

An
j

2a1
= 1 + (1 − 2c)γ − 2

√

(1 − cγ)(1 − c)γ ≥ (1 −√
γ)2

almost surely for j satisfying lim
n→∞

j
n = c ∈ [0, 1]. Note that 1 − γ ≥ 1 −√

γ ≥ (1 −√
γ)2, and

thus

lim
n→∞

λmin

2a1
≥ (1 −√

γ)2. (2.4)

Combining (2.3) and (2.4), we conclude that

lim
n→∞

λmin

2a1
= (1 −√

γ)2,

almost surely. In a similar way, we have that

lim
n→∞

λmax

2a1
= (1 +

√
γ)2,

almost surely. �

3 The Proof of Theorem 1.2: CLT for β-Laguerre Ensembles

In this section, we are going to prove Theorem 1.2. The proof is divided into two parts.

Lemma 3.1 (the fluctuation) Recall, for k ≥ 1, that

Xk =

n
∑

i=1

(

λi

2a1

)k

− E

[ n
∑

i=1

(

λi

2a1

)k]

.

Assuming that lim
a1→∞

βn
2a1

= γ ∈ [0, 1], we have, for any m ≥ 1, that

√

a1

n
(X1, X2, · · · , Xm)

w−→ (Y1, Y2, · · · , Ym),

where (Y1, Y2, · · · , Ym) is a centered multivariate Guassian defined as in Theorem 1.2.

Lemma 3.2 (The deviation) With the same assumption as in Lemma 3.1, for n large

enough, we have that

E

n
∑

i=1

(

λi

2a1

)k

= n
k−1
∑

r=0

(

nβ

2a1

)r Cr
kCr

k−1

r + 1
−
(

2

β
− 1

)∫ (1+
√

γ)2

(1−√
γ)2

tkµγ
L(t)dt + o

(√

n

a1

)

, (3.1)

where µγ
L(t) is as defined by (1.3).
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Remark 3.3 In particular, if γ = 0,

E

n
∑

i=1

(

λi

2a1

)k

= n

k−1
∑

r=0

(

nβ

2a1

)r Cr
kCr

k−1

r + 1
+ o

(√

n

a1

)

for n large enough.

3.1 The proof of Lemma 3.1: the fluctuation

To prove Lemma 3.1, we are going to prove the following claims first (all the notations are

defined as above):

Claim 1 Set X̃k =
√

a1

n Xk for any k ≥ 1. For any positive integers k and l,

lim
n→∞

E[(X̃k)l] =







(l − 1)!! (S1(k) + S2(k))
l
2 , if l is even;

0, if l is odd,
(3.2)

where

S1(k) =
2k−1
∑

q=1

(−1)q+1γ2k−q−1 Cq
2k

2k

2k
∑

l=q+1

(−1)l

Cl−1
2k−1

∑

r+s=l,1≤r,s≤k

rs(Cr
kCs

k)2 (3.3)

and

S2(k) =

2k−2
∑

q=0

(−1)q+1γ2k−q−1 Cq
2k

2k

2k−2
∑

l=q

(−1)l

Cl
2k−1

∑

r+s=l,1≤r,s≤k

(k − r)(k − s)(Cr
kCs

k)2. (3.4)

Claim 2 For any fixed positive integers i and j,

lim
n→∞

Cov
(

X̃i, X̃j

)

= S1(i, j) + S2(i, j), (3.5)

where S1(i, j), S2(i, j) are defined as in (1.6) and (1.7).

Claim 3 For any X̃k1
, X̃k2

, · · · , X̃km
(1 ≤ ki ≤ n), and ∀ti ∈ R(i = 1, · · · , m),

lim
n→∞

E

(

m
∑

i=1

tiX̃ki

)l

=



















(l − 1)!!





∑

1≤i,j≤m

titj(S1(ki, kj) + S2(ki, kj))





l
2

, if l is even;

0, if l is odd.

(3.6)

The proof of the three claims are basically the same, and the idea also comes from [2].

Before the proof, we first introduce some notations.

Table 1 Unscaled and scaled tridiagonal models for beta-Laguerre ensembles

(β > 0, n ∈ N, a1 ∈ R
+, and a1 > β

2
(n − 1))

unscaled B
a1

β,n ∼

















χ2a1

χβ(n−1) χ2a1−β

. . .
. . .

χβ χ2a1−β(n−1)

















L
a1

β,n

scaled B̃
a1

β,n = 1√
2a1

B
a1

β,n

L̃
a1

β,n = 1
2a1

L
a1

β,n
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Write the scaled matrix B̃a1

β,n (see Table 1) as

B̃a1

β,n = D +
1√
2a1

Z, (3.7)

where

D =























1√
2a1

E(χ2a1
)

1√
2a1

E(χβ(n−1))
1√
2a1

E(χ2a1−β)

. . .
. . .

1√
2a1

E(χβ)
1√
2a1

E((χ2a1−β(n−1))























(3.8)

and

Z =























χ2a1
− E(χ2a1

)

χβ(n−1) − E(χβ(n−1)) χ2a1−β − E(χ2a1−β)

. . .
. . .

χβ − E(χβ)
χ2a1−β(n−1)

−E(χ2a1−β(n−1))























. (3.9)

Remark 3.4 As in [2], the entries of D are bounded and for any finite k and l there exists

a constant M such that

E

[

kl
∏

i=1

Zci

jij′i

]

6 M

for all 0 6 ci 6 kl and for all j1, · · · , jkl and j′1, · · · , j′kl such that |ji − j′i| 6 1.

For the expression of tr
(

(BBT )k
)

, it holds that

tr
(

(

BBT
)k
)

=
∑

16i1,i2,··· ,i2k6n

Bi1,i2B
T
i2,i3 · · ·Bi2k−1,i2k

BT
i2k,i1 ,

where the sum is taken over sequences (i1, · · · , i2k) with the property that i2j−1 − i2j ∈ {0, 1}
(for all 16 j 6 k), i2j − i2j+1 ∈ {0,−1} (for all 1 6 j 6 k − 1), and also i2k − i1 ∈ {0,−1}.

Definition 3.5 Denote by Sn,k ∈ {1, · · · , n}2k the set of sequences of integers i1, · · · , i2k

such that i2j−1 − i2j ∈ {0, 1} for all 16 j 6 k, and i2j − i2j+1 ∈ {0,−1} for all 1 6 j 6 k − 1,

and also i2k − i1 ∈ {0,−1}.
For each I ∈ Sk

n, we consider all the ways in which we can break I := (i1, · · · , i2k) up into

overlapping J and R; i.e.,

J =
(

(ip0
, · · · , ip1

) , (ip2
, · · · , ip3

) , (ip4
, · · · , ip5

) , · · · ,
(

ip2q
, · · · , ip2q+1

))

and

R =
(

(ip1
, · · · , ip2

) , (ip3
, · · · , ip4

) , · · · ,
(

ip2q−1
, · · · , ip2q

))

,

with

(i1, · · · , i2k) =
(

ip0
, · · · , ip1

, ip1+1, · · · , ip2
, ip2+1, · · · , ip3

, · · · , ip2q+1

)

.

We allow for the possibility of having empty sequences ip0
, · · · , ip1

in the beginning and/or

ip2q
, · · · , ip2q+1

in the end of J .
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Definition 3.6 For any I ∈ Sk
n, we introduce the set J = J (I) of pairs (J, R) corre-

sponding to the sequence I. For a bidiagonal matrix B, donote that B∗ = BT if ij−ij+1 = −1,

otherwise, B∗ = B. Define
(

BBT
)

I = B∗
i1,i2B

∗
i2,i3 · · ·B∗

i2k−1i2k
B∗

i2ki1 ,
(

BBT
)

J
= B∗

ip0
,ip0+1

· · ·B∗
ip1−1,ip1

B∗
ip2

ip2+1
· · ·B∗

ip3−1,ip3
· · ·B∗

ip2q
,ip2q+1

· · ·B∗
ip2q+1−1,ip2q+1

,
(

BBT
)

R
= B∗

ip1
,ip1+1

· · ·B∗
ip2−1,ip2

B∗
ip3

ip3+1
· · ·B∗

ip4−1,ip4
· · ·B∗

ip2q−1
,ip2q−1+1

· · ·B∗
ip2q−1,ip2q

.

Remark 3.7 Note that any term in tr
(

(La1

β,n)k
)

will consist of terms in D and terms

in Z, with a sequence of runs J recording the former, and a sequence of runs R recording the

latter.

The proof of Claim 1 For simplicity, set λ̃i := λi

2a1
. According to the definition above,

we have that

E(Xk)l = E

[

n
∑

i=1

λ̃k
i − E(

n
∑

i=1

λ̃k
i )

]l

= E

[

tr(L̃a1

β,n)k − E

(

tr(L̃a1

β,n)k
)]l

= E





∑

I∈Sn,k

(L̃a1

β,n)I − E





∑

I∈Sn,k

(L̃a1

β,n)I









l

.

Note that

(

L̃a1

β,n

)

I
=

(

(

D +
1√
2a1

Z

)(

D +
1√
2a1

Z

)T
)

I

=
∑

(J,R)∈J

1

(2a1)P/2
(D)J (Z)R,

with P = p2 − p1 + 1 + · · · + p2q − p2q−1 + 1. Thus,

E[(Xk)l] =
∑

Ij∈Sn,k

∑

(Jj ,Rj)∈Jj

1

(2a1)q





l
∏

j=1

(D)Jj



E





l
∏

j=1

(

(Z)Rj
− E

[

(Z)Rj

])





=
∑

Ij∈Sn,k

∑

(Jj ,Rj)∈Jj

1

(2a1)q− l
2 n

l
2





l
∏

j=1

(D)Jj



E





l
∏

j=1

(

(Z)Rj
− E

[

(Z)Rj

])



 , (3.10)

where q = q(I1, · · · , Il) =
l
∑

j=1

Pj/2, and Pj is the length of Rj .

In the next lemma, we will present some results from [2] which also hold here.

Lemma 3.8 Assume that (R1, R2, · · · , Rl) involves s independent variables. The only

terms of asymptotical significance are those for which s = q = l/2; this means that for k and l

fixed, if l is odd,

lim
n→∞

E[(X̃k)l] = 0. (3.11)

Therefore, we only need to examine what happens when l is even and s = q = l/2.

Lemma 3.9 If l is even, s = q = l/2, and we have |Rj | = 1. This means that for each

1 ≤ j1 ≤ l, there exists a unique 1 ≤ j2 ≤ l such that ZRj1
= ZRj2

. Moreover, given an ordered

l/2-tuplet of distinct indices i1, i2, · · · , il/2, there are (l − 1)!! ways of pairing these indices to

the R′
js in this order.
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The next two lemmas are about the estimation of (Z)Rj
and (D)Jj

; there are slight differ-

ences from [2]. Also we only need to consider the significant terms.

Lemma 3.10 For (ZRj
) we have that

E

[ l
∏

j=1

((Z)Rj
− E((Z)Rj

))

]

=

l/2
∏

j=1

E(((Z)Rij
− E((Z)Rij

))2) → 2−
l
2 , as n → ∞. (3.12)

Lemma 3.11 For (D)Jj
, assuming that IJj

have 2s off diagonal terms, there are two

cases:

1) when (Z)Rj
corresponds to a diagonal term, then there exists an i such that (Z)Rj

= Zii

and there are 2(k − s)
(

k
s

)2
corresponding to IJj

, and

(D)Jj
=

(

1 − βi

2a1

)k−s− 1
2
(

β(n − i)

2a1

)s

+ o(1), as n → ∞; (3.13)

2) when (Z)Rj
corresponds to an off diagonal term, then there exists an i such that (Z)Rj

=

Zi+1,i, and there are 2s
(

k
s

)2
corresponding to IJj

, and

(D)Jj
=

(

1 − βi

2a1

)k−s (
β(n − i)

2a1

)s− 1
2

+ o(1), as n → ∞. (3.14)

The proof of Lemmas 3.10 and 3.11 By Lemma 7.1.2 in [1], we know that if lim
n→∞

rn =

∞, then

χrn
−√

rn
w→ N(0,

1

2
) as n → ∞

and E(χrn
) =

√
rn + O( 1√

rn
) as n large enough. Thus,

Zii = χ2a1−β(i−1) − E[χ2a1−β(i−1)]

= χ2a1−β(i−1) −
√

2a1 − β(i − 1) +
√

2a1 − β(i − 1) − E[χ2a1−β(i−1)],

where χ2a1−β(i−1) −
√

2a1 − β(i − 1)
ω→ N(0, 1

2 ) and

lim
n→∞

(

E[χ2a1−β(i−1)] −
√

2a1 − β(i − 1)

)

= 0

for any i satisfying i<< a1. Therefore, (3.12) is established.

In the same way, we know that for the entries of D, as n is large enough, we have that

Dii =

√

1

2a1
E(χ2a1−β(i−1)) =

√

1 − βi

2a1
+ o(1),

Di+1,i =

√

1

2a1
E(χβ(n−i)) =

√

β(n − i)

2a1
+ o(1)

for any i satisfying i<< a1. Therefore, (3.13) and (3.14) hold. �

Combining the above lemmas, if l is even, we can easily obtain equation:

lim
n→∞

E[(X̃k)l] = lim
n→∞

(l − 1)!!(S1,n + S2,n)
l
2 ,

where

S1,n(k) =
1

n

∑

1≤i≤n

2k−2
∑

j=0

(

1 − βi

2a1

)2k−j−1(β(n − i)

2a1

)j ∑

s1+s2=j
0≤s1,s2≤k−1

(k − s1)(k − s2)(C
s1

k Cs2

k )2,
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S2,n(k) =
1

n

∑

1≤i≤n

2k
∑

j=2

(

1 − βi

2a1

)2k−j(β(n − i)

2a1

)j−1 ∑

s1+s2=j
1≤s1,s2≤k

s1s2(C
s1

k Cs2

k )2. (3.15)

First, calculate S1,n. For simplicity, set

U1(k, j) : =
∑

s1+s2=j
1≤s1,s2≤k

s1s2(C
s1

k Cs2

k )2,

U2(k, j) : =
∑

s1+s2=j
0≤s1,s2≤k−1

(k − s1)(k − s2)(C
s1

k Cs2

k )2.

By binomial expansion and a changing summation order, we have that

S1,n(k) =
2k−2
∑

j=0

2k−j−1
∑

q=0

(−1)j+1+qCq
2k−j−1

1

n

∑

1≤i≤n

(

i

n

)2k−j−1−q

×
(

1 − i

n

)j (
nβ

2a1

)2k−1−q

U2(k, j). (3.16)

Using the properties of the Riemann integral and the Beta function, we know that

lim
n→∞

1

n

∑

1≤i≤n

(

i

n

)2k−j−1−q (

1 − i

n

)j

=

∫ 1

0

x2k−j−1−q(1 − x)jdx

=
(2k − j − 1 − 1)!j!

(2k − q)!
. (3.17)

Hence, plugging (3.17) into (3.16), we have that

lim
n→∞

S1,n(k) =

2k−1
∑

q=1

(−1)q+1 Cq
2k

2k
γ2k−1−q

2k
∑

j=q+1

(−1)j

Cj−1
2k−1

U1(k, j).

Similarly,

lim
n→∞

S2,n(k) =

2k−2
∑

q=1

(−1)q Cq
2k

2k
(γ)2k−1−q

2k−2
∑

j=q

(−1)j

Cj−1
2k−1

U2(k, j).

Therefore, Claim 1 is established. �

The proof of Claim 2 For any k1, k2 ≥ 1, by the precedent calculations, we have that

E(X̃k1
X̃k2

) = 2−
l
2

∑

I1∈Sn,k1

(J1,R1)∈I1

∑

I2∈Sn,k2

(J2,R2)∈I2

1

(2a1)q−1n





2
∏

j=1

(D)Jj



E





2
∏

j=1

(

(Z)Rj
− E

[

(Z)Rj

])



 ,

where q is the total length of R1 and R2. The contribution terms are for |R1| = |R2| = 1 and

R1 = R2. Similarly, we have that

lim
n→∞

Cov(X̃k1
, X̃k2

) = lim
n→∞

E(X̃k1
X̃k2

) = lim
n→∞

(S1,n(k1, k2) + S2,n(k1, k2))
l
2 ,

where

S1,n(k1, k2) =
1

n

∑

1≤i≤n

k1+k2−2
∑

j=0

(1 − βi

2a1
)k1+k2−j−1(

β(n − i)

2a1
)jU2(k1, k2, j),

S2,n(k1, k2) =
1

n

∑

1≤i≤n

k1+k2
∑

j=2

(

1 − βi

2a1

)k1+k2−j (
β(n − i)

2a1
)j−1U1(k1, k2, j

)

.

(3.18)
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Denote that

U1(k1, k2, j) =
∑

s1+s2=j
1≤s1≤k1

1≤s2≤k2

s1s2(C
s1

k1
)2(Cs2

k2
)2,

U2(k1, k2, j) =
∑

s1+s2=j
0≤s1≤k1−1
0≤s2≤k2−1

(k1 − s1)(k2 − s2)(C
s1

k1
)2(Cs2

k1
)2.

Repeating a process similar to that of Claim 1, we obtain the equation (3.5). This means that

Claim 2 is established. �

The proof of Claim 3 For simplicity, we take m = 2, for example. For other m ≥ 1,

the process is basically the same. In fact, for any t1, t2 ∈ R and k1, k2 ≥ 1, we have that

E

[

(t1X̃k1
+ t2X̃k2

)l
]

=
∑

Ij

(Jj ,Rj)∈Ij

(t1)
p(t2)

l−p 2−
l
2

(2a1)q− l
2 n

l
2

l
∏

j=1

(D)Jj
)E

[ l
∏

j=1

((Z)Rj
− E(Z)Rj

)

]

,

where p is the number of picking X̃k1
among the product of l terms, and q is still the total

length of Rj .

By Lemmas 3.8, 3.9 and 3.10, if l is odd, it holds that

lim
n→∞

E(t1X̃k1
+ t2X̃k2

)l = 0.

In the next calculations, we only need to consider what happens when l is even. The only

difference from the proof of Claim 1 is in terms of the estimation of (D)Jj
.

For the l
2 -tuplet (Ri1 , Ri2 , · · · , Ri l

2

), every Rij
corresponds to two types of R for any

1 ≤ j ≤ l
2 ; each one of these has two choices: either from Xk1

or Xk2
. Then, there are

three combinations, we denote r1 as the occurrence number of the combination (k1, k1), r2

as the occurrence number of the combination (k2, k2), and r3 as the occurence number of

the combination (k1, k2). In addition,
3
∑

i=1

ri = l/2, and there are
l
2

r1!r2!r3!
choices for each

combination (r1, r2, r3).

Now, we can obtain the estimation of (D)Jj
under the three combinations. Note that for

combination (k1, k2), there are two choices for the corresponding R. Thus, we have the following

formula:

lim
n→∞

E

[

(t1X̃k1
+ t2X̃k2

)l
]

= lim
n→∞

(l − 1)!!
∑

r1+r2+r3=
l
2

l
2

r1!r2!r3!
Q1,n(r1)Q2,n(r2)Q3,n(r3).

(3.19)

Here

Q1,n(r1) =
(

t21
(

S1,n(k1, k1) + S2,n(k1, k1)
)

)r1

,

Q2,n(r2) =
(

t22(S1,n(k2, k2) + S2,n(k2, k2))
)r2

,

Q3,n(r3) =
(

2t1t2(S1,n(k1, k2) + S2,n(k1, k2))
)r3

.
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Obviously, it holds that

lim
n→∞

Q1,n(r1) = (t21(S1(k1, k1) + S2(k1, k1)))
r1 ,

lim
n→∞

Q2,n(r2) = (t22(S1(k2, k2) + S2(k2, k2)))
r2 ,

lim
n→∞

Q3,n(r3) = (2t1t2(S1(k1, k2) + S2(k1, k2)))
r3 ,

(3.20)

where S1,n(ki, kj) and S2,n(ki, kj)(i = 1, 2) are defined as in (3.18); S1(ki, kj) and S2(ki, kj)

(i = 1, 2) are defined as in (1.6) and (1.7). Putting (3.20) back into (3.19), for even l, we have

that

lim
n→∞

E

[

(t1X̃k1
+ t2X̃k2

)l
]

= (l − 1)!!

(

∑

1≤i,j≤2

titj(S1(ki, kj) + S2(ki, kj))

)
l
2

.

Set m ≥ 1. For any ti ∈ R and any integer ki ≥ 1, the following conclusion can be obtained

similarly:

lim
n→∞

E

( m
∑

i=1

tiX̃ki

)l

=















(l − 1)!!

(

∑

1≤i,j≤m

titj(S1(ki, kj) + S2(ki, kj))

)
l
2

, if l is even;

0, if l is odd.

�

Lemma 3.1 follows directly from Claim 1, Claim 2 and Claim 3.

3.2 The proof of Lemma 3.2: the deviation

In this section, we are going to prove Lemma 3.2.

The proof of Lemma 3.2 According to Chapter 6.3 in [1], if 0 < γ ≤ 1, for n large

enough, we have that

E

n
∑

i=1

(

λi

2a1

)k

= n
k−1
∑

r=0

(

nβ

2a1

)r Cr
kCr

k−1

r + 1
+ Fk

(

nβ

2a1

)

+ O(
1

n
) (3.21)

for any k ≥ 1, where Fk( nβ
2a1

) is a polynomial of nβ
2a1

with respect to k. More precisely,

Fk

(

nβ

2a1

)

=
2

β
Ek

(

nβ

2a1

)

− Dk

(

nβ

2a1

)

,

where

Dk(
nβ

2a1
) =

k−1
∑

r=0

(

nβ

2a1

)r
∑

p∈AGDk,r

∑

i≥1

i

(

ui +
nβ

2a1
li

)

,

Ek(
nβ

2a1
) =

k−1
∑

r=0

(

nβ

2a1

)r
∑

p∈AGDk,r

∑

i≥1

(

C2
ui

+
nβ

2a1
C2

li

)

,

and AGDk,r denotes the set of alternating Motzkin paths of length 2k with r rises, ui(p) denotes

the number of rises between altitutes i and i+1 in path p and li(p) denotes the number of level

steps p taken from altitude i on odd-numbered steps.

Through the proof of Lemma 2.20 in [2], when nβ
2a1

= γ,

E

n
∑

i=1

(

λi

2a1

)k

= n

k−1
∑

r=0

γr Cr
kCr

k−1

r + 1
+

(

2

β
− 1

)∫ (1+
√

γ)2

(1−√
γ)2

tkµγ
L(t)dt + O(

1

n
). (3.22)
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Combining (3.21) and (3.22), since lim
n→∞

nβ
2a1

= γ, it is easy to find out, that for n large enough,

Fk

(

nβ

2a1

)

=

(

2

β
− 1

)∫ (1+
√

γ)2

(1−√
γ)2

tkµγ
L(t)dt + o(1).

Therefore, returning to (3.21),

E

n
∑

i=1

(

λi

2a1

)k

= n

k−1
∑

r=0

(

nβ

2a1

)r Cr
kCr

k−1

r + 1
+

(

2

β
− 1

)∫ (1+
√

γ)2

(1−√
γ)2

tkµγ
L(t)dt + o(1). (3.23)

Naturally, if 0 < γ ≤ 1, (3.23) yields the following result:

√

a1

n
E

n
∑

i=1

(

λi

2a1

)k

=
√

a1n

k−1
∑

r=0

(

nβ

2a1

)r Cr
kCr

k−1

r + 1

+

√

a1

n

(

2

β
− 1

)∫ (1+
√

γ)2

(1−√
γ)2

tkµγ
L(t)dt + o(1).

By definition, ui(p) = 0 for any p ∈ AGDk,0 and any i ≥ 1. This means, for the case

lim
n→∞

nβ
2a1

= 0, that Fk( nβ
2a1

) = O( n
a1

) for n large enough. Therefore,

√

a1

n
E

n
∑

i=1

(

λi

2a1

)k

=
√

a1n

k−1
∑

r=0

(

nβ

2a1

)r Cr
kCr

k−1

r + 1
+ o(1)

for n large enough. The proof is now complete. �
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