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Approximate solutions to the optimal flow problem of multi-area integrated
electrical and gas systems

Wicak Ananduta and Sergio Grammatico

Abstract— We formulate the optimal flow problem in a multi-
area integrated electrical and gas system as a mixed-integer
optimization problem by approximating the non-linear gas
flows with piece-wise affine functions, thus resulting in a set of
mixed-integer linear constraints. For its solution, we propose
a novel algorithm that consists in one stage for solving a
convexified problem and a second stage for recovering a mixed-
integer solution. The latter exploits the gas flow model and
requires solving a linear program. We provide an optimality
certificate for the computed solution and show the advantages
of our algorithm with respect to the state-of-the-art method via
numerical simulations.

I. INTRODUCTION

Due to its high efficiency and low carbon emission, the
utilization of natural gas for electricity production currently
has the fastest growing rate among fossil fuels, and in fact, it
now accounts for 25% of power generation [1]. Differently
from renewable power generators that have intermittency
issues, gas-fired generators are essentially dispatchable on
demand. Therefore, they are used to ensure sufficient power
delivery and to complement renewable energy sources [2],
[3]. Meanwhile, natural gas is also supplied directly to
households and industries, e.g. for generating thermal energy.
Therefore, to secure fuel adequacy for power generation and
availability for gas consumption, one should consider an
interdependent operation of power and gas systems [4]. In
this regard, an optimal gas and power flow (OGPF) problem
concerns computing economically efficient operating points
of gas production units and dispatchable power generation
units, including gas-fired ones that couple power and gas
networks, to meet power and gas demands while satisfying
operational and physical constraints [4].

One of the key challenges in solving OGPF problems
is dealing with static nonlinear gas flow equations, which
relate the gas pressures of two connected nodes and the gas
flow between them. While linear approximations of power
flows are acceptable for electrical transmission networks [5],
gas flows are typically approximated by mixed-integer (MI)
linear or second-order cone (SOC) constraints. In particular,
the works in [6]–[9] use piece-wise affine (PWA) functions
to approximate gas flow equations; thus, they require binary
variables to indicate the active region/piece of the PWA
functions and, in turn, obtain mixed integer linear constraints.
On the other hand, [4], [10]–[13] follow a different approach,
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i.e., relaxing Weymouth gas flow equation [10, Eq.(15)] into
MISOC inequality constraints through a binary variable that
indicates the gas flow direction. We note that when the gas
flow directions are known and fixed, the MISOC model turns
into a convex SOC one [14]. Furthermore, some attempts to
improve the tightness of the solution obtained via the MISOC
model have also been proposed. In [4], [10], a penalty cost
on the auxiliary variable that defines the gas flow inequality
is introduced, and [10] further presents a sequential cone
programming method.

When an integrated electrical and gas system (IEGS) is
large and consists of multiple areas, a decentralized method
to solve the corresponding OGPF problem is preferred [9]–
[11]. The works in [9]–[11], [15] opt for the alternating
direction method of multipliers (ADMM) to design a solution
algorithm. Specifically, the authors of [11] and [15] consider
linear approximations of gas flows, resulting in convex
problems and allowing for a straightforward implementation
of ADMM at the cost of relatively poor gas flow approxima-
tions. Meanwhile, [10] considers the MISOC gas flow model
and proposes an iterative algorithm, where, at each iteration,
area-based problems with MISOC constraints are solved to
update the binary decisions, and then, a convex multi-area
problem with SOC and coupling constraints is solved to
update the continuous decision variables. On the other hand,
[9] uses the PWA model and applies directly ADMM to
solve a mixed-integer problem distributedly, however without
providing convergence guarantees.

In this paper, we study the OGPF problem of a multi-
area IEGS, as in [9]–[11]. We use a PWA approximation of
the gas flows since we can control its estimation accuracy,
unlike the MISOC relaxation. Furthermore, we apply the
mixed logical formulation of the PWA approximation based
on [16] to derive a set of MI linear constraints (Sec. II).
Our main contribution is to design a two-stage algorithm to
compute a solution to the OGPF problem (Sec. III). In the
first stage, we convexify the OGPF problem and compute
a solution to this convexified problem. We use the output
of the first stage to recover a mixed-integer solution by
exploiting our gas flow model. Specifically, we obtain the
integer part of the decision variable by using the logical
constraints defining the PWA gas flow model and then we
recompute the gas pressure variables by solving a linear
program derived from the approximated gas flow equations.
We show that the proposed algorithm can indeed find an
exact solution. Moreover, when some gas flow equations
are violated, we can quantify the maximum inaccuracy.
Differently from existing algorithms, e.g., those in [9],
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[10], our method does not require solving a mixed-integer
optimization problem. Instead, the subproblems in the two
stages are convex, allowing us to apply a distributed convex
optimization method. Furthermore, to justify the gas flow
model choice, we compare the performance of our algorithm
with methods that use the MISOC formulation (Sec. IV).

Notation: We denote by R (R≥0) the set of (non-
negative) real numbers. The operator col(·) stacks its argu-
ments into a column vector. The operator sgn(·) denotes the
sign function, i.e.,

sgn(a) =


1, if a > 0,

0, if a = 0,

−1, if a < 0.

II. MULTI-AREA OPTIMAL GAS-POWER FLOW PROBLEM

We consider the OGPF problem of a multi-area IEGS,
where each area is controlled independently but is coupled
with the other areas through tie-lines in the electrical power
network and/or tie-pipes in the gas network.
A. System model

We first provide the model of the system, in terms of cost
functions and constraints.

Dispatchable generators (DGs): Let Idg denote the set
of DGs. The power production, denoted by pdgi ∈ R≥0, is
bounded by

pdg
i

≤ pdgi ≤ pdgi , ∀i ∈ Idg, (1)

where pdg
i

< pdgi denote the minimum and maximum
generator operation capacities. We classify the DGs into
the subset of gas-fueled units (Igu), i.e., those that use
natural gas distributed through the gas network, and that of
non-gas-fueled units (Ingu), i.e., Idg := Igu ∪ Ingu and
Igu ∩ Ingu = ∅. For each gas-fueled unit, we consider a
quadratic relationship between its power production and gas
consumption, denoted by dgui ∈ R≥0 [10, Eq. (27)], yielding
the following constraints:

dgui ≥ η2,i(p
dg
i )2 + η1,ip

dg
i + η0,i, if i ∈ Igu,

dgui = 0, if i ∈ Ingu,
(2)

for some constant η2,i > 0 and η1,i, η0,i ∈ R. On the other
hand, the power production of the non-gas-fueled units is
assumed to have a quadratic economical cost [4], [10], [13];
thus, we have that

fdgi (pdgi ) =

{
cdg2,i(p

dg
i )2 + cdg1,ip

dg
i + cdg0,i, if i∈ Ingu,

0, if i∈ Igu,
(3)

for some cost parameters cdg2,i > 0 and cdg1,i, c
dg
0,i ∈ R.

Power network: The power generated by the DGs is
used to satisfy the power demands in the electrical network,
which is represented by an undirected connected graph Ge :=
(B,L), where B := {b1, b2, . . . , bB}, with |B| = B, denotes
the set of busses (nodes) and L ⊆ B × B denotes the set
of power lines (edges). We note that assuming there exists
m areas, the set of busses B is partitioned into m non-
overlapping subsets, i.e., Ba, for a = 1, 2, . . . ,m, each of
which represents the set of busses that belong to the same

area. Therefore, L includes the tie lines. By considering the
DC power flow approximation [5, Eq. (1)], the power balance
at each bus can be written as:∑

j∈Idg
i
pdgj − dei =

∑
j∈N e

i

1
X{i,j}

(θi − θj), ∀i ∈ B, (4)

where dei ∈ R≥0, θi ∈ R, and X{i,j} denote the electricity
demand, the voltage angle of bus i, and the reactance of
line {i, j} ∈ L, respectively, whereas Idg

i and N e
i := {j |

{i, j} ∈ L} denote the set of DGs connected to bus i and
that of neighbor busses, respectively. We also bound θi by

θi ≤ θi ≤ θi,∀i ∈ B, (5)

with θi < θi being the lower and upper bounds.
Gas sources: We denote the set of gas sources (wells)

by Igs and the gas production, denoted by gsi ∈ R≥0, is
limited by the production capacity, i.e.,

gs
i
≤ gsi ≤ gsi , ∀i ∈ Igs, (6)

where gs
i
< gsi denote the minimum and maximum produc-

tion. Furthermore, we consider a linear gas production cost
[4], [10], [13], i.e., for some constants cgs1,i, c

gs
0,i ≥ 0,

fgsi = cgs1,ig
s
i + cgs0,i, ∀i ∈ Igs. (7)

Gas network: The gas network is represented by a
directed connected graph Gg := (N ,P), where N :=
{n1, n2, . . . , nN}, with |N | = N , denotes the set of gas
nodes and P ⊆ N × N denotes the set of edges, with
both the edges (i, j), (j, i) ∈ P representing the pipeline that
connects nodes i and j. Similarly to the power network, Gg

is also partitioned into m non-overlapping subsets, Na, for
a = 1, 2, . . . ,m, each of which represents the set of nodes
in one area, and we assume that |Na| > 1. The gas balance
at each node i ∈ N is given by∑

j∈Igs
i

gsj − dgi −
∑
j∈Igu

i

dguj =
∑
j∈N g

i

ϕ(i,j), ∀i ∈ N , (8)

where Igs
i , Igu

i , and N g
i := {j | (i, j) ∈ P} denote the set

of gas sources located at gas node i, that of gas-fueled DGs
connected to gas node i, and that of neighbors of node i.
Moreover, dgi and ϕ(i,j) denote the gas demand of node i
and the gas flow between nodes i and j observed by node
i, respectively. In the literature, passive gas flows, assumed
to be in the internal pipelines of each area, are typically
modeled based on Weymouth equation whereas the gas flows
in the tie pipelines can be actively controlled, as in [10].
Thus, we have the following gas flow constraints:

ϕ(i,j) = sgn(ψi − ψj)c
f
(i,j)

√
|ψi − ψj |, ∀(i, j) ∈ Pnt, (9)

0 = ϕ(i,j) + ϕ(j,i), ∀(i, j) ∈ Pt, (10)

where ψi denotes the gas pressure at node i ∈ N and cf(i,j)
denotes Weymouth constant that depends on the pipeline
characteristics. The set Pt ⊂ P denotes the set of tie
pipelines that connect two neighboring areas while Pnt :=
P\Pt denotes the remaining (internal, non-tie) pipelines. In
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addition, we also constrain the tie pipeline gas flows and gas
pressures as follows:

−ϕ(i,j) ≤ ϕ(i,j) ≤ ϕ(i,j), ∀(i, j) ∈ Pt, (11)

ψ
i
≤ ψi ≤ ψi, ∀i ∈ N , (12)

where ϕ(i,j) denotes the maximum gas flow and ψ
i
< ψi

denote the minimum and maximum gas pressures of node i.
The gas flow equations in (9) are nonlinear, implying non-

convexity of the problem. Here, we approximate (9) with r
pieces of affine functions, represented by a set of mixed-
integer linear constraints [16], as follows:

h(i,j)(y(i,j), z(i,j)) = 0, ∀(i, j) ∈ Pnt, (13)
g(i,j)(y(i,j), z(i,j)) ≤ 0, ∀(i, j) ∈ Pnt, (14)

where h(i,j) and g(i,j) are affine. We define y(i,j) :=

col(ψi, ψj , ϕ(i,j), y
ψi

(i,j), {y
m
(i,j)}

r
m=1) ∈ R4+r, where yψi

(i,j)
and ym(i,j), for m = 1, . . . , r, denote continuous extra vari-
ables, while z(i,j) := col(δψi

(i,j), {α
m
(i,j), β

m
(i,j), δ

m
(i,j)}

r
m=1) ∈

{0, 1}1+3r collects the binary decision variables. For ease of
presentation, we show the complete model in Appendix A.

B. Optimization problem formulation

We can now state the overall optimization
problem of the system. Let us first denote by u
the collection of all decision variables, i.e., u :=
col({pdgi , d

gu
i }i∈Idg , {θi}i∈B, {gsi}i∈Igs , {ϕ(i,j)}(i,j)∈Pt ,

{y(i,j), z(i,j)}(i,j)∈Pnt}). Then, we can write a mixed-
integer OGPF problem of a multi-area IEGS as follows


min
u

∑
i∈Idg

fdgi (pdgi ) +
∑
i∈Igs

fgsi (gsi )

s. t. z(i,j) ∈ {0, 1}1+3r, ∀(i, j) ∈ Pnt,

(1), (2), (4)–(6), (8), (10)–(14) hold,

(15a)

(15b)

where the cost functions fdgi and fgsi are defined in (3)
and (7), respectively. The mixed-integer problem in (15)
can be considered as an approximated problem since the
Weymouth gas flow equations are substituted with a PWA
model. Furthermore, the cost function in (15a) and most
constraints, i.e., those in (1), (2), (5), (6), (8), and (11)–(14)
can be decomposed area-wise. The constraints that couple
two neighboring areas are a subset of the power balance
constraints in (4), for the busses connected to the tie lines,
and the flow constraints in (10).

Remark 1: We can augment Problem (15) temporally by
considering that each decision variable is a vector of di-
mension equal to a predefined time horizon. Our proposed
approach directly applies to this augmented problem. For
the ease of notation and simplicity of the exposition, here
we keep each decision variable to be scalar. □

III. PROPOSED TWO-STAGE METHOD

A common approach to design a distributed method for a
multi-agent optimization problem with coupling constraints
is by using the (augmented) Lagrangian method, where

coupling constraints are dualized [17, Chap. 2]. Distributed
algorithms derived from this approach, such as the ADMM,
typically has a global convergence guarantee when the prob-
lem is convex and under rather mild conditions. However,
to our knowledge, there is no such a guarantee when the
problem is mixed-integer, such as Problem (15). Therefore,
we propose a two-stage method that can be implemented
in a distributed fashion to solve Problem (15). In the first
stage, we solve a convexified problem whereas, in the second
stage, we recover an approximate mixed-integer solution by
exploiting the PWA gas model.

The source of non-convexity in Problem (15) is the binary
constraints in (15b). Therefore, we relax these constraints
by considering their convex hulls and obtain the following
convex problem (with equality coupling constraints):

min
u

∑
i∈Idg

fdgi (pdgi ) +
∑
i∈Igs

fgsi (gsi ) (16a)

s. t. z(i,j) ∈ [0, 1]1+3r, ∀(i, j) ∈ Pnt, (16b)
(1), (2), (4)–(6), (8), and (10)–(14) hold.

Now, we can resort to distributed augmented Lagrangian
algorithms, such as those in [18, Sect. 3], [19, Alg. 1], [20,
Algs. 1 & 2], to solve Problem (16).

Let us now suppose that an optimal solution to the
convexified problem in (16) is obtained and denoted by
u◦. In general we cannot guarantee that the computed
solution satisfies the binary constraints (15b). Therefore, now
we explain how to recover an approximate mixed-integer
solution with minimal violation on the gas flow equations.

From the PWA gas flow model, particularly (27), (29) and
(35) in Appendix A, for each (i, j) ∈ Pnt, the binary variable
z(i,j) defines some logical implications of the flow variable
ϕ(i,j). Given the decision ϕ◦(i,j), for each (i, j) ∈ Pnt, we
can then use these constraints to obtain the binary decision
z̃(i,j) := col(δ̃ψi

(i,j), {α̃
m
(i,j), β̃

m
(i,j), δ̃

m
(i,j)}

m
r=1) as follows:

δ̃ψ(i,j) =

{
1, if ϕ◦ij ≤ 0,

0, otherwise,

δ̃m(i,j) =

{
1, if ϕm

(i,j)
≤ ϕ◦(i,j) ≤ ϕ

m

(i,j),

0, otherwise, for m = 1, . . . , r,

− α̃m(i,j) + δ̃m(i,j) ≤ 0, −β̃m(i,j) + δ̃m(i,j) ≤ 0,

α̃m(i,j) + β̃m(i,j) − δ̃m(i,j) ≤ 1.

(17)

The (binary) variables δm(i,j), m = 1, . . . , r, and δψ(i,j) appear
in the PWA gas flow equation (31), restated as follows:

r∑
m=1

δm(i,j)(a
m
(i,j)ϕ(i,j)+b

m
(i,j))=(2δψ(i,j)−1)ψi−(2δ

ψ
(i,j)−1)ψj , (18)

for each (i, j) ∈ Pnt. As parts of a solution to the first
stage problem, u◦, the tuple (ϕ◦(i,j), ψ

◦
i , ψ

◦
j , z

◦
(i,j)), where

z◦(i,j) is (possibly) continuous instead of binary, satisfies
(18). However, (ϕ◦(i,j), ψ

◦
i , ψ

◦
j , z̃(i,j)) might not. Thus, our

next step is to recompute the pressure variables ψi, for all
i ∈ N , while keeping the gas flow decisions as ϕ◦(i,j), for
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all (i, j) ∈ P . To that end, let us first compactly write the
pressure variable ψ = col((ψi)i∈N ), the binary variables
δ̃ψ = col((δ̃ψ(i,j))(i,j)∈Pnt), δ̃pwa

h = col((δ̃pwa
(i,j))(i,j)∈Pnt),

δ̃pwa
(i,j) = col((δ̃m(i,j)))

r
m=1, and the flow variables ϕ◦ =

col((ϕ◦(i,j))(i,j)∈Pnt). We can recompute ψ by solving the
following convex problem:

ψ̃∈

argmin
ψ

Jψ(ψ):=∥E(δ̃ψ)ψ − θ(ϕ◦, δ̃pwa)∥∞

s.t. ψ ∈ [ψ,ψ],

(19a)

(19b)

where the objective function Jψ is derived from the gas flow
equation (18) as we aim at minimizing its error. We denote
by E(δ̃ψ) := col((E(i,j)(δ̃

ψ
(i,j)))(i,j)∈Pnt) ∈ R|Pnt|×N the

transpose of the incidence matrix of Gg, since for each (i, j),

[E(i,j)(δ̃
ψ
(i,j))]k =


(2δ̃ψ(i,j) − 1), if k = i,

−(2δ̃ψ(i,j) − 1), if k = j,

0, otherwise,

(20)

where [E(i,j)]k denotes the k-th component of the (row)
vector E(i,j), and since δ̃ψ(i,j) ∈ {0, 1}. We note that
E(i,j)(δ̃

ψ
(i,j))ψ equals to the concatenation of the right-hand

side of the equality in (18) over all edges in Pnt. On the other
hand, θ(ϕ◦, δ̃pwa) = col((θ(i,j)(ϕ

◦
(i,j), δ̃

pwa
(i,j)))(i,j)∈Pnt) with

θ(i,j)(ϕ
◦
(i,j), δ̃

pwa
(i,j)) =

r∑
m=1

δ̃m(i,j)(a
m
(i,j)ϕ

◦
(i,j) + bm(i,j)), (21)

which is equal to the concatenation of the left-hand side of
the equation in (18). In addition, the constraints in (19b)
is obtained from (12), where ψ = col((ψ

i
)i∈I) and ψ =

col((ψi)i∈I). Problem (19) can either be solved centrally,
if a coordinator exists, or distributedly by resorting to an
augmented Lagrangian method since it can be equivalently
written as a linear optimization problem.

Remark 2: Since each area has more than one node in
the gas network and the graph Gg is connected, every node
i connected to a tie pipeline (i, j) ∈ Pt must have an edge
with another node, say k, that belongs to the same area; thus,
(i, k) ∈ Pnt. This fact implies that the pressure variables of
all nodes in N are updated in the second stage. □

Finally, for completeness, we also update the auxiliary
continuous variables introduced to define the PWA model
by using their definitions (see Appendix A), i.e.,

ỹψi

(i,j) = δ̃ψ(i,j)ψ̃i, ∀(i, j) ∈ Pnt,

ỹm(i,j) = δ̃m(i,j)ϕ
◦
(i,j), ∀(i, j) ∈ Pnt, m = 1, . . . , r.

(22)

The proposed method is summarized in Algorithm 1,
whose solutions we formally characterize next.

Proposition 1: Let u⋆ be the outcome of Algorithm 1 as
defined in (23). If the optimal value of the cost function in
Problem (19) is zero, i.e., Jψ(ψ̃) = 0, then, u⋆ is a solution
to Problem (15). □

When the optimal cost of the optimization problem in (19)
is positive, this value determines the maximum violation of
the gas flow PWA model. In addition, one can also evaluate

Algorithm 1 Two-stage method for Problem (15)
Stage 1: Convexification

• Compute a solution to the convexified problem in (16)
(u◦).

Stage 2: Solution recovery
• Obtain binary variable z̃ from ϕ◦ via (17).
• Recompute pressure variable ψ̃ by solving Problem (19)
• Update auxiliary variables (ỹψi

(i,j), {y
m
(i,j)}

r
m=1), for all

(i, j) ∈ Pnt, according to (22).
Return:

u⋆ := col({(pdgi , d
gu
i )◦}i∈Idg , {θ◦i }i∈B, {(gsi )◦}i∈Igs ,

{ϕ◦(i,j)}(i,j)∈Pt , {y⋆(i,j), z̃(i,j)}(i,j)∈Pnt}),

y⋆(i,j) := col(ψ̃i, ψ̃j , ϕ
◦
(i,j), ỹ

ψi

(i,j), {ỹ
m
(i,j)}

r
m=1) ∀(i, j) ∈ Pnt.

(23)

the approximation quality with respect to the nonlinear Wey-
mouth equation by using the following gas flow deviation
metric derived from (9): For each (i, j) ∈ Pnt,

∆ϕ
(i,j) =

ϕ◦(i,j) − sgn(ψ̃i − ψ̃j)c
f
(i,j)

√
|ψ̃i − ψ̃j |

sgn(ψ̃i − ψ̃j)cf(i,j)

√
|ψ̃i − ψ̃j |

. (24)

.

IV. NUMERICAL SIMULATIONS

We show the performance of Algorithm 1 via numerical
simulations on two test cases adapted from the (medium)
73-bus-30-node-3-area and (large) 472-bus-40-node-4-area
networks [10, Sect. IV]. We run 100 Monte Carlo simulations
for each test case where the power and gas demands are
randomly varied. All simulations1 are carried out in Matlab
R2020b with Gurobi solver on a laptop computer with 2.3
GHz intel core i5 processor and 8 GB of memory.

Figure 1 shows the performance of Algorithm 1 with
different numbers of PWA regions (r). At least in 82% of the
total random cases generated, the proposed algorithm with
different values of r finds an optimal solution to Problem
(15), i.e., zero cost value in the second stage (Jψ(ψ̃) = 0).
In these cases, as expected, the gas flow deviations (24)
decrease as r increases since the PWA model approximates
the Weymouth equation better with larger r (top plot of
Figure 1). However, when r increases, consequently so does
the dimension of the decision variables, the computational
time also grows (bottom plot of Figure 1).

Then, we compare Algorithm 1 with the state-of-the-art
method based on the MISOC gas flow model [10, Algorithm
3], where the mixed-integer linear constraints (13)–(14) are
replaced with MISOC constraints to approximate the Wey-
mouth equations in (9). We also consider the penalty-based
variant, where an additional penalty cost function aimed at
reducing gas flow deviations is introduced [4], [10]. The
simulation results are illustrated in Figure 2. We can observe

1The data sets and codes for the simulations are available at
https://github.com/ananduta/iegs
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Fig. 1: The top plot shows the average gas flow deviation, i.e.,
1

|Pnt|
∑

(i,j)∈Pnt ∆
ϕ
(i,j) where ∆ϕ

(i,j) is defined in (24), when
optimal solutions are found. The bottom plot shows the average
of computational time.

(a) Medium test case (b) Large test case

Fig. 2: Performance comparison between Algorithm 1, the stan-
dard MISOC, and the penalty-based MISOC (pen-MISOC) on the
medium and large networks. The top plots show the (normalized)
cost values, the middle plots show the average gas flow deviation,
and the bottom plots show the total computational time.

that Algorithm 1 with r = 40 has the smallest average
gas flow deviation while achieving the same performance
as the standard MISOC in terms of cost values. The penalty
cost in the MISOC method can indeed reduce the average
gas flow deviation although it is still larger than that of
Algorithm 1 while having relatively large cost values. The
performance advantages of Algorithm 1 comes at the cost of
total computational time, especially for the large test case.
In this regard, a trade off between the gas flow deviation
and the computational time can be made by adjusting r, the
number of regions in the PWA approximation (see Figure 1).

V. CONCLUSION

The optimal flow problem of a multi-area integrated elec-
trical and gas system can be formulated as a mixed-integer
optimization when the nonlinear gas flow equations are
approximated with piece-wise affine functions. Our proposed

algorithm can compute a solution by exploiting convexi-
fication and the approximated gas flow model. Numerical
simulations show that the proposed algorithm outperforms
state-of-the-art methods which use a mixed-integer second
order cone gas flow model. Our ongoing work includes
improving the proposed algorithm, in terms of solutions and
computational efficiency, and extending the problem to a
generalized game setup, where selfish yet coupled agents
exist in the network.

APPENDIX

A. Piece-wise affine approximation of gas flow equations
We approximate the gas flow equality constraint at each

edge (i, j) ∈ Pt in (9) with a set of mixed-integer linear
constraints. To that end, we introduce an auxiliary variable
φ(i,j) :=

ϕ2
(i,j)

(cf
(i,j)

)2
and rewrite (9) as follows:

φ(i,j) =

{
(ψi − ψj) if ψi ≥ ψj ,

(ψj − ψi) otherwise.
(25)

Next, we define a binary variable δψ(i,j) ∈ {0, 1} based on
the following logical constraints:

[δψ(i,j) = 1] ⇔ [ψi ≥ ψj ], (26)

[δψ(i,j) = 1] ⇔ [ϕij ≥ 0]. (27)

Therefore, (25) can be rewritten as

φ(i,j) = δψ(i,j)(ψi − ψj) + (1− δψ(i,j))(ψj − ψi)

= 2δψ(i,j)ψi − 2δψ(i,j)ψj + (ψj − ψi). (28)

Let us then approximate the quadratic function φ(i,j) =
ϕ2
(i,j)

(cf
(i,j)

)2
with a piece-wise affine function. Specifically, we

divide the operating region of the gas flow into r subregions
and use a binary variable δm(i,j), for each m ∈ {1, . . . , r}, to
indicate which subregion is active, i.e.,

[δm(i,j) = 1] ⇔ [ϕm
(i,j)

≤ ϕ(i,j) ≤ ϕ
m

(i,j)], (29)

with −ϕ = ϕ1
(i,j)

< ϕ
1

(i,j) = ϕ2
(i,j)

< · · · < ϕ
r

(i,j) = ϕ.
Thus, we have the following approximation:

φ(i,j) ≈
r∑

m=1

δm(i,j)(a
m
(i,j)ϕ(i,j) + bm(i,j)), (30)

for some am(i,j), b
m
(i,j) ∈ R. Next, by (28) and (30), we get

the (approximated) gas flow equality constraint:
r∑

m=1

δm(i,j)(a
m
(i,j)ϕ(i,j) + bm(i,j)) = 2δψ(i,j)ψi − 2δψ(i,j)ψj + ψj − ψi.

(31)
Then, we introduce some auxiliary variables to substitute the
products of two decision variables, i.e., ym(i,j) := δm(i,j)ϕ(i,j),
for m = 1, . . . , r, and yψi

(i,j) = δψ(i,j)ψi. We observe that

δ(i,j) = 1 − δ(j,i), and δ(j,i)ψj = y
ψj

(j,i). By combining the
preceding two relationships with (31), it holds that:
r∑

m=1

(am(i,j)y
m
(i,j) + bm(i,j)δ

m
(i,j)) = 2yψi

(i,j) + 2y
ψj

(j,i) − ψi − ψj ,

(32)
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which, together with the reciprocity constraint on ϕ(i,j), i.e.,
ϕ(i,j) + ϕ(j,i) = 0, and the simplex constraint on δm(i,j), for
all m = 1, . . . , r, i.e.,

∑r
m=1 δ

m
(i,j) = 1, is used to define

h(i,j) in (13). Moreover, for each (i, j) ∈ Pt, we have:
1. Inequality constraints equivalent to (26):{

−ψi + ψj ≤ −(ψ
i
− ψj)(1− δψ(i,j)),

−ψi + ψj ≥ ε1+ (−(ψi − ψ
j
)− ε1)δψ(i,j).

(33)

2. Inequality constraints equivalent to (27):{
−ϕ(i,j) ≤ ϕ(i,j)(1− δψ(i,j)),

−ϕ(i,j) ≥ ε1+ (−ϕ(i,j) − ε1)δψ(i,j).
(34)

3. Inequality constraints equivalent to (29) [16, (4e) & (5a)]:

ϕ(i,j) − ϕ
m

(i,j) ≤ (ϕ(i,j) − ϕ
m

(i,j))(1− αm(i,j)),

ϕ(i,j) − ϕ
m

(i,j) ≥ ε1+ (−ϕ(i,j) − ϕ
m

(i,j) − ε1)αm(i,j),

−ϕ(i,j) + ϕm
(i,j)

≤ (ϕ(i,j) + ϕm
(i,j)

)(1− βm(i,j)),

−ϕ(i,j) + ϕm
(i,j)

≥ ε1+ (−ϕ(i,j) + ϕm
(i,j)

− ε1)βm(i,j),

−αm(i,j) + δm(i,j) ≤ 0, −βm(i,j) + δm(i,j) ≤ 0,

αm(i,j) + βm(i,j) − δm(i,j) ≤ 1,

(35)

for m = 1, . . . , r, where αm(i,j), β
m
(i,j) ∈ {0, 1}, for m =

1, . . . , r, are additional binary variables.
4. Inequality constraints equivalent to ym(i,j) = δm(i,j)ϕ(i,j)
[16, Eq. (5b)]: For all m = 1, . . . , r,{
ym(i,j) ≥ −ϕ(i,j)δ

m
(i,j), ym(i,j) ≤ ϕ(i,j) + ϕ(i,j)(1− δm(i,j)),

ym(i,j) ≤ ϕ(i,j)δ
m
(i,j), ym(i,j) ≥ ϕ(i,j) − ϕ(i,j)(1− δm(i,j)).

(36)

5. Inequality constraints equivalent to yψi

(i,j) = δψ(i,j)ψi:{
yψi

(i,j) ≥ ψ
i
δψ(i,j), yψi

(i,j) ≤ ψi − ψ
i
(1− δψ(i,j)),

yψi

(i,j) ≤ ψiδ
ψ
(i,j), yψi

(i,j) ≥ ψi − ψi(1− δψ(i,j)).
(37)

We can compactly write (33)–(37) as g(i,j) in (14).

B. Proof of Proposition 1

Since u◦ is a solution to the convexified problem in
(16), u◦ satisfies all the constraints of Problem (15),
except possibly the binary constraints (15b). Thus, the tuple
({(pdgi , d

gu
i )◦}i∈Idg , {θ◦i }i∈B, {(gsi )◦}i∈Igs , {ϕ◦(i,j)}(i,j)∈Pt),

which does not change after the second stage, satisfies (1),
(2), (4)–(6), (8), (10) and (11). Since z̃ satisfies (17) while
(ỹψi

(i,j), {ỹ
m
(i,j)}

r
m=1) satisfies (22), the only constraint in the

mixed-integer linear gas flow model that may not be satisfied
is (18). Therefore, if the recomputed pressure variable ψ̃,
which is a solution to Problem (19), has zero optimal value,
i.e., Jψ(ψ̃) = 0, then the tuple (ϕ◦(i,j), ψ̃i, ψ̃j , z̃(i,j)), for
each (i, j) ∈ Pnt, satisfies (18) (and (12)), thus implying
that u⋆ is a feasible point of Problem (15). Since Problem
(16) is a convex relaxation of Problem (15), the value of
the cost function in (15a) evaluated at u◦ is a lower bound
of the optimal value of Problem (15). Furthermore, since
the decision variables that influence the cost functions, i.e.,
(({(pdgi )◦}i∈Idg , {(gsi )◦}i∈Igs), are computed in the first
stage and remain the same after the second stage, the value
of the cost function in (15a) after the second stage is the
same as that after the first stage. Consequently, the lower

bound is achieved by u⋆. Thus, we conclude that u⋆ is a
solution to Problem (15).
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