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Rail Break Prediction and Cause Analysis Using
Imbalanced In-Service Train Data

Cheng Zeng , Jinsong Huang , Hongrui Wang , Member, IEEE, Jiawei Xie , and Shan Huang

Abstract— Timely detection and identification of rail breaks
are crucial for safety and reliability of railway networks. This
article proposes a new deep learning-based approach using the
daily monitoring data from in-service trains. A time-series gener-
ative adversarial network (TimeGAN) is employed to mitigate the
problem of data imbalance and preserve the temporal dynamics
for generating synthetic rail breaks. A feature-level attention-
based bidirectional recurrent neural network (AM-BRNN) is
proposed to enhance feature extraction and capture two-direction
dependencies in sequential data for accurate prediction. The
proposed approach is implemented on a three-year dataset
collected from a section of railroads (up to 350 km) in Australia.
A real-life validation is carried out to evaluate the prediction
performance of the proposed model, where historical data are
used to train the model and future “unseen” rail breaks along
the whole track section are used for testing. The results show
that the model can successfully predict nine out of 11 rail breaks
three months ahead of time with a false prediction of nonbreak
of 8.2%. Predicting rail breaks three months ahead of time will
provide railroads enough time for maintenance planning. Given
the prediction results, a Shapley additive explanations (SHAP)
method is employed to perform a cause analysis for individual
rail break. The results of cause analysis can assist railroads to
plan appropriate maintenance to prevent rail breaks.

Index Terms— Cause analysis, deep learning-based approach,
in-service train data, rail break prediction, real-life validation.

I. INTRODUCTION

RAIL break is a major threat to the reliability of the
railroads, leading to increased risk of accidents and cost

of maintenance. Currently, visual inspections and track circuit
systems are usually used to detect rail breaks. However, visual
inspections are slow and laborious, and the results depend on
human operators. In addition, due to long inspection interval,
rail breaks may occur with the growing of undetected defects
after an inspection. The drawback of track circuit system is
that the rail break has already occurred, resulting in a post-fix
rather than preventing the rail breaks in the first place. Thus,
developing a predictive model to identify locations at high risk
for rail break’s occurrence has economic and safety benefits,
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enabling more effective maintenance to prevent rail breaks,
service interruptions, and potential derailments.

Previous research on predictive models for rail breaks can
be divided into two categories: 1) probabilistic models for
analyzing the risk of rail breaks and 2) machine learning-based
models for predicting the location where rail breaks are likely
to occur.

Chattopadhyay and Kumar [1] applied the Weibull distri-
bution to model the relationship between the probability of
rail breaks and annual tonnage, where the break probability
function monotonically increased with annual tonnage. Based
on the fuzzy logic process, Vesković et al. [2] developed a
fuzzy model to predict the frequency of broken rails in a large
region. Bai et al. [3] employed the theory of Markov stochastic
processes to estimate the rail break time in a long period,
such as five years. A regression model based on survival
analysis was developed by Ghofrani et al. [4] to predict the
risk of rail breaks between two successive rail inspections.
Later, Ghofrani et al. [5] developed an improved version of
the prediction model to predict the arrival rate of rail breaks.
Those probabilistic models perform well in analyzing the risk
of rail breaks over a large region or long-term period. However,
they are incapable to predict the location where rail breaks are
prone to occur, which makes predictive maintenance difficult.

Dick et al. [6] developed a logistic regression model to
quantify the probability of rail breaks at any particular location
in a two-year period. Track characteristics data, such as rail
age, annual tonnage, mainline turnouts, and degree of curve,
were selected for inclusion in the model. Based on the same
dataset, Schafer and Barkan [7] proposed a hybrid method
by using logistic regression to select important parameters
and an artificial neural network (ANN) to predict rail breaks.
A recent study proposed by Zhang et al. [8] used multisource
of data, including track characteristics and traffic information
to predict rail breaks. Ghofrani et al. [9] applied a gradient
boosting machine to analyze the risk of rail breaks by consid-
ering geometry data and monthly average temperature. While
the track characteristics data are potentially relevant to the
appearance of rail breaks, such data remain constant over a
large region, which may not be suitable for identifying rail
breaks at a specific location. The foot-by-foot track geometry
data used by Ghofrani et al. [9], however, is difficult to capture
potential rail breaks in an early stage due to the long data-
collection interval.

By equipping with various types of sensors on in-service
trains, the entire rail networks can be monitored contin-
uously in a timely and cost-efficient manner [10], [11],
[12], [13]. It has been shown that monitoring data collected
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from in-service train can provide useful insights into the
vehicle–track interaction and can be associated with the quality
of the track condition [10], [14], [15], [16], [17], [18]. Also,
in-service train data have been used to estimate track stiff-
ness [11] and predict track substructure defects such as mud
pumping [19]. Such huge amount of monitoring data has been
collected over the past several years by railroad operators, but,
to the best of our knowledge, the potential of in-service train
data has not been exploited for the prediction of rail breaks.
There are several reasons for this lack of exploration, and they
all present major challenges when dealing with in-service train
data for rail break prediction.

Data imbalance is one of the main challenges in rail
break prediction because the number of available rail break
events is very limited, and thus, rail break events are heavily
outnumbered by nonbreak events. Undersampling of nonbreak
events was commonly used in previous studies [6], [7] for
balancing the dataset. In this case, most nonbreak events were
not used and their information got lost. Ghofrani et al. [9]
used the synthetic minority oversampling technique (SMOTE)
to handle the data imbalance by generating more rail break
events. However, as the strategy for SMOTE is based on data
interpolation, it may insert lots of noise and is less effective in
creating synthetic data subject to the underlying distribution of
the real data [20]. Recently, Goodfellow et al. [21] proposed a
general, flexible, and powerful framework for estimating gen-
erative models called generative adversarial network (GAN).
By capturing characteristics from the original data, GAN is
capable of generating new data sharing the same distributions
with the original one. Yang et al. [22] used GAN to gener-
ate scarce fault data of harmonic drive for fault diagnosis.
Zhang et al. [23] applied GAN to generate the signals
in machine faulty states for machinery fault diagnosis.
Wang et al. [24] utilized a deep convolutional GAN (DCGAN)
to generate fault samples to balance the dataset for fault
diagnosis of rotating machines. Zhong et al. [25] and
Lyu et al. [26] constructed DCGANs for anomaly detection of
catenary support components in railways. Liu et al. [27] prop-
osed a long short-term memory-based GAN (LSTM-GAN)
for fault diagnosis in machine health monitoring. As one
can see, no previous studies have applied GAN to in-service
train data for rail break prediction. The in-service train data
associated with rail breaks are in the format of time sequences.
The amplitude of in-service train data will change over time.
A generative model that considers temporal dynamics in data
is necessary when generating the rail break sample.

Another challenge is that the in-service train data are time
sequence, and learning the temporal dependencies that are
characteristics of the rail breaks is difficult for conventional
machine learning methods [6], [7], [8], [9]. In recent years,
deep learning technology has achieved excellent performance
in image recognition [28], [29], language translation [30],
and signal analysis [31], [32], [33] as it has a strong ability
for automatic feature extraction from different types of data
such as images, text, and time sequences. Zhong et al. [34]
proposed an improved deep convolutional neural networks
(CNNs) to process image data for defect detection of catenary
split pins in high-speed railways. Chen et al. [35] applied a

CNN to learn and classify sensor data for fault diagnosis in
railway switch systems. However, the CNN model is originally
designed based on image analysis and thus may not be
effective in capturing temporal dynamics in time sequences
data. Recurrent neural networks (RNNs) proposed by
Graves and Schmidhuber [36] is a commonly used deep
learning model for sequential data; de Bruin et al. [37] used
LSTM to detect the circuit faults from the collected signals in
track circuits. However, one-way LSTM was used, which may
not perform well for in-service train data. A recent state-of-
the-art attention-based framework called Transformer [38] is
proposed to extract task-related feature information from mas-
sive amounts of data and automatically give correct predictions
due to its powerful automatic feature learning capabilities.
Wang et al. [39] applied a transformer-based framework for
high-speed train wheel wear prediction from collected vibra-
tion signals.

Most deep learning-based predictive models only provide a
binary result, i.e., break or nonbreak. In real-world applica-
tions, however, engineers prefer to know which causes lead
to a break, i.e., which parameters are most important when
the model makes a certain prediction, so that they can plan
maintenance accordingly to prevent rail breaks. However, the
vast majority of deep learning-based models are treated as
black box and lack of explainability traits. Recent studies
are being developed with a focus on explainable artificial
intelligence [40], [41]. Those explainable methods can provide
information to understand how the model performs prediction
and thus identify the causes of rail breaks [42], [43].

This article proposes a new deep learning-based approach
for rail break prediction and cause analysis using monitoring
data from in-service trains. To mitigate the problem of data
imbalance and preserve the temporal dynamics in data, a time-
series GAN (TimeGAN) is employed to learn the distribution
of the real rail break samples and generate synthetic rail
break samples. To make an accurate prediction, a feature-
level attention-based bidirectional recurrent neural network
(AM-BRNN) is proposed to enhance feature extraction and
capture two-direction dependencies from sequential data. The
proposed approach is implemented on a three-year dataset col-
lected from a section of railroads (up to 350 km) in Australia to
show its applicability. Most studies evaluate and compare the
prediction models using cross-validation approaches, where
training and testing data are randomly selected from the same
dataset that consists of only historical rail breaks. In addition to
cross validation, a real-life validation is carried out to evaluate
the prediction performance of the proposed model, where
historical data are used to train the model and future “unseen”
rail breaks along the whole track section are used for testing.
The results show that the model can successfully predict nine
out of 11 rail breaks three months ahead of time with a false
prediction of nonbreak of 8.2%. Predicting rail breaks three
months ahead of time will provide railroads enough time for
maintenance planning. Given the prediction results, a Shapley
additive explanations (SHAP) method is employed to perform
the cause analysis for individual rail break. The results of cause
analysis can be used for planning maintenance to prevent rail
breaks.
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TABLE I

DESCRIPTION OF PARAMETERS

The main contributions of this article are summarized as
follows.

1) For the first time, this article designs an AM-BRNN for
predicting rail breaks using in-service train data. The
proposed AM-BRNN achieves better predictive perfor-
mance in terms of efficiency and accuracy than current
models. Unlike previous studies, this article validates the
proposed approach against future “unseen” rail breaks
along 350-km railway tracks. The proposed approach is
proven to be able to predict rail breaks ahead of time so
that maintenance can be performed to reduce rail breaks.

2) To overcome the data imbalance problem, this arti-
cle customizes a TimeGAN for generating synthetic
rail break samples. The customized TimeGAN model
is proven to be able to generate better quality rail
break samples than current models because the temporal
dynamics in in-service train data are preserved.

II. DATA DESCRIPTION AND PREPARATION

A. Data Description

Dataset available for the current study consists of in-service
train data; track characteristic data, including rail age, annual
tonnage, and train speed; and temperature data. The dataset
is collected from a section of railroads (up to 350 km) in
Australia for three years from 2018 to 2021.

1) In-Service Train Data: The in-service trains collect sam-
pling data along the track with daily service. The sampling
data are associated with dynamic train responses (e.g., sus-
pension displacement (SD) and vertical acceleration), track
geometry data (e.g., track twist and track curvature), and
train driving parameters (e.g., brake cylinder pressure and in-
train forces). The collected sampling data are preprocessed

into 22 parameters at a 1-m interval with the corresponding
locations. The details of the 22 parameters (corresponding
to parameter Nos. 1–22) are shown in Table I. A total of
27 parameters will be used for rail break prediction, as can
be seen from Table I. Parameters Nos. 23–27 are explained
in Sections II-A2 and II-A3. Fig. 1 shows the changes of
historical in-service train data over time and location, where
Fig. 1(a) and (c) shows SD and Fig. 1(b) and (d) shows
the vertical acceleration (Va). In Fig. 1, the horizontal axis
is location in kilometers and the vertical axis is date. Color
represents the magnitude of dynamic responses, where red
means high values, while green means low values. The black
crosses in Fig. 1 represent actual rail break events that had
occurred at certain locations and on certain dates, where
Fig. 1(a) and (b) indicates rail break 1 and Fig. 1(c) and
(d) indicates rail break 2. The actual rail break records were
provided by the railway track corporation. It can be seen
from Fig. 1(a) and (b) that SD increased before rail break
1 occurred, but Va remained normal, whereas it can be seen
from Fig. 1(c) and (d) that Va increased, but SD remained
normal before rail break 2 occurred. This may be because rail
breaks are usually caused by different factors, and thus, high
responses are reflected in different parameters.

2) Track Characteristics Data: Rail age is closely related
to the risk of rail break. However, due to the effect of
different maintenance and replacement (M&R) activities on
the rail conditions, the rail age should be adjusted accordingly.
In this article, it is assumed that all rails were put into use
on 01/01/2000 as the actual starting time was not recorded.
If M&R activities, including rail joint replacement, rail defect
removal, renewal, or rerailing, were performed, the date when
the rail is put into use is reset as the recent M&R activities

Authorized licensed use limited to: TU Delft Library. Downloaded on January 23,2023 at 11:53:14 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 1. Changes of SD and vertical acceleration (Va) over time and location for rail breaks 1 and 2, respectively. (a) SD for rail break 1. (b) Vertical
acceleration for rail break 1. (c) SD for rail break 2. (d) Vertical acceleration for rail break 2.

Fig. 2. Distribution of rail breaks with respect to rail age.

date because those M&R activities will restore the track to
almost brand-new condition. Fig. 2 shows the distribution
of historical rail breaks with respect to rail age. It can be
seen from Fig. 2 that rail break can happen anytime. Almost
41% rail breaks happened between 18 and 20 years of rail age.

Since the studied railway network is composed of heavy
haul lines, the effect of tonnage on rail is particularly important
and should be considered. Annual tonnage, which is the total
weight of goods and trains that passes each track section,
is collected to provide tonnage information for prediction.
In addition, the product of annual tonnage and rail age is
also considered as it was found significant in the previous
studies [6], [7].

The magnitude of the in-service train data is influenced by
train speed, as the sensors are installed on the axle boxes of
the in-service train’s bogies. In normal running, the higher
the speed, the higher the dynamic responses such as vertical
acceleration [44]. To consider this effect, the train speed is
collected as one of the parameters.

Fig. 3. Minimum temperatures on the day of rail breaks happened and the
distribution of historical rail break events in every three months.

3) Temperature Data: It has been shown that the tempera-
ture has significant effects on the health of rails due to thermal
expansion and contraction [5]. In extreme cold, rail suffers
from tensile stress, which may increase the probability of rail
break. Thus, daily minimum temperature data are collected.
The scatterplot in Fig. 3 denotes the minimum temperature
on the day of rail break. The histograms in Fig. 3 show the
distribution of historical rail breaks in every three months.
In Fig. 3, the horizontal axis is date, the right vertical axis
is the magnitude of temperature, and the left vertical axis is
frequency. As shown in Fig. 3, the rail breaks happened more
frequently in cold seasons than in warm seasons.

B. Data Preparation

To locate the potential rail breaks and facilitate the effective
M&R, the railway track needs to be divided into segments.
If a segment is too short, a large number of segments will
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Fig. 4. Illustration of the changes of vertical accelerations over a certain
section of track.

increase the total computational time. If a segment is too
long, further inspection is required to locate potential rail
break. To consider both computational efficiency and practical
constraints, the length of a segment is set to be 20 m.
As suggested in [45], the changes of parameters over time
should be considered when predicting rail conditions. Data
used in this study can be processed as time sequences to
preserve the changes over time because most data is collected
daily. As in-service trains collect data almost every day, the
time interval is set to be one day. Fig. 4 presents an illustration
of the vertical accelerations changing over time in a certain
segment. Each point that is plotted in Fig. 4 represents the
maximum vertical acceleration of a single trip. For some
days with multiple trips, the maximum vertical acceleration
varies from train to train and from trip to trip. Therefore, the
maximum value of maximum acceleration in each time interval
(one day) is adopted, as denoted by the curve in Fig. 4.

All in-service train parameters and train speed are processed
as time sequences as aforementioned. Daily temperature data
and rail age are recorded based on segment and hence are
naturally time sequences. As the annual tonnage of a segment
does not vary with time, there is no need for processing.

The aforementioned different types of parameters have
different magnitudes. To reduce the impact of differences in
magnitude, the max–min standardization method is used to
transform the data to the range from 0 to 1. Fig. 5 shows the
processed time sequences of several parameters for a given
segment after standardization.

The prediction model is trained in the supervised mode
and hence requires labeled dataset. According to the historical
records, there were 346 rail breaks that occurred in the track
section in the past three years. The data, which are within 10 m
before and after the break location and recorded before the
corresponding break date, are labeled as a “break” sample,
as shown in Fig. 6. A time window is introduced to determine
how many days of data should be used for model development.
If the time window is too long, the learned features will be
lost through the long process and the computational time will
increase. If the time window is too short, the information
used in the prediction will be insufficient. According to a

Fig. 5. Changes of several parameters over time for a given segment after
standardization.

Fig. 6. Illustration of a break sample.

previous study [19], using 56 days as time window can obtain
the best performance in mud pumping prediction on railway
track. Thus, the time window is also set to be 56 days in this
study. The data that are outside 10 m of the break location
are labeled as “nonbreak.” The time window of nonbreak is
also 56 days that are randomly selected and consecutive. The
number of samples in the rail break class and nonbreak class
is 346 and 5249, respectively.

III. METHODOLOGY

The proposed approach mainly includes imbalanced
data handling, rail break prediction, and cause analysis.
Fig. 7 shows the workflow of the proposed approach. First,
TimeGAN is used to generate synthetic rail break samples
to balance the training dataset. Then, the balanced training
dataset is used to develop the proposed AM-BRNN model for
rail break prediction. Given the prediction results, SHAP is
employed to identify the input parameters that are most likely
to be the causes of rail breaks.

A. Imbalanced Data Handling

The dataset is observed to be heavily imbalanced, in which
the proportion of samples for the minority data class that
indicates rail break is about 0.06. Machine learning algorithms
that do not consider data imbalance perform poorly as imbal-
anced datasets induce a bias in favor of the majority class.
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Fig. 7. Workflow of the proposed approach.

Fig. 8. Several parameters changing over time for a given rail break instance.

Hence, it is necessary to balance the dataset when developing
rail break prediction models. Given the limited number of
available rail break events, generating rail break sample is
a natural choice. The GAN model is adopted in this study
because it is capable of generating new samples sharing the
same distribution with the original ones. A real rail break
sample is the time sequence that changes of 27 parameters
over 56 days. The amplitude of parameters will change over
time. Fig. 8 shows several parameters for a given rail break.
It can be seen from Fig. 8 that the amplitude of vertical
acceleration increases gradually over time. Thus, the temporal
dynamics in data should be considered when generating the
rail break sample. However, existing GANs and their variants
do not adequately consider the temporal dynamics in data
when they are used for generating time sequences. To address
this issue, a TimeGAN [46] is applied to generate synthetic
rail break samples. In TimeGAN, a stepwise supervised loss
is introduced to capture the temporal dynamics in data by
using the real-time sequences as supervision. By doing this,
TimeGAN can generate rail break data that preserve temporal
dynamics. Another key aspect of the dataset is that the 27 para-
meters are usually not independent but correlated, especially
the parameters collected from the same type of onboard
sensors, i.e., vertical acceleration at the front bogie and the
rear bogie. This can also be found in Fig. 8 that the variation
of vertical acceleration at the front bogie (Va_F) and the rear
bogie (Va_R) is very similar. Those similar parameters may
provide redundant information. Several studies have explored
the benefit of combining autoencoders (AEs) with adversarial
training, such as improving generative capability [47]. Thus,
an AE is used to offer a reversible mapping between input
parameters and latent representations, thereby reducing the
high dimensionality of the adversarial learning space.

1) Autoencoder: AE consists of encoder and decoder, where
the encoder E is used to encode the input into the latent
representation and the decoder R is used to decode the latent
representation into the input. The real rail break data are fed
into the AE for reconstruction. The encoder and decoder are
all implemented via RNNs, where the used RNN consists of

LSTM layer and fully connected layer. The reconstruction can
be achieved by minimizing the loss LR

LR = Ex1 :T ∼p

[
T∑

t=1

‖xt − R (E(xt))‖ 2

]
(1)

where T is the length of time steps and x is the original input
time sequence.

2) Adversarial Component: It has two subnetworks: a gen-
erator G and a discriminator D. The generator takes noise
as input and aims to generate a synthetic sample as close
as possible to the real rail break sample from the latent
representation. Then, the discriminator distinguishes whether
the generated sample comes from the real dataset or from
the generator. In the original TimeGAN framework [46], the
generator was implemented via a standard RNN. BRNNs
have shown better performance in learning temporal dynamics
than the standard ones [48]. Thus, BRNN is used as the
network structure of the generator in this study. Generator and
discriminator are all implemented via BRNNs, where the used
BRNN consists of bidirectional LSTM layer. Generator and
discriminator compete in a two-player min–max game with
loss LU

min
θg

max
θd

LU = Ex1:T ∼p

[
T∑

t=1

log D(xt)

]

+E
z1:T ∼�

p

[
T∑

t=1

log(1− D(G(zt )))

]
(2)

where θg denotes the learnable parameters in G, θd denotes
the learnable parameters in D, and z is random noise with
uniform distribution.

3) AR Learning Objective: A supervised AR learning objec-
tive is introduced to explicitly encourage the generator to
capture the stepwise conditional distributions in the data using
the real data as supervision. Thereby, the transition dynamics
from real sequences can be learned. In an alternating fashion,
the generator is trained in the closed-loop mode, where the
generator receives sequences of real sample in latent space
l1:t−1 to generate the next latent vector lt . Gradients can be
computed on a supervised loss LS , which is defined as

LS = Ex1 :T ∼p

[
T∑

t=1

‖lt − G (lt−1, zt )‖ 2

]
. (3)

Fig. 9 shows the architecture of TimeGAN. TimeGAN train-
ing consists of three main phases: AE training to provide latent
space, supervised training to learn conditionals

�
p(xt |x1:t−1),

and joint training to learn distribution
�
p(x1:t). First, purely as a

reversible mapping between the original data and latent space,
E and R are trained together to enable accurate reconstruction
of the original data from its latent representation. Then, G is
trained exclusively using the supervised loss to capture the
temporal dynamics in the data. Finally, the joint training phase
consists of training G, D, E , and R using their respective loss
functions. Since the parameters may be correlated as they are
collected from sensors mounted on the same in-service train,
the TimeGAN is trained once using all parameters. The input
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Fig. 9. Architecture of the TimeGAN.

data are the time sequences that the changes of 27 parameters
are over 56 days, with the shape of [56 × 27].

B. Rail Break Prediction

Since the in-service train data are in the format of time
sequences, learning the temporal dependencies is difficult
for the conventional machine learning techniques. To cap-
ture the temporal dependencies, BRNN is a highly preferred
choice [48]. The recurrent connections in BRNN consider
both forward and backward information and hence are able
to capture two-direction dependencies. In the recurrent layers,
LSTM is used, which is well suited for capturing long-range
dependencies on multiple time scales [49].

Besides, the in-service train data are collected from multiple
sensors and hence are high-dimensional with various parame-
ters. Accurate prediction relies on effective feature extraction.
Recent studies have introduced attention mechanisms into the
neural network framework [30], [38] to selectively focus on
important information by setting different weights on input or
feature dimension. In computer vision, channelwise attention
is usually applied to a high-level feature map to exploit the
interchannel relationship of features [50], [51], [52]. A similar
technique can be found in speech recognition where time series
is involved. Cheng et al. [53] proposed a DNN-based model
for speech enhancement using attention mechanisms on the
feature dimension. They suggested that the attention model can
make full use of the key information in features and improve
accuracy. Wang et al. [54] proposed a MaskNet model to
estimate the click-through rate (CTR), in which feature-level
attention was introduced to dynamically highlight the infor-
mative elements in the hidden layer. Inspired by the previous
studies, this article introduces feature-level attention into the
network to assign the weight for the features. In this way, the
model can strengthen the utilization of feature information and
further improve the prediction performance.

1) Bidirectional LSTM: Bidirectional LSTM layers utilize
two parallel channels (forward and backward) simultaneously
and concatenate the hidden states of the two LSTMs as
the representation of each time step t . The hidden state ht

and memory cell ct in LSTM are the function (represented
as gLSTM) of their previous status ht−1, ct−1 and input
vector Wt . The hidden state of each location ht in bidirectional
LSTM considers the forward and backward information, and

Fig. 10. Basic framework of the AM-BRNN model.

its form is given as follows:
−→c t ,
−→
h t = gLSTM

(−→c t−1,
−→
h t−1, Wt

)
(4)

←−c t ,
←−
h t = gLSTM

(←−c t−1,
←−
h t−1, Wt

)
. (5)

The representation of the entire sequences is [−→h T ,
←−
h T ],

where T is the length of time sequences. At each time
step t , the representation is ht = −→h t ⊕←−h t , which is a con-
catenation of the hidden states of the forward LSTM and
backward LSTM. In this way, the forward and backward
information can be considered simultaneously.

2) Attention Mechanism: The attention module takes as
inputs the features r from bidirectional LSTM layers r =
fext(x) = [r1, r2, . . . , rNunit], where Nunit is dimensions of the
features. Next, the attention mechanism generates a positive
weight αi for ri , which can be considered as the importance of
the corresponding features. αi is calculated using an attention
model, which takes ri as input, and a softmax function to
get a normalized importance weight. In this study, a one-layer
neural network is used as an attention model

ui = f (Wattri + batt) (6)

αi = eui∑Nunit
k=1 euk

(7)

where Watt denotes the weight matrix, batt denotes the bias
term, and ui represents a hidden representation of ri through
a one-layer neural network. When the attention for ri is
generated, the enhanced feature vector v can be obtained as

v =
Nunit∑
i=1

αi ri . (8)

The basic framework of AM-BRNN model is shown in
Fig. 10. After enhanced features are generated, a sigmoid
function is adopted for the final rail break prediction, which
converts the outputs of the network to the probabilities of each
class.

C. Cause Analysis

A full perspective of rail break prediction should not only
give an estimation of rail break but also provide knowledge
about its cause, allowing the domain experts to perform
predictive maintenance accordingly. In this article, the most
important input parameters that lead to a predicted rail break
are referred to as causes. Note that we do not imply these to
be the root causes but rather that they are the causes due to
which the algorithm flagged a rail break. Different explainable
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methods can be used to estimate the importance of each para-
meter in making a certain prediction (rail break or nonbreak).
One of the most used explainable methods is SHAP [40],
which is a model-agnostic representation of parameter impor-
tance. In the SHAP method, the parameter importance on
the prediction model is represented using SHAP values. The
SHAP method requires the sum of the SHAP values to match
the output of prediction model (i.e., AM-BRNN) for specific
input. By calculating the SHAP values of each parameter for
an individual rail break, it is possible to determine which
parameters are most important for making the prediction of rail
break. In this case, a cause analysis for individual rail break
can be achieved. Since the exact computation of SHAP values
is still challenging, various methods, including Tree SHAP,
Kernel SHAP, and Deep SHAP, are used to approximate the
SHAP values. In this study, Deep SHAP is used together with
a deep learning prediction model. The detailed mathematical
formulation of SHAP can be retrieved in [40].

IV. RESULTS AND DISCUSSION

This section verifies the effectiveness of the proposed
AM-BRNN and TimeGAN using data collected from a section
of railway tracks in Australia. The generation performance
of the TimeGAN is first evaluated through data quality
assessment of newly generated samples. Then, the prediction
performance of the AM-BRNN is evaluated through five-
fold cross validation. Furthermore, the complexity analysis
of the proposed model is conducted to check its potential
to be deployed in standalone devices in field for real-time
prediction. Finally, a real-life validation is performed by using
the proposed approach. Given the prediction results, a cause
analysis is performed on a certain predicted rail break using the
SHAP method.

A. Data Generation and Quality Assessment

The TimeGAN is aimed to generate synthetic samples for
rail break events for solving the data imbalance problem. For
the validation of the method, the quality of the synthetic
samples needs to be evaluated. In this article, the quality
assessment on the synthetic samples is conducted from three
aspects as follows.

1) Diversity: Synthetic samples should be distributed to
cover the real ones. Principal component analysis (PCA) is
used to flatten the temporal dimension for both the real and
synthetic samples to assess the diversity of synthetic samples.
The results visualize how closely the distribution of synthetic
samples resembles that of the real in 2-D space, providing a
qualitative assessment of diversity

2) Fidelity: Synthetic samples should be indistinguishable
from the real ones. To do this, a post hoc classification model
is trained to discriminate whether the sample is from the real
or synthetic datasets. First, each real sample is labeled as
real and each synthetic sample is labeled as not real. Then,
as a standard supervised task, an LSTM classifier is trained to
classify the real and not real classes. The classification error
on the randomly selected test set is reported as discriminative
score, which provides a quantitative assessment of fidelity.

3) Usefulness: Synthetic samples should preserve the tem-
poral dynamics characteristics of the real ones. In partic-
ular, synthetic samples are expected to capture conditional
distributions over time. Thus, an LSTM regression model is
trained to predict next-step temporal vectors over each input
sequence using the synthetic samples. Then, the trained model
is evaluated on the real samples. Performance is measured
using the mean absolute error (MAE), which is also reported
as predictive score. This provides a quantitative assessment of
usefulness.

Based on the 346 real samples of historical rail break events,
the TimeGAN model is trained to generate 346 synthetic
rail break-related samples for checking the quality of the
synthetic samples. In addition, to demonstrate the superiority
of the TimeGAN model, two conventional generation methods,
including SMOTE [55] and dynamic time warping barycen-
tre averaging (DBA) [56], and three GAN-based generation
methods, including GAN [22], DCGAN [23], [24], [26], and
LSTM-GAN [27], are applied to generate synthetic samples
separately for comparison.

PCA is used to compare the similarity of synthetic samples
and real rail break samples. The results are shown in Fig. 11,
where circles denote synthetic samples and crosses denote
real samples. Generally, a good overlap between the synthetic
samples and the real samples indicates high similarity. It can
be seen from Fig. 11 that synthetic samples (circles) generated
by SMOTE, DBA, and GAN overlap partially the real samples,
whereas the synthetic samples generated by DCGAN, LSTM-
GAN, and TimeGAN almost cover all the real samples.
However, compared to TimeGAN, DCGAN and LSTM-GAN
generate more synthetic samples that are far away from the
cloud of real samples.

To further evaluate the synthetic samples, discriminative
score and prediction score are calculated to measure the
fidelity and usefulness of the synthetic samples quantitatively.
Discriminative score is a probability score between 0 and 1.
Generally, a score close to zero implies good fidelity, which
means that the synthetic samples are very similar to the real
ones. Similarly, a low value of predictive score signifies good
usefulness of the synthetic samples. As can be seen from
Table II, all GAN-based methods generate better synthetic
samples in comparison to conventional methods, including
SMOTE and DBA based on discriminative scores. However,
GAN and DCGAN perform slightly worse than LSTM-GAN
and TimeGAN based on predictive scores. This may be
because there is no RNN block in GAN and DCGAN that can
preserve temporal dynamics in data. In general, TimeGAN-
generated samples achieve the best (lowest) discriminative
score of 0.283 and the predictive score of 0.154.

Based on the above analysis, it can be concluded from
Fig. 11 and Table II that TimeGAN demonstrates consistent
superiority over five other methods in generating synthetic rail
break samples.

B. Prediction Model Evaluation

To evaluate the performance of the proposed AM-BRNN
with TimeGAN, a fivefold cross-validation procedure is
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Fig. 11. PCA visualizations on results of six different generation methods. Crosses denote real samples, and circles denote synthetic samples. (a) DBA.
(b) SMOTE. (c) GAN. (d) DCGAN. (e) LSTM-GAN. (f) TimeGAN.

TABLE II

DISCRIMINATIVE SCORES AND PREDICTIVE SCORES OF SIX

DIFFERENT GENERATION METHODS (BOLD NUMBERS

INDICATE THE BEST PERFORMANCE)

carried out. First, the dataset (346 rail break and 5249 non-
break samples) is randomly divided into five folds of approx-
imately equal size: one of the five folds is treated as a test
dataset and the remaining four folds are treated as a training
dataset. To avoid rail break information leakage during the data
generation process, the TimeGAN is only applied to the train-
ing dataset to generate synthetic samples to get the balanced
training dataset. Then, the AM-BRNN is developed based
on the balanced training dataset. The prediction performance
is evaluated on the originally imbalanced test dataset. This
process is repeated five times and the average of the five times
is recorded as the final result. Since TimeGAN has shown
superior generation performance in Section IV-A, TimeGAN
is used to generate synthetic samples to balance the training
dataset used for the prediction model.

Given that the test dataset is imbalanced, using the standard
accuracy as an evaluation metric may lead to a prediction
model looking promising with high accuracy but fails to be
valid in predicting rail breaks. Hence, both false positive rate
(FPR) and false negative rate (FNR) are used for measuring the
performance of the prediction model for break and nonbreak,

respectively. For ease of understanding, false prediction of
break and false prediction of nonbreak are introduced to
replace the machine learning terminology FPR and FNR,
respectively. Besides, balanced accuracy is introduced as a
compact evaluation metric to reflect the general performance
of prediction models. The balanced accuracy is especially
useful when the test dataset is imbalanced.

False prediction of break is a ratio of falsely predicted break
samples to the total break samples

False prediction of break = FN

P
(9)

where P indicates the total number of real break samples and
FN denotes the number of break samples falsely predicted as
nonbreak.

False prediction of nonbreak is a ratio of falsely predicted
nonbreak samples to the total nonbreak samples

False prediction of non-break = FP

N
(10)

where N denotes the total number of real nonbreak samples
and FP denotes the number of nonbreak samples falsely
predicted as break.

Balanced accuracy is the average of correct predictions
obtained on break and nonbreak classes

Balanced accuracy = 1

2
×

(
TP

P
+ TN

N

)
(11)

where TP indicates the number of break samples correctly
predicted as break and TN denotes the number of nonbreak
samples correctly predicted as nonbreak.

To demonstrate the superiority of the AM-BRNN, four
deep learning methods that were used in fault diagnosis in
railway systems, including multilayer perceptron (MLP) neural
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TABLE III

STRUCTURES OF THE MLP, 1DCNN, CNN-LSTM, AND TRANSFORMER

network [9], CNNs (1DCNN) [35], CNN-LSTM [31], and
Transformer [39], are applied for comparison. The structures
of MLP, 1DCNN, CNN-LSTM, and Transformer are presented
in Table III. All prediction models are trained via mini-batch
stochastic gradient descent with the Adam optimizer. The
size of the minibatch is 64. The learning rate is set to
be 0.001. The training process is set to be stopped early when
the loss does not decrease over an average of the last ten
epochs. The prediction models are smooth and differentiable
so that the learnable parameters can be learned by standard
backpropagation with binary cross entropy as the objective
function.

The performances are compared in Table IV. The proposed
model achieves the second lowest false prediction of break
of 9.3%. Although Transformer can achieve the lowest false
prediction of break of 5.1%, it has a relatively high false
prediction of nonbreak of 22.1%. Besides, 1DCNN achieves
the lowest false prediction of nonbreak of 9.7%, while the
proposed model has a false prediction of nonbreak of 14.7%.
However, 1DCNN missed more breaks with false prediction
of break of 18.7% compared to the proposed model with false
prediction of break of 9.3%. Since the false prediction of break
and false prediction of nonbreak are both related to the predic-
tion performance of a single class, they can be misleading in
the case of an imbalanced testing dataset. Thus, the balanced
accuracy is introduced to measure the overall performance.
The proposed model achieves the highest balanced accuracy
of 88.0%. On a closer examination of the results, it is found
that the good results are largely attributed to a very low false
prediction of break of 9.3%, with a comparable false prediction
of nonbreak of 14.7%. This indicates that most of the rail break
samples can be correctly classified, which is very important
for preventing rail breaks.

The comparative results above demonstrate the superior-
ity of the proposed approach. To evaluate the importance
of each module in the proposed approach, three competing
approaches are constructed, i.e., “proposed approach with-
out TimeGAN,” “proposed approach without BiLSTM,” and
“proposed approach without attention.” For each of the three
approaches, one of the three modules is removed from the
proposed approach, where the removed BiLSTM module is
replaced with a standard LSTM layer and the removed atten-
tion is replaced with a fully connected layer with the same
number of neurons for a fair comparison. The influence of the
three modules on the rail break prediction is compared with

the same metrics, including false prediction of break, false
prediction of nonbreak, and balanced accuracy.

The performance comparisons are shown in Table V. It can
be observed that the proposed approach without TimeGAN
tends to be overwhelmed by the majority class (nonbreak)
and results in poor performance for the minority class (break).
After applying TimeGAN, the proposed approach performs
well. This indicates that creating synthetic samples for the
minority class can relieve the data imbalance problem and
improve the overall prediction performance. Also, it can
be seen from Table V that the proposed approach without
BiLSTM achieves a balanced accuracy of 86.4%, while the
proposed approach can acquire a balanced accuracy of 88.0%
under the same circumstance. This confirms that the BiLSTM
unit can capture more temporal information in sequential data
than the standard one. Moreover, the proposed approach with-
out attention achieves a balanced accuracy of 86.9%, which is
worse than the proposed approach of 88.0%. It is also observed
that the false prediction of break is significantly reduced from
16.1% to 9.3% when attention is used. For railway operators,
reducing false prediction of break is important to prevent rail
breaks. Thus, it is believed that the proposed model performs
better in rail break prediction.

C. Complexity Analysis

The collected measurements in the field are updated on a
daily basis and the data volumes are enormous. When making
a prediction for the whole track, more than 35 000 sets of
samples need to be processed by the prediction model. Thus,
the complexity of the prediction model needs to be assessed
to check its potential for deployment in railway systems,
which are usually equipped with limited device memories
and computation capability. Two indexes, including trainable
parameters and prediction speed, are used to evaluate the
complexity of the model in space and time [57]. For a
fair comparison, the experiments are conducted on the same
1000 new samples and under the same hardware and software
configuration, as listed in Table VI.

The results of the complexity analysis are shown in
Table VII. It is observed that Transformer, CNN-LSTM, and
MLP involve more trainable parameters and as such require
more computer memories than the proposed model. Although
both the 1DCNN and the proposed model have fewer trainable
parameters, the prediction performance of the 1DCNN is
worse than that of the proposed model. The prediction speed of
different models is also shown in Table VII. It can be observed
that the proposed model is faster than the Transformer model.
The Transformer has to invest a large amount of time in
predicting 1000 new samples of 410 s. This dramatically
limits its potential usage in railway systems, although it
shows competitive performance to predict rail breaks. The
proposed model, although not the fastest one, has a competitive
prediction speed of 80 s and the best prediction performance,
showing its deployment opportunity in field systems for real-
time prediction. Therefore, the superior results achieved by
the proposed model, along with its simplicity and competitive
computational cost, confirm that the proposed model is able
to perform real-time prediction.
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TABLE IV

PERFORMANCES OF DIFFERENT PREDICTION MODELS

TABLE V

PERFORMANCES OF COMPARATIVE APPROACHES

TABLE VI

HARDWARE AND SOFTWARE CONFIGURATIONS

FOR THE PREDICTION SPEED TESTING

TABLE VII

RESULTS OF COMPLEXITY ANALYSIS BASED ON TRAINABLE
PARAMETERS AND PREDICTION SPEED

D. Real-Life Validation

In Section IV-B, the proposed prediction model is evaluated
using randomly selected training and test datasets consisting
of only historical rail breaks. In this section, the proposed
prediction model is trained using historical rail breaks, but
predictions are based on newly collected data, and prediction
performance is tested using future rail breaks.

The whole track section is 350 km long. The historical
data used for training the prediction model were between
01/01/2018 and 01/12/2020. After the model development,
prediction was made on 01/02/2021 based on the newly
collected data between 01/12/2020 and 01/02/2021. The newly
collected data included 17 500 samples, where each sample
represented an adjacent segment of 20 m. After the prediction,
there were 11 rail breaks occurred in the study section between
15/02/2021 and 15/05/2021, as listed in Table VIII.

The prediction results were verified according to the future
“unseen” 11 rail breaks and presented in Table IX. All the nine
rail breaks before 01/05/2021 were correctly predicted. Only
two rail breaks after 01/05/2021 were missed, as highlighted

TABLE VIII

RAIL BREAKS RECORDED BETWEEN 01/02/2021 AND 15/05/2021

TABLE IX

RESULTS OF THE REAL-LIFE VALIDATION

in bold in Table VIII. One possible reason was that only
data before 01/02/2021 were used for prediction. Those two
sites probably developed rail cracks after 01/02/2021. If much
newer data were used, these two missed rail breaks could
be predicted. In general, nine out of 11 rail breaks were
successfully predicted with a low false prediction of nonbreak
of 8.2% along the whole track section. This proves the
effectiveness of the proposed prediction model. The results
have crucial implications for infrastructure managers to carry
out timely and valid maintenance activities against rail breaks.

E. Cause Analysis

Given the prediction results in Section IV-C, the SHAP
method is employed to calculate the SHAP values for predicted
rail breaks. Since the SHAP values are the measure of the
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Fig. 12. SHAP values of parameters for a predicted rail break event.

parameter importance, parameters with large positive SHAP
values are considered as the most important ones. A predicted
rail break that occurred on 22/02/2021 is taken as an example.
The prediction result obtained by the AM-BRNN model for
this sample is 0.82. This indicates that this is a potential rail
break because, in the prediction model, a sample is classified
as a rail break if its prediction result is greater than 0.5.
Fig. 12 shows the calculated SHAP values of each parameter
for this predicted rail break. The left vertical axis indicates the
parameters with their actual value. The corresponding SHAP
values are shown on the red or blue arrows and are also
represented by the length of arrows. Fig. 12 explains how to
get from the base value (0.5) that would be predicted if we do
not know any parameters to the current prediction result (0.82).
The red arrows represent positive SHAP values, which push
the prediction toward a higher value, while the blue arrows
represent negative SHAP values, which push the prediction
toward a lower value. Looking at Fig. 12, the rail age of
19.86 years, the vertical acceleration of 3.948 g, and the annual
tonnage of 153.8 t are the most contributing parameters toward
rail break prediction.

Based on the cause analysis, maintenance can be performed
accordingly to prevent rail breaks. For example, high rail age
can be reduced by rail joint replacement, rail defect removal,
renewal, or rerailing. To reduce the effect of high vertical
acceleration, grinding is usually recommended because pre-
vious studies have demonstrated that vertical acceleration was
relevant to the surface defects [17].

V. CONCLUSION

This article adapts recent deep learning techniques and
develops a new rail break prediction approach using daily
monitoring data from in-service trains. To mitigate the prob-
lem of data imbalance and preserve the temporal dynamics
in data, a TimeGAN is employed to learn the distribution
of the real rail break samples and generate synthetic rail

break samples. To make an accurate prediction, a feature-
level AM-BRNN is proposed to enhance the feature extrac-
tion and capture two-direction dependencies from sequential
data. The proposed approach is implemented on a three-year
dataset collected from a section of railroads in Australia.
Extensive comparative results demonstrate that compared with
the current models, the proposed approach achieves superior
performance for the rail break prediction using in-service
train data. Furthermore, the complexity analysis of the pro-
posed prediction model is conducted, confirming its potential
to be deployed in standalone devices in field for real-time
prediction. The results of a real-life validation demonstrate
the effectiveness of the proposed approach, which capture
nine out of 11 rail breaks three months ahead of time with
a false prediction of nonbreak of 8.2%. Given the prediction
results, a causes analysis is performed for a certain predicted
rail break using the SHAP method. By implementing the
proposed approach, the railroad can predict rail breaks three
months ahead of time and plan maintenance accordingly to
prevent rail break. Currently, parameters that vary with time
(e.g., in-service train data) and parameters that do not vary
with time (e.g., annual tonnage) are fed into the model
together for rail break prediction. Future work will focus on
providing predictions by addressing those two formats of data
separately through a multichannel network to strengthen the
utilization of information and further improve the prediction
performance.
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