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Learning-Based Multi-Robot Formation
Control With Obstacle Avoidance

Chengchao Bai , Member, IEEE, Peng Yan, Wei Pan , Member, IEEE, and Jifeng Guo , Member, IEEE

Abstract— Multi-robot formation control has been intensively
studied in recent years. In practical applications, the multi-robot
system’s ability to independently change the formation to avoid
collision among the robots or with obstacles is critical. In this
study, a multi-robot adaptive formation control framework based
on deep reinforcement learning is proposed. The framework
consists of two layers, namely the execution layer and the
decision-making layer. The execution layer enables the robot to
approach its target position and avoid collision with other robots
and obstacles through a deep network trained by a reinforcement
learning method. The decision-making layer organizes all robots
into a formation through a new leader–follower configuration
and provides target positions to the leader and followers. The
leader’s target position is kept unchanged, while the follower’s
target position is changed according to the situation it encounters.
In addition, to operate more effectively in environments with
different levels of complexity, a hybrid switching control strategy
is proposed. The simulation results demonstrate that our pro-
posed formation control framework enables the robots to adjust
formation independently to pass through obstacle areas and can
be generalized to different scenarios with unknown obstacles and
varying number of robots.

Index Terms— Multi-robot systems, leader–follower formation
control, deep reinforcement learning, collision avoidance, forma-
tion adjustment.

I. INTRODUCTION

FORMATION control of multiple robots has received
extensive research attention in the past decades. Com-

pared with a single robot, a multi-robot system has better
robustness and can perform more complex tasks. Multi-robot
systems have broad applications in civilian and military areas,
such as agriculture [1], [2], search and rescue [3], surveillance
and reconnaissance [4], and environment exploration [5].

Several formation control methods have been developed,
such as a virtual structure method [6], [7], a behavior-based
approach [8], [9], and a leader–follower strategy [10], [11].
The leader–follower strategy has been widely applied because
of its simplicity and stability. However, it suffers from the
problem that obstacle collision occurs in practical applications,
because multi-robot systems often work in unknown and
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unstructured environments. Therefore, obstacle avoidance is an
essential ability for multi-robot systems during their operation.

Several methods have been studied to solve the obstacle
avoidance problem. Wu et al. [12] proposed a method called
IOAA to avoid obstacles by adjusting the angle between the
leader and follower robots. The detection range of the robot
is divided into five parts, and the angle is calculated by
judging which part the obstacle belongs to. Wen et al. [13]
used the artificial potential field (APF) method to solve the
obstacle avoidance problem. This method considers the obsta-
cle as high potential points, which produce repulsive forces
to expel all agents away from them. Vilca et al. [14] used a
limit-cycle approach as an obstacle avoidance strategy where
the robots avoid obstacles by tracking limit-cycle trajectories.
Xiao et al. [15] used the separation-distance scheme method
for followers to avoid collision. When the distance between
the follower and an obstacle is less than the safe distance,
the follower will maintain a fixed position relationship with a
virtual robot moving on the boundary of the obstacle to avoid
this obstacle.

The common drawback of the above mentioned methods
is that they assume the position of obstacles to be accurately
known but do not obtain the position of obstacles in detail.
Several methods have been proposed to address this gap.
Dai and Lee [16] proposed a geometric obstacle avoidance
control method to select waypoints for obstacle avoidance.
The waypoints are calculated by the intersections between
the measured range lines and the surface of the obstacle.
Luo et al. [17] used the histogram obstacle avoidance method
to avoid obstacles. The method searches for the navigation
direction by using the polar density of obstacles, which
is calculated on the basis of the weighted average of the
inverse of range data at each orientation of the sensors.
Fujimori et al. [18] proposed a reactive obstacle avoidance
technique based on the robots’ sonars. The obstacle avoidance
commands are selected by the direction of the obstacle, judg-
ing by the outputs of the fired sonars. Although these methods
have been successfully examined through experiments, they
have some limitations. A significant limitation is that the above
mentioned collision avoidance methods only have some fixed
patterns, leading to their failure in complex and unknown
environments beyond the pre-designed range.

The robot collision avoidance based on deep reinforce-
ment learning (DRL) has been extensively studied because
of DRL’s human-level performance on specific tasks [19].
Chen et al. [20] presented a decentralized multi-agent colli-
sion avoidance algorithm called CADRL, in which a value
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network encoding the estimated time to the goal is devel-
oped to generate an obstacle avoidance path. The value net-
work is initialized by supervised training and then refined
by DRL. Based on [20], a time-efficient navigation policy,
called SA-CADRL, adhering to common social norms was
developed [21]. This method enables a robotic vehicle to
move fully autonomously at human walking speed in an envi-
ronment with many pedestrians. Everett et al. [22] extended
their previous approach [21] by incorporating the follow-
ing two aspects: (1) the agents’ behavior rules are released
and the agents can follow any particular behavior rules and
(2) the long short-term memory (LSTM) [23] is used to enable
the algorithm to process an arbitrary number of states of other
agents. Besides, the distributed LSTM [24] can be used to
deal with large number of robots. Long et al. [25] presented
a decentralized sensor-level multi-robot collision avoidance
policy, which maps raw laser scanner measurements to an
agent’s velocity commands. The policy is trained by using
a policy gradient-based reinforcement learning algorithm. The
convolutional neural network (CNN) [26] is used to process
the raw sensor measurements. Fan et al. [27] further improved
their previous work [25] by integrating the learning policy into
a hybrid control framework, thereby enhancing the policy’s
robustness and effectiveness.

In this study, we focus on the leader–follower formation
control of networked multi-robot systems in an unknown and
unstructured environment with a critical focus on the ability
of collision avoidance by independently changing the forma-
tion. Inspired by the research mentioned above, we combine
the DRL method with the leader–follower formation control
framework to improve the performance of networked multi-
robot systems. The robots are equipped with a laser scanner
to sense the obstacles and a communication module to com-
municate with their neighbor robots within the communication
range. Motivated by [25] and [22], we use the LSTM to
process the observations of an arbitrary number of other robots
and the CNN to process the raw laser scanner measurements.
There are two differences between our work and [22], [25].
First, there is a cooperative relationship between robots,
and their target points have a definite position relationship
in the training process, which is determined by the initial
position relationship. Second, position information can be
exchanged between robots through communication instead of
using onboard sensors to estimate position information.

In comparison with the existing works, the main con-
tributions of this study lie in the following four aspects:
(1) A multi-robot adaptive formation control framework is pro-
posed. The analysis, discussion, and verification are provided
from the execution and decision-making levels. (2) DRL is
used to avoid collisions where the LSTM is used to process
observations of an arbitrary number of other robots and the
CNN is used to process the laser scanner measurements.
(3) A new leader–follower formation control strategy com-
bined with DRL is proposed. This strategy enables the robots
to adjust the formation shape independently when encounter-
ing obstacles. (4) Simulation results demonstrate that the pro-
posed formation control strategy generalizes well in situations
with different number of robots and various environments.

Fig. 1. Model of the mobile robot.

This paper is organized as follows. Section II provides the
preliminaries of this work. Section III describes the multi-robot
collision avoidance algorithm based on DRL. Section IV
introduces the proposed leader–follower formation control
strategy. Simulation results and corresponding discussions are
presented in Section V. Finally, Section VI concludes this
work.

II. PRELIMINARIES

A. Mobile Robot Model

The mobile robot model is shown in Fig. 1. The position
of the robot in a two-dimensional plane is represented as p =
(x, y) and the orientation is represented as φ. The velocity
vector is denoted as v = [v, χ], where v is the linear velocity
and χ is the angular velocity.

The kinematics model can be represented as:⎧⎨⎨⎨⎩
ẋ = v cosφ

ẏ = v sin φ

φ̇ = χ

(1)

In this work, v and χ are the command inputs of the mobile
robot. The constraints of the command inputs are�

|v| ≤ vmax

|χ| ≤ χmax
(2)

where vmax and χmax are the maximum absolute values of v
and χ, respectively.

The mobile robot is equipped with a laser scanner to per-
ceive obstacles and a communication module to communicate
with other robots. As shown in Fig. 1, dcom and dscan are
the maximum communication range and the maximum laser
scanner detection range, respectively. The laser scanner is a
180-degree laser scanner that provides 180 distance values per
scan. The mobile robot’s collision area is modeled as a disc
with radius Rd . All robots operate homogeneously.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 23,2023 at 12:08:50 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 2. Leader–follower formation configuration.

B. Leader–Follower Configuration

The formation control of multiple robots is implemented
by the leader–follower approach. It is assumed that only one
among all the robots is aware of the formation’s target position
and this robot is chosen as the leader. The remaining robots
obtain the leader’s information through their communication
module and maintain a relative formation with the leader. The
formation is constructed by a L − ψ configuration as shown
in Fig. 2. L is the desired distance between the leader and
the follower, measured from the center of the leader to the
center of the follower. ψ is the desired angle from the positive
x-axis to the axis connecting the centers of the leader and
the follower. Given the leader’s position and the configuration
L − ψ , the follower’s target position is as follows:�

x g
F = xL + L cosψ

yg
F = yL + L sinψ

(3)

C. Problem Statement

This paper considers the problem of formation control of
multiple mobile robots in an unknown environment, as shown
in Fig. 3. The objective is to navigate the robots from start
positions to goal positions while maintaining a formation and
ensuring that no collision occurs among robots or between
the robots and the obstacles in the environment. Each robot
perceives the obstacles using its laser scanner and broadcasts
its state information and receives the state information of other
robots using its communication module. Note that when the
robots encounter obstacles, the formation will change to avoid
obstacles. At this time, formation maintenance means that the
distances between the follower robots and the leader robot
are maintained within the communication range so that the
formation can still be controlled.

To solve this problem, we divide the formation control
framework into two layers. The top layer is the decision-
making layer, which provides a target point to each robot and
different control strategies according to different situations for
the leader and the followers. The bottom layer is the execution
layer, which provides the robots the ability to follow target

Fig. 3. Formation control in an unknown environment with obstacles.

points and avoid obstacles and collision with other robots. The
bottom layer is implemented by the DRL method as described
in section III, and the top layer is described in section IV.

III. DRL-BASED MULTI-ROBOT COLLISION AVOIDANCE

In this section, we present the key elements of our reinforce-
ment learning framework for multi-robot collision avoidance.

A. Problem Formulation

The multi-robot collision avoidance problem can be con-
sidered as a mobile robot moving on the 2D plane with
obstacles and other decision-making robots that can be treated
as dynamic obstacles with uncertainties. Therefore, the multi-
robot collision avoidance problem can be formulated as a
partially observable sequential decision-making problem for
a single robot. At each time step t , the robot is at the position
pt ; it receives an observation ot from the environment and
computes an action at (actually a velocity vector) that drives
it to approach the target position pg without collision with the
obstacles Bk(0 ≤ k ≤ M) and other decision-making robots,
whose positions are denoted by �pt . The action at is sampled
from a stochastic policy:

at ∼ πθ (at |ot ) (4)

where θ denotes the policy parameters.
The objective is to minimize the expected travel time

E
�
tg |πθ

	
of the mobile robot to reach its target position by

determining an optimal policy πθ :

arg min
πθ

E
�
tg |πθ

	
(5)

s.t. �pt − p̃t� ≥ 2 Rd (6)

�pt − Bk� ≥ Rd , ∀k ∈ [1,M] (7)

pt = pg (8)

pt = pt−1 +�t · at (9)

where (6) is the collision avoidance constraint among robots,
(7) is the collision avoidance constraint between the mobile
robot and the obstacles, (8) is the target position constraint,
and (9) is the mobile robot kinematics constraint.

We solve this optimization problem through a reinforcement
learning method, which is presented in the next subsection.
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B. Reinforcement Learning Framework Design

The partially observable sequential decision-making prob-
lem introduced in section III-A can be described by a partially
observable Markov decision process (POMDP). A POMDP
has a six-tuple (S, A, P, R,�, O), where S is the state space,
A is the action space, P is the state-transition model, R is the
reward function, � is the observation space (o ∈ �), and O is
the observation function mapping the system state to the obser-
vation (o ∼ O(s)) [25]. Reinforcement learning (RL) [28] is
a class of machine learning methods that can be used to solve
the partially observable sequential decision-making problem.
Let st (st ∈ S) denote the environment state, ot (ot ∈ �) the
agent’s observed state, at (at ∈ A) the agent’s action, and
rt (rt ∈ R) the agent’s received reward at time t . The objective
of the RL agent is to learn a policy, πθ (at |ot , ot ∼ O (st )), that
selects an action at given the observed state ot to maximize
the accumulated discounted return:

Gt =
∞


k=0

γ krt+k+1 (10)

where γ (0 < γ < 1) is the discount factor.
The observation space, action space, and reward function

are described in detail below.
1) Observation Space: At time t , the current robot obser-

vation ot consists of the following four parts:
• As Fig. 4 shows, the relative target position og

t =�
dg, αg

�
, which is a 2D vector representing the target

position in polar coordinates (distance and angle) with
respect to the robot’s current position. og

t is normalized
as follows:

dg =
�

dg/dn if dg < dn

1.0 otherwise
(11)

αg = αg/π (12)

where dn is the value used to normalize the distance from
the robot’s current position to the target position, which
is related to the scale of the environment.

• The robot’s current velocity ovt = [vt , χt ], which includes
the current translational and rotational velocities of the
robot. In this study, the norms of the robot’s translational
and rotational velocities are less than 1.0 (i.e., vmax =
1.0m/s, χmax = 1.0rad/s ), so the robot’s current velocity
ovt is not normalized.

• Other robots’ state or
t =


or1

t , or2
t , · · · o

r j
t , · · · , orn

t

�
,

(o
r j
t =


dr

j , α
r
j

�
, j = 1, 2, · · · n, j 	= i , where i is the

current robot’s index). or
t is a sequence of 2D vectors

representing other robots’ positions in polar coordinates
(distance and angle) with respect to the current robot’s
position. It encompasses all other robots’ position infor-
mation within the current robot’s communication range.
The relative positions are listed in reverse order of dis-
tance to the robot to keep the most relevant information
in the process of feature extraction by a deep neural
network. or

t is normalized as follows:�
dr

j = dr
j /dcom

αr
j = αr

j/π
(13)

Fig. 4. Relative target position og
t = �

dg , αg
�

with respect to the robot’s
current position.

• The readings of the 2D laser range scanner oz
t , comprising

the last three consecutive laser scanner measurements
with 180 distance values per scanning and each measure-
ment having a maximum range of 5.0 m (i.e., dscan =
5.0m). oz

t is normalized by dividing the maximum range
of a laser range scanner.

Thus, the current robot observation is represented as ot =�
og

t , ovt , or
t , oz

t

�
.

2) Action Space: The action space at includes the trans-
lational velocity vc

t and rotational velocity χc
t , that is,

at = �
vc

t , χ
c
t

�
. The translational and rotational velocities

are discretized as vc
t = {0.0, 0.5, 1.0}m/s and χc

t =
{-1.0, -0.5, 0.0, 0.5, 1.0}rad/s, respectively. The action space
is composed of the translational and rotational velocities and
has 15 actions in total.

3) Reward Function: Our objective is to minimize the
travel time of the mobile robot to reach its target while
avoiding collisions with the other mobile robots and obstacles.
Therefore, a reward function is designed as follows:

rt = r g
t + rc

t + ra
t (14)

where r g
t is the reward for reaching the target, rc

t is the reward
for avoiding collisions with other robots and obstacles, and ra

t
is the reward for action.

The robot receives reward r g
t for reaching its target:

r g
t =

�
20.0 if

��pt − pg
�� ≤ 0.5

0.5
���pt−1−pg

��−��pt −pg
��	

otherwise

(15)

The robot receives reward rc
t for avoiding collisions:

rc
t =

⎧⎨⎨⎨⎩
−1.0 if �pt − p̃t� < 2 Rd or �pt − Bk� < Rd

−0.3 else if �pt −p̃t�<3 Rd or �pt −Bk�<2 Rd

0.0 otherwise

(16)
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Fig. 5. Network structure.

The robot receives reward ra
t for navigating smoothly, and

it is calculated by the difference between the current action
value and the last action value:

ra
t = −0.05

���vc
t − vc

t−1

�� + ��χc
t − χc

t−1

��	 (17)

C. Network Structure

In this study, we use the dueling deep Q network
(DQN) [29] structure, shown in Fig. 5, to extract feature
information from the robot’s observation and learn the action
values for each action in the action space.

Inspired by [25], we use the first three hidden layers to
process the laser scanner measurements oz

t . The first hidden
layer uses the CNN to process the three input scans, com-
prising 32 one-dimensional filters with kernel size = 5 and
stride = 2 and applying ReLU nonlinearities [30]. The second
hidden layer is similar to the first hidden layer except with
kernel size = 3 and stride = 2. The third hidden layer
is a fully connected layer with 32 rectifier units. Similar
to [22], we employ the LSTM to process other robots’ state
or

t . The LSTM layer converts the other robots’ states into a
16-dimensional vector. The above two outputs are concate-
nated with the other two inputs (og

t and ovt ) and then are
fed into a fully connected layer with 128 rectifier units. The
output of this layer is simultaneously processed by two fully
connected linear layers to produce separate estimates of the
value and corresponding advantages of the 15 actions. Finally,
these outputs are combined to generate a single output with
15 action values.

Overall, the neural network maps the input observation ot to
an action value vector. The final action at is chosen according
to the action values.

D. Training Process

1) Training Algorithm: We use double DQN [31] to train
our network model. In double DQN, the target is defined as

yt = rt+1 + γ Q̂
�

St+1, arg max
a

Q (St+1, a; θt) , θ
−
t

�
(18)

where rt+1 is the reward received at time t + 1, St+1 is the
environment state at time t + 1, θt is the parameter of the
action-value function network Q to select an action, and θ−

t
is the parameter of the target action-value function network
Q̂ to evaluate an action. The parameter θt is updated at every
time step:

θt+1 = θt + β (yt − Q (St , at ; θt))∇θt Q (St , at ; θt) (19)

where β is a scalar step size (or the learning rate) and at is the
action selected at time t . The parameter θ−

t is only updated
with θt every C steps.

2) Training Stage: Inspired by the curriculum learning para-
digm [32], we propose a two-stage training process. In the first
stage, we only train one robot on the scenario with obstacles,
allowing the robot to rapidly learn collision avoidance with
obstacles and navigating to the target position. Once the robot
completes learning, we stop Stage 1 and save the trained
network parameters. The network parameters will continue to
be updated in Stage 2, where the number of robots increases
to four. In Stage 2, we randomly select one of the four
robots as the trained robot at the beginning of each episode
and update its network parameters at every time step. Its
parameters are copied to the network parameters of the other
robots every N steps, which guarantees that the environ-
ment dynamics are stationary within N steps and makes the
learning more robust. The ε-greedy strategy is used to select
actions and the Adam [33] optimizer is used to update the

Authorized licensed use limited to: TU Delft Library. Downloaded on January 23,2023 at 12:08:50 UTC from IEEE Xplore.  Restrictions apply. 
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Algorithm 1 Double DQN for Multi-Robot Collision Avoidance

Initialize replay memory D;
if Stage 1 then

Initialize action-value function network Q and target action-value function network Q̂ with random weights θ and θ−
(θ = θ−), respectively.

else
Initialize action-value function network Q and target action-value function network Q̂ with weights θ saved in Stage
1. (Note: The weights of the selected trained robot’s action-value function network Q are denoted as θ and those of
the other robots’ action-value function network Q are denoted as θ̃ .)

end
for episode = 1: max-episode do

Reset the training scenario settings;
Randomly select a robot from all the robots in the training scenario as the trained robot and set its index to 1;
for step = 1: max-step do

for robot i = 1, 2, . . . , n do
Get the observation ot

i ;
if i == 1 then

With probability ε, select a random action;
Otherwise, select at

i = arg maxa Q
�
ot

i , a ; θ	;
else

Select at
i = arg maxa Q

�
ot

i , a ; θ̃
�

;

end
Execute action at

i in the training scenario and observe reward r t
i and next observation ot+1

i ;
end

Store transition
�

ot
1, at

1, r
t
1, ot+1

1

�
in D (Note: store only the trained robot’s experience);

Sample random minibatch of transitions
�

o j
1, a j

1 , r
j

1 , o j+1
1

�
from D;

Set

y j
1 =

�
r j

1 if episode terminates at step j + 1

r j
1 + γ Q̂

�
o j

1, arg maxa Q
�

o j+1
1 , a; θ

�
; θ−

�
otherwise

Perform a gradient descent step on
�

y j
1 − Q

�
o j+1

1 , a ; θ
��2

with respect to the network parameters θ ;

Every C steps reset θ− = θ ;
Every N steps reset θ̃ = θ ;

end
end

parameters in both training stages. The workflow of the pro-
posed multi-robot collision avoidance algorithm is shown in
Algorithm 1.

IV. LEADER–FOLLOWER FORMATION

CONTROL STRATEGY

In the previous section, we explained how the robot learns to
navigate itself to the target, avoiding collisions with obstacles
and other robots. In this section, we combine this ability and
the leader–follower approach to implement the multi-robot
formation control.

In a multi-robot formation control setting, we define some
variables as follows:

• The minimum distance between robot i and the other
robots is denoted as drmin

i (i = 1, 2, . . . , n);
• The maximum distance between robot i and the other

robots is denoted as drmax
i (i = 1, 2, . . . , n);

• The minimum distance between robot i to obstacles is
denoted as domin

i (i = 1, 2, . . . , n);
• The leader is denoted by subscript L and the follower is

denoted by subscript F ;
• The target of the formation is defined as the target of the

leader, which is given as pg
L = �

x g
L , x g

L

	
;

• The distance between the formation target and the leader
is denoted as dg

L .

A. Leader’s Control Strategy

The control of the leader is considered in two situations:
• Situation 1:

min
�
drmin

L , domin
L

	
> dsafe or dg

L < min
�
drmin

L , domin
L

	
.

In this situation, the distances domin
L and drmin

L are both
greater than the safe distance dsafe, or the distance dg

L is
less than the minimum of drmin

L and domin
L . This situation is

treated as a simple situation, and the leader is navigated
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straight toward its target by using the PID control
method.

• Situation 2:
min

�
drmin

L , domin
L

	 ≤ dsafe and dg
L ≥ min

�
drmin

L , domin
L

	
.

This situation is treated as a complex situation and we
use the trained network to navigate the leader to its target,
where the observation og

t = �
dg

L , α
g
L

�
denotes the target

position in the leader’s polar coordinate.

To ensure that the followers are within the communication
range of the leader, the action speed of the leader is controlled
as follows:

vc
L =

�
vc

L

�
5/drmax

L

	
if drmax

L > 5m

vc
L otherwise

(20)

The above equation indicates that the action speed of
the leader gradually decreases as the maximum distance
between the leader and the followers exceeds 5 m and then
increases, allowing the followers to move closer to the leader
faster.

B. Follower’s Control Strategy

The control of the follower is considered in three situations:

• Situation 1: min
�
drmin

F , domin
F

	
> dsafe. In this situation,

the distances domin
F and drmin

F are both greater than the safe
distance dsafe. We use the PID control method to navigate
the follower straight toward its target. The follower’s
target position is calculated by equation (3), where L and
ψ define the shape of the formation relative to the leader.

• Situation 2: drmin
F < dsafe and domin

F > dsafe. In this
situation, the distance drmin

F is less than the safe distance
dsafe and the distance domin

F is greater than the safe
distance dsafe. We use the trained network to control the
follower, where the observation og

t = �
dg

F , α
g
F

�
denotes

the follower’s target position in the follower’s polar
coordinates. The follower’s target position is calculated
by equation (3).

• Situation 3: max
�
drmin

F , domin
F

	 ≤ dsafe. In this situation,
the distances domin

F and drmin
F are both less than the

safe distance dsafe, which is the most complex situation.
We use the trained network to control the follower, where
the observation og

t = �
dg

F , α
g
F

�
is different from the sec-

ond situation. The observation og
t means the following:

– dg
F is the distance to the follower’s target position

calculated by equation (3).
– α

g
F is the angle representing the center of the

selected robots in the follower’s polar coordinates
with respect to its current position as shown in Fig. 6.
The selected robots i meet the following conditions:

cos �|pL − pF | , |pi − pF |� > 0,

(i 	= F, i = 1, 2, · · · , n) (21)

The centers of the selected robots are calculated by⎧⎨⎨⎨⎩
xc = 1

N


n

i=1
xi

yc = 1

N


n

i=1
yi

(i 	= F) (22)

Fig. 6. Selected robots in situation 3.

Fig. 7. Scenario used to train the collision avoidance policy.

where (xc, yc) are the coordinates of the center of the
selected robots, N is the number of selected robots,
and i satisfies equation (21).

In situation 3, the robot is likely to collide with obstacles;
therefore, the formation shape must be changed to avoid the
obstacles. To keep the robot in the communication range,
the robot’s command direction is designed toward the center
of the selected robots, described by equation (21). This guar-
antees that the robot will approach the center of the formation
to avoid obstacles.

The Leader–Follower formation control strategy is summa-
rized in Algorithm 2.

V. SIMULATION RESULTS

We demonstrated the performance of the proposed for-
mation control strategy through a series of simulations and
confirmed excellent generalization capability of the proposed
method in these simulations. This section describes the simu-
lation results.

A. Training of the Multi-Robot Collision Avoidance Policy

1) Training Scenario: We created training scenarios using
gazebo1 as shown in Fig. 7. In the training scenario,

1http://gazebosim.org/
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Fig. 8. Average reward curve in training Stage 1 and Stage 2. The reward is computed as the sum of the rewards accumulated in each episode.

Algorithm 2 Leader–Follower Formation Control Strategy

Initialize the environment settings (robots and obstacles);
Configure the formation shape (L and ψ);
Set the formation target position;
for robot i = 1, 2, . . . , n do

if i == L then
if min

�
drmin

L , domin
L

	
> dsafe or

dg
L < min

�
drmin

L , domin
L

	
then

Use the PID control method to navigate the
leader straight toward its target;

else
Use the trained network to navigate the leader
to its target;

end
if drmax

L > 5m then

vc
L = vc

L

�
5/drmax

L

	
end

else
if min

�
drmin

F , domin
F

	
> dsafe then

Use the PID control method to navigate the
follower straight toward its target, as calculated
by equation (3)

else if drmin
F < dsafe and domin

F > dsafe then
Use the trained network to control the follower
to approach its target, as calculated by
equation (3)

else
Use the trained network to control the follower.
dg

F is the distance to the follower’s target
calculated by equation (3). αg

F is the angle
representing the center of the selected robot that
satisfies equation (21) in the follower’s polar
coordinates with respect to its current position.

end
end

end

the cuboids and cylinders are the randomly scattered obstacles,
and the mobile robot model is the Jackal2 mobile robot. The

2http://wiki.ros.org/Robots/Jackal

TABLE I

TRAINING PARAMETERS IN ALGORITHM 1

positions of the robots and obstacles are generated randomly
at the beginning of each episode (Note: to approximate the
formation situation, the relative distance between the robots
does not exceed 10 m). The target positions of the robots
are obtained by translating the robots’ initial positions for a
random distance.

2) Training Results: The network models proposed in this
study were implemented with TensorFlow [34] in Python
and the robots are simulated in gazebo. We trained the
multi-robot collision avoidance policy on a computer with an
i9-9820X CPU and an Nvidia GTX 1080ti GPU. The model
was trained within 8 h in Stage 1 and 3 h in Stage 2. The
training parameters in Algorithm 1 are summarized in Table I
and the parameters of the mobile robot are listed in Table II.
The safe distance dsafe was set as 3.0 m. In particular, the max-
episodes in Stage 1 and Stage 2 were 5000 and 10000,
respectively. We set ε to decrease linearly from 1 to 0.1 in
the first 3000 episodes in Stage 1 and 0.5 to 0.1 in the first
7000 episodes in Stage 2.

We record the average total reward of each 50 episodes. The
results are shown in Fig. 8 and indicate that the average reward
converges to approximately 24 after training 2500 episodes
in Stage 1. This suggests that the robot’s policy converges
to a robust performance in a static environment and can
navigate the robot to its target effectively without collision
with obstacles. In Stage 2, the average reward at the beginning
of training is higher than that in Stage 1 because of two
reasons: (1) the policy used in Stage 2 has learned the ability to
navigate the robot to its target without collision with obstacles;
(2) ε is initialized to 0.5, resulting in the robot reaching
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TABLE II

PARAMETERS OF THE MOBILE ROBOT

its target with a higher probability and thus receiving more
rewards. The average reward in Stage 2 is less than that in
Stage 1 because the environment in Stage 2 becomes more
complex with the addition of robots.

B. Multi-Robot Formation Control

We used four mobile robots to verify the proposed
leader–follower formation control strategy. The results are
shown in Fig. 9.

Fig. 9(a) shows the trajectories of the entire formation.
The stars represent the mobile robots and the red circles and
rectangles represent obstacles. The dotted line is the trajectory
of the leader and the solid lines are the trajectories of the
followers. The configured formation at t = 0 s is as follows:
L F1 = 3 m, ψF1 = 135◦, L F2 = 4 m, ψF2 = 180◦,
L F3 = 3 m, ψF3 = −135◦. Initially, the four mobile robots
form a diamond shape and their directions point to the target
point. The formation shape independently change at t=10 s,
t=20 s, and t=30 s when the robots encounter obstacles.
Thus, the formation can easily pass through obstacle areas.
The formation shape returns to the initially configuration at
t = 45 s when it leaves the obstacle area.

Fig. 9(b) shows the minimum and maximum distances
between the robots and the minimum distance from the robots
to the obstacles. The minimum distance between the robots
is greater than 1.8 m during the entire simulation process,
implying that there is no collision between robots. The max-
imum distance between the robots is less than 6 m during
the entire simulation process, indicating that all robots can
communicate with each other (the maximum communication
range is 10 m). The minimum distance from the robots to the
obstacles is greater than 0.5 m during the entire simulation
process, implying that there is no collision between the robots
and the obstacles.

Fig. 9(c) shows the distances from the robots to their
target points. The distance from the leader to its target
point decreases linearly with simulation time, indicating that
the leader has been approaching its target point during the
simulation process. The distances from the followers to their
target points are always changing according to the environment
the follower encounters. In particular, the distances from the
followers to their target points change dramatically during
the period from t = 10 s to t = 30 s. This is because the
robots need to change the formation shape to pass through the
obstacle area when they encounter obstacles.

The above results demonstrate that the developed
leader–follower formation control strategy enables the robots
to adjust the formation shape independently to avoid collisions

Fig. 9. Formation control results using four mobile robots.

with obstacles and the other robots and maintain all robots
within the communication range.

C. Generalization Tests

We performed two test cases to verify the generalization
ability of the proposed leader–follower formation control
strategy.
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Fig. 10. Results of test case 1 (six mobile robots).

1) Case 1: In the first test case, we increased the number
of robots but kept the environment consistent. The results of
the first test case are shown in Fig. 10.

Fig. 10(a) shows the trajectories of the whole formation with
six mobile robots. The configured formation at t = 0 s is as

Fig. 11. Results of test case 2.

follows: L F1 = 3 m, ψF1 = 135◦, L F2 = 5 m, ψF2 = 157.5◦,
L F3 = 4 m, ψF3 = 180◦, L F4 = 5 m, ψF4 = −157.5◦, L F5 =
3 m, ψF5 = −135◦. As Fig. 10(a) shows, the robots can adjust
the formation shape independently at t = 10 s and t = 20 s
to avoid collisions when they encounter obstacles. Fig. 10(b)
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shows the minimum and maximum distances between the
robots and the minimum distance from the robots to the
obstacles. No collision occurs and the robots are always within
the communication range during the entire simulation process.
Fig. 10(c) shows the distances from the robots to their target
points and indicate that the leader is always approaching its
target point and the followers adjust their positions to pass
through the obstacle area, which is consistent with Fig. 9(c).

2) Case 2: In the second test case, we changed the envi-
ronment but kept the number of robots constant. The results
of the second test case are shown in Fig. 11.

Fig. 11(a) shows the trajectories of the whole formation. The
configured formation is the same as that in section V-B. When
the robots encounter obstacles, the formation shape changes
at t = 10 s to pass through the obstacle area; this indicates
the robots can adjust different formation shapes according to
varying environments. Fig. 11(b) shows the minimum and
maximum distances between the robots and the minimum
distance from the robots to the obstacles; no collision is
observed and the robots are always within the communication
range during the entire simulation process. Fig. 11(c) shows
the distances from the robots to their target points. The leader
is always approaching its target point and the followers adjust
their positions to pass through the obstacle area, same as the
results of case 1.

The above results show that our developed leader–follower
formation control strategy can be generalized into different
scenarios, including the scenario with different number of
robots and various obstacles. The generalization ability of the
formation control strategy owes largely to the generalization
ability of the trained neural network, which has strong feature
extraction capability and shows robust performance in different
situations.

VI. CONCLUSION

This study developed a leader–follower formation control
strategy for multi-robot systems. The formation control strat-
egy is divided into two levels. The lower level controls each
robot to approach its target and avoid collisions by using the
deep network trained by the double DQN method. The dueling
DQN structure effectively extracts features using the LSTM to
process the observations of an arbitrary number of other robots
and the CNN to process the raw laser scanner measurements.
In addition, two stages of training are performed to enhance
the robustness of learning. The higher level controls the
leader and the followers separately according to their situation.
The PID control method is employed in simple situations
and the trained network is employed in complex situations.
In particular, the follower’s target position is selected carefully
in complex situations. Finally, simulations were performed to
confirm the effectiveness of the proposed method. The simu-
lation results demonstrate that the proposed leader–follower
formation control strategy enables the robots to adjust the
formation shape independently when they encounter obstacles
and can be applied to different scenarios with varying obstacles
and number of robots. In the future work, we will investigate
the problem of packet drops and communication delays among
robots that is not considered in this study.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for the
comments and suggestions, and the editor who helped to
improve the article significantly.

REFERENCES

[1] D. Albani, J. IJsselmuiden, R. Haken, and V. Trianni, “Monitoring and
mapping with robot swarms for agricultural applications,” in Proc. 14th
IEEE Int. Conf. Adv. Video Signal Based Surveill. (AVSS), Aug. 2017,
pp. 1–6.

[2] A. Guillet, R. Lenain, B. Thuilot, and V. Rousseau, “Formation control
of agricultural mobile robots: A bidirectional weighted constraints
approach,” J. Field Robot., vol. 34, no. 7, pp. 1260–1274, Oct. 2017.

[3] Y. Liu and G. Nejat, “Multirobot cooperative learning for semiau-
tonomous control in urban search and rescue applications,” J. Field
Robot., vol. 33, no. 4, pp. 512–536, 2016.

[4] K. Ovchinnikov, A. Semakova, and A. Matveev, “Cooperative surveil-
lance of unknown environmental boundaries by multiple nonholonomic
robots,” Robot. Auto. Syst., vol. 72, pp. 164–180, Oct. 2015.

[5] X. Dai, L. Jiang, and Y. Zhao, “Cooperative exploration based on
supervisory control of multi-robot systems,” Int. J. Speech Technol.,
vol. 45, no. 1, pp. 18–29, Jul. 2016.

[6] D. Roy, A. Chowdhury, M. Maitra, and S. Bhattacharya, “Multi-
robot virtual structure switching and formation changing strategy in an
unknown occluded environment,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Oct. 2018, pp. 4854–4861.

[7] Z. Sun and Y. Xia, “Receding horizon tracking control of unicycle-
type robots based on virtual structure,” Int. J. Robust Nonlinear Control,
vol. 26, no. 17, pp. 3900–3918, Nov. 2016.

[8] G. Lee and D. Chwa, “Decentralized behavior-based formation control of
multiple robots considering obstacle avoidance,” Intell. Service Robot.,
vol. 11, no. 1, pp. 127–138, 2018.

[9] D. Xu, X. Zhang, Z. Zhu, C. Chen, and P. Yang, “Behavior-based
formation control of swarm robots,” Math. Problems Eng., vol. 2014,
pp. 1–13, Jun. 2014.

[10] H. Xiao and C. L. P. Chen, “Leader-follower consensus multi-robot for-
mation control using neurodynamic-optimization-based nonlinear model
predictive control,” IEEE Access, vol. 7, pp. 43581–43590, 2019.

[11] B. Tian, H. Lu, Z. Zuo, and W. Yang, “Fixed-time leader–follower output
feedback consensus for second-order multiagent systems,” IEEE Trans.
Cybern., vol. 49, no. 4, pp. 1545–1550, Apr. 2019.

[12] X. Wu, S. Wang, and M. Xing, “Observer-based leader-following
formation control for multi-robot with obstacle avoidance,” IEEE Access,
vol. 7, pp. 14791–14798, 2019.

[13] G. Wen, C. L. P. Chen, and Y.-J. Liu, “Formation control with obstacle
avoidance for a class of stochastic multiagent systems,” IEEE Trans.
Ind. Electron., vol. 65, no. 7, pp. 5847–5855, Jul. 2018.

[14] J. Vilca, L. Adouane, and Y. Mezouar, “Adaptive leader-follower forma-
tion in cluttered environment using dynamic target reconfiguration,” in
Distributed Autonomous Robotic Systems. Tokyo, Japan: Springer, 2016,
pp. 237–254.

[15] H. Xiao, Z. Li, and C. L. Philip Chen, “Formation control of leader–
follower mobile robots’ systems using model predictive control based
on neural-dynamic optimization,” IEEE Trans. Ind. Electron., vol. 63,
no. 9, pp. 5752–5762, Sep. 2016.

[16] Y. Dai and S. G. Lee, “Formation control of mobile robots with obstacle
avoidance based on GOACM using onboard sensors,” Int. J. Control,
Autom. Syst., vol. 12, no. 5, pp. 1077–1089, Oct. 2014.

[17] J. Luo, C.-L. Liu, and F. Liu, “A leader-following formation control
of multiple mobile robots with obstacle,” in Proc. IEEE Int. Conf. Inf.
Autom., Aug. 2015, pp. 2153–2158.

[18] A. Fujimori, H. Kubota, N. Shibata, and Y. Tezuka, “Leader–follower
formation control with obstacle avoidance using sonar-equipped mobile
robots,” Proc. Inst. Mech. Eng., I, J. Syst. Control Eng., vol. 228, no. 5,
pp. 303–315, May 2014.

[19] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, pp. 529–533, Feb. 2015.

[20] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforcement
learning,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2017,
pp. 285–292.

[21] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion
planning with deep reinforcement learning,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst. (IROS), Sep. 2017, pp. 1343–1350.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 23,2023 at 12:08:50 UTC from IEEE Xplore.  Restrictions apply. 



11822 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 8, AUGUST 2022

[22] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among
dynamic, decision-making agents with deep reinforcement learning,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2018,
pp. 3052–3059.

[23] M. Sundermeyer, R. Schlüter, and H. Ney, “LSTM neural networks for
language modeling,” in Proc. 13th Annu. Conf. Int. Speech Commun.
Assoc., 2012, pp. 1–4.

[24] G. Wen, J. Qin, X. Fu, and W. Yu, “DLSTM: Distributed long
short-term memory neural networks for the Internet of Things,” IEEE
Trans. Netw. Sci. Eng., early access, May 25, 2021, doi: 10.1109/
TNSE.2021.3054244.

[25] P. Long, T. Fanl, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
optimally decentralized multi-robot collision avoidance via deep rein-
forcement learning,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2018, pp. 6252–6259.

[26] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN
features off-the-shelf: An astounding baseline for recognition,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, Jun. 2014,
pp. 806–813.

[27] T. Fan, P. Long, W. Liu, and J. Pan, “Fully distributed multi-robot
collision avoidance via deep reinforcement learning for safe and efficient
navigation in complex scenarios,” 2018, arXiv:1808.03841. [Online].
Available: http://arxiv.org/abs/1808.03841

[28] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[29] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and
N. de Freitas, “Dueling network architectures for deep reinforcement
learning,” 2015, arXiv:1511.06581. [Online]. Available: http://arxiv.
org/abs/1511.06581

[30] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
Boltzmann machines,” in Proc. 27th Int. Conf. Mach. Learn. (ICML),
2010, pp. 807–814.

[31] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. 13th AAAI Conf. Artif. Intell., 2016,
pp. 2094–2100.

[32] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009, pp. 41–48.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.org/
abs/1412.6980

[34] M. Abadi et al., “Tensorflow: A system for large-scale machine learn-
ing,” in Proc. 12th USENIX Symp. Operating Syst. Design Implement.
(OSDI), 2016, pp. 265–283.

Chengchao Bai (Member, IEEE) received the B.S.
and Ph.D. degrees in aerospace engineering from
Harbin Institute of Technology, China, in 2013 and
2019, respectively. He is currently a Post-Doctoral
Associate with TU Delft. His research interests
include multi-robot learning, planetary exploration,
intelligent sensing, and large scale resilience coop-
eration. He is also interested in robot intelligence
and its application. He served as a member for
the Youth Editorial Board of the Journal Unmanned
Systems Technology. He is a Committee Member of

the IEEE RAS Technical Committee on Multi-Robot Systems, CAAI (Chinese
Association for Artificial Intelligence) Technical Committee on Intelligent
Robot, CSIG (China Society of Image and Graphing) Technical Committee
on Machine Vision, and CICC (Chinese Institute of Command and Control)
Technical Committee on Unmanned Systems.

Peng Yan received the B.S. degree in aerospace
engineering from Harbin Institute of Technology,
China, in 2016, where he is currently pursuing the
Ph.D. degree. His current research interests include
motion planning, decision making, and behavior
prediction.

Wei Pan (Member, IEEE) received the Ph.D. degree
in bioengineering from Imperial College London.
He is currently an Assistant Professor with the
Department of Cognitive Robotics, Delft Univer-
sity of Technology. Until May 2018, he was a
Project Leader with DJI, Shenzhen, China, respon-
sible for machine learning research for DJI drones
and AI accelerator. His research interests include
machine learning, control theory, and robotics.
He was a recipient of Dorothy Hodgkin’s Postgrad-
uate Awards, Microsoft Research Ph.D. Scholarship

and Chinese Government Award for Outstanding Students Abroad, and
Shenzhen Peacock Plan Award. He also serves as the Area Chair for CoRL
and an Associate Editor for IROS.

Jifeng Guo (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees in aerospace engineering
from Harbin Institute of Technology, China, in 2001,
2004, and 2007, respectively. From 2007 to 2004,
he served as a Lecturer and an Associate Pro-
fessor with Harbin Institute of Technology. Since
2015, he has been a Professor with the School of
Astronautics, Harbin Institute of Technology. He is
the author of two books, more than 100 articles,
more than 30 inventions, and holds ten patents.
His research interests include intelligent sensing,

autonomous planning, on-orbit service, and collaborative control. He is a
member of the Editor Board of the Journal of Unmanned Systems Technology.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 23,2023 at 12:08:50 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TNSE.2021.3054244
http://dx.doi.org/10.1109/TNSE.2021.3054244

