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Improving the Utilization of Regenerative Energy
and Shaving Power Peaks by Railway

Timetable Adjustment
Pengling Wang , Nikola Bešinović , Rob M. P. Goverde , Member, IEEE,

and Francesco Corman , Member, IEEE

Abstract— Employing regenerative braking in trains
contributes to reducing the amount of energy used, especially
when applied to commuter trains and to those used on very
dense suburban networks. This paper presents a method to
fine-tune the periodic timetable to improve the utilization of
regenerative energy and to shave power peaks while maintaining
the structure and robustness of the original timetable. First,
a mixed-integer linear programming model based on the
periodic event scheduling framework is proposed. A set of
feasible timetables is determined and optimized with the aim
of increasing synchronized acceleration and braking events at
the same station, and maintaining the timetable robustness at
the specified level. Next, a local search algorithm is developed
to optimize the timetable such that the power peak value is
minimized. The max-plus system model is adopted to estimate
the delay propagation. Monte Carlo simulation is used to
evaluate the utilization of regenerative energy and power peaks
in random delayed circumstances. The proposed method was
adopted to fine-tune the 2019 timetable for a sub-network of the
Dutch railway. In the case of on-time scenarios, the optimized
timetable increases the regenerative energy usage by almost
290% and decreases the 15-minute power peaks by 8.5%. In the
case of delay scenarios, the optimized timetable outperforms
the original timetable in terms of using regenerative energy and
shaving power peaks.

Index Terms— Railway timetabling, utilization of regenerative
energy, power peak shaving.

I. INTRODUCTION

RAIL is among the most energy-efficient modes of trans-
port for freight and passengers, but increasing the energy

Manuscript received December 22, 2020; revised June 27, 2021,
October 6, 2021, and December 7, 2021; accepted January 19, 2022.
This work was supported in part by the Fundamental Research Funds for
the Central Universities, in part by the Shanghai Sailing Program under
Grant 21YF1450200, in part by the National Natural Science Foundation
of China under Grant 72101184, in part by the Swiss National Science
Foundation under Project 181210/DADA, in part by the Swiss Innova-
tion Agency Innosuisse, and in part by the Swiss Competence Center for
Energy Research—SCCER Mobility. The Associate Editor for this article was
H. B. Celikoglu. (Corresponding author: Pengling Wang.)

Pengling Wang is with the College of Transportation Engineering, Tongji
University, Shanghai 200070, China, and also with the Institute for Transport
Planning and Systems, Swiss Federal Institute of Technology, ETH Zürich,
8092 Zürich, Switzerland (e-mail: pengling_wang@tongji.edu.cn).
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efficiency and thus saving energy still plays a key role in
modern railway companies’ strategies. In fact, rail operators
are under enormous pressure as a result of societal and
environmental targets to increase the sustainability of railway
transportation. Consequently, energy efficiency has emerged
as a prominent subject in railway operations in both industry
and academia.

Improving the energy efficiency of train operations is not
simply a matter of minimizing the energy requirements for
traction, but also of shaving power peaks. This topic is
of particular importance in DC systems with non-inverting
substations. Here, energy billing is often determined by two
components: total energy consumption and power peaks. For
example, the German railway operator DB, via its subsidiary
DB Energie, charges train operators according to both the total
energy consumption and the maximum power consumption of
the trains they operate. In terms of the total consumption, they
pay a certain price per kilowatt-hour to which federal fees and
an apportionment are added. The second component is based
on the maximum peak power consumption of all trains over
a 15-minute interval during the billing period. This amount
is calculated by summing up the energy consumption of all
trains and then averaging this value over the four 15-minute
clock intervals. The train operators then pay a certain rate
per kilowatt, which is multiplied by the highest average
value [1], [2].

The effective use of regenerative energy can contribute
directly to a reduction in the amount of energy to be pur-
chased. In general, several types of train braking systems
exist, including regenerative braking, resistance braking, and
air braking. During regenerative braking, which is commonly
employed in current electric rail systems, a train decelerates by
reversing the functioning of its motors. These motors then act
as generators that convert mechanical energy into electrical
energy that can be either used immediately or stored until
needed [3]. In this paper, the electrical energy produced in this
way is referred to as “regenerative energy”. The regenerative
energy primarily feeds the auxiliary functions of the vehicle,
and the excess energy is usually returned to the supply line
to power other trains accelerating along the same electric
section. However, because the auxiliaries consume a relatively
minor amount of energy and different trains are unlikely
to simultaneously accelerate and decelerate, a considerable
amount of braking energy is wasted. In fact, many countries
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use timetables that allow multiple trains to simultaneously
accelerate on the network at the same time. Consequently,
during these phases, the power requirement in the traction
network increases significantly. In addition, the increasing
volume of traffic and use of more powerful trains causes the
maximum power requirement to increase.

Synchronizing accelerating and braking trains by means
of timetable optimization would be a straightforward way
to increase the use of regenerative braking energy. Addi-
tionally, it may limit power peaks and stabilize the power
voltage because more accelerating trains would draw power
from braking trains, instead of from the power system. This
motivated us to study the energy-efficient timetable optimiza-
tion problem with the aim of maximizing the utilization of
regenerative energy and shaving power peaks. We focused
on the passenger-train periodic timetable used for the Dutch
railway network, which carries dense traffic, has metro-like
operations, relies on balanced train flows in both directions,
and is powered by a DC power grid system.

II. LITERATURE REVIEW

The energy-efficient timetabling problem focuses on seeking
the optimal arrival and departure times of trains to improve the
energy efficiency of railway operations [4], [5]. This section
presents a literature review of those studies with a specific
focus on improving the utilization of regenerative braking
energy by timetable optimization.

A. Pure Timetable Optimization

Early research was concerned with dwell time control [6]
and run time control [1] to achieve synchronized accelera-
tion and braking processes for the utilization of regenerative
energy. Subsequent work [7] led to the proposal of a timetable
adjustment model to maximize the time during which the
accelerating and braking actions of trains overlap within the
same substation. This work was extended [8] to synchronize
the braking and acceleration processes of all trains traveling
along the same electrical section. They developed a power flow
model to calculate the regenerative saving factor each time
these two processes were synchronized within an electrical
section. However, the specific speed profiles of trains were not
considered, and the acceleration and braking processes were
described as a fixed duration. Other researchers [9] coordinated
the accelerating and braking processes of adjacent trains
by adjusting the headway and dwell times. This work was
extended [10] by including random departure delays at busy
stations to increase synchronizations. Another approach [11]
involved the adoption of real-world speed profiles for energy
estimation and led to the proposal of a dwell time control
approach for minimizing the net energy (traction energy minus
regenerative energy) of all trains located in the same electricity
supply interval. Similarly in [12], a headway and dwell time
adjustment model was presented with the aim of maximizing
the utilization of regenerative energy. The proposed model
was solved using an improved artificial bee colony algorithm.
In this regard, [13] considered passenger convenience and built
a bi-objective timetable optimization model and a GA-based

solution method to find the optimal timetable with the min-
imum passenger waiting time and net energy consumption.
Another study resulted in the proposal of a mixed integer linear
programming (MILP) model for feasible adaptations of the
German timetable draft. The performance of this model was
investigated under different objective functions: reducing the
energy cost and increasing the stability of the power supply
system (reducing power peaks). However, the models used in
this study are not yet able to solve instances of the relevant
size [2], [14].

B. Integrated Optimization of Timetable and Speed Profile

Utilizing regenerative energy relies on the coordination of
the movements of neighboring trains [15]–[17]. A possible
approach would be to improve the usage of regenerative
energy by simultaneously optimizing train timetabling and
speed profiles [18]–[27].

Specifically, references [18]–[20] investigated the problem
of optimizing the integration of energy-efficient driving and
timetable design for a railway corridor with one type of
cyclic train operation. A method for departure time adjust-
ment was proposed to increase the synchronized braking
and acceleration processes for the utilization of regenerative
braking. Others proposed an integrated optimization model
for metro lines [21], [22]. The model adopts the switching
times and speeds of the train control regimes (acceleration,
cruising, coasting, and braking) as the decision variables, aims
to minimize the net energy consumption of multiple trains,
and considers the constraints with respect to the number of
trains, cycle times, switching times, turnaround times, vehicle
speed limits, and dwell times. Another study [23] considered
the passenger waiting times and proposed an integrated opti-
mization model to coordinate trains at the same station to
improve the utilization of regenerative energy and decrease
passenger’s waiting time. More recently, the energy-efficient
driving problem was incorporated into the railway timetabling
process based on a space-time-speed (STC) network [24], [25].
The STC grid network was constructed for joint train routing,
timetabling, and trajectory optimization as a path-finding prob-
lem. In addition, a set of energy-efficient speed trajectories was
predefined. Based on these speed trajectories, a near-optimal
energy-efficient timetable solution with dynamic headways
was found using a heuristic algorithm.

C. Focus of This Study

As summarized in Table I, despite the various insights
provided by manipulating the running times, dwell times,
headway times, and driving strategies to synchronize accel-
erating and braking trains with the intention of maximizing
the reuse of regenerative energy, we noticed the following
significant knowledge gaps:

1. Past studies on energy-efficient timetabling for the uti-
lization of regenerative energy mainly focused on non-periodic
timetables for a corridor and cyclic timetables for metro
systems, where a single type of train operates solely in each
corridor. Research involving periodic timetables of mainline
rail networks is rarely reported. This is because the traffic
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TABLE I

SUMMARY OF MOST RELEVANT REFERENCES

situation on these networks is much more complex, as different
types of trains operate alternatively along each corridor, with
the result that a greater variety of trains may interact with each
other along the same corridor.

2. Adjusting the running/dwell/headway times for the uti-
lization of regenerative energy changes the time allowance
distribution and affects the robustness of the timetable. Few
reports on ways to improve the energy efficiency without
negatively impacting upon the robustness of the timetable have
been published.

3. Synchronizing accelerating and braking trains may limit
peaks in the power consumption and stabilize the power volt-
age. In fact, high-power peaks are mainly caused by the fact
that more than one train accelerates at the same time. Accel-
erating trains that draw power from braking trains, instead
of from the power system, would reduce the demand for
power. However, synchronizing the accelerating and braking
processes does not directly reduce simultaneous accelerations.
In other words, enhancing the benefits of power peak shaving
would require additional measures. Unfortunately, few recent
attempts to solve the timetabling problem to enhance these
benefits have been reported. To the best of our knowledge,
only one research group [2], [14] conducted a few studies
related to this topic.

4. Finally, much research has focused on the planning phase;
the impact of delays on the usage of regenerative energy and
the power peaks remains unknown.

This study aims to fill these knowledge gaps by proposing
a periodic timetable adjustment method with the objective of
increasing the utilization of regenerative energy and shaving
power peaks while maintaining the robustness of the timetable
at the required level. This entailed the use of Monte Carlo
simulation for a max-plus linear system to estimate the impact
of delays on the energy costs and power peaks.

The proposed periodic timetable adjustment model was
built on the basis of the basic framework of the periodic
event scheduling problem (PESP) [28]. Our approach was
to focus on adjusting existing timetables, instead of building
completely new ones, to enhance the usage of regenerative
energy while maintaining the structure (e.g., train orders and
periodicity) of existing timetables and ensuring the same level
of service to passengers as in existing timetables. Moreover,
timetable adjustment has less impact on the scheduling of
rolling stock and crew compared to the construction of new
timetables.

The proposed timetable adjustment model maximizes the
times at which the synchronized acceleration and braking
processes overlap at the same station as the main objective
and maintains the timetable robustness as an ε-constraint. Thus
far, strong consensus on the meaning of robustness does not
exist. Researchers often evaluate timetable robustness with the
value of time allowances inserted in the timetable [29]. Here,
the time allowances are partitioned in the time supplements
(or time allowances) on top of the minimum process times
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(running/dwell times), and the buffer times on top of the
minimum headway times. Timetable robustness is improved
by increasing the time allowances or ensuring they are well
distributed [30]. A parameter θ , which is introduced to
quantify the timetable robustness level, is computed as the
sum of the weighted time allowances in the running times,
dwell times, and headway times. The larger θ is, the larger
the time allowances are, and therefore, the more robust the
timetable is against delays.

The power peak shaving method we built first integrates
the energy-efficient train trajectory optimization model to
find energy-efficient driving strategies) with the corresponding
power profiles of every possible train run. Then, based on
these power profiles, the overall power profiles are computed
for different timetables. A power peak shaving algorithm was
developed to search for the local optimal timetable with a
minimal power peak. Note that the power peak we discuss
here refers to the maximum traction power demand of all
trains in a railway network over a certain time period, instead
of the power peak that occurs in the electrical system of
the railway network. We use the maximum traction power
demand as the power peak because the price paid for energy
in many countries is partially determined by the peak in the
power demand (see Section I). A case study was designed by
applying the proposed timetable adjustment model and power
peak shaving algorithm to fine-tune the timetable of 2019 for
a sub-network of the Dutch railway. To examine how the
timetable adapts to uncertain delays, the max-plus theory [31]
was adopted to estimate the delay propagation. Monte Carlo
simulation was used to evaluate the utilization of regenerative
energy and power peaks during random delays.

To summarize, the contributions of this study to the litera-
ture on energy-efficient timetabling are as follows.

1. A timetable adjustment model was proposed to fine-tune
a periodic timetable for the utilization of regenerative energy.
Compared to the existing literature on cyclic timetables in
metro lines or non-periodic timetables in a single corridor, our
work considers a more complex traffic situation in a mainline
network and periodic timetables.

2. The timetable adjustment takes into account the requests
to ensure timetable robustness and enhance the benefit of
power peak shaving. The proposed timetable adjustment model
maximizes the times during which synchronized acceleration
and braking processes overlap as the main objective and
maintains the timetable robustness as an ε-constraint. A local
search algorithm is built to enhance the benefit of using the
optimized timetable for smoothing the power demand profile.

3. The max-plus theory was adopted to estimate delay prop-
agation. A model based on Monte Carlo simulation was con-
structed to evaluate the timetable robustness, energy efficiency,
and power peaks when delays occur. The simulation results
show that even in the case of delays, the optimized timetable
outperforms the original timetable in terms of recovering from
delays by using regenerative energy and shaving power peaks.

The remainder of this paper is organized as follows.
In Sections III and IV, we discuss our energy-efficient
timetable optimization model and power peak shaving algo-
rithm, respectively. In Section V, we present the max-plus

theory we use to consider delayed operations. In Section VI,
the performance of the proposed optimization method is
evaluated using real-life instances. In Section VII, we draw
conclusions and discuss future research directions.

III. ENERGY-EFFICIENT TIMETABLING

This section presents the PESP-based timetable adjustment
model that aims to adjust the arrival and departure times of a
given timetable to increase the occurrence of synchronized
acceleration and braking processes while maintaining the
timetable robustness at a certain level.

A. Basic PESP Model

The PESP model schedules events in a period of the cyclic
timetable and considers precedence constraints and relations
between events. The PESP formulation can be represented
by a directed graph G = (E, A). The set E represents train
events such as arrivals at, departures from, and passing through
stations and important timetabling locations (i.e., bridges and
junctions). These events are linked by the set of activities A,
representing the constraints on the timing between a pair of
events. In this study, the activity set A is equal to Arun ∪
Adwell ∪ Aheadway ∪ Atransfer ∪ Aturn ∪ Asab. Arun denotes the
set of running activities. A running activity represents the
running time constraint between two successive departure and
arrival events of a train. Adwell is the set of dwell activities.
A dwell activity represents the dwell time constraint between
an arrival event and a departure event of a train at a station.
Aheadway is the set of headway activities. A headway activity
refers to the headway time constraint between two successive
trains traveling on the same lines at stations. Atransfer is the
set of transfer connection activities. A transfer connection
activity represents the transfer time constraint for passengers
transferring from an arriving train (an arrival event) to a
departing train (a departure event of another train) at a station.
Aturn is the set of turnaround activities. A turnaround activity
refers to the time constraint between the arrival of a train at its
end station and the departure of the train (typically the same
rolling stock, but a different service number) from the opposite
line that leaves from that station. Asab is the set of activities
with synchronized acceleration and braking events. An activity
(i, j) ∈ Asab refers to the overlap time of departure event i
and arrival event j . The synchronization pair may occur within
one station or one electrical section, depending on the needs of
the model. If the model is designed to employ synchronization
pairs within the same station, it is assumed that trains in the
same station are powered by the same electrical section.

The periodic train timetabling problem then determines
the discrete times πi associated with each event i of E
without violating the set of constraints A. These events
repeat every cycle at time instances πi + kT , where k =
1, 2, . . . . As the problem is to define the events within
an interval of cycle time T , πi is restricted to the inter-
val [0, T − 1]. A pair of events can be realized in two
different orders while maintaining their event times within
the interval [0, T − 1]. The PESP constraints can then be
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TABLE II

DETERMINATION OF OVERLAPPING TIME

formulated mathematically as

μ
i j

≤π j −πi +qi j T ≤μi j , ∀(i, j)∈ A, (1)

0≤πi ≤T − 1, ∀i ∈ E, (2)

qi j ≥0, ∀(i, j)∈ A, (3)

qi j +qi ′ j ′ +qii ′ +q j j ′ =2oii ′ j j ′, ∀(i, j), (i ′, j ′)∈ Arun,

(i,i ′), ( j, j ′)∈ Aheadway, (4)

0≤oii ′ j j ′ ≤2, ∀(i, j), (i ′, j ′)∈ Arun, (i,i
′), ( j, j ′)∈ Aheadway.

(5)

where A = Arun ∪ Adwell ∪ Aheadway ∪ Atransfer ∪ Aturn.
Constraint (1) ensures that all activities are within the given
bounds, μ

i j
and μi j ∈ [0, T − 1]. It consists of restrictions on

running times, dwell times, headway times, transfer connecting
times, and turn-around times. Constraint (2) requires the
periodicity of events by bounding to [0, T −1]. Constraint (3)
restricts qi j to non-negative integers, representing the number
of crossed time periods of event j compared to event i . If i
and j take place in the same period, qi j = 0; in the case
that j takes place in the next period of i , qi j = 1, and so
on. Constraints (4-5) guarantee that no illegal overtaking can
arise, by restricting the sum of the four binary parameters
of related running and headway activities to 0, 2, or 4 [32],
where oii ′ j j ′ is a dummy integer to avoid illegal overtakes,
oii ′ j j ′ ∈ {0, 1, 2}.

B. Synchronization of Acceleration and Braking Processes

The power recovered via regenerative braking can be used
if the power is simultaneously drawn from somewhere close.
Taking an activity (i, j) ∈ Asab (i and j are departure and
arrival events, respectively) as an example, Table II presents
six possible combinations of synchronizations and their over-
lapping times [8]. The third column in Table II (overlapping
time (a)) reports the overlapping times when the four events
(πi , π

−
j , π j , π

+
i ) take place in one period, while the fourth

column (overlapping time (b)) reports the overlapping times
when the four events occur across two time periods. πi is the
time of departure event i , π j is the time of arrival event j ,
and ti and t j are the acceleration time after event i and the
braking time before event j , respectively. π+

i = πi +ti denotes
the end time of the acceleration process. π−

j = π j − t j is the
start time of the braking process. It is assumed that ti and
t j are independent of πi and π j , respectively. In addition,
ti , t j � T , meaning that the braking and acceleration times

are much smaller than the time period T ; thus, the overlapping
time of (i, j) ∈ Asab is much smaller than T .

In Table II, the acceleration and braking processes are
(at least partially) synchronized in Case 1-4, where the
overlapping times are computed differently according to the
sequence of πi , π

+
i , π

−
j , and π j . Because event i may take

place before or after j in one time period, the order of
events affects the computation of overlapping times (see
Cases 3 (a)–(b) and 4 (a)–(b) in Table II). For all activities
within Asab (∀(i, j) ∈ Asab), two binary variables, αi j and
βi j , are introduced to indicate whether events i and j are
synchronized.

αi j =
{

1, if π j ≥ πi , πi + ti ≥ π j − t j ,
0, otherwise.

(6)

βi j =
{

1, if π j + T ≥ πi , πi + ti ≥ π j − t j + T,
0, otherwise.

(7)

where αi j = 1 refers to the synchronized cases if πi ≤ π j ,
βi j = 1 refers to the synchronized cases if πi > π j , and
αi j + βi j ≤ 1. Together with the two binary variables and
the methods for calculating the overlapping time presented
in Table II, we formulate the objective and constraints for
maximizing the total overlapping times as follows:
max

∑
∀(i, j )∈Asab

Li j , (8)

s.t. L ′
i j =min{π j −πi + βi j T, πi −π j −βi j T +t j +ti , t j , ti },

(9)

M · (αi j +βi j −1) ≤ Li j −L ′
i j ≤−M · (αi j +βi j −1),

(10)

−M · (αi j +βi j ) ≤ Li j ≤ M · (αi j +βi j ), (11)

αi j ≥ min

{
π j −πi

M
,
πi −π j +ti +t j

M

}
, (12)

αi j ≤ 1+min

{
π j −πi

M
,
πi −π j +ti +t j

M

}
, (13)

βi j ≥ min

{
π j −πi +T

M
,
πi −π j −T +ti +t j

M

}
, (14)

βi j ≤ 1+min

{
π j −πi +T

M
,
πi −π j −T +ti +t j

M

}
, (15)

αi j , βi j ∈ {0, 1}, (16)

∀(i, j) ∈ Asab.

where Li j refers to the overlapping time of events j and i .
M is a large positive integer. The objective function (8) aims
to maximize the total overlapping times of the synchronized
acceleration and braking processes. Constraint (9) introduces
an integer value L ′

i j , which models the overlapping time of
events i and j when the two events are synchronized. Con-
straints (10-11) force Li j = L ′

i j in the case that αi j + βi j = 1,
otherwise Li j = 0. Constraints (12)–(15) are the linearized
versions of Equations (6)–(7). Constraint (16) restricts αi j , βi j

to be binary variables.

C. Additional Constraints for Fine-Tuning and Robustness

This model is designed to fine-tune the given timetables.
We enforce the fine-tuning changes such that they have a
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minor effect on the structure of the timetable by means of
the constraints:

c ≤ πi − π∗
i + gi T ≤ c, ∀i ∈ E, (17)

−1 ≤ gi ≤ 1, ∀i ∈ E, (18)

where π∗
i refers to the time of event i in the given timetable,

and c and c are the minimum and maximum allowed changes,
respectively. Further, gi ∈ [−1, 1] are integers. gi = 0 if πi

and π∗
i are in the same period, gi = 1 if πi is in the next

period of π∗
i , and gi = −1 if πi is in the previous period

of π∗
i .

This work balances the robustness and energy efficiency
by considering the improvement of synchronized acceleration
and braking processes as the main objective while maintaining
robustness as an ε constraint. As discussed in Section II, the
time allowances inside a timetable are adopted to represent
timetable robustness. A parameter θ is introduced to quantify
the timetable robustness level:

θ = γ1 ·
∑

(i, j )∈Arun

(π j − πi + qi j T − μ
i j
)

+γ2 ·
∑

(i, j )∈Adwell

(π j − πi + qi j T − μ
i j
)

+γ3 ·
∑

(i, j )∈Aheadway

(π j − πi + qi j T − μ
i j
), (19)

where γ1, γ2, and γ3 are the weight factors and θ is the sum
of the weighted time allowances in the running times, dwell
times, and headway times. The time allowances are beneficial
for absorbing small delays and reducing the delay propagation.
A larger θ indicates improved timetable robustness. To ensure
the robustness of the optimized timetable, a lower bound
restricts the total weighted time allowance θ :

θ ≥ ε, (20)

where ε is a constant value, that is, the minimum acceptable
robustness level (total weighted time allowances). Moreover,
we wish to include at least some time allowances in all
activities by restricting

π j − πi + qi j T − μ
i j

≥ χi j ,

∀(i, j) ∈ Arun ∪ Adwell ∪ Aheadway, (21)

where χi j is a constant value, referring to the minimum
time allowance requested in an activity (i, j) ∈ Arun ∪
Adwell∪ Aheadway. In summary, the timetable adjustment model
aims to maximize the objective functions (8) subject to
constraints (1–5 and 9–21).

IV. POWER PEAK SHAVING

The timetable adjustment model presented in Section III
produces optimal solutions in terms of the maximal overlap-
ping time of acceleration and braking processes. These opti-
mal solutions may contribute to smooth power consumption
profiles. This section presents the algorithm that ensures that
power peak shaving benefits from the optimized timetable.

As the cost of energy is directly related to the total power
demand of the trains, the proposed power peak shaving

Fig. 1. Speed (black) and power (blue) consumption profile of an intercity
train on an even track.

algorithm focuses on minimizing the power demand peaks
resulting from traction, instead of minimizing the power peaks
measured from the overhead lines. That is, the electrical
system was not considered in this work. To calculate the power
demand profile of all involved trains, we first compute the
power profile of every train with an energy-efficient train tra-
jectory optimization model considering the regenerative energy
(Section IV-A). The method for the calculation of the power
profile of all involved trains is presented in Section IV-B,
and the algorithm for power peak shaving is introduced in
Section IV-C. To emphasize that multiple timetables are used,
a superscript ψ is added to the timetable-related variables.

A. Single Train Power Profile

Taking a train run between event i (departure event) and
j (arrival event) within a given run time r as an example,
we compute the speed profile and power profile for any
combination of (i, j, r) with the multiple-phase optimal con-
trol (MPOC) method [33]. This MPOC method optimizes the
sequence of train control regimes with the objective of mini-
mizing the traction energy costs subject to the timetable con-
straints, maximum speed restrictions, maximum power/force
restrictions, etc. This study extends the objective function to
include the reuse of regenerative energy, whereas the remain-
der of the MPOC model remains the same as before [33]. The
typical speed and power profile of a train running on an even
track are shown in Fig. 1.

Using the MPOC method, we compute the power pro-
files of every possible train run (different combinations of
arrival/departure events and running times) in advance. These
power profiles were used as inputs for the power peak shaving
model presented below.

B. Power Peak Shaving Model

First, to compute the power profiles of all trains, it is
necessary to assess the total power consumption every second
(or a similar small time interval). We discretize the time period
as 0, δ, 2δ, . . . , T − δ, where T is the period of the timetable,
and δ is the discrete time interval (e.g., 1 s). We denote
� = [0, δ, 2δ, . . . , T −δ] as the set of discretized timestamps,
and t ∈ � is a timestamp within �. The power consumption
at every timestamp is calculated as the sum of the demanded
and regenerative power of all trains.
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We pre-calculate the power profiles of every train run using
the method outlined above (Section IV-A). The power profile
of a single train run is expressed as

Pijr = [pi jr
0 , pi jr

δ , pi jr
2δ , . . . , pi jr

hδ , . . . ], (22)

where (i, j) ∈ Aψrun (Aψrun is the set of running activities with
timetable ψ), r denotes the running time between i (departure
event) and j (arrival event), and pi jr

hδ refers to the power
consumption at time hδ + π

ψ
i (πψi refers to the scheduled

time of event i with timetable ψ).
Constructing the power profile of all involved trains requires

knowledge of the power demand of every train run (i, j) ∈
Aψrun at every timestamp t . Furthermore, to obtain the power
consumption of a train run (i, j) at timestamp t , we need to
know the running time after departure event i at timestamp t ,
which is calculated as

η
ψ
i j t =

⎧⎪⎪⎨
⎪⎪⎩

t − π
ψ
i if π

ψ
i ≤ t ≤ π

ψ
j + qψi j T,

t − π
ψ
i + T if t ≤ π

ψ
j < π

ψ
i ,

0 otherwise.

(23)

where (i, j) ∈ Aψrun, t ∈ �, ηψi j t represents the running time

after event i in the timetable ψ at timestamp t , and ηψi j t is
calculated differently depending on whether departure event i
takes place before or after arrival event j in one time period.
We denote by pψi j t the power demand of a train run (i, j) at
timestamp t , which is computed as

pψi j t =
{

pi jr
hδ , if r = π

ψ
j − π

ψ
i + qψi j T, hδ = η

ψ
i j t ,

0 otherwise.
(24)

where (i, j) ∈ Aψrun, t ∈ �. The total power consumption at
timestamp t , denoted by wψt , is then calculated as the sum of
the power demand of all train runs:

w
ψ
t =

∑
∀(i, j )∈Aψrun

pψi j t , ∀ t ∈ �. (25)

Four different indicators were introduced to evaluate the
energy consumption of a given timetable, ψ . In our calcula-
tion, Eψtraction is the traction energy demand, Eψusedreg is the
regenerative energy immediately used for powering accelerat-
ing trains, Eψrestreg is the remaining regenerative energy (total
regenerative energy minus regenerative energy immediately
used), and Eψtotal is the total energy consumption (traction
energy minus regenerative energy) as follows:

Eψtraction =
∑

∀t∈�

∑
∀(i, j )∈Aψrun

max{pψi j t , 0}, (26)

Eψusedreg =
∑

∀(i, j ),(i ′, j ′)∈Aψrun

(i ′, j )∈Aψsab

min{πψj ,
π
ψ

i′ +tψ
i′ }∑

t=max{πψ
i′ ,

π
ψ
j −tψj }

(α
ψ
i ′ j + β

ψ
i ′ j )

· min{pψi ′ j ′t ,−pψi j t }, (27)

Eψrestreg =
∑

∀t∈�

∑
∀(i, j )∈Aψrun

max{−pψi j t , 0} − Eψusedreg, (28)

Eψtotal =
∑

∀t∈�

∑
∀(i, j )∈Aψrun

pψi j t . (29)

We recall that the energy bill may be determined by the
maximum power demand of all trains over a certain inter-
val. We define  ( ≥ δ) as the time interval, � =
[0,, 2, . . . , T −] as the set of discrete timestamps, and
σ ∈ � as a timestamp within set �. The average power
consumption over the time interval [σ, σ +] is

wψσ =

σ+∑
t=σ

w
ψ
t


, ∀σ ∈ �. (30)

C. Power Peak Shaving Algorithm

Algorithm 1 is designed to explore the optimal solutions of
the timetable adjustment model presented in Section III and
to enhance the extent to which power peak shaving benefits
from the optimized timetables. In Algorithm 1, ψ∗ represents
the local optimal timetable in terms of the minimal power
peak, J ∗ is equal to the value of the optimized overlapping
time obtained by solving the timetable adjustment model,
C represents the computational time, Cmax is the maximum
allowed computational time, I is the number of iterations, I max

is the maximum allowed number of iterations, and Wψ
σ is the

locally determined minimum power peak value. The initial
value of Wψ

σ was set to ∞.
In each iteration of Algorithm 1, Steps 1 and 2 (S1 and

S2) adopt a newly generated objective function (J2) and aim
to find a timetable subject to constraints (1–5, 9–21), and∑
(i, j )∈Asab

Li j = J ∗. The optimized timetable is denoted
by ψnew. The optimized timetable is equivalent to an opti-
mal solution of the timetable adjustment model because its
overlapping time is equal to the minimum overlapping time
(
∑
(i, j )∈Asab

Li j = J ∗). Algorithm 1 uses different objec-
tive functions in each iterative cycle, such that the optimal
solutions obtained in different cycles are different. Thus,
more feasible solutions subject to constraints (1–5, 9–21),
and

∑
(i, j )∈Asab

Li j = J ∗ are explored. These solutions are
compared in Step 3 (S3) to find the local optimal timetable in
terms of the minimal power peak; if the timetable obtained
from S1 and S2 has a smaller power peak value (wψ

new

σ )
than Wψ

σ , S3 updates the local optimal timetable with ψ∗ =
ψnew, and updates the value of Wψ

σ with Wψ
σ = w

ψnew

σ .
Step 4 (S4) determines whether the computational time and
number of iterations exceed the maximum allowed values, and
accordingly terminate the algorithm, or loop back to Step 1.

V. EVALUATE SYNCHRONIZATION AND ROBUSTNESS

UNDER DELAY CIRCUMSTANCES

In real operations, the optimized timetable might not be
effectively adhered to, if the train operations are disrupted
by unexpected delays. The first priority of trains that were
delayed is to resume their original schedule, instead of forcing
synchronized acceleration and braking processes. This might
detrimentally affect their power consumption. This leads to
the following research question: is the optimized timetable
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Algorithm 1 An Iterated Local Search Algorithm for
Power Peak Shaving

Input: C = 0, I = 0, Cmax, I max, Wψ
σ = ∞

Output: a local optimal timetable ψ∗
while C < Cmax, I < I max do

S1: generate a new objective function J2 = B ·�,
where � is an N × 1 vector which contains the
arrival/departure times of all events (N represents
the number of all arrival/departure events.). B is a
1 × N vector of random numbers whose elements
are normally distributed with mean 0, variance 1,
and standard deviation 1.

S2: solve the following model and obtain a new
timetable ψnew:

min J2 = B ·�,
s.t .

∑
(i, j )∈Asab

Li j = J ∗,

Constraints (1 − 5, 9 − 21),

where J ∗ refers to the optimal solution by solving
the timetable adjustment model in Section III.1

S3: compute the power peak value of timetable ψnew

(wψ
new

σ ) with Equation (30).
if w

ψnew

σ ≤ Wψ
σ then

update the local optimal timetable ψ∗: ψ∗ = ψnew;
update Wψ

σ : Wψ
σ = w

ψnew

σ .
end
S4: update C and I (I = I + 1).

end

vulnerable to delays, which would decrease the potential
decrease in energy consumption and power-peak shaving?

To answer this question, we built a model to enable us to
use Monte Carlo simulation to evaluate the timetable in terms
of robustness against delays, usage of regenerative energy, and
power peaks in the case of delays. The Monte Carlo simulation
follows an iterative approach, with random entrance delays
generated in each iterative cycle. Then, a max-plus-based
method [31] was used to simulate the propagation of delays
over time periods. This method is able to quickly estimate the
departure and arrival times of trains under delay circumstances
using max-plus algebra. Based on the estimated departure and
arrival times, we compute the number of delay-affected periods
(i.e., the time periods until delays fade out are defined as delay-
affected time periods; the smaller the number of delay-affected
periods, the less severe the effect of delay propagation is),
the number of delayed events, and the average delay in one
time period (i.e., the sum of delays of all events divided by
the number of time periods affected by delays). These three
values are adopted to indicate the robustness of the tested
timetable against delay propagation. In addition, we computed
the average overlapping times of acceleration and braking

1Modern commercial solvers (like Gurobi) allow users to perform optimiza-
tion with multiple/hierarchical objectives. The solutions pools can be used to
obtain solution variations.

Fig. 2. Train services between Ut and Ehv.

processes in one time period (i.e., total overlapping times
within delay-affected time periods divided by the number of
delay-affected time periods), the average energy consumption
in one time period (i.e., total energy consumption within delay-
affected time periods divided by the number of delay-affected
time periods), and the power peaks ( = 1 s, 15 min) within
delay-affected time periods, to evaluate the energy efficiency
of the tested timetable.

VI. CASE STUDY

A. Setup

We conducted a case study by applying the approach
to a central section of the railway network in the Nether-
lands, bounded by the five main stations of Utrecht (Ut),
Eindhoven (Ehv), Tilburg (Tb), and Nijmegen (Nm), and ’s-
Hertogenbosch (Ht), plus 20 additional smaller stations and
stops. A map of this network is shown in Fig. 2.

Overall, 40 trains per hour ran on this network. The
timetable adjustment model settings were determined by
repeating the timetable every half hour, which means the time
period was T = 30 min. The timetable in this study was
defined to the nearest 6 seconds (for example, a train departs
from Ht station at 26.3 minutes past eight and arrives at
48.6 minutes past eight, where 26.3 and 48.6 minutes are both
integer multiples of 6 s). To build the timetable adjustment
model as an MILP model, we scaled the period time T by T =
30×10 = 300, and re-scaled the optimized results by dividing
event times by 10. The lower bounds of the running times are
equal to the technical minimum running times. The maximum
running times are set as 1.05 times the running times used in
the original timetable. The minimum dwell time for regional
trains at small stations is 0.5 minutes. At other stations, the
minimum dwell time was 2 min. The minimum headway time
between two arrival events, two departure events, or one arrival
and one departure event was 3 min. The minimum headway
time between a passing event and an arrival/departure/passing
event was 2 min. The minimum turnaround time was 6 min,
and the maximum was 20 min. The minimum transfer time
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was 3 min, and the maximum was 10 min. The adjustment
model allows 3 minutes shifting in arrival/departure event
times by setting cmin = −3 min and cmax = 3 min. The case
study includes time allowances in running time and headway
time activities as mandatory. Here, for every running time
activity (i, j) ∈ Arun, χi j in Equation (21) is set as 5% of the
technical minimum running times. For every headway time
activity (i, j) ∈ Aheadway, χi j is set to 6 s (the smallest time
unit). Moreover, we focus on the synchronization pairs within
one station, instead of one electrical section, as we do not
have information on the location of power substations. In other
words, all event pairs within Asab are the arrival and departure
events of different trains at the same station.

B. Impacts of Different Levels of Robustness

First, we optimize the timetable to improve the time dur-
ing which synchronized acceleration and braking processes
overlap by using the model presented in Section III. This
model aims to maximize the objective functions (8) subject
to constraints (1-5 and 9–21). The model contains an ε
constraint (Equation (20)) to maintain timetable robustness.
We use three different sets of weight factors to compute the
robustness level θ to understand the impact of weight factors
on our optimization results. The three respective sets are:
(A) γ1 = 0.25, γ2 = 0.25, γ3 = 0.5; (B) γ1 = 0.33, γ2 =
0.33, γ3 = 0.33; and (C) γ1 = 0.5, γ2 = 0.25, γ3 = 0.25.
For each set, the sum of the three weights is 1. Different
sets place different importance on running time allowances,
dwell time allowances, and headway allowances. To determine
an appropriate value for ε in Equation (20) for each set
of weight factors, we first aim to find two extreme points,
the minimum/maximum robustness level by maximizing or
minimizing the total weighted time allowance (θ ) subject
to constraints (1–5, 19, and 21). With the minimum and
maximum values of θ , we select ten values of ε equally spaced
between the maximum and minimum values of θ . Then, the
model (i.e., objective (8) subject to constraints (1-5 and 9–21))
is solved for these ten different values of ε in Equation (20).

The results are presented in Fig. 3. On the left, the black dots
represent the optimized overlapping times, which are obtained
by solving the timetable adjustment model with three different
sets of weight factors and different values of ε. On the right,
the black dots show the optimized time allowances versus
the optimized overlapping times. The blue dots indicate the
total weighted time allowances and overlapping times using
the original timetable. The weighted time allowances of the
original timetable were computed using three different weight
factor sets.

Overall, the three weight factors that were tested led to sim-
ilar findings. The overlapping time of the optimized timetable
remains at the same high level (1026 s) for small ε values and
decreases when the value of ε increases. In Fig. 3 on the right,
the optimized timetables (blue dots) have longer overlapping
times and greater time allowances than the original timetable
(black dots). In summary, the proposed timetable adjustment
model improves both the usage of regenerative energy and the
robustness of the timetable.

TABLE III

COMPARISON OF THE ORIGINAL AND OPTIMIZED TIMETABLES

C. Optimized Timetable

Subsequently, without loss of generality, we chose one set
of weight factors, γ1 = 0.33, γ2 = 0.33, γ3 = 0.33 (which
emphasizes the running time, dwell time, and headway time
allowances to an equal extent), and one robustness level of
ε = 376.2 min (the total weighted time allowance with the
original timetable is equal to 376.2 min), for which we present
the optimized results in this section. As an illustration of our
results, we present the optimized timetable for the corridor
Utrecht–Eindhoven (with train services 800, 3500, 3900, 6000,
and 6900) in Fig. 5. Fig. 4 shows the original timetable of
the corridor Utrecht–Eindhoven for comparison. The time-
distance diagrams are based on the timetables used in 2019.
In Fig. 4 and 5, the intercity services and regional trains
are presented in blue and red, respectively. The green circles
indicate the synchronized acceleration and braking pairs.

The optimized results for the entire network are reported in
Table III, in which a set of key performance indicators (KPIs)
is introduced to evaluate the original and optimized timeta-
bles. The terms “synchronized pairs” and “overlapping time”,
respectively, refer to the total number and overlapping time
of the synchronized pairs. The “traction energy” (Eψtraction)
refers to the sum of the traction energy of all trains, the
“used regenerative energy” (Eψusedreg) is the regenerative energy
directly used for accelerating trains, the “rest regenerative
energy” (Eψrestreg) is the regenerative energy that is not used
for accelerating trains, and the “total energy consumption”
(Eψtotal) is equal to the total traction energy minus the total
regenerative energy. Eψtraction ∼ Eψtotal are computed using
Equations (26-29). The “CPU time” refers to the computation
time required to solve the timetable adjustment model.

The results show that using the proposed timetable adjust-
ment method increases the number of synchronized pairs.
Taking the corridor between Ut and Ehv in Fig. 4 and 5 for
example, the original timetable only contains five synchro-
nized pairs whereas the optimized timetable contains thirteen
pairs. As a result of the increased synchronized pairs, the
overlapping time increases by 297%, and the regenerative
energy usage increases by 290% for the entire network.
The optimized timetable consumes less traction energy than
the original timetable (1.06% less). The optimized timetable
prescribes 2 min more running time than the original timetable
(762.5 versus 760.5 minutes), which is the reason for the lower
traction energy of the optimized timetable. The optimized
timetable has a specified maximum running time 1.05 times
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Fig. 3. Overlapping times for different values of ε.

Fig. 4. Original timetable.

Fig. 5. Optimized timetable.

that of the original timetable, to allow the model the necessary
flexibility with which to adjust the running time without
affecting the corridor capacity.

D. Power Peak Shaving

In this section, the power peak shaving algorithm (Algo-
rithm 1) is examined. The maximum computational time is
specified as Cmax = 10 h, and the maximum number of
iterations as I max = 1000. We set δ = 1 s and created a

Fig. 6. Convergence curve.

representative power profile for every train run depending on
the type of train, run time, speed limits, and gradients using
the MPOC method [33]. The convergence curve in Fig. 6
shows that the power peak values ( = 1 s) converge at the
38-th iterative cycle.

Fig. 7 compares the power profiles of the original and
optimized timetables. The timetable obtained in Section VI-C
is referred to as “optimized timetable I”, and the timetable
obtained by running the power peak shaving algorithm is
referred to as “optimized timetable II”. The power profiles
are reported for different intervals ( of 1 s, 1 min, 5 min,
and 15 min). The numerical results are reported in Table IV.
In Fig. 7, the power peaks of optimized timetable II are
the lowest. The 1-second, 1-minute, 5-minute, and 15-minute
power peaks of optimized timetable II are reduced by 25.1%,
17.8%, 15.6%, and 8.5%, respectively, compared with the
original timetable. These results show that the timetable adjust-
ment model and the power peak shaving method contribute
to the reduction of the power peaks. Moreover, the power
peaks of timetable II are lower than those of timetable I (the
blue lines are below the green lines in Fig. 7), meaning the
power peak shaving algorithm enhances the benefit of using
regenerative energy in power peak shaving.

E. Impact of Delays

We next examined the extent to which the original timetable
and optimized timetable II adapt to delays by performing
Monte Carlo simulations using the max-plus theory.
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Fig. 7. Power profiles using the original timetable and optimized timetables I and II.

TABLE IV

COMPARISON OF POWER PEAKS

TABLE V

ESTIMATED IMPACT OF DELAYS

We first generated 100 random entrance delays based on
a three-parameter Weibull distribution. This distribution has
also been used in other research pertaining to railway opti-
mization [34], [35]. In this study, we assumed two different
distributions for intercity (ICs) and local trains (SPs). The
scale, shape, and shift parameters were 394, 2.27, and 315 for
the ICs and 470, 3, and 186 for the local trains, respectively.
Second, 100 random delays were taken as the entrance delays
of trains in a time period to generate 100 delay situations. For
each case, the max-plus-based method described in Section V
was adopted to estimate the delay propagation through that
time period and successive time periods until the delay is
eliminated, assuming train operations are guided by either
the original or the optimized timetable. At the same time,
the utilization of the regenerative energy and power peaks
of the 100 cases were examined as well.

The simulation results are presented in Table V, which
reports the average values of the 100 cases, and Fig. 8.
The definitions of the KPIs in the first column are pro-
vided in Section V. Fig. 8 displays the simulation results of
all 100 delay cases. The simulation results of the original and
optimized timetables are presented in red and blue dots/lines,
respectively.

Fig. 8. Numerical estimation of the impact of delays.

The optimized timetable requires less time to recover
from delays than the original timetable (3.10 < 3.74). The
number of affected events and average delays with the opti-
mized timetable are also smaller than those with the original
timetable. In other words, the optimized timetable is more
robust against delays compared with the original timetable.
This is explained by the fact that the optimized timetable is
obtained with constraints (19–21). Constraints (19–20) ensure
the overall robustness of the timetable, whereas constraint (21)
guarantees that a minimum time allowance is included in
every running/dwell/headway activity. The lower bound of
Equation (20) is set to be 376.2 min, which is equal to
the total weighted time allowance of the original timetable.
This means that the overall time allowances of the optimized
timetable are equal to or higher than the time allowances of
the original timetable. These settings enhance the robustness
of the optimized timetable.

The simulation results also showed that delays affect the
usage of regenerative energy. The overlapping time of accel-
eration and braking processes, using the optimized timetable
is reduced from the theoretical 1026 s to 654.01 s, whereas
the overlapping time, using the original timetable is increased
from the theoretical 258 s to 295.78 s. This means that the
optimized timetable cannot achieve its theoretical usage of
regenerative energy when delays occur, whereas the original
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timetable might be superior in terms of making use of regen-
erative energy when delays occur than under normal (on-time)
circumstances. This can be understood by considering that
the optimized timetable was computed by maximizing the
overlapping time without considering delays or disruptions.
Delayed arrivals and departures disrupt the designed acceler-
ation and braking synchronizations, and therefore affect the
usage of regenerative energy. The original timetable, instead,
does not initially have many synchronized pairs (10 pairs
only). Late arrivals and departures can improve synchro-
nizations. However, as shown in Fig. 8 (a), the optimized
timetable still outperforms the original timetable in terms of
overlapping times. In other words, the optimized timetable
still enables more efficient regenerative energy consumption
than the original timetable, even when delays are taken into
consideration.

We additionally examined the extent to which delays affect
the 1-second and 15-minute power peaks. The simulation
results show that the use of the optimized timetable increases
the 1-second and 15-minute power peaks from the theoretical
13.79 MW to 16.41 MW, and from 7.83 MW to 9.38 MW,
respectively. This increase is expected because delayed trains
run faster (less running time) to recover from delays and
restore their schedules, such that the demand for traction
energy is increased under delayed circumstances. Moreover,
as discussed above, delays cause a reduction in the con-
sumption of regenerative energy, which also contributes to the
increase in power peaks. Similarly, delays increase the aver-
age 1-second and 15-minute power peaks when the original
timetable is used.

In summary, the Monte Carlo simulation suggests that
although the optimized timetable cannot achieve its theoretical
ability to use regenerative energy and power peak shaving for
the delays that were tested, the optimized timetable outper-
forms the original timetable in terms of delay recovery, energy
efficiency, and power peak shaving.

VII. CONCLUSION

In this study, we aimed to fine-tune the timetable to optimize
the utilization of regenerative energy and shaving power peaks.
An MILP model was formulated for timetable adjustment.
The model was designed to increase the overlap between the
synchronized acceleration and braking of trains to optimize
the consumption of regenerative energy. The model has built-
in restrictions on time allowances to ensure that the timetable
robustness is maintained at a required level. A power peak
shaving algorithm was developed to optimize the timetable
in terms of power peak shaving. To examine the extent
to which the original and optimized timetables were able
to adapt to unplanned delays, Monte Carlo simulation was
used to evaluate the robustness and energy efficiency of the
timetables during delays. Using the proposed models, a case
study was designed to fine-tune the 2019 timetable for a sub-
network of the Dutch railway network. The results showed
that the optimized timetable outperforms the original timetable
in terms of timetable robustness, utilization of regenerative
energy, and shaving power peaks under both on-time and
delayed circumstances.

The proposed model is suitable for fine-tuning timetables
of the Dutch railway network, as well as similar periodic
timetables used in other regions (along corridors with high
frequency, dense traffic, and balanced traffic flows). Although
this case study focused on synchronizing events within the
same station, it could be extended to synchronize events
within one electrical section. In this case, utilization of the
regenerative energy and lower power peaks would be expected
to improve. Moreover, the proposed method could be extended
to AC situations and electric vehicles in general such as
underground metropolitan trains or trams.

Furthermore, despite its successful outcome, this study
has certain limitations. First, the proposed model focuses
on increasing the amount of synchronized acceleration and
braking pairs, assuming that one braking process corresponds
to exactly one acceleration process. This is highly applicable
to the operations along corridors that carry high frequency and
dense traffic, and balanced traffic flows. The model would
have to be extended considering that one braking process
might correspond to more than one acceleration process.
Optimization of the distribution of the cumulative braking
energy of multiple braking trains over multiple accelerating
trains, and embedding this in a network timetable optimization
problem would require further research. Second, the electrical
system was not considered in this work. However, to move
towards practical implementation and to smooth the power
voltage in the planning phase, it is necessary to consider the
restrictions of the power system, either by reflecting the power
system characteristics in the timetable design phase or by
examining the optimized results while considering the power
flows of the electrical system.
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