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Safety Performance Boundary Identification of
Highly Automated Vehicles: A Surrogate

Model-Based Gradient Descent
Searching Approach

Yiyun Wang , Rongjie Yu, Shuhan Qiu, Jian Sun , and Haneen Farah

Abstract— Highly automated vehicles (HAVs) have been intro-
duced to the transportation system for the purpose of providing
safer mobility. Considering the expected long co-existence period
of HAVs and human-driven vehicles (HDVs), the safety operation
of HAVs interacting with HDVs needs to be verified. To achieve
this, HAVs’ Operational Design Domain (ODD) needs to be
identified under the scenario-based testing framework. In this
study, a novel testing framework aiming at identifying the Safety
performance boundary (SPB) is proposed, which assures the
coverage of safety-critical scenarios and compatible with the
black-box feature of HAV control algorithm. A surrogate model
was utilized to approximate the safety performance of HAV,
and a gradient descent searching algorithm was employed to
accelerate the search for SPB. For empirical analyses, a three-
vehicle following scenario was adopted and the Intelligent Driver
Model (IDM) was tested as a case study. The results show that
only 4% of the total scenarios are required to establish a reliable
surrogate model. And the gradient descent algorithm was able
to establish the SPB by identifying 97.42% of collision scenar-
ios and only false alarming 0.29% of non-collision scenarios.
Furthermore, the concept of safety tolerance was proposed to
measure the possibilities of boundary scenarios dropping in safety
performance. The applications of helping to construct ODD and
compare different control algorithms were discussed. It shows
that the IDM performs better than the Wiedemann 99 (W99)
model with larger ODD.

Index Terms— Highly automated vehicle, safety performance
boundary, gradient descent, surrogate model, operational design
domain.

I. INTRODUCTION

H IGHLY automated vehicle (HAV) technology (with SAE
automation level of 4 or 5) has been introduced to
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the transportation system with the promise of reducing crash
risk and improving traffic safety [1]. Countries have listed
HAV as national level strategic layouts. For instance, the
Chinese government expects to achieve mass production of
HAV by 2025 [2], while European Union (EU) targets at
fully automated mobility by 2030 [3]. Moreover, United States
has released their fourth edition of Automated Vehicles to
ensure American leadership in automated vehicle technolo-
gies [4]. However, it is pessimistically evaluated that not until
2040 would the level-5 automated driving be feasible [5],
which indicates that the transition from the current traffic
system to the traffic flow consisting of fully automated vehicles
would take a long period. Human-driven vehicles (HDVs) and
HAVs will coexist in the transportation system.

The safety operation issue of HAV in mixed traffic has
been attracting a lot of attention. Given its limited operation
on public roads, HAVs have been frequently involved in
high-risk events and even crashes with HDVs. To be specific,
about 233 HAV-involved traffic crashes occurred in California
by 2020, and 72% of them occurred under the automatic
driving mode [6]. Besides, driving behaviors of HAVs were
claimed to be difficult to understand by human drivers, which
has led to large proportions of HAVs being rear-ended by
HDVs [7]. Therefore, the safety operation of HAVs in mixed
traffic needs to be validated before HAVs can be widely
deployed into the market [8].

To evaluate the operation safety of HAVs and its Operational
Design Domain (ODD), testing methods are the key. ODD
is defined as the conditions under which a given automated
vehicle can operate safely [9], and is one of the fundamental
properties of HAV that is required to be clarified before
marketing. The boundaries of ODD can be determined by
operational constraints such as speed and acceleration. As for
the testing method, traditional distance-based public road-
testing approach is impractical due to the estimated long
period and resources needed. For instance, a previous study
concluded that it needs 100 HAVs to drive 24 hours per day
continuously for about 500 years [10]. Besides, public road-
testing holds threats to the safety of the public due to frequent
incidents [11]. To solve this, scenario-based simulation test-
ing approach has been widely adopted [12]. Following this
approach, key parameters, such as, velocity, acceleration, and
distance gap, of the HAV in different driving scenarios (for
instance, car-following, lane changing, etc.) are first selected
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and based on this the parameter space is established. Then
scenarios with specific values are extracted from the parameter
space, and testing and evaluation are conducted. However, with
the increase number of key parameters (or critical parameters
that could be utilized to describe a specific driving scenario),
the permutations of their values explode exponentially, result-
ing in the parameter combinatorial explosion problem [13].
Take the cut-in scenario for example, which can be defined
by 5 key parameters (HAV velocity, HDV velocity, accel-
eration, cut-in distance, road width). When each parameter
has 10 possible values, the total scenarios under test can be
over 9.76 million (510 = 9765625). If testing one scenario
needs 1 minute, then the exhaustive testing of all scenarios
requires 1.85 years (510÷ (60minutes × 24hours × 365days ×
10 accelerated ratio)), which is not tractable. To speed up
the testing process, accelerated testing methods that aim at
identifying the most safety-critical scenarios are needed.

Most existing accelerated testing methods regard the HAV
control algorithm as a “white box”, whose acceleration control
mechanism is known in advance, and then apply modified sam-
pling methods to accelerate the search of safety-critical scenar-
ios. However, simply identifying safety-critical scenarios could
not guarantee the coverage of scenarios [14], which is one of
the basic requirements for HAV testing [15]. Besides, HAV
control algorithms are confidential and are not made public.
HAV manufacturers own the propriety knowledge of their
algorithms, and modern HAV control algorithms unavoidably
employ Artificial Intelligent (AI) techniques that have a black-
box feature. Therefore, a testing method that is able to assure
the coverage of safety-critical scenarios, and can consider the
HAV control algorithm as a black box is required [16].

To fill the gap, this study aims to develop a testing
method that accelerates the identification of Safety perfor-
mance boundary (SPB) for black-box HAV control algorithm.
SPB refers to the transition zone that is composed of critical
scenarios separating the safe area from the hazardous area
within the parameter space [17]. Considering this objective,
the following research questions were defined:

• How to quickly identify SPB given a black-box HAV
control algorithm?

• Can the SPB be utilized to delineate regions with safe
and unsafe scenarios?

• How to determine a preventive area for the boundary
to improve the safety tolerance, and how to quantify its
safety tolerance?

The main contributions of this study are as follows:

• Utilizing an adaptive sampling method to establish a
Multi-layer Perception (MLP)-based surrogate model
with only 4% of total scenarios, which could quickly
estimate the safety performance of a black-box HAV
control algorithm.

• Proposing a new concept of safety tolerance performance
boundary (STPB). The safety tolerance of SPB is quan-
tified by the safety performance variations of scenarios.

• Proposing a method that can identify the pros and cons
of different algorithms. Intelligent Driver Model (IDM)

and Wiedemann 99 (W99) model control algorithms are
compared based on the identified SPBs.

Compared with previous studies, the method developed in
this study could accelerate the efficiency of SPB establish-
ment, and meanwhile quantify the safety tolerance of SPB.
The results could help HAV manufactures to better test and
determine the ODD of their developed control algorithms.

II. LITERATURE REVIEW

In the current literature, Accelerated Evaluation (AE) has
been proposed to improve the HAV testing efficiency [18].
Considering the heavy tail distribution characteristic of sce-
nario criticality, Zhang et al. [18] applied the Importance
Sampling (IS) method to enhance the exposure of rare events,
which are regarded as safety-critical scenarios. Although AE
has been proved to be capable of identifying the rare occurring
risky scenarios, it requires prior knowledge of the HAV control
algorithm under testing to shape the IS distribution [19]. How-
ever, emerging HAV control algorithms are mostly Artificial
Intelligent (AI) driven, which have a black-box nature thus
can hardly be handled by the AE framework [16]. Studies
focusing on testing methods that are applicable for black-box
HAV algorithms are needed.

Other types of HAV testing method, such as the unsafe-
scenario-oriented testing method [20] and search-based testing
method [21], identify the most safety-critical scenarios within
the pre-defined parameter space [22]. Starting from the random
selected scenarios, much more critical scenarios would be
identified via step-by-step searching. The searching direction
is toward the safety reduction and could be optimized by the
utilization of genetic algorithm [23], learnable evolutionary
algorithm [24] and reinforcement learning method [25]. Since
this type of method only requires the testing outcome, it is
compatible with black-box HAV control algorithms. However,
it holds the issue of converging to local optimum. Thus, the
coverage of the identified safety-critical scenarios within the
whole parameter space cannot be guaranteed [21].

In order to ensure the scenario coverage, researchers
attempted to identify a safety performance boundary
(SPB) [26]. The SPB includes safety-critical scenarios dif-
ferentiates the hazardous area from the safe area [17]. Stud-
ies have been conducted to identify SPB, for example,
Batsch et al. [27] utilized supervised learning method to
recognize the boundary based on samples extracted off-line
by Latin Hypercube Sampling. Latin Hypercube Sampling
method can extract samples uniformly from the parameter
space (aiming at exploration), however, not all areas within
the parameter space deserve to be equivalently searched. The
boundary area, where slight changes of parameters might cause
tremendous change in safety performance, requires to be more
exploited (aiming at exploitation). To enhance the efficiency
and accuracy of SPB establishment, recent studies [13], [16]
employ adaptive sampling method. This method considers
both exploration and exploitation to search for the boundary
scenarios.

In this study, we employ an adaptive sampling method
to iteratively establish the surrogate model for HAV safety
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Fig. 1. Overall framework of the proposed testing method.

performance. Based on the surrogate model, gradient descent
algorithms are utilized to search for boundary scenarios. And
finally, a concept of safety tolerance zone (STZ) is proposed
to guarantee the operational safety of HAV.

The remainder of this paper is organized as follows: in
the Methodology section, the overall framework of the pro-
posed HAV testing method, the surrogate model and gra-
dient descent algorithms, are presented. In the Simulation
Experiment section, a three-vehicle following scenario was
considered as an example to illustrate how the proposed
framework can be applied, then the simulation results are
exhibited in the Simulation Results section. In the Discussion
section, applications of the proposed method on ODD and
the illustration of control algorithm comparison are presented.
Finally, the conclusions and limitations as well as future work
outlook are provided in the Conclusion section.

III. METHODOLOGY

A. Overall Framework

The overall framework of the proposed testing method is
shown in Figure 1.

There are four parts of the framework. In Part I, key
parameters of the testing scenario are defined and the testing
parameter space would be established. In Part II, a surro-
gate model, which describes the safety performance of the
under-tested HAV black-box algorithm, would be established.
This process is iterative with the utilization of adaptive
sampling. In Part III, critical scenarios would be identified
by optimized gradient descent searching algorithms. Finally,
in Part IV, the safety performance boundary (SPB) and the
safety tolerance performance boundary (STPB) would be built.

B. Surrogate Model

Surrogate models have typically been adopted to test com-
plex systems [28]. To establish the surrogate model, only part
of the samples need be tested on the original system, and
the testing results would be utilized to approximate the safety
performance of the original system.

Fig. 2. Structure of MLP.

Most of HAV control algorithms are AI driven. The deci-
sion outputs of HAV control algorithms are probabilistic and
exhibit nonlinear characteristics [29]. Regarding this issue,
various surrogate models have been employed [30], [31]. For
instance, Kriging models (also known as Gaussian Process
Regression model) [13], [32] and Artificial Neural Networks
(ANN) [23], [33]. ANN has the advantages of easy con-
struction and utilization. Besides, the established ANN could
provide the gradient information of specific scenario con-
veniently, which has great importance for this study. Thus,
in this study, a Multi-layer Perception (MLP) model, which is
a simple ANN consisting of multiple neurons, is employed.,
An overview of various surrogate models can be found in
Sun et al.’s study [28].

The structure of MLP is presented in Figure 2. For a specific
scenario x under testing, the input layer is its key parameters
(x1, x2, x3, . . . , xn). The output layer is the predicted opera-
tional safety performance Ŷ = ŷ(x1,x2,x3,...,xn) of scenario x ,
which could be represented by surrogate safety measures such
as Time to collision (TTC) [34].

The mathematical expressions and the loss function of MLP
are described in Equation (1) to Equation (3):

y(x1,x2,x3,...,xn) =g (hk) (1)

hk =
�M

j=0
ω j k x jk (2)

MSE = 1

2

N�
k=1

(ŷ(x1,x2,x3,...,xn)−y(x1,x2,x3,...,xn))
2 (3)

where g() is the activation function (Tanh is utilized for the
hidden layers and ReLU for the output layer), hk is the
weighted sum of inputs from the last layer of neuron k,
ω j k is the j th weight of the inputs from the last layer, M
is the number of neurons, y(x1,x2,x3,...,xn) is the true label
of scenario (x1, x2, x3, . . . , xn), MSE is the Mean Square
Error between the trained model ( ŷ(x1,x2,x3,...,xn)) and the true
model (y(x1,x2,x3,...,xn)). The Back propagation algorithm is
utilized to update the weights [35]. True labels for the testing
parameters were obtained from simulation experiments, and
were calculated by the surrogate safety measure Time to
collision (TTC). This will be explained in details in section
IV. Simulation Experiment.

C. Adaptive Sampling

In adaptive sampling method, the exploration aims at explor-
ing the entire parameter space with the least number of
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samples. Exploration method on its own might be inefficient
if different regions of the parameter space offer different
extents of interest. Exploitation focuses on the regions with
more interesting features, while it might cluster in specific
regions and only focus on them will make other regions remain
unsampled [32]. Therefore, combining the exploration and the
exploitation methods would complement each other.

In this study, considering both the exploration and the
exploitation, a generative adaptive sampling method was
adopted. Exploitation is used to identify the boundaries with
nonlinear safety change, and exploration is applied to enhance
the coverage of the sampling.

The parameter space X N is split into N sub-parameter
spaces. For the i th sub-parameter space Xi , it contains ni sam-
ples. The weight ωi of sub-parameter space Xi is calculated
by Equation (4) to Equation (6). Exploration is measured by
overall fitting error εi of the surrogate model compared with
the true model, exploitation is measured by range R of the
true model, which represents the nonlinear degree of Xi . If we
consider that the exploration has the same importance as the
exploitation, then α would be equal to 0.5.

ωi = αεi + (1 − α) Ri (4)

εi =
� �

(ŷ[x1,x2,...xn]i − y[x1,x2,...xn]i )
2

ni
(5)

Ri = max
�

y[x1,x2,...xn]i

� − min
�

y[x1,x2,...xn]i

�
(6)

D. Gradient Descent Searching Algorithm

Searching for the critical scenarios can be seen as an
optimization problem, whose objective is to find the most
safety-critical scenarios with minimal searching steps.

Let J represent the safety performance of scenario x ,
then the objective function is the min J (x). The gradient of
objective function regarding the present scenario point x ( j )

is g( j ) = ∇ J (x ( j )). Within the maximum searching step
Smax , the scenario parameters are updated by the following
formulation:

x( j+1) = x( j ) − αh(g( j )) (7)

where h
�
g( j )

�
is the function of g( j ), and has three different

updating methods applied to this problem [36], which are
basic Steepest Descent (SD) algorithm, Gradient Descent with
Momentum (GDM) algorithm [37], and Adaptive Moment
Estimation (Adam) algorithm [38]. α is the fixed step size
for the updates and its value is α = (0.0002, 0.02, 0.01) in
this study.

(1) As for SD algorithm:
h

	
g( j )



= g( j ) (8)

(2) As for GDM algorithm, h
�
g( j )

� = � j
i=0 ηg(i). η (equals

to 0.9 in this study) is a momentum value added for each
searching step, to mitigate the possible vibration during
the search. Thus, the searching steps could be reduced;

(3) As for Adam algorithm, it can adaptively adjust and
update the searching steps according to the importance

of each parameter, and:

h
	

g( j )



= m̃( j+1)

√
ṽ( j+1) + ε

(9)

m̃( j+1) = m( j+1)

1 − b j+1
1

(10)

ṽ( j+1) = v( j+1)

1 − b j+1
2

(11)

m( j+1) = b1m( j ) + (1 − b1) g( j ) (12)

v( j+1) = b2v
( j ) + (1 − b2) g( j )2

(13)

where m( j ) is the first-order moment estimation for
gradient, v( j ) is the second-order moment estimation for
gradient. m̃( j ) and ṽ( j ) are the bias correction of m( j ) and
v( j ), respectively. b1 and b2 are the hyperparameters and
equal to 0.9 and 0.999, respectively.

E. Polynomial Surface Fitting Based on Least Square (LS)
Method

A bivariate cubic polynomial fitting is employed to fit the
safety performance boundary [39]. The fitting expression is as
in Equation (14) and LS method is as in Equation (15).

f v (dec, dis1) = p00 + p10dec + p01dis1 + p20dec2

+p11dec ∗ dis1 + p02dis12 + p30dec3

+p21dec2dis1 + p12dec ∗ dis12

+p03dis13 (14)

min J (p) =
�

i
[ f v i − f v (dec, dis1)]2 (15)

In this study, the fitting was conducted by the Curve Fitting
Tool of MATLAB [40].

IV. SIMULATION EXPERIMENT

A. Testing Scenario and Key Parameters Set-Ups

A three-vehicle following scenario was designed and exper-
imented to illustrate the proposed SPB identification frame-
work. The simulation experiment involves a highly automated
vehicle (HAV) following a human-driven vehicle (HDV1), and
the HAV itself is followed by another human-driven vehicle
(HDV2) on a good-condition roadway. The leading HDV1
performs a sudden deceleration maneuver in reaction to down-
stream congestion or its leading vehicle’s deceleration. The
HAV responds and brakes to avoid collision. The following
HDV2 also responds accordingly. This scenario is shown in
Figure 3.

Three key parameters are selected to describe the above car-
following scenario (Figure 3): deceleration of HDV1 (dec),
distance gap between HDV1 and HAV (dis1), and velocity of
three vehicles (fv). The three vehicles are assumed to have
the same initial velocity. The value range of each parameter
is shown in Table I. The value range of the velocity and the
distance gap were selected based on the parameters’ true distri-
butions of Shanghai expressway system. Different deceleration
values of HDV1 were set according to the literature [41].
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Fig. 3. Testing scenarios and key parameters. (Note: Key parameters of
scenario are in blue boxes).

TABLE I

VALUE SCOPE OF KEY PARAMETERS

B. Vehicle Control Algorithms and Simulation Set-Ups

The classical Intelligent Driver Model (IDM) [42], which
was often undertaken as the tested control algorithm [43]
was adopted to control the vehicles’ following behaviors. It is
worth mentioning that the proposed testing framework can be
applied on any given HAV control algorithm.

HDV1 does the deceleration under an initial velocity. HAV
and HDV2 follow the leading vehicle under the control of
IDM algorithm. The IDM model is described in Equations (16)
and (17). The initial distance gap between HAV and HDV2
(dis2) is decided by the desired following distance (S̃), which
is calculated by Equation (17).

IDM is one of the most widely employed models using
desired measures, which contains the desired speed and the
desired following distance. The acceleration calculation of
IDM is defined in Equation (16):

a (t) = amax

⎡
⎣1 −


v (t)

ṽ (t)

�β

−
�

S̃ (t)

S (t)

�2
⎤
⎦ (16)

where amax is the maximum acceleration / deceleration of the
following vehicle, v is the speed, ṽ is the desired speed, S is
the distance gap between two vehicles (measured from the end
of the leading vehicle to the front of the following vehicle),
β is the acceleration parameter, S̃ is the desired following
distance and its calculation is as in Equation (17):

S̃ (t)= Sjam +ρv (t)+max(0, v (t) h̃ (t)− v(t)�v(t)

2
√

amaxacom f _dec
)

(17)

The desired following distance is dependent on speed (v),
speed difference between following vehicle and leading vehi-
cle (�v), maximum acceleration (amax), comfortable deceler-
ation (acom f _dec), safe distance gap in the standstill (Sjam),
and desired headway (h̃).

TABLE II

SIMULATION PARAMETERS DESCRIPTION

The parameter values of the IDM model are illustrated in
Table II. These values were adopted from the literature [44].

The simulation interval is 0.01s, i.e., 100 HZ. The simu-
lation terminates when one of the following conditions are
met: a) collision happens; b) three vehicles stopped safely.
When the simulation ends, the risk evaluation index is recorded
corresponding to the current scenario. In this study, minimum
time to collision index T T Cmin during the specific simulation
is employed, the lower the T T Cmin the higher the probability
of a collision will be [45]. The calculation of T T Cmin is as
in Equation (18). During T s of simulation, the longitudinal
distance of the following vehicle x f and the leading vehicle
xl at time ts are recorded, the longitudinal velocity v f and vl

accordingly are also recorded. T is the maximum time length
of simulation time, which is the time when all three vehicles
stop. t is the current time of simulation.

T T Cmin = min

�
minT

t


x f − xl

v f − vl

�
H DV 1 and H AV

,

×minT
t


x f − xl

v f − vl

�
H AV and H DV 2

�
(18)

C. Adaptive Sampling and Surrogate Model Establishment

Adaptive sampling approach illustrated in III. C is utilized to
build the MLP-based surrogate model. There are three parts:
parameter space construction, adaptive sampling, and surro-
gate model establishment. The latter two parts are conducted
iteratively and the surrogate model built by the last sampling
is reserved for further procedures.

1) Parameter Space Construction: Parameter space is con-
structed by the following steps:
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Fig. 4. Parameter space splitting diagram.

(a) Based on the defined driving scenario, the selected key
parameters and their value ranges, the testing scenario
parameter space is built. In this study, the parameter
space contains 64000 (40∗40∗40) scenarios for testing,
resulting from the split intervals described in Table I.

(b) The parameter space is split into sub-parameter spaces,
which contain the same number of samples. In this
study, 64 sub-parameter spaces are obtained by dividing
each parameter into 4 slices; thus, each sub-parameter
space contains 1000 samples. Figure 4 shows a rough
diagram of the splitting. The splitting method employed
was inspired from Delaunay-Hybrid Adaptive Sequential
Design (DHASD), which was adopted by Ajdari and
Mahlooji [32]. When determining the number of sub-
parameter spaces, the trade-off between accuracy and
efficiency needs to be considered. While it is more based
on practice not on theory, and not the focus of this study,
additional research could be conducted in future work.

2) The First Sampling and Surrogate Model Establishment:
For the first sampling, the weights of sub-parameter spaces
are initialized and the original surrogate model is established.
The steps are as follows:
(a) Note that ω1st

i is the initial sampling weight for sub-
parameter space Xi , and

�
ω1st

i = 1 (i = 1, . . . , 64).
Initially, each sub-parameter space has the same weight,
i.e., ω1st

i = 1
64 .

(b) a% of total samples are sampled in the first iteration (in
this study a equals to 1), therefore, 640 (1%∗64000)
samples (represented by X1st = �

(x1, x2, x3)i
�
) are

extracted with the sampling weight ω1st
i from correspond-

ing sub-parameter space Xi .
(c) A total of 640 scenario samples X1st are tested through

the simulation platform, the safety performance of X1st

is measured by T T Cmin , and is recorded as Y 1st =�
y(x1,x2,x3)i

�
.

(d) Train MLP model based on (X1st , Y 1st ), and the fit-
ted safety performance of MLP model is obtained as
(X1st , Ŷ 1st).

(e) Calculate εi and Ri for each sub-parameter space by
Equations (5) and (6), then update the weights for each
sub-parameter space by Equation (4) and mark it as ω2nd

i .
Here the exploration is considered to have the same
importance as the exploitation, thus, α = 0.5.

3) The Iterative Sampling and Surrogate Model Establish-
ment: The weights of sub-parameter spaces were updated
iteratively, until the final surrogate model is established.
(a) For each of following iteration, another a% of total sam-

ples are required (again a equals to 1). Therefore, another
640 samples (represented by X jth = �

(x1, x2, x3)i
�
) are

extracted with the sampling weight ω
j th
i for correspond-

ing sub-parameter space Xi .
(b) Repeat the procedure 1)- (c) to 1)- (e): conduct the

simulation with X jth and obtain Y j th , establish the MLP
model with (X1st , . . . , X jth, Y 1st , . . . , Y j th), and update
the sampling weight as ω

( j+1)th
i .

(c) Save the MLP model at the last iteration (4th iteration is
employed in this study), which would be utilized as the
surrogate model for the following parts.

D. Gradient Descent Search and Safety Performance
Boundary (SPB) Identification

Gradient descent algorithms are employed to accelerate the
process of searching the most safety-critical scenarios within
the parameter space, and SPB is identified during this process.
It follows the procedures as below:
(a) To ensure the covering rate of the search, 1% of total

samples (640 in this study) are randomly selected as the
initial points Xinit = {x1, x2, . . . xm, m = 640}.

(b) From each initial point, based on the gradient descent
algorithm, search along the direction of the gradient
which is provided by MLP model, and update the scenario
parameters. Three kinds of gradient descent algorithms
were tested, which are SGD, Momentum, and Adam.
The parameter settings of the three algorithms have been
illustrated in the Methodology section. The search stops
when the gradient of safety performance is below the
error precision of ε, or the maximum searching step
Smax has been reached. In this study, ε = 0.001 and
Smax = 1000.

(c) During the process, the searching trajectory of each initial
point is recorded in the step-unit, for example, for the
mth initial point, it triggers the termination condition of
maximum searching step Smax , meaning that it searches
for Smax steps. The scenario points are recorded as Xm =�

x1, x2, . . . xSmax

�
, the safety performance of scenarios

are recorded as Y m = �
y1, y2, . . . ySmax

�
, and the gradi-

ents provided by MLP surrogate model for scenario points
are marked as Gm = �

gx1, gx2, . . . , gxSmax

�
.

(d) The SPB scenarios are identified based on the trajectory.
In this study, SPB is defined as the boundary that classi-
fies the collision and non-collision scenarios. Therefore,
the SPB scenarios occur on the trajectory where the safety
performance (i.e., T T Cmin) of adjacent points transfer
from over 0 to 0.

(e) Based on the SPB scenarios, the bivariate cubic polyno-
mial is employed to fit SPB interface.

V. SIMULATION RESULTS

A. Surrogate Model Development

For each iteration of surrogate model development, the
model was trained for 500 epochs, with 32 batch size and
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TABLE III

MODELING RESULTS OF ADAPTIVE SAMPLING

Fig. 5. MSE of each iteration.

0.0001 learning rate. There is no testing dataset, since as many
as possible samples are desired to build the surrogate model.

4% of total samples which equals to 2560 in this study were
utilized to establish the final surrogate model. Table III and
Figure 5 exhibit the modeling results of the surrogate model
with eight iterations, and the fit errors (calculated by MSE)
compared with the true model.

It is shown in Figure 5 that MSE drops rapidly from 1 to
4 iteration, and shows no obvious change after 4th iteration.
Therefore, 4% of total samples are considered enough to build
the surrogate model. Figure 6 visualized the true model and
the established MLP model from different perspectives.

B. Gradient Descent Search

Table IV exhibits the searching performance of three gra-
dient descent (GD) algorithms. Searching time represents the
termination time of the gradient descent searching. Average
searching steps is the average steps of each searching trajec-
tory when it terminates. The results indicate that Adam GD
algorithm performed best, which had the least searching time
and least average searching steps. It reduced the searching time
by about 40% compared with the basic algorithm.

According to the mechanism of the gradient descent algo-
rithm, the searching direction is the fastest way to reduce
T T Cmin . The SPB scenarios were identified on the trajectory
where the T T Cmin of adjacent points transfer from over

Fig. 6. (a) Diagrams of the true model; (b) diagrams of the established
surrogate model.

TABLE IV

SEARCHING PERFORMANCE OF DIFFERENT
GRADIENT DESCENT ALGORITHMS

Fig. 7. Initial searching points and SPB scenarios.

0 to 0, meaning that from non-collision to collision. The initial
searching points and the identified SPB scenarios are shown
in Figure 7.

C. Safety Performance Boundary (SPB)

Based on the SPB scenarios, the cubic polynomial fitting is
utilized to fit the boundary. The fitting results can be seen in
Table V.

To evaluate the effects of the constructed performance
boundary, HAV’s real performance (simulation results) under
all the scenarios of parameter space are classified by the
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TABLE V

THE CUBIC POLYNOMIAL FITTING RESULTS OF SAFETY
PERFORMANCE BOUNDARY

TABLE VI

SAFETY PERFORMANCE BOUNDARY CLASSIFICATION RESULTS

constructed SPB. For the true label, it is processed from true
T T Cmin . When T T Cmin is less than 0.01s, it is marked as
a collision and labelled as 1. When T T Cmin is larger than
0.01s, it is marked as a non-collision and labelled as 0. It is
worth mentioning that the threshold setting of T T Cmin can be
considered not only from the view of safety, but also comfort.
However, in this study our focus is only on safety.

Table VI presents the confusion matrix of classification, the
sensitivity and the false alarm rate are 97.42% and 0.29%
respectively, indicating that 97.42% of collision scenarios
were successfully identified, and only 0.29% of non-collision
scenarios were falsely classified as collisions.

D. Safety Tolerance Performance Boundary (STPB)

The size of gradient value is utilized to quantify the tol-
erance of the scenario. The scenario with a higher gradient
indicates that the same alteration of parameters disturbances
would lead to a larger change of safety performance, thus, its
tolerance is low. Figure 8 exhibits the gradient distributions
of three types of scenarios (no collision, collision and SPB
scenarios) within the parameter space.

It can be seen that scenarios on the SPB and near to the
SPB (some of collision scenarios are distributed near to the

Fig. 8. The gradient distributions of three types of scenarios.

Fig. 9. Trace-back for STPB scenarios identification.

boundary) have evidently higher gradients than those scenarios
that are far away from the SPB. Although the distribution of
no collision scenarios tends to have small gradients, there are
still a lot of them holding the same high gradients as those of
SPB. Therefore, additional attention needs to be paid for them
and a safety tolerance performance boundary (STPB) need to
be built.

To establish STPB, the gradient trace-back approach was
applied. Based on the SPB scenarios in Figure 7, tracing one
step back along the opposite direction of the gradient with
the size of gradient value. The terminal points constitute the
STPB which is presented in Figure 9.

The scenario points colored with yellow form the safety
performance zone (STZ), whose upper interface is the SPB
and its lower interface is STPB. The scenarios located at
SPB and STPB are presented in Figure 10. Similar to the
approach employed in Section 3.5, the scenario points located
at the STPB were utilized to fit STPB by the bivariate cubic
polynomial. The fitting results can be seen in Table VII.

E. Simulation Results of Wiedemann-99 (W99) Model

To illustrate the application of proposed method on compar-
ing different HAV control algorithms, Wiedemann-99 (W99)
model [46] was also tested. W99 is a psychophysical car-
following model, using four different ‘perceptual thresholds’
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Fig. 10. Scenarios on the SPB and STPB.

TABLE VII

THE CUBIC POLYNOMIAL FITTING RESULTS OF SAFETY

TOLERANCE PERFORMANCE BOUNDARY

for four driving regimes including free-flowing, approach-
ing, following and emergency. The driver reacts to different
regimes when the corresponding threshold values are reached.
Besides, W99 model is also applied in many simulation plat-
forms like VISSIM to model HAV’s car-following behavior.

The same testing scenario and key parameters were set
for W99. The calculation of acceleration of W99 model was
referred from Zhu et al. [44], and the default simulation
parameters settings were adopted [47], which are described
in Table VIII.

Following the similar procedures in IV. Simulation exper-
iment section, the main experimental results were presented.
Figure 11 presents the diagrams of the true model and the
established surrogate model.

VI. DISCUSSION

A. Application to Construct ODD

One of the important applications of the SPB is to
help the manufacturers determine the Operational Design

TABLE VIII

SIMULATION PARAMETERS DESCRIPTION FOR W99 MODEL

Fig. 11. (a) Diagrams of the true model; (b) diagrams of the established
surrogate model.

Domain (ODD) for HAVs. Based on the identified SPB and
STPB, the parameter space can be divided into three parts,
which are hazardous area, STZ, and safe area (shown in
Figure 12). The boundaries of ODD can be then designed
by SPB, and the STZ could be regarded as the subsidiary
attribute of ODD corresponding to the magnitude of safety
tolerance. When HAV drives into STZ and has the trend to
fall into hazardous situations, proactive measures such as early
warning, trajectory planning and control could be implemented
to avoid potential risks.

Moreover, different HAV manufacturers may have different
safety tolerance propensity, they can determine how large the
safe tolerance of boundary need to be, according to their
different requirements. For instance, for the need to guarantee
HAV not to exit ODD [48], the safety tolerance degree should
be set higher.

Figure 13 presents an example of the constructed ODD of
the tested control algorithm under a deceleration of 0.50g.

B. Application to Compare Different Control Algorithms

Besides ODD construction, different HAV control algo-
rithms could be compared according to their identified ODD.
The results could help HAV manufacturers to improve the
control algorithms to enhance safety performance.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: TU Delft Library. Downloaded on August 11,2022 at 13:28:03 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 12. The safety tolerance zone of the performance boundary.

Fig. 13. The ODD for IDM (deceleration = 0.50g).

Fig. 14. The ODD for W99 (deceleration = 0.50g).

The cross section of W99 under deceleration of 0.50g is
presented in Figure 14. Compared with IDM (Figure 13),
the ODD of W99 is smaller than that of IDM, indicating
that under the same pre-defined emergency driving scenario,
W99 cannot handle as many scenarios as IDM, especially in
the decreasing distance gap. It might due to the transitions
between different driving regimes of W99 need to be activated
by several thresholds at the same time. Investigating into areas
indicated by the red arrow in Figure 14, it is found that HAV

remains the ‘following’ or ‘approaching’ regime for a while,
and not switches to the ‘emergency’ regime until the velocity
gap and distance gap are both met at the threshold conditions.
While IDM is ‘gap sensitive’ and will respond immediately
when the distance gap is smaller than the safe one.

VII. CONCLUSION

Highly automated vehicle (HAV) has become the unavoid-
able trend in the transportation system, which is expected to
reduce the traffic crash risk. To ensure the operational safety of
HAVs, the Operational Design Domain (ODD) of HAVs where
HAVs could operate safely is desired to be quickly identified
through sufficient testing. Regarding the testing demand for
the black-box HAV control algorithm, the coverage of safety-
critical scenarios within the parameter space, and the searching
efficiency, an accelerated testing framework by identifying the
Safety performance boundary (SPB) was proposed.

There are four procedures of the framework: First, the
testing parameter space is constructed according to the specific
driving scenario and the key parameters; second, the surrogate
model is established by MLP model; third, the safety-critical
scenarios are searched through optimized gradient descent
algorithms; and finally, the SPB and the STPB are identified.
A three-vehicle following scenario where HAV is following a
HDV and is followed by another HDV was taken as the case
study to validate the proposed framework.

Compared with existing techniques, this study considered
the black-box characteristic of HAV control algorithm, and
employed the surrogate model to approximate the safety
performance of HAV. Moreover, since establishing the sur-
rogate model requires a large amount of scenario samples,
an adaptive sampling method considering both exploration
and exploitation was adopted. The proposed adaptive sampling
method requires only 4% of scenarios in the parameter space,
therefore, greatly accelerate the HAV testing process.

Besides, to identify SPB quickly and accurately, the opti-
mized gradient descent searching algorithm was utilized.
Based on the identified SPB, 97.42% of collision scenarios
could be properly identified, and only 0.29% of non-collision
scenarios were falsely identified. Furthermore, the concept of
safety tolerance performance boundary (STPB) was proposed
in this study, which has not been considered in previous work.
It quantifies the safety tolerance of SPB, for situations where
AV could drive too close to the SPB and has a sudden drop
in its performance. HAV manufacturers could determine the
safety tolerance according to their different requirements.

Finally, the proposed method could support the devel-
opment of HAV decision-making control system for HAV
manufactories. The Operational Design Domain (ODD) of
Intelligent Driver Model (IDM) and Wiedemann 99 (W99)
model control algorithms were constructed accordingly based
on the established SPB. They were compared to shed light on
the pros and cons of different algorithms.

Although this study provides insight for a novel SPB
identification method, there are also several issues that we
intend to investigate in future work. First, scenarios in the
real world usually have higher dimensions, although the pro-
posed framework is theoretically not limited to the number of
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key parameters, it will inevitably increase the computational
complexity as the dimension raises. Several approaches could
be applied to solve the problem, for instance, investigating
surrogate models that could adapt well to high dimensional
problem, dividing the complex driving scenario into sub-
scenarios, and applying dimensionality reduction method such
as Principal Component Analysis (PCA), to reduce the number
of parameters necessarily needed to build the surrogate model.
Second, although the sampling method was not the focus of
this study, it could be improved to reduce the sample size
needed to construct surrogate model. Third, the shortcoming
of the GD is that it can fall into local optimum, as a result some
convergent points are not safety-critical scenarios and thus
reduce the searching efficiency. The gradient descent searching
algorithms could be improved in case of local optimization.
Other searching algorithms such as the heuristic algorithms
could be investigated to further enhance the searching effi-
ciency especially for higher dimensional space. Finally, future
studies can consider the indicator comprehensively such as
both safety and comfort, to provide a multi-dimensional view
for HAV performance evaluation.
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