

Delft University of Technology

Event-Based Communication in Distributed Q-Learning

Jarne Ornia, D.; Mazo, M.

DOI
10.1109/CDC51059.2022.9992660
Publication date
2022
Document Version
Final published version
Published in
Proceedings of the IEEE 61st Conference on Decision and Control (CDC 2022)

Citation (APA)
Jarne Ornia, D., & Mazo, M. (2022). Event-Based Communication in Distributed Q-Learning. In Proceedings
of the IEEE 61st Conference on Decision and Control (CDC 2022) (pp. 2379-2386). IEEE.
https://doi.org/10.1109/CDC51059.2022.9992660

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/CDC51059.2022.9992660
https://doi.org/10.1109/CDC51059.2022.9992660

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Event-Based Communication in
Distributed Q-Learning

Daniel Jarne Ornia
Delft Centre for Systems and Control

Delft University of Technology
Delft, The Netherlands
d.jarneornia@tudelft.nl

Manuel Mazo Jr.
Delft Centre for Systems and Control

Delft University of Technology
Delft, The Netherlands

m.mazo@tudelft.nl

Abstract—We present an approach to reduce the commu-
nication of information needed on a Distributed Q-Learning
system inspired by Event Triggered Control (ETC) techniques.
We consider a baseline scenario of a Distributed Q-Learning
problem on a Markov Decision Process (MDP). Following an
event-based approach, N agents sharing a value function explore
the MDP and compute a trajectory-dependent triggering signal
which they use distributedly to decide when to communicate
information to a central learner in charge of computing updates
on the action-value function. These decision functions form
an Event Based distributed Q learning system (EBd-Q), and
we derive convergence guarantees resulting from the reduction
of communication. We then apply the proposed algorithm
to a cooperative path planning problem, and show how the
agents are able to learn optimal trajectories communicating a
fraction of the information. Additionally, we discuss what effects
(desired and undesired) these event-based approaches have on
the learning processes studied, and how they can be applied to
more complex multi-agent systems.

Index Terms—Event-Triggered Control, Reinforcement
Learning, Distributed Systems

I. INTRODUCTION

Over the past couple of decades, the interest in Reinforce-
ment Learning (RL) techniques as a solution to all kinds of
stochastic problems has exploded. In most cases, such tech-
niques are applied to reward-maximizing problems, where an
actor needs to learn a (sub) optimal policy that maximizes
a time-discounted reward for any initial state. Specifically,
when there is no dynamical model for the system or game,
RL has proven extremely effective at finding optimal value
functions that enable the construction of policies [1], [2]
maximizing the expected reward over a time horizon. This
has been done with convergence guarantees for different
value function forms, one of the most common ones being
Q-Learning [3], [4] or recently deep Q-Learning [5]–[8].

When the problems considered have a multi-agent nature,
multi-agent theory can be combined with RL techniques as
Q-Learning [9], [10]. In problems where a set of agents
needs to optimize a (possibly shared) cost function through
a model-free approach, this has been addressed in the form
of Distributed Q-Learning [11]–[14]. Solutions often result
in learning some form of shared policy (or value function)
based on the trajectories and rewards of all agents. These
techniques have been applied to many forms of competitive

or collaborative problems [15]–[19]. In the latter, agents
are allowed to collaborate to reach higher reward solu-
tions compared to a selfish approach [15], [20]. This opens
relevant questions regarding how and when to collaborate.
In model free multi-agent systems, collaboration is often
defined as either sharing experiences, value functions or
policies, or some form of communication including current
state variables of the agents. However such collaborative
learning systems often include aggressive assumptions about
communication between agents (as pointed out by [21],
[22]). Approaches to reduce this communication are, in the
framework of federated learning [23], in RL using efficient
policy gradient methods [24], limiting the amount of agents
(or information) that communicate [21] or allowing agents to
learn how to communicate [25], [26]. These approaches focus
on transmitting “simplified” data or learning graph topologies
for the communication network.

For the problem of when to communicate over a given
network, one can take inspiration from control theory ap-
proaches. When dealing with networks of sensors and ac-
tuators stabilizing a system, event-triggered control (ETC)
allows sensor and actuator to estimate, through trigger func-
tions, when is it necessary to communicate state samples
or update controllers [27]–[29]. These concepts have been
applied for efficient distributed stochastic algorithms [30], or
to learn parameters of linear [31], [32] and non-linear [33],
[34]. In multi-agent settings, they have also been investigated
for distributed control of linear [35] and non-linear [36]
systems, to reduce the number of interactions between agents
[37], or to speed up distributed policy gradient methods [38],
[39].

A. Main Contribution

Drawing a parallelism with a networked system, in this
work we take inspiration from ETC techniques and turn
the communication of a distributed Q-Learning problem
[12] event-based, with the goal of reducing communication
events, data storage and learning steps. The difficulty of such
problem is that allowing agents to independently decide when
to transmit samples may bias the resulting probability distri-
bution of the collected data. The main contribution is then

2022 IEEE 61st Conference on Decision and Control (CDC)
December 6-9, 2022. Cancún, Mexico

978-1-6654-6761-2/22/$31.00 ©2022 IEEE 2379

20
22

 IE
EE

 6
1s

t C
on

fe
re

nc
e

on
 D

ec
is

io
n

an
d

C
on

tro
l (

C
D

C
) |

 9
78

-1
-6

65
4-

67
61

-2
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
C

D
C

51
05

9.
20

22
.9

99
26

60

Authorized licensed use limited to: TU Delft Library. Downloaded on January 23,2023 at 12:41:14 UTC from IEEE Xplore. Restrictions apply.

split twofold. First, we design fully distributed trigger func-
tions that incorporate trajectory memory which agents use
to decide when to communicate samples in a distributed Q
learning system. Second, we provide convergence guarantees
of the resulting learning algorithm to the optimal Q function
fixed point, and show how these guarantees depend (and do
not depend) on the design parameters of the system. To the
best of our knowledge, such ideas have not been applied
before to distributed Q-Learning with convergence guarantees
and formal bounds on optimality. To verify the theoretical
results, we analyse experimentally how such event-based
techniques result in more efficient learning in a distributed
robotic path planning problem.

II. PRELIMINARIES

We use calligraphic letters for sets and regular letters for
functions f : Rm → Rn. A function f : R+ → R+ is in
class K∞ if it is continuous, monotonically increasing and
f(0) = 0, lima→∞ f(u) = ∞. We use F as the measurable
algebra (set) of events in a probability space, and P as a
probability function P : F → [0, 1]. We use E[·] and Var[·]
for the expected value and the variance. We define the set of
probability vectors of size n as Pn satisfying p ∈ Pn ⇔ p ≥
0,

∑n
i=1 pi = 1. Similarly, we define the set of probability

matrices of size n×n as Pn×n where ∀i, ∑n
j=1 Pij = 1. We

use ∥·∥∞ as the sup-norm, |·| as the absolute value of a scalar
or the cardinality of a set. A random process Xn converges
to a random variable X almost surely (a.s.) as n → ∞ if it
does so with probability 1 for any event in F .

A. MDPs and Q-Learning

We are interested in RL solutions that maximize the
discounted reward sum on a MDP.

Definition 1. [Markov Decision Process] A Markov Decision
Process (MDP) is a tuple (X ,U , P, r) where X is a set of
states, U is a set of actions, P : U → P|X |×|X| is the
probability measure of the transitions between states and
r : X × U → R is the reward for x ∈ X , u ∈ U .

In general, X ,U are finite sets. We refer to x, u as the
state-action pair at time t, and x, x′ as two consecutive states.
We write Pxx′(u) as the probability of transitioning from
x to x′ when taking action u. We denote in this work a
stochastic transition MDP as the general MDP presented
in Definition 1, and a deterministic transition MDP as the
particular case where the transition probabilities additionally
satisfy Pxx′(u) ∈ {0, 1} (in other words, transitions are
deterministic for a pair (x, u)).

The main goal of an RL problem is to find an optimal
policy π∗ : X → U that maximizes the expectation of
the temporal discounted reward E[

∑∞
t=0 γ

tr(xt, ut) |π, x0]
∀x0 ∈ X for a given discount γ ∈ (0, 1). To do this, we can
use Q-Learning for the agent to learn the values of specific
state-action pairs. Let the value of a state x under policy
π be V π(x) := r(x, π(x)) + γ

∑
x′ Pxx′(π(x))V π(x′). The

optimal value function satisfies V ∗(x) := maxa r(x, u) +

maxa
∑

x′ Pxx′(u)γV ∗(x′). Now define the Q-Values of a
state-action pair under policy π as Qπ(x, u) := r(x, u) +
γ
∑

s Pxx′(π(x))V π(x′). The goal of Q-Learning is to ap-
proximate the optimal Q∗(x, u) values, which satisfy

Q∗(x, u) := r(x, u) +
∑
x′

Pxx′(u)γV ∗(x′), (1)

and yield the optimal policy π∗(x) := argmaxa Q
∗(x, u)

maximizing the discounted reward. For this, the Q-values
are initialised to some value Q0(x, u) ∈ R ∀x, u, and are
updated after each transition observation x → x′ with some
learning rate αt ∈ (0, 1) as

Qt+1(x, u) = Qt(x, u) + αt∆t(µ), (2)

for a given sample µ = (x, u, r(x, u), x′) and ∆t(µ) :=
r(x, u) + γmaxu′ Qt(x

′, u′)−Qt(x, u) is the temporal dif-
ference (TD) error. The subscript t represents the number of
iterations in (2). In practice, the coefficients αt depend on
each (x, u). For ease of notation we omit this dependence,
and write αt ≡ αt(x, u). The iteration on (2) is known to
converge to the optimal Q∗ function under conditions on
reward boundedness and sum convergence for the rates αt

[3].

B. Distributed Q-Learning

Let us now consider the case where N agents (actors)
perform exploration on parallel instances of the same MDP,
with a central learner entity, generalized as a MDP with
(XN ,UN , P, r). Then, a distributed Q-Learning system op-
timizes the discounted reward sum on such MDP. The goal
of the distributed nature is to speed up exploration, and
ultimately find the optimal policy π∗ faster. Such a system
may have different architectures regarding the amount of
learner entities, parameter sharing between them, etc. We
consider here a simple architecture where N actors gather
experiences of the form µi = (x, u, r(x, u), x′)i following
(possibly different) policies πi. These actors send the expe-
riences to a single central learner, where these are sampled
in batches to perform gradient descent steps on a single Q̂
estimator, and updates each agent’s policy πi if needed. This
is a typical architecture on distributed Q-Learning problems
where exploring is much less computationally expensive than
learning [12].

Definition 2. A distributed Q-learning system (d-Q) for
a MDP (XN ,UN , P, r) is a set of actor agents N =
{1, 2, ..., N} exploring transitions and initialised at the same
x0 ∈ X , together with a single central learner agent storing
a Q̂ : X × U → R estimator function. Let the subsets
Nx = {i ∈ N : xi = s} have cardinality Nx. The estimator
function is updated with samples µi ∀i ∈ N as:

Q̂t+1(x, u) = Q̂t(x, u) + αt
1

Nx

∑
i∈Nx

∆̂t(µi). (3)

We consider the following Assumption to ensure persistent
exploration.

2380

Authorized licensed use limited to: TU Delft Library. Downloaded on January 23,2023 at 12:41:14 UTC from IEEE Xplore. Restrictions apply.

Learner

Agent

Agent

AgentAgent

Agent

µi
t

Qt

Fig. 1: Distributed Q-Learning System

Assumption 1. Any policy πi ∀i ∈ N has a minimum
probability ε of picking an action at random.

It is straight-forward to show that the distributed form of
the Q-Learning algorithm in (3) converges to the optimal
Q∗ with probability one under the same assumptions as in
Theorem 1 in [3]. An example architecture of a distributed
Q-Learning system is shown in Figure 1.

III. PROBLEM DEFINITION

In practice, the distributed system in (3) implicitly assumes
that actors provide their experiences at every step to the
central learner that performs the iterations on the estimator
Q̂. When using large amounts of actors and exploring MDP’s
with large state-spaces, this can result in memory and data
transmission rate requirements that scale badly with the
number of actors, and can become un-manageable in size.
Additionally, when the MDP has a unique initial state (or a
small set thereof), the memory may become saturated with
data samples that over-represent the regions of the state-space
close to x0. From this framework, we present the problem
addressed in this work.

Problem 1. For a distributed Q-learning system, design
logic rules for the agents to decide when to communicate
information to a central learner (and when not to) that
maintain convergence guarantees and reduce the system’s
communication requirements.

We consider the communication to happen from explorers
to learner and from learner to explorers (star topology), and
a communication event is an agent sending a sample µi to
the central learner.

IV. EFFICIENT DISTRIBUTED Q-LEARNING

From the convergence proofs of Q-Learning, we know
limt→∞ Q̂t(x, u) − Q∗(x, u) = 0 a.s. Each explorer agent
obtains samples µi = (x, u, r(x, u), x′)i, and has an estima-
tor function Q̂t. For every sample, the agent can compute
the estimated loss with respect to the estimator Q̂t, which is
an indication of how far the estimator is from the optimal
Q∗. This suggests that, for β ∈ (0, 1), we can define the
surrogate function for convergence certification to be a TD
error tracker:

Li(t+ 1) := (1− β)Li(t) + β|∆̂t(µi)|, ∀i ∈ N , (4)

with Li(0) = 0. We could now use L to trigger communica-
tions analogously to the role of Lyapunov functions in ETC.
The parameter β serves as a temporal discount factor, that
helps the agent track the TD error smoothly. Observe that
Li(t) ≥ 0 ∀ t, i, and Li(t) → 0 ⇒ Q̂t − Q∗ → 0. This last
property is an equivalence only in the case that the MDP has
deterministic transitions. The intuition about this surrogate
function is as follows. Agents compute the error term ∆̂t(µi)
as they move through a trajectory, which gives an indication
of how close their Q̂t estimator is to the optimal Q∗. Then,
they accumulate these losses in a temporal discounted sum
Li(t), such that by storing only one scalar value they can
estimate the cumulative loss in the recent past.

Recall that in (1) the optimal Q∗ represents the maximum
expected Q values at every time step. Our convergence
surrogate function in (4) computes the norm of the TD
error at each time step, therefore it may not go to zero for
stochastic transitions, but to a neighbourhood of zero.

Proposition 1. Consider a distributed Q-Learning prob-
lem from Definition 2. For a deterministic MDP, Q̂t →
Q∗ a.s. ⇔ Li(t) → 0 a.s. For a stochastic MDP, Q̂t →
Q∗ a.s. ⇒ Li(t) → L0 a.s., where L0 = [0, l∗], and l∗ =
γmaxx,u,x′ (E[maxu′ Q∗(x′, u′)|x, u]−maxu′ Q∗(x′, u′)) .

Proposition 1. Consider first a deterministic MDP. In this
case, Pxx′(u) ∈ {0, 1}, and Q∗(x, u) = r(x, u) +
γmaxu′ Q∗(x′, u′). Then, it must hold

Q̂t → Q∗ a.s. ⇔ Q̂t(x, u)−Q∗(x, u) → 0 a.s. ∀x, u.
Recalling the Q−learning iteration, ∀(x, u) it holds a.s.:

lim
t→∞

Q̂t(x, u) = Q∗(x, u) ⇔ lim
t→∞

Q̂t+1(x, u)− Q̂t(x, u) =

= 0 ⇔ lim
t→∞

Q̂t(x, u) + αt
1

Nx

∑
i∈Nx

∆̂t(µi)−

− Q̂t(x, u) = 0 ⇔ lim
t→∞

1

Nx

∑
i∈Nx

∆̂t(µi) = 0.

(5)
At last, in a deterministic MDP for a fixed (x, u) we have
∆̂t(µi) = f(x, u)∀i ∈ Nx. Therefore, 1

Nx

∑
i∈Nx

∆̂t(µi) →
0 ⇔ |∆̂t(µi)| → 0, and limt→∞ |∆̂t(µi)| = 0 ⇔
limt→∞ L(t) = 0, which happens almost surely. For the
stochastic transition MDP, the optimal Q∗ function satisfies

Q∗(x, u) = r(x, u) +
∑
x′

Pxx′(u)γmax
u′

Q∗(x′, u′).

Therefore, limt→∞ Q̂t(x, u) = Q∗(x, u) and for any i ∈ Nx:

lim
t→∞

∆̂t(µi) = lim
t→∞

r(xi, ui) + γmax
u′
i

Q̂t(x
′
i, u

′
i)−

− Q̂t(xi, ui) = γmax
u′

Q∗(x′
i, u

′)−

− γ
∑
x′

Pxix′(ui)max
u′

Q∗(x′, u′) =: ∆̂∗(µi) a.s.

At last, from Assumption 1, all (x, u) are visited infinitely of-
ten. Therefore, ∥∆̂∗(µ)∥∞ = γ∥E[maxu′ Q∗(x′, u′)|x, u] −

2381

Authorized licensed use limited to: TU Delft Library. Downloaded on January 23,2023 at 12:41:14 UTC from IEEE Xplore. Restrictions apply.

maxu′ Q∗(x′, u′)∥∞ := l∗, and L(t + 1) ≤ (1 − β)L(t) +
βl∗ ⇒ limt→∞ L(t) ≤ l∗ a.s.

A. Event Based Communication
Just as in decentralised ETC [28] a surrogate for stability

(Lyapunov function) can be employed to guide the design
of communication triggers, we propose here using the dis-
tributed signals Li(t) based on the TD error of the Q estima-
tors. In our problem’s context, the actors can be considered to
be the sensors/actuators, and the central controller computes
the iterations on Q̂t based on the samples sent by the actors.
This central controller updates everyone’s control action
(policy πi). In the d-Q system, the state variable to stabilize
is the difference E[Q̂t|Ft] − Q∗, where Ft is a σ−algebra
composed by the sequence of explored triplets (x, u, x′). The
control action analogy is ∆̂(µ), and applying the control
action results in ∥E[Q̂t+1|Ft] − Q∗∥∞ < ∥Q̂t − Q∗∥∞
(see [40]). To decide when to transmit, we propose to use
triggering rules of the form

θt(i) :=

{
1 if |∆̂t(µi)| ≥ max{ρLi(t), ϵ}
0 else,

(6)

with ρ ∈ [0, 1] and ϵ ≥ 0. That is, θt(i) = 1 means that
agent i sends the sample µi at time t to the central learner.
The event triggered rule in (6) has an intuitive interpretation
in the following way. Agents accumulate the value of Li(t)
through their own trajectories in time. If the trajectories
sample states that are already well represented in the current
Q̂t function, there is no need to transmit a new sample to
the central learner. This can happen for a variety of reasons;
some regions of the state-space may be well represented by a
randomized initialisation of Q̂, or some explorers may have
already sampled the current trajectory often enough for the
learner to approximate it. The resulting system is then an
event-based d-Q (EBd-Q) system. We divide now the results
in stochastic and determinstic MDPs.

B. Deterministic MDPs
Let us first define H to be the operator:

H(Q̂t(x, u)) :=
∑
x′

Pxx′(u)
(
r(x, u) + γmax

u′
Q̂t(x

′, u′)
)
.

(7)
The mapping H is a contraction operator on the ∞−norm,
with H(Q∗) = Q∗ being the only fixed point (see [40]
for the proof). Now observe, for a deterministic MDP, that
the transition (x, u) → x′ happens for a single x′, and
E[∆̂t(u) | Ft] = H(Q̂t(x, u))− Q̂t(x, u) = ∆̂t(µ).

Theorem 1. Let (XN ,UN , P, r) be a deterministic d-Q. Let
the event triggering condition determining communication
events be (6). Then, the resulting EBd-Q system learning
on the samples {µi : θt(i) = 1} converges a.s. to a Q̂ϵ

satisfying ∥Q̂ϵ − Q∗∥∞ ≤ f(ϵ) with f(ϵ) ∈ K∞ under the
same conditions as in [3].

Proof. We show this by contradiction. Assume first that
∃t0 such that a communication event is never triggered

for t > t0. Then, |∆̂t(µi)| < max{ρLi(t), ϵ}. Take
first max{ρLi(t), ϵ} = ϵ ⇒ |∆̂t(µi)| < ϵ. Now take
max{ρLi(t), ϵ} = ρLi(t) ⇒ |∆̂t(µi)| < ρLi(t), and observe
Li(t + 1) ≤ (1 − β(1 − ρ))Li(t). Therefore, ∃tϵ ≥ t0 :
Li(tϵ) < ϵ ⇒ |∆̂tϵ(µi)| < ϵ, and from (1) ∀(x, u), t > tϵ:

|r(x, u) + γmax
u′

Q̂t(x
′, u′)− Q̂t(x, u)| ≤ ϵ ⇒

⇒|Q∗(x, u)− Q̂t(x, u)+

+γ
(
max
u′

Q̂t(x
′, u′)−max

u′
Q∗(x′, u′)

)
| ≤ ϵ ⇒

⇒|Q∗(x, u)− Q̂t(x, u)| ≤ ϵ+

+γmax
u′

∣∣∣Q̂t(x
′, u′)−Q∗(x′, u′)

∣∣∣ ≤ ϵ+ γ∥Q̂t −Q∗∥∞ ⇒

⇒∥Q∗ − Q̂t∥∞ ≤ ϵ+ γ∥Q̂t −Q∗∥∞ ≤ ϵ

1− γ
,

(8)
where f(ϵ) := ϵ

1−γ is a K∞ function. Furthermore, it
follows from (6) that no samples are transmitted for t > tϵ,
therefore Q̂t has converged for t > tϵ to some Q̂ϵ. There-
fore, limt→∞ ∥Q∗ − Q̂t∥∞ = ∥Q∗ − Q̂ϵ∥∞ ≤ ϵ

1−γ . Now
assume that communication events happen infinitely often
after some t0. Since all pairs (x, u) are visited infinitely often,
∆̂t+1(µ) = H(Q̂t+1)(x, u)− Q̂t+1(x, u) and

∥∆̂t+1(µ)∥∞ ≤ ∥H(Q̂t)(x, u)− Q̂t(x, u)+

+αt

(
γmax

µ′
∆̂t(µ

′)− ∆̂t(µ)

)
∥∞ ≤

=∥(1− αt)∆̂t(µ) + αtγmax
µ′

∆̂t(µ
′)∥∞ ≤

≤(1− αt(1− γ))∥∆̂t(µ)∥∞.

Therefore, limt→∞ ∥∆̂t(µ)∥∞ = 0, which implies no sam-
ples are transmitted as t → ∞ and contradicts the in-
finitely often assumption. From (8), limt→∞ ∥Q∗ −Qt∥∞ ≤
ϵ

1−γ .

Remark 1. Observe that for ϵ = 0 the triggering rule in
6 may result in regular (almost periodic) communications
as t → ∞. Setting ϵ > 0 implies the number of expected
communication events goes to 0 as t → ∞, at the expense
of Q̂t converging to a neighbourhood of Q∗.

One can show that, in the case of a deterministic MDP,
convergence is also guaranteed for the case where αt = α is
fixed. In practice, we can consider this to be the case when
applying ET rules on a deterministic MDP.

C. Stochastic MDP

We now present similar results to Theorem 1 for general
stochastic transition MDPs. Consider a distributed MDP as
in Definition 2. Let HP be the operator H(Q̂t(x, u)) as a
function of the probability transition function P . Let P be
the set of all possible transition functions for a given set
of actions and states, i.e. P ≡

(
P|X |×|X|)|U|

. Define T :=
2|X |×|U|×|X| as the power set of transitions for the given
states and actions X ,U . Let G : T × P → P be a mapping
such that given a set of transitions τ ∈ T and a transition

2382

Authorized licensed use limited to: TU Delft Library. Downloaded on January 23,2023 at 12:41:14 UTC from IEEE Xplore. Restrictions apply.

function P sets the probability of all transitions τ to zero
and normalizes the resulting function G(τ, P) = P̂ τ ∈ P .

Given the MDP probability measure P , we define the set
PP ⊂ P as the set containing all transition functions P̂
resulting from “deleting” any combination of transitions in
P . That is, PP := {P̂ τ}τ∈T . Consider now the case where
we apply an event triggered rule to transmit samples on
a stochastic MDP. For any pair (x, u), agent i and time
t, the samples are transmitted (and learned) if θt(i) = 1.
This means that, in general, it may happen that for the set
of resulting states X ′(x, u) := {x′ ∈ X : Pxx′(u) > 0},
some transitions will not be transmitted. In practice this is
equivalent to applying different transition functions P̂ τ ∈ PP

at every step t. This leads to the next assumption.

Assumption 2. There exists probability measure v : PP →
[0, 1] (or v ∈ P|PP |) that is only a function of the MDP
(XN ,UN , P, r), the initial conditions x0, Q̂0 and the param-
eters γ, ε, ρ, ϵ, such that vP̂ τ is the probability of applying
function P̂ τ at any time step.

Remark 2. In fact it follows from the Definition of PP that
the dependence on ρ, ϵ must exist, given that ρ, ϵ = 0 ⇒
vP = 1: in this case all samples are always transmitted. In a
similar way, it also holds that limϵ→∞ vP̂ τ = 0 ∀P̂ τ ∈ PP

since in such case no samples are ever transmitted.

Let us reflect on the implications of Assumption 2. When
applying an event triggered rule in (6) to transmit samples, it
may result on experiences not being transmitted if the trigger
condition is not met. In practice, this can be modelled by
considering different transition functions P̂ ∈ PP (which
have some values P̂ τ

xx′(u) = 0 compared to the original
function P) applied at every time-step by every agent.
Assumption 2 implies that, even though every agent uses
different functions at every time-step, the probability of using
each P̂ τ ∈ PP is measurable for fixed initial conditions.

Remark 3. Assumption 2 is necessary to obtain the conver-
gence guarantees presented in the following results. Based
on the experimental results obtained, and on the fact that
agents follow on-policy trajectories which are (on average)
similar for the same exploration rate ε, the Assumption seems
to hold in the cases explored. However, we leave this as a
conjecture, with the possibility that the assumption could be
relaxed to a time-varying distribution over PP .

Let us now define the operator H̃ as H̃(Q̂t(x, u)) :=∑
P̂∈PP

vP̂HP̂ (Q̂t(x, u)), and let

Φt(x, u) :=
1

Nx

∑
i∈Nx

r(x, u) + γmax
u′

Q̂t(x
′
i, u

′). (9)

For a transition function P , set PP , and density v, define
P̃ (x, u) :=

∑
P̂ vP̂ P̂xx′(u). We derive the following results.

Lemma 1. For a given agent i and time t transmitting
samples according to the triggering condition (6), it holds
that E[Φt(x, u) | Ft] = H̃(Q̂t(x, u)), and the operator

has a fixed point H̃(Q̃) = Q̃ satisfying Q̃(x, u) :=∑
x′ P̃xx′(u)

(
r(x, u) + γmaxu′ Q̃(x′, u′)

)
.

Proof. First, from Assumption 2, for a given P̂ ,
E[Φt(x, u) | Ft, P̂] = HP̂ (Q̂t)(x, u). Now, by the law
of total expectation and making use of Pr[P̂] = vP̂ , it
follows that E[Φt(x, u) | Ft] =

∑
P̂∈PP

vP̂HP̂ (Q̂t)(x, u).

At last, to show that Q̃ is a fixed point, observe we can
write∑

P̂∈PP

vP̂

∑
x′

P̂xx′(u)
(
r(x, u) + γmax

u′
Q̃(x′, u′)

)
=

=
∑
x′

∑
P̂

vP̂ P̂xx′(u)

(
r(x, u) + γmax

u′
Q̃(x′, u′)

)
=

=
∑
x′

P̃xx′(u)
(
r(x, u) + γmax

u′
Q̃(x′, u′)

)
.

Therefore, applying H̃(Q̃) is equivalent to applying the
contractive operator in (7) with transition function P̃ .

Theorem 2. Consider a d-Q system as in Definition 2. Let the
event triggering condition determining communication events
be (6). Then, the resulting EBd-Q system learning on the
samples {µi : θt(i) = 1} converges a.s. to a fixed point Q̃
under the same conditions as in [3].

Proof. Define ξt(x, u) := Q̂t(x, u) − Q̃(x, u). Then, the
iteration (2) applied at every time step is ξt+1(x, u) =
(1−αt)ξt(x, u)+αt(Φt(x, u)−Q̃(x, u)). Now, from Lemma
1,

∥E[Φt+1(x, u)− Q̃(x, u)|Ft]∥∞ =

=∥H̃(Q̂t+1)(x, u)− H̃(Q̃)(x, u)∥∞ =

=γ∥P̃xx′(u)(max
u′

Q̂t(x
′, u′)−max

u′
Q̃(x′, u′))∥∞ ≤

≤γ∥P̃xx′(u)∥∞∥Q̂t − Q̃|∥∞ ≤ γ∥ξt(x, u)|∥∞.

Therefore, the expected value of the operator H̃ is a γ-
contraction in the sup-norm, with fixed point Q̃, and it
follows that ∥ξt(x, u)∥∞ → 0 a.s.

From Remark 2 we know that ρ, ϵ = 0 ⇒ v(P) = 1 ⇒
Q̃ = Q∗. Additionally, for P̂ being the probability transition
function applied at time t, it holds that E[P̂] = P̃ . But we
can say something more about how the difference P − P̃
influences the distance between the fixed points ∥Q∗−Q̃∥∞.

Corollary 1. Let a distributed MDP with an event triggered
condition as defined in (6). For a given transition function P ,
a set of functions PP and density v, ∃c ≥ 0 : ∥Q∗− Q̃∥∞ ≤
c γ
1−γ ∥P − P̃∥∞.

2383

Authorized licensed use limited to: TU Delft Library. Downloaded on January 23,2023 at 12:41:14 UTC from IEEE Xplore. Restrictions apply.

Proof. Recall H̃(Q̃) = Q̃ and H(Q∗) = Q∗. Then,

∥Q∗ − Q̃∥∞ = ∥H(Q∗)− H̃(Q̃)∥∞ =

=∥
∑
x′

Pxx′(u)
(
r(x, u) + γmax

u′
Q∗(x′, u′)

)
−

− P̃xx′(u)
(
r(x, u) + γmax

u′
Q̃(x′, u′)

)
∥∞ =

=γ∥
∑
x′

Pxx′(u)max
u′

Q∗(x′, u′)− P̃xx′(u)max
u′

Q̃(x′, u′)∥∞.

(10)
Define ∆̂Pxx′(u) := P̃xx′(u) − Pxx′(u) and substitute in
(10):

∥Q∗ − Q̃∥∞ = γ∥
∑
x′

Pxx′(u)
(
max
u′

Q∗(x′, u′)−

− max
u′

Q̃(x′, u′)
)
− ∆̂Pxx′(u)max

u′
Q̃(x′, u′)∥∞ ≤

≤γ∥
∑
x′

Pxx′(u)max
u′

|Q∗(x′, u′)− Q̃(x′, u′)|∥∞+

+ γ∥∆̂Pxx′(u)max
u′

Q̃(x′, u′)∥∞.

(11)
At last, observe ∥∑x′ Pxx′(u)maxu′ |Q∗(x′, u′) −
Q̃(x′, u′)|∥∞ ≤ γ∥Q∗ − Q̃∥∞. Additionally, since the
reward functions are bounded, for a discount rate γ ∈ (0, 1)
the values of Q̃(x, u) ≤ c are also bounded for some
constant c ∈ R+. Therefore,

∥Q∗ − Q̃∥∞ ≤γ∥Q∗ − Q̃∥∞ + γ∥∆̂Pxx′(u)∥∞∥Q̃∥∞ ≤
≤γ∥Q∗ − Q̃∥∞ + cγ∥∆̂Pxx′(u)∥∞ ⇒

⇒ ∥Q∗ − Q̃∥∞ ≤c
γ

1− γ
∥P − P̃∥∞.

(12)

In fact, the distance ∥P − P̃∥∞ is explicitly related to the
probability measure v, since v determines how far P̃ is from
the original P based on the influence of every function in the
set PP . One can show that ∥P − P̃∥∞ ≤ (1− vP)|PP |, and
1−vP is a measure of how often we use transition functions
different to P , which depends on the aggressiveness of the
parameters ρ, ϵ. We continue now to study experimentally the
behaviour of the Event Based d-Q systems in Theorem 1 and
2 regarding the communication rates and performance of the
policies obtained for a given path planning MDP problem.

V. EXPERIMENTS

To demonstrate the effectiveness of the different trig-
gering functions and how they affect the learning of Q-
values over a MDP, we use a benchmark problem consisting
of a path planning problem. Details on the experimental
framework are found in Appendix B. The average reward
and communication results for a stochastic and deterministic
MDP are presented in Figure 2. We use as a benchmark a
“vanilla” Distributed Q-Learning algorithm where all agents
are communicating samples continuously, and we compare
with different combinations of parameters for the presented
EBd-Q systems. Comparing with other available research

0 2 4 6

·104

0

0.5

1

1.5

2

·106

Episodes

C
u
m
u
la
ti
ve

C
o
m
m
u
n
ic
at
io
n
p
er

A
ge
n
t

Stochastic MDP

0 0.5 1 1.5 2
·104

0

0.5

1

·106

Episodes

Deterministic MDP

0 2 4 6

·104

−5

0

5

10

Episodes

A
v
g
R
ew

ar
d

Stochastic MDP

0 0.5 1 1.5 2
·104

−10

−5

0

5

10

Episodes

Deterministic MDP

0 1 2 3 4 5 6
·104

−5

0

5

10

Episodes

A
v
g
R
ew

ar
d

Vanilla d-Q(N = 64) EBd-Q(ε = 0.01, N = 64) EBd-Q(ε = 0.05, N = 64)

Vanilla d-Q(N = 8) EBd-Q(ε = 0.01, N = 8) EBd-Q(ε = 0.05, N = 8)

Fig. 2: Path Planning Learning, Vanilla vs. EBd-Q

is not straight-forward, since it would require interpreting
similar methods designed for other problems (in the case
of distributed stochastic gradient descent works [30], or
policy gradient examples [38], [39]), or comparing with other
methods designed for learning speed (e.g. [14]), where the
goal is not to save bandwidth or storage capacity.

Analysing the experimental results, in both the stochastic
and deterministic MDP scenarios, the systems reach an op-
timal policy quicker by following an event triggered sample
communication strategy, but only for ϵ = 0.01. This can be
explained by the same principle as in prioritized sampling
[13], [41]: samples of un-explored regions of the environ-
ment are transmitted (and learned) earlier and more often.
However, in our case this emerges as a consequence of the
trigger functions θi(t), and it is the result of a fully distributed
decision process where agents decide independently of each-
other when to share information, and does not require to
accumulate and sort the experiences in the first place.

When increasing the triggering threshold to ϵ = 0.05,
the learning gets compromised and the reward decreases
for both N = 64 and N = 8. Additionally, we observe
in both scenarios how the total number of communications
increase much slower in the event based case compared to
the vanilla d-Q example, and even stabilize in the case of

2384

Authorized licensed use limited to: TU Delft Library. Downloaded on January 23,2023 at 12:41:14 UTC from IEEE Xplore. Restrictions apply.

the deterministic MDP, indicating the number of events is
approaching zero. This is due to the EBd-Q systems sending a
much lower amount of samples through the network per time
step. As anticipated by the theoretical results in Theorems 1
and 2, higher ϵ results in a larger reduction of communication
rates, at the expense of obtaining less optimal Q functions.

At last, let us comment on the influence of the number
of agents in the experiments. First, N = 8 has lower
communication requirements observable in the case with
ϵ = 0.01: the total communication number plateaus earlier
and at a significantly lower value for N = 64. Second, in the
deterministic MDP case we see how larger number of agents
result in faster reaching of a maximum reward.

VI. DISCUSSION

We have presented a design of ETC inspired trigger func-
tions for d-Q systems with the goal to allow agents in a such
systems to make distributed decisions on which particular
experiences may be valuable and which ones not, reducing
the amount of communication events (and data transmission
and storage). Regarding the convergence guarantees, we have
shown how applying such triggering functions on the commu-
nication events results in the centralised learner converging
to a Q-Function that may slightly deviate from the optimal
Q∗. However, we were able to provide an indication on
how far the resulting Q functions can be from Q∗ based on
the triggering parameters ϵ, ρ, explicitly for a deterministic
MDP and implicitly (via the distribution v) for a stochastic
MDP. Event based rules reduce significantly the amount
of communication required in the explored path planning
problem, while keeping a reasonable learning speed, even
though they intrinsically modify the probability distributions
of the data. In fact, it was observed in the experiments how
the proposed EBd-Q systems resulted collaterally in a faster
learning rate than for the constant communication case (an
effect similar to that in prioritized learning).

Finally, some questions for future work emerge from
these results. It would be valuable to explore the effect of
such event based communication on general multi-agent RL
systems where all agents are learners, the communication
graph has a complete topology, and agents could be sharing
more than experiences (Q−values, policies...). Such study
would shine light on how to design efficient collaborative
multi agent systems. At last, we leave as a conjecture whether
Assumption 2 always holds, left for future work, with the
possibility of analysing EBd-Q systems as some form of
alternating or interval MDP with probability distribution
bounds.

APPENDIX

A. Experimental Framework

We modified the Frozen Lake environment in OpenAI
GYM [42]. We edited the environment to have a bigger state-
space (1296 (x, u) pairs), the agents get a reward r = −1
when choosing an action that makes them fall in a hole,
and r = 10 when they find the goal state. Additionally, the

Fig. 3: Path Planning map used.

agents get a constant reward of −0.01 every time they take an
action, to reflect the fact that shorter paths are preferred. The
action set is U = {up, down, left, right}. For the stochastic
transition case, the agents get a reward based on the pair
(x, u) regardless of the end state x′. The resulting Frozen
Lake environment can be seen in Figure 3. We consider a
population of N ∈ {8, 64} agents, all using ε greedy policies
with different exploration rates (as proposed in [43]). The
number of agents is chosen to be multiple of 8 (to facilitate
running on parallel cores of the computer), to represent both
a “large” and a “small” agent number scenario. The agents
are initialised with a value εi ∈ {0.01, 0.2, 0.4, 0.6, 0.8.0.99}
chosen at random. For all the simulations we use α = 0.01,
γ = 0.97, β = 0.05 and ρ = 0.9. We plot results for
ϵ ∈ {0.01, 0.05}. The Q−function is initialised randomly
Q̂0(x, u) ∈ [−1, 1]∀ (x, u). The results are computed for 25
independent runs and averaged for each scenario. We present
results for a stochastic and a deterministic MDP. In the
stochastic case, for a given pair (x, u) there is a probability
p = 0.7 of ending up at the corresponding state x′ (e.g.
moving down if the action chosen is down) and p̄ = 0.3 of
ending at any other adjacent state.

To compare between the different scenarios, we use an
experience replay buffer of size N × 1000 for the central
learner’s memory, where at every episode we sample mini-
batches of 32 samples. The policies are evaluated by a critic
agent with a fixed ε0 = 0.01, computing the rewards for 10
independent runs for every estimation Q̂t. The learning rate
α and “diffusion” γ were picked based on similar size Q-
learning examples in the literature. In the case of the ET re-
lated parameters β, ρ, ϵ, these were picked after a very quick
parameter scan. First, β = 0.05 yields a half-life time of ≈ 15
time steps, which is on the same order as the diameter of the
path planning arena. The value of ρ was picked arbitrarily
close to 1 to allow a slow decrease in the communication rate.
At last, ϵ acts as an error threshold, under which the errors in
the Q values are considered low enough and no samples are
transmitted. The value function magnitude is related to the
maximum reward in the MDP. Take a pair (x, u) being 1 step
away from the path planning goal has an associated reward on
the order of γ∥r(x, u)∥∞ ≈ 9.7. However, a pair (x, u) being
2 steps away has γ2∥r(x, u)∥∞ ≈ 9.4. Therefore, when being
really close to the goal, the error associated with taking one
extra step is on the order of ≈ 0.03. By choosing ϵ = 0.01,

2385

Authorized licensed use limited to: TU Delft Library. Downloaded on January 23,2023 at 12:41:14 UTC from IEEE Xplore. Restrictions apply.

we ensure the threshold is low enough to capture one-step
errors. Then, ϵ = 0.05 is larger than this gap, so it ensures a
significant enough difference for comparison.

ACKNOWLEDGEMENTS

The authors want to thank G. Delimpaltadakis, G. Gleizer
and M. Suau for the useful discussions. This work is partly
supported by the ERC Starting Grant SENTIENT 755953.

REFERENCES

[1] R. E. Bellman and S. E. Dreyfus, Applied dynamic programming.
Princeton university press, 2015, vol. 2050.

[2] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[3] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3-4, pp. 279–292, 1992.

[4] T. Jaakkola, M. I. Jordan, and S. P. Singh, “On the convergence of
stochastic iterative dynamic programming algorithms,” Neural compu-
tation, vol. 6, no. 6, pp. 1185–1201, 1994.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[7] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[8] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 30, no. 1, 2016.

[9] C. Boutilier, “Planning, learning and coordination in multiagent deci-
sion processes,” in TARK, vol. 96. Citeseer, 1996, pp. 195–210.

[10] J. Hu, M. P. Wellman et al., “Multiagent reinforcement learning:
theoretical framework and an algorithm.” in ICML, vol. 98. Citeseer,
1998, pp. 242–250.

[11] G. Weiß, “Distributed reinforcement learning,” in The Biology and
technology of intelligent autonomous agents. Springer, 1995, pp. 415–
428.

[12] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon,
A. De Maria, V. Panneershelvam, M. Suleyman, C. Beattie, S. Petersen
et al., “Massively parallel methods for deep reinforcement learning,”
arXiv preprint arXiv:1507.04296, 2015.

[13] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel,
H. Van Hasselt, and D. Silver, “Distributed prioritized experience
replay,” arXiv preprint arXiv:1803.00933, 2018.

[14] S. Kapturowski, G. Ostrovski, J. Quan, R. Munos, and W. Dabney,
“Recurrent experience replay in distributed reinforcement learning,” in
International conference on learning representations, 2018.

[15] M. Tan, “Multi-agent reinforcement learning: Independent vs. cooper-
ative agents,” in Proceedings of the tenth international conference on
machine learning, 1993, pp. 330–337.

[16] E. Yang and D. Gu, “Multiagent reinforcement learning for multi-robot
systems: A survey,” tech. rep, Tech. Rep., 2004.

[17] A. Nowé, P. Vrancx, and Y.-M. De Hauwere, “Game theory and multi-
agent reinforcement learning,” in Reinforcement Learning. Springer,
2012, pp. 441–470.

[18] L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey
of multiagent reinforcement learning,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 38,
no. 2, pp. 156–172, 2008.

[19] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,”
arXiv preprint arXiv:1706.02275, 2017.

[20] M. Lauer and M. Riedmiller, “An algorithm for distributed reinforce-
ment learning in cooperative multi-agent systems,” in In Proceedings
of the Seventeenth International Conference on Machine Learning.
Citeseer, 2000.

[21] J. R. Kok and N. Vlassis, “Sparse cooperative q-learning,” in Proceed-
ings of the twenty-first international conference on Machine learning,
2004, p. 61.

[22] L. Panait and S. Luke, “Cooperative multi-agent learning: The state of
the art,” Autonomous agents and multi-agent systems, vol. 11, no. 3,
pp. 387–434, 2005.

[23] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communica-
tion efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[24] T. Chen, K. Zhang, G. B. Giannakis, and T. Basar, “Communication-
efficient distributed reinforcement learning,” arXiv preprint
arXiv:1812.03239, 2018.

[25] J. N. Foerster, Y. M. Assael, N. De Freitas, and S. Whiteson, “Learning
to communicate with deep multi-agent reinforcement learning,” arXiv
preprint arXiv:1605.06676, 2016.

[26] Q. Li, F. Gama, A. Ribeiro, and A. Prorok, “Graph neural net-
works for decentralized multi-robot path planning,” arXiv preprint
arXiv:1912.06095, 2019.

[27] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control
tasks,” IEEE Transactions on Automatic Control, vol. 52, no. 9, pp.
1680–1685, 2007.

[28] M. Mazo and P. Tabuada, “Decentralized event-triggered control over
wireless sensor/actuator networks,” IEEE Transactions on Automatic
Control, vol. 56, no. 10, pp. 2456–2461, 2011.

[29] ——, “On event-triggered and self-triggered control over sen-
sor/actuator networks,” in 2008 47th IEEE Conference on Decision
and Control. IEEE, 2008, pp. 435–440.

[30] J. George and P. Gurram, “Distributed stochastic gradient descent
with event-triggered communication,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, no. 05, 2020, pp. 7169–
7178.

[31] F. Solowjow and S. Trimpe, “Event-triggered learning,” Automatica,
vol. 117, p. 109009, 2020.

[32] K. G. Vamvoudakis and H. Ferraz, “Model-free event-triggered control
algorithm for continuous-time linear systems with optimal perfor-
mance,” Automatica, vol. 87, pp. 412–420, 2018.

[33] X. Zhong, Z. Ni, H. He, X. Xu, and D. Zhao, “Event-triggered rein-
forcement learning approach for unknown nonlinear continuous-time
system,” in 2014 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2014, pp. 3677–3684.

[34] N. Funk, D. Baumann, V. Berenz, and S. Trimpe, “Learning event-
triggered control from data through joint optimization,” IFAC Journal
of Systems and Control, vol. 16, p. 100144, 2021.

[35] D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed
event-triggered control for multi-agent systems,” IEEE Transactions
on Automatic Control, vol. 57, no. 5, pp. 1291–1297, 2011.

[36] K. F. Elvis Tsang and K. H. Johansson, “Distributed event-triggered
learning-based control for nonlinear multi-agent systems,” in 2021 60th
IEEE Conference on Decision and Control (CDC), 2021, pp. 3399–
3405.

[37] R. Becker, S. Zilberstein, and V. Lesser, “Decentralized markov
decision processes with event-driven interactions,” in Proceedings of
the Third International Joint Conference on Autonomous Agents and
Multiagent Systems-Volume 1. Citeseer, 2004, pp. 302–309.

[38] Y. Lin, K. Zhang, Z. Yang, Z. Wang, T. Başar, R. Sandhu, and
J. Liu, “A communication-efficient multi-agent actor-critic algorithm
for distributed reinforcement learning,” in 2019 IEEE 58th Conference
on Decision and Control (CDC). IEEE, 2019, pp. 5562–5567.

[39] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[40] F. S. Melo, “Convergence of q-learning: A simple proof,” Institute Of
Systems and Robotics, Tech. Rep, pp. 1–4, 2001.

[41] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experi-
ence replay,” arXiv preprint arXiv:1511.05952, 2015.

[42] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[43] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning.
PMLR, 2016, pp. 1928–1937.

2386

Authorized licensed use limited to: TU Delft Library. Downloaded on January 23,2023 at 12:41:14 UTC from IEEE Xplore. Restrictions apply.

