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Accuracy of predicting epidemic outbreaks

Bastian Prasse ,* Massimo A. Achterberg ,† and Piet Van Mieghem ‡

Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science,
P.O. Box 5031, 2600 GA Delft, The Netherlands

(Received 4 May 2021; revised 22 July 2021; accepted 10 December 2021; published 7 January 2022)

During the outbreak of a virus, perhaps the greatest concern is the future evolution of the epidemic: How many
people will be infected and which regions will be affected the most? The accurate prediction of an epidemic
enables targeted disease countermeasures (e.g., allocating medical staff and quarantining). But when can we
trust the prediction of an epidemic to be accurate? In this work we consider susceptible-infected-susceptible
(SIS) and susceptible-infected-removed (SIR) epidemics on networks with time-invariant spreading parameters.
(For time-varying spreading parameters, our results correspond to an optimistic scenario for the predictability
of epidemics.) Our contribution is twofold. First, accurate long-term predictions of epidemics are possible only
after the peak rate of new infections. Hence, before the peak, only short-term predictions are reliable. Second,
we define an exponential growth metric, which quantifies the predictability of an epidemic. In particular, even
without knowing the future evolution of the epidemic, the growth metric allows us to compare the predictability
of an epidemic at different points in time. Our results are an important step towards understanding when and
why epidemics can be predicted reliably.

DOI: 10.1103/PhysRevE.105.014302

I. INTRODUCTION

Forecasting the evolution of an infectious virus is crucial
for deploying appropriate, and timely, lockdown measures.
Sophisticated predictions of epidemic outbreaks are based on
mathematical epidemiology. The vast majority of epidemic
models assumes that every individual is in either one com-
partment [1–5]. Every compartment describes another stage
of the disease. The two most fundamental compartments are
susceptible S (healthy) and infected I. Susceptible individuals
can get infected by contact with infectious individuals.

We consider a population of N groups of individuals, which
could be households, cities or whole provinces. We denote the
curing rate of group i by δi > 0. Furthermore, for every group
i, j = 1, . . . , N , we denote the infection rate from group j to
group i by βi j . If individuals of group j are in contact with
individuals of group i, then it holds that βi j > 0. The more
probable an infection from group j to group i, the greater the
infection rate βi j . If individuals of group j are not in contact
with individuals of group i, then it holds that βi j = 0. The
N × N infection rate matrix B consists of the elements βi j and
specifies the contact network of the whole population.

Conceptually, there are two kinds of compartmental
epidemic models. First, the susceptible-infected-susceptible
(SIS) epidemic model, which assumes that infected individ-
uals can cure and become susceptible again.

Definition 1 [Susceptible-infected-susceptible (SIS) epide-
mic model [1,6–8]]. Consider a population of N groups of
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individuals, which are either susceptible S or infected I at
every time t � 0. Then, for every group i = 1, . . . , N , the
fraction of infected individuals Ii(t ) evolves according to

dIi(t )

dt
= −δiIi(t ) + Si(t )

N∑
j=1

βi jI j (t ), (1)

and the fraction of susceptible individuals in group i follows
as Si(t ) = 1 − Ii(t ).

The susceptible-infected-removed (SIR) model is the sec-
ond kind of compartmental epidemic model. The SIR model
assumes that cured individuals are immune to the disease,
which is modelled by the removed compartment R.

Definition 2 [Susceptible-infected-removed (SIR) epidemic
model [9,10]]. Consider a population of N groups of
individuals, which are either susceptible S , infected I
or removed R at every time t � 0. Then, for every group
i = 1, . . . , N , the fraction of infected individuals Ii(t ) evolves
according to

dIi(t )

dt
= −δiIi(t ) + Si(t )

N∑
j=1

βi jI j (t ), (2)

the fraction of removed individuals Ri(t ) evolves according
to

dRi(t )

dt
= δiIi(t ), (3)

and the fraction of susceptible individuals follows as Si(t ) =
1 − Ii(t ) − Ri(t ).

Hence, the key difference between the SIS and the SIR
model is that, after curing from the disease, individuals either
can be reinfected or are immune, respectively. There are vari-
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ations to both the SIS and the SIR model [3]. For instance,
the susceptible-infected-removed-susceptible (SIRS) model
and the susceptible-exposed-infected-removed (SEIR) model
consider time-limited immunity and an incubation period, re-
spectively.

Both the SIS model and the SIR model in Definitions 1 and
2 consider time-invariant spreading rates δi, βi j . However, in
many epidemics, the spreading rates δi(t ) and βi j (t ) do depend
on time t , at least to some extent, which is due to several
factors, including seasonality of the virus and time-varying
mitigation measures and vaccinations [4,11], which result in
multiple “waves” of the epidemic (see Fig. 1 of Ref. [12]) or
fluctuations in the human mobility pattern, depending on the
day of the week or the season of the year. In this work, we
focus on the epidemics with constant spreading rates βi j , δi

for three reasons. First, the SIS and SIR models with constant
rates βi j , δi are among the most fundamental and well-studied
epidemic models on networks. Hence, the predictability of
the models in Definitions 1 and 2 is of interest in its own
right. Second, in some scenarios, it is reasonable to assume
approximately constant spreading rates, i.e., βi j (t ) ≈ βi j and
δi(t ) ≈ δi from time t = 0 until some time t = tend. For in-
stance, the time interval [0, tend] could correspond to (parts of)
a single wave of COVID-19. Hence, the predictability of the
models in Definitions 1 and 2 is relevant to epidemics with
time-varying rates βi j (t ), δi(t ) over bounded time intervals
t ∈ [0, tend]. Third, time-varying rates δi(t ), βi j (t ) are more
general than constant rates βi j , δi. Even if the epidemic closely
follows the epidemic model with time-invariant parameters
βi j , δi, we show that accurate predictions cannot be obtained.
For time-dependent rates βi j (t ), δi(t ), predicting epidemics
is even harder, arguably leading to an even worse prediction
accuracy than for time-invariant parametersβi j , δi. As a result,
by considering constant rates βi j , δi, we obtain optimistic
results for predicting epidemics with time-varying rates βi j (t ),
δi(t ).

Besides variations over time t , the contact network might
be adaptive [13,14]: For instance, individuals might avoid
contacts with symptomatic individuals, which results in infec-
tion rates βi j (Ii(t ), I j (t )) that depend on the infection states
Ii(t ), I j (t ) of the respective individuals. Definition 1 and
Definition 2 are a deterministic, mean-field, description of
the virus spread, which might be more accurately described
stochastically. Furthermore, both Definition 1 and Definition 2
consider Markovian viral dynamics. Non-Markovian viral
dynamics can be dramatically different to Markovian viral
dynamics [15]. We refer the reader to [3,4] for an overview
of more complex epidemic models.

For the SIS and SIR model, we denote the prevalence
(average fraction of infections) at time t by

y(t ) = 1

N

N∑
i=1

Ii(t ). (4)

Then, predicting the course of the epidemic translates to esti-
mating the prevalence y(t ) at future times t . For both the SIS
and SIR model, we argue that the prediction of an epidemic is
inherently difficult, independently of the particular prediction
algorithm.

II. RELATED WORK

Several studies approach the prediction limits of epidemic
outbreaks from different angles. Cirillo and Taleb [16] demon-
strate that the number of fatalities of various past epidemics
is strongly fat-tailed, which renders long-term predictions of
epidemics outbreaks impossible. Castro et al. [17] and Paggi
[18] study extensions of the SIR model and show that, even
though the respective model accurately fits the past epidemic
outbreak, a reliable prediction is not possible. The same con-
clusion is drawn by Alberti and Faranda [19], who directly
fit a logistic function to the number of infections. In this
work, we aim to quantify the predictability of an epidemic. We
show that the predictability is limited by the initial exponential
growth of the epidemic, and we propose a metric to quantify
exponential growth. Based on the growth metric, it is indeed
possible to obtain quantitative statements on the predictability
of an epidemic.

III. THE LOGISTIC FUNCTION FOR EPIDEMICS
ON NETWORKS

Of crucial importance to both the SIS and the SIR epi-
demic model is the logistic function1 f (t ), which has been
introduced by Verhulst [20] as

f (t ) = y∞
1 + e−K (t−t0 )

. (5)

Here we denote the steady-state prevalence by y∞ > 0, the
inflection point (time when the peak of the number of new
infections occurs) by t0 and the logistic growth rate by K > 0.
Acknowledging recent results [21,22], the objective of this
section is to summarize and motivate the use of the logis-
tic function for epidemic models on networks, introduced in
Sec. I. Building upon the results summarized in this section,
the novelty of this work lies in the results presented in Sec. IV.

Initially, for small times t , the logistic function f (t ) in-
creases exponentially. At the inflection point t = t0, the slope
of the logistic function f (t ) reaches its maximum, and, as t →
∞, the logistic function converges to f (t ) → y∞. For most
epidemic models, the initial phase of the epidemic outbreak is
approximated by a branching process [23–25]. In agreement
with the logistic function f (t ), the branching process results
in exponential, or Malthusian, growth, and the growth rate
K corresponds to the Malthusian growth parameter. Fairly
rapidly, the pure exponential growth ceases due to finite size
effects and resistive mechanisms [26].

A. SIS epidemics

For the SIS epidemic model (1), the basic reproduction
number R0 equals the spectral radius of the N × N effective
infection rate matrix W = diag(1/δ1, . . . , 1/δN )B. Here the
N × N diagonal matrix with an N × 1 vector v on its diagonal
is denoted by diag(v). We denote the principal eigenvector of
the matrix W by x1. The steady-state fraction of infections is

1Equivalently, we can describe the number of infections by a hy-
perbolic tangent tanh(t ), which equals to a shifted logistic function
f (t ).
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FIG. 1. The accuracy of approximating the prevalence y(t ) of the SIS epidemic model on networks (1) by a logistic curve f (t ), for a
Barabási-Albert random graph [27] with N = 500 nodes, heterogeneous spreading rates δi, βi j , and small initial viral states Ii(0). The red
curve (“Fitted”) shows the logistic function f (t ), which is fitted to the prevalence y(t ). The brown curve (“CF.”) shows the logistic function
f (t ) whose parameters are given explicitly, in closed form, by Proposition 4, which is accurate as R0 ↓ 1.

denoted by I∞,i = limt→∞ Ii(t ) for every node i and satisfies

(1 − I∞,i )
N∑

j=1

βi jI∞, j = δiI∞,i, i = 1, . . . , N. (6)

As shown in Theorem 4 of Ref. [22], the prevalence y(t ) of
SIS epidemics on a complete graph is described by a logistic
function:

Proposition 3 ([22]). Consider the SIS epidemic model (1)
and suppose that, for some β, δ, the spreading rates satisfy
βi j = β and δi = δ for all nodes i, j. Then, provided that R0 >

1, the prevalence (4) equals a logistic function, y(t ) = f (t ),
where the logistic growth rate equals K = βN − δ, the steady
state equals y∞ = K

βN , and the inflection point equals

t0 = − 2

K
arctanh

(
2

β

K

N∑
i=1

Ii(0) − 1

)
.

Furthermore, as shown in Theorem 3 of Ref. [21], the
prevalence y(t ) of SIS epidemics on an arbitrary, undirected
graph follows a logistic function, provided that R0 ≈ 1 and
the initial viral states Ii(0) are small:2

Proposition 4 ([21]). Consider the SIS epidemic model
(1) with a symmetric and irreducible infection rate matrix B
and suppose that the basic reproduction number R0 is close
to, but above, 1. Then, provided the initial states Ii(0) are
small, the evolution of the viral state Ii(t ) for every node i
is approximated by a logistic function, Ii(t ) ≈ fi(t ) at every
time t , where the logistic growth rate equals

K = (R0 − 1)
N∑

i=1

δi(x1)2
i , (7)

2For ease of exposition, we deliberately choose to not present
Proposition 4 rigorously, in particular, the condition on R0, the initial
states Ii(0), and the approximation accuracy y(t ) ≈ f (t ). We refer to
[21] for a precise version of Proposition 4.

the steady-state prevalence equals the solution of (6), y∞,i =
I∞,i, and the inflection point equals

t0 = − 2

K
arctanh

(
2

∑N
i=1 I∞,iIi(0)∑N

i=1 I2
∞,i

− 1

)
. (8)

Proposition 4 implies that, for R0 close to 1, the prevalence
y(t ) in (4) is approximated by a logistic function with the
steady state y∞ = ∑N

i=1 I∞,i/N and the growth rate K and
inflection point t0 given by (7) and (8), respectively.

We perform simulations of SIS epidemics on networks to
illustrate the accuracy of approximating the prevalence y(t ) by
a logistic curve f (t ). We consider a Barabási-Albert random
graph [27] with N = 500 nodes and parameters m = m0 = 3.
If there is a link between node i and j, then we set the
infection rate βi j to a uniformly distributed random number
in [0.5, 0.6]. The curing rates δi are set to a uniform random
number in [0.5c, 0.6c], where the scalar c is set such that the
basic reproduction number equals R0 = 1.1 and R0 = 2 for
the respective subplot in Fig. 1. We consider small initial viral
states Ii(0), which are set to a uniform random number in
[0,0.001] for every node i. Since we interpret the nodes as
groups, Ii(0) ∈ [0, 0.001] is equivalent to considering that at
most 1 out of 1000 individuals are infected in group i. Figure 1
shows that the SIS prevalence y(t ) is accurately approximated
by a logistic curve f (t ). We emphasize that the approximation
by a logistic curve is less accurate if the initial viral states
Ii(0) are large.

Propositions 3 and 4 demonstrate the applicability of
the logistic curve f (t ) to the deterministic SIS process (1).
Furthermore, the logistic curve gives an approximation and
bounds for the prevalence of the stochastic SIS process [28].
In some settings [28,29], the logistic function f (t ) is not an ac-
curate description of the stochastic SIS process. In particular,
the prevalence of the stochastic SIS process can exhibit a local
minimum, before converging to the metastable state. Such
local minima generally resolve from strong heterogeneity in
the network or result from highly heterogeneous transition
rates between nodes [28]. For real-world epidemics, the hu-
man contact network is also highly heterogeneous. However,
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FIG. 2. The accuracy of approximating the prevalence y(t ) of the SIR epidemic model on networks, in Definition 2, by a logistic curve
f (t ), for a Barabási-Albert random graph [27] with N = 500 nodes, heterogeneous spreading rates δi, βi j , and small initial viral states Ii(0).
The red curve (“Fitted”) shows the logistic function f (t ), which is fitted to the cumulative prevalence Ic(t ) in (9), where we set Npop = 1.

we consider the situation where the population separated into
groups, which significantly reduces the heterogeneity of the
population. Therefore, we argue that the first wave of most
real-world epidemics on time-invariant networks is well de-
scribed by a sigmoid curve, without local minima.

B. SIR epidemics

Similarly to Proposition 3, in the SIR epidemic model, the
solution for the removed compartment R(t ) can be approxi-
mated by a logistic function, as shown in the seminal work of
Kermack and McKendrick [9]. We define τ = Nβ

δ
.

Proposition 5 ([9]). Consider the SIR epidemic model (2)
and assume that Ri(0) = 0 for all nodes i and I1(0) = · · · =
IN (0) > 0. Denote the average fraction of removed by R(t ) =
1/N

∑N
i=1 Ri(t ) and the initial fraction of susceptible by

s0 = Si(0) for an arbitrary node i. Then, if R(t ) � 1/τ holds
true at all times t , the removed individuals R(t ) can be ap-
proximated by a logistic curve at all times t � 0 as

R(t ) ≈ Nr1 + N (r2 − r1)

1 − r2
r1

e− 1
2 τ 2(r2−r1 )δt

.

Here the constants r1 and r2 are equal to

rl =
{

1
s0τ 2

[
(s0τ − 1) +

√
(s0τ − 1)2 + 2s0(1 − s0)τ 2

]
if l = 1,

1
s0τ 2

[
(s0τ − 1) −

√
(s0τ − 1)2 + 2s0(1 − s0)τ 2

]
if l = 2.

Proposition 5 states that the removed individuals R(t ) is
approximated by a logistic function plus the offset Nr1. By the
definition of the SIR model in (3), the prevalence y(t ) in (4) is
proportional to the derivative of the removed individuals R(t ).
Thus, Proposition 5 implies that the cumulative prevalence

Ic(t ) =
∫ t

0
Npopy(t̃ )dt̃, (9)

where Npop is the number of individuals in the whole popula-
tion (consisting of all N groups), is approximated by a logistic
function (plus offset). Then the peak of the epidemic, i.e., the
largest increase of infections, occurs at the inflection point t0.

Figure 2 demonstrates the accuracy of approximating the
cumulative prevalence Ic(t ) of SIR epidemics on Barabási-
Albert random graphs. The parameter settings are the same as
for Fig. 1.

IV. PREDICTING EPIDEMIC OUTBREAKS

Propositions 3–5, and variations thereof, motivate the ap-
plication of the logistic function (5) to the prediction of an
epidemic outbreak. In particular, the logistic function has

been applied to forecast the coronavirus virus disease 2019
(COVID-19) outbreak in China [30–34], the Netherlands [35]
and Italy [36]; see also [37,38]. Furthermore, the logistic
function has been applied to predict other phenomena than
COVID-19, including tuberculosis [39] and product sales
[40,41]. We consider the prediction of the cumulative number
of infections Ic(t ), as defined in (9). In a real-world epidemic,
the infections Ic(t ) do not exactly follow a logistic function
f (t ). Instead, the infections Ic(t ) satisfy

Ic(t ) = f (t ) + w(t ) (10)

for some logistic function f (t ) and the unknown model error
w(t ). The motivation behind applying the logistic curve (10)
for predicting epidemics is based on the connection to the
SIS and SIR epidemic model on networks, as outlined in
Sec. III. Real-world epidemic data are collected in a periodic
manner, i.e., in discrete time intervals. For instance, the Dutch
National Institute for Public Health and the Environment
(RIVM) reports the number of COVID-19 infections in the
Netherlands on a daily basis (see Ref. [42]). We assume that
the cumulative number of infections Ic(t ) has been observed
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at discrete times t = 1, 2, . . . , tobs, where tobs ∈ N denotes the
observation time.

To predict the number of infections Ic(t ) at times t > tobs,
we consider a two-step approach. First, we obtain parameter
estimates ŷ∞, t̂0, K̂ of the logistic function f (t ) by solving the
nonlinear least-squares problem

(ŷ∞, t̂0, K̂ ) = argmin
y∞,t0,K

tobs∑
t=1

(
Ic(t ) − y∞

1 + e−K (t−t0 )

)2
. (11)

In line with Appendix F of Ref. [43], we solve the non-
linear least-squares problem (11) with the Matlab command
GlobalSearch, with the initial conditions y∞ = Ic(tobs),
K = 1, t0 = tobs. Second, we predict the number of infections
Ic(t ) at times t > tobs by the logistic function (5) as Îc(t ) ≈
f̂ (t ), where the estimate of the logistic function f (t ) equals

f̂ (t ) = ŷ∞
1 + e−K̂ (t−t̂0 )

.

Schultz [44] analyzed the impact of errors of the parameters
ŷ∞, K̂, t̂0 on the deviation of the logistic function f (t ) to its
estimate f̂ (t ). The remainder of this section consists of two
parts. First, we focus on the simplified problem of fitting the
logistic function f (t ) to three points in Sec. IV A. Second,
we argue that the prediction of epidemics is ill-conditioned in
Sec. IV B.

A. Fitting the logistic function to three equidistant points

As shown below, a central quantity for fitting the logistic
function f (t ) is the growth metric �(y1, y2, y3):

Definition 6. For some function g(t ), with g(t ) > 0 at all
times t , consider three equidistant points y1 = g(0), y2 =
g(�t ), y3 = g(2�t ). Then the growth metric is defined by

�(y1, y2, y3) = y2

y3
− y1

y2
. (12)

The growth metric �(y1, y2, y3) can be interpreted in
two ways. First, consider the sign of the growth metric
�(y1, y2, y3). It holds that �(y1, y2, y3) > 0 if and only if3

to y3/y2 < y2/y1. In other words, the relative increase y3/y2

from time t = �t to t = 2�t must be smaller than the relative
increase y2/y1 from time t = 0 to t = �t . By definition of
exponential growth, it would hold that y3/y2 = y2/y1 if the
three points y1, y2 and y3 were on an exponential function,
i.e., y1 = bt , y2 = bt+�t and y3 = bt+2�t for some basis b � 0.
Thus, �(y1, y2, y3) > 0 and �(y1, y2, y3) < 0 indicates that
the function g(t ) grows slower or faster, respectively, than an
exponential function from time t = 0 to time t = 2�t .

Second, if the time spacing �t is small, then the growth
metric �(y1, y2, y3) is related to the logarithmic derivative of
the function g(t ). Denote the logarithm of the function g(t )
as h(t ) = log(g(t )). The first derivative of h(t ) equals h′(t ) =
g′(t )/g(t ). For small time spacings �t , the derivative h′′(t ) is

3Furthermore, y3/y2 = y2/y1 is equivalent to log(y3) − log(y2) =
log(y2) − log(y1). Thus, �(y1, y2, y3) = 0 if and only if the three
equidistant points y1, y2, y3 lie on a line in a semilogarithmic plot
(see also Fig. 3).

approximated by the difference quotient

h′′(t ) ≈ 1

�t

[
g′(t + �t )

g(t + �t )
− g′(t )

g(t )

]
.

Analogously, both derivatives g′(t + �t ) and g′(t ) can be ap-
proximated by difference quotients, which yields that

h′′(t ) ≈ 1

�t2

[
g(t + �t ) − g(t )

g(t + �t )
− g(t ) − g(t − �t )

g(t )

]

= − 1

�t2

[
g(t )

g(t + �t )
− g(t − �t )

g(t )

]
.

Hence, by identifying y1 = g(t − �t ), y2 = g(t ) and y3 =
g(t + �t ), the growth metric �(y1, y2, y3) is related to the
second logarithmic derivative of the function g(t ) as

�(y1, y2, y3) ≈ −�t2h′′(t ).

Particular, if �(y1, y2, y3) > 0 and the time spacing �t is suf-
ficiently small, then the function g(t ) is strictly logarithmically
concave [45].

Pearl and Reed [46] showed that the logistic function f (t )
can be fitted in closed form to three points y1, y2 and y3 at
equidistant time points4 t = 0, t = �t and t = 2�t , respec-
tively. We observe that the results in [46] can be stated in
dependency on the growth metric �(y1, y2, y3) as:

Proposition 7. Consider three points y3 > y2 > y1 > 0
and a time spacing �t > 0. Then there exists a logistic func-
tion f (t ) with f (0) = y1, f (�t ) = y2 and f (2�t ) = y3 if and
only if

�(y1, y2, y3) > 0. (13)

Furthermore, the logistic function f (t ) is unique, and the
steady state equals

y∞ = y1 + (y1 − y2)2

y2

1

�(y1, y2, y3)
, (14)

the logistic growth rate equals

K = − 1

�t
log

[
y1

y2
+ y1

y1 − y2
�(y1, y2, y3)

]
, (15)

and the inflection point equals

t0 = 1

K
log

[
(y1 − y2)2

y1y2

1

�(y1, y2, y3)

]
. (16)

Proof. Appendix A. �
We emphasize that condition (13) implies that a logistic

function f (t ) can be fitted exactly only to three points y1, y2,
y3 whose relative increase is slower than exponential. Figure 3
shows that the growth metric �( f (0), f (t/2), f (t )) is close
to zero for small times t . Thus, the logistic function f (t ) is
practically indistinguishable5 from an exponential function

4Without loss of generality, we assume that the first point y1 corre-
sponds to time t = 0. Otherwise, if the first point y1 corresponds to
some time t̃ > 0, then consider a time shift by formally replacing t
with t + t̃ .

5Here we consider logistic functions f (t ) whose inflection point
t0 	 0, such that f (t ) ≈ y∞ exp[K (t − t0 )] when t is small. For
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FIG. 3. The growth metric for a logistic function. Upper subplot: The logistic function f (t ) with parameters K = 0.5, t0 = 15, and y∞ = 1
and the exponential function h(t ) = y∞eK (t−t0 ) on a semilogarithmic scale. Lower subplot: The growth metric �(y1, y2, y3) for the points
y1 = f (0), y2 = f (t/2), y3 = f (t ) vs time t on a semilogarithmic scale.

at small times t . As we argue in Sec. IV B, the strong re-
semblance of the logistic function f (t ) and an exponential
function is decisive for the prediction limits of an epidemic
outbreak.

B. Ill-conditioning of predicting epidemic outbreaks

If the model errors w(t ) in (10) are sufficiently small, then
the solution ŷ∞, t̂0, K̂ to the least-squares problem (11) ap-
proximately equals to the true parameters y∞, t0, K . However,
it is not clear what “sufficiently small” means. Thus, we face
the fundamental question: How much do small, but nonzero,
model errors w(t ) affect the accuracy of the estimate f̂ (t )?

To quantify the deviation of the estimated logistic function
f̂ (t ) to the true function f (t ), we apply Proposition 7, which
states that every logistic function can be parameterized by
specifying three points y1, y2, and y3. We choose three points
y1, y2, and y3 in the observation time interval [0, tobs]. More
precisely, we set the three points of the true logistic function
f (t ) in (10) to y1 = f (0), y2 = f (tobs/2), and y3 = f (tobs).
Analogously, we denote the corresponding points of the es-
timate f̂ (t ), obtained by (11), as ŷ1 = f̂ (0), ŷ2 = f̂ (tobs/2),
and ŷ3 = f̂ (tobs). The points ŷ1, ŷ2, ŷ3 depend on the unknown
model error w(t ). If the model error w(t ) → 0 at every time
t ∈ [0, tobs], then it holds that ŷi → yi for i = 1, 2, 3, which
implies that f̂ (t ) → f (t ) at every time t .

instance, a short computation yields that the relative approxima-
tion error | f (t ) − y∞ exp[K (t − t0 )]|/y∞ � 0.01 is attained for all
t � t0/2 if the inflection point satisfies t0 � 2 log(99)/K ≈ 9.19/K .

We consider the best case6 and assume that, due to nonzero
model errors w(t ), the estimate f̂ (t ) differs from the true func-
tion f (t ) in only one of the points y1, y2, y3. More precisely,
we consider that ŷ1 = y1, ŷ2 = y2, and ŷ3 = y3 + ε for some
small ε > 0. Thus, ε ↓ 0 implies that f̂ (t ) → f (t ) at every
time t . For now, we focus on the sensitivity of estimating the
steady state y∞. We define ŷ∞(ε) as the estimate of the steady
state y∞, given the perturbation ŷ3 = y3 + ε. By applying
Taylor’s Theorem to (14), we obtain for a small ε > 0 that

ŷ∞(ε) = y∞ + εκ1(tobs) + O(ε2), (17)

where we define7 the condition number κ1(tobs) as

κ1(tobs) = ∂

∂y3

[
y1 + (y1 − y2)2

y2

1

�(y1, y2, y3)

]
. (18)

The condition number κ1(tobs) depends on the observation
time tobs, since the three points are given by y1 = f (0),
y2 = f (tobs/2), and y3 = f (tobs). From (17) it follows that
the condition number κ1(tobs) describes the impact, or the
amplification, of a small error ε = ŷ3 − y3 on the estimate

6If instead all three points i = 1, 2, 3 are perturbed as ŷi = yi + εi,
then the estimate f̂ (t ) depends on multiple error terms εi. The dis-
tortions on the estimate f̂ (t ) due to perturbing multiple points might
cancel out for specific values of the errors ε1, ε2, ε3. However, in most
situations the impact of the errors εi accumulates, and considering the
perturbation of only one point is an optimistic scenario.

7For a matrix A, the most common definition of the condition num-
ber is κ (A) = σmax/σmin, where σmax and σmin denote the greatest and
smallest singular value of the matrix A, respectively. Analogously to
(18), the condition number κ (A) describes the sensitivity the solution
x of the linear system Ax = b when the vector b is perturbed [47].
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FIG. 4. The condition numbers of estimating the parameters of a logistic function. Upper subplot: The logistic function f (t ) vs time t .
Lower subplot: The absolute value of the condition numbers κ1(t ), κ2(t ), and κ3(t ) vs time t on a semilogarithmic plot. The dashed lines
indicate the inflection point t0 = 15.

ŷ∞(ε). The greater the condition number κ1(tobs), the harder it
is to estimate the steady state y∞. Analogously to the condition
number κ1(tobs) for the estimate of the steady state y∞(ε),
we define the condition numbers κ2(tobs) and κ3(tobs) for the
growth-rate estimate K̂ (ε) and the inflection-point estimate
t̂0(ε), respectively. (See also Appendix B.)

Proposition 8 (Condition numbers of estimating the logistic
function parameters). Consider three points y1 = f (0),
y2 = f (tobs/2), and y3 = f (tobs) on the logistic function f (t ).
With respect to a small perturbation ε of the point y3, the
condition number of the steady-state estimate ŷ∞(ε) equals

κ1(tobs) = (y1 − y2)2

y2
3

1

�2(y1, y2, y3)
, (19)

the condition number of the growth-rate estimate K̂ (ε) equals

κ2(tobs) = 2

tobs

y2
2

y2
3

1

y1 − y2 + y2�(y1, y2, y3)
, (20)

and the condition number of the inflection-point estimate t̂0(ε)
equals

κ3(tobs)= 1

K

y2

y2
3

[
1

�(y1, y2, y3)
−2t0y2

tobs

1

y1− y2+ y2�(y1, y2, y3)

]
.

(21)

Proof. Appendix B. �
To assess the difficulty of estimating the parameters y∞,

K , t0, we consider an exemplary logistic function f (t ) with
K = 0.5, t0 = 15, and y∞ = 1. Figure 4 shows that the con-
dition numbers κ1(t ), κ2(t ), and κ3(t ) are very large. For
instance, at time t = 5 = t0/3, the magnitude of the condition
number |κ1(5)| is greater than 104. Thus, the steady-state
estimate ŷ∞(ε) is distorted by the error ε times a factor of

104. Furthermore, Fig. 4 indicates that the estimation of the
growth-rate parameter K is most robust against model errors
w(t ), since the condition number κ2(t ) is the smallest. We
emphasize that, for simplicity, Proposition 8 considers the best
case: the perturbation of only one point y3. If the points y1 and
y2 are also perturbed, then the condition numbers can become
even greater than the expressions in Proposition 8.

The condition numbers in Proposition 8 are given by rather
complicated expressions. To obtain a better understanding of
the condition numbers, we derive lower bounds as:

Proposition 9 (Lower bounds on the condition numbers).
Consider three points y1 = f (0), y2 = f (tobs/2) and
y3 = f (tobs) on the logistic function f (t ), whose inflection
point t0 � 0. For every observation time tobs > 0, the
condition number of the steady-state estimate ŷ∞(ε) is
lower bounded by κ1(tobs) > κ1,lb(tobs), where

κ1,lb(tobs) = 1 + 4

K2

1

t2
obs

e2K (t0−tobs ), (22)

the condition number of the growth-rate estimate K̂ (ε) is
lower bounded by |κ2(tobs)| > κ2,lb(tobs), where

κ2,lb(tobs) = y2
2

y2
3

1

y∞

K

1 + 1
2 Ktobs

1

�(y1, y2, y3)
, (23)

and the condition number of the inflection-point estimate t̂0(ε)
is lower bounded by κ3(tobs) > κ3,lb(tobs), where

κ3,lb(tobs) = 1

K

y2

y2
3

1

�(y1, y2, y3)
. (24)

Proof. Appendix C. �
Figure 5 shows that the lower bounds of Proposition 9

are accurate, where we use the same parameters for the

014302-7



PRASSE, ACHTERBERG, AND VAN MIEGHEM PHYSICAL REVIEW E 105, 014302 (2022)

FIG. 5. Lower bounds on the condition numbers: The absolute value of the condition numbers κi(t ), where i = 1, 2, 3, and the respective
lower bounds κi,lb(t ) vs time t on a semilogarithmic plot. The dashed line indicates the inflection point t0 = 15.

logistic function as in Figure 3. From Proposition 9, we
obtain two statements on the prediction limits of epidemic
outbreaks. First, the lower bound (22) grows exponentially
with (t0 − tobs). Thus, only if the epidemic has been observed
until the inflection point tobs ≈ t0 (or longer), the steady state
y∞ can be estimated accurately. Second, the lower bounds
(23) and (24) depend on the reciprocal of the growth met-
ric �(y1, y2, y3). The more the epidemic growth from y1 =
f (0) to y3 = f (tobs) resembles an exponential, the smaller the
growth metric �(y1, y2, y3); see Sec. IV A. But real epidemics
grow practically exponentially in the beginning of the out-
break. Hence, the growth rate K and the inflection point t0
cannot be estimated accurately at early stages of an epidemic.
Or, as a simple rule of thumb: as long as the infections Ic(t )
are on a straight line in a semilogarithmic plot, the epidemic
outbreak cannot be predicted accurately.

We perform numerical simulations to illustrate the sensi-
tivity of predicting an epidemic outbreak subject to model
errors w(t ). We generate the model errors w(t ) in (10) as
Gaussian random variables with zero mean and standard de-
viation σ . The model errors w(t ) and w(t̃ ) are stochastically
independent for all times t 
= t̃ . If the cumulative number of
infections Ic(t ), resulting from (10), is negative, then we set
Ic(t ) ← |Ic(t )|. Figure 6 shows that small model errors w(t )
have a severe impact on the accuracy of the estimated number
of infections Îc(t ) and the inflection-point estimate t̂0. The
prediction of the number of infections Ic(t ) is accurate only
in the short term. We emphasize that, for real epidemics, the
model errors w(t ) are significantly larger than in Fig. 6.

Figure 7 shows the distribution of the logistic curve pa-
rameter estimates ŷ∞, K̂ and t̂0. The distribution of the
steady-state estimate ŷ∞ and the inflection-point estimate t̂0
is not unimodal, which might be due to multiple local minima
of the nonconvex optimization problem (11).

C. Illustration of the predictability of epidemics
for COVID-19 outbreaks

We consider the prediction of the COVID-19 prevalence in
several countries: Belgium, Italy, the Netherlands and South
Africa. We emphasize that, since the SIS and SIR models
in Definitions 1 and 2 assume constant spreading rates βi j

and δi, there are more suitable methods for predicting the

COVID-19 prevalence, which take into account time-varying
lockdown measures, seasonality, human behavior, and mobil-
ity patterns. The main motivation of the following COVID-19
predictions is to provide an illustration of our predictability
results. To reduce the impact of large variations in the spread-
ing rates βi j (t ), δi(t ), we confine ourselves to predicting a
single COVID-19 wave from t = 0 to t = tend. In particular,
we assume that from time t = 0 to t = tend, the spreading
parameters βi j (t ), δi(t ) do not change significantly. Hence,
we assume that βi j (t ) ≈ βi j and δi(t ) ≈ δi for t ∈ [0, tend]
to approximate the outbreak a single COVID-19 wave with
time-invariant SIS and SIR models in Definitions 1 and 2.

We obtain the infection data from the COVID-19 Dash-
board of the Johns Hopkins University [48] and determine
the period of the first wave to be from March 1 until June
16 (Belgium), from February 16 until June 17 (Italy), from
February 22 until July 11 (the Netherlands), and from April
30 until October 7 (South Africa). In the subsequent plots,
time t = 0 denotes the first day of the respective country.
For instance, time t = 0 corresponds to February 22, 2020,
for the Netherlands. We choose the observation time tobs to
be before the peak of the epidemic, i.e., before the inflection
point t0. More precisely, we set the observation time tobs to
tend/3, rounded to the next largest integer, where tend denotes
the last considered day. For instance, tend = 108 corresponds
to the last day, June 16, for Belgium. In Appendix D we show
the impact of choosing the observation time tobs differently, in
particular the predictions become more accurate for a larger
observation time tobs.

Figure 8 shows a crucial contrast: the logistic function
f (t ) fits the number of infections until the observation time
tobs. But the logistic function f (t ) does not yield accurate
predictions for the number of infections. Only short-term
predictions, until day t ≈ tobs + 4, are possible. One reason
for the inaccurate predictions in Fig. 8 is, as we pointed out
in the beginning of Sec. III, that the logistic function f (t )
does not consider time-varying human mobility patterns, risk-
aware adaptive behavior of individuals, the increase of testing
capacities, or disease countermeasures that tighten over time t .
In particular, we observe that the steady state y∞ underesti-
mates the true long-term number of infections, which might
be due to underreported infections in the early stages of the
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×

FIG. 6. The sensitivity of predicting an epidemic outbreak. The left subplot shows the logistic function (10) with and without Gaussian
model errors w(t ) with a standard deviation of σ = 10−3. The randomly generated parameters of the logistic function f (t ) are t0 = 20.5, K =
0.31, and y∞ = 0.43. The right subplot shows the cumulative number of infections Ic(t ) and the predicted value Îc(t ), based on the logistic
function plus model errors w(t ).

pandemic because of limited testing capacities. However, we
stress that even if the logistic function f (t ) were almost exact,
the prediction of the future course of the outbreak would be
difficult, due to the fundamental limits in Sec. IV B.

When can we trust the predictions to be accurate? Propo-
sition 8 and Proposition 9 suggest that the growth metric
�(y1, y2, y3) is decisive for the prediction accuracy. We com-
pute the prediction accuracy in three steps. First, by fitting a
logistic function to the number of infections of the complete
first wave, we obtain the “exact” steady state y∞, growth rate
K , and inflection point t0. Second, to reduce erratic fluctua-
tions, we apply a moving average of window length five to
the estimates ŷ∞, K̂ , t̂0 and the growth metric �(y1, y2, y3).
For instance, we replace the steady-state estimate ŷ∞(tobs)
at observation time tobs by the average of the steady-state
estimates ŷ∞(tobs), ŷ∞(tobs − 1),..., ŷ∞(tobs − 4). Third, we
define the absolute error of the steady-state estimate ŷ∞ as
ε(y∞, ŷ∞) = |ŷ∞ − y∞|. Analogously, for the growth-rate es-
timate K̂ and the inflection-point estimate t̂0, the respective
absolute errors are denoted by ε(K, K̂ ) and ε(t0, t̂0).

Figures 9 and 10 show that there is a strong correlation
between the estimation errors ε(K, K̂ ), ε(t0, t̂0) and inverse
growth metric �(y1, y2, y3), which is in line with Proposi-
tion 9. The red lines in Figs. 9–11 are obtain by robust linear
regression with the Matlab command fitlm. The linear re-
gression is performed without intercept, i.e., the red lines go
through the origin. Here we define the relative error �K of the
linear regression as the average of the absolute deviation of
ε(K, K̂ ) to the linear curve, divided by the maximum value of
the error ε(K, K̂ ). The relative error �y∞ and �t0 are defined
analogously. Furthermore, Fig. 11 shows8 that the estimation
error ε(y∞, ŷ∞) of the steady state y∞ is reasonably correlated
with the inverse growth metric �(y1, y2, y3), except for South
Africa. An interesting observation is that the fit of the linear
regression in Figs. 9–11 seems better for small values of the

8For clarity, we removed four outliers from Fig. 11(a) because the
axis range would be too large. The linear regression and the relative
error �y∞ consider all points including the outliers.

FIG. 7. The distribution of the logistic curve parameter estimates. The left, middle, and right subplots depict the histograms of the steady-
state estimate ŷ∞, the growth-rate estimate K̂ , and the inflection-point estimate t̂0, respectively, which have been obtained by repeating the
prediction for 1000 realizations of the model errors w(t ). The real values of the parameters y∞, K , and t0 are shown by dashed lines.
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FIG. 8. The difficulty of predicting COVID-19 for four coun-
tries: (a) Belgium, (b) Italy, (c) the Netherlands, and (d) South Africa.
The blue curves show the cumulative number of the first wave of
confirmed infections with SARS-CoV-2. The red curves shows the
logistic curve, which is fitted to the infections from day t = 0 until
day tobs and used for predictions at times t > tobs.

inverse growth metric �(y1, y2, y3), and the underlying reason
is an open question.

We emphasize that the growth metric �(y1, y2, y3) is com-
puted solely based on past data until the observation time tobs.
Hence, it is possible to quantify the prediction accuracy only
based on past data. For instance, suppose that the growth
metric �(y1, y2, y3) increases by a factor μ from time tobs

to t̃obs > tobs. Then we can expect that the accuracy of the
estimates K̂ , t̂0 and ŷ∞ increases by the factor μ.

V. CONCLUSIONS

For many epidemic models on time-invariant networks, the
cumulative number of infections resembles a logistic func-
tion, at least approximately. In this work, we showed that
the prediction of a logistic function is ill-conditioned. More
specifically, a good fit of a logistic function f̂ (t ) to the epi-
demic data until some observation time tobs does not imply that
the function f̂ (t ) yields accurate predictions at times t > tobs.
Hence, even under idealized conditions, the prediction of an
epidemic is inherently difficult, regardless of the particular
prediction algorithm.

Furthermore, we introduced the growth metric
�(y1, y2, y3), which quantifies the exponential growth of

FIG. 9. Assessing the growth-rate estimation accuracy via the
growth metric � for four countries: (a) Belgium, (b) Italy, (c) the
Netherlands, and (d) South Africa. In blue: The error ε(K, K̂ ) of
growth-rate estimate K̂ at different times tobs vs the inverse of the
growth metric �(y1, y2, y3), where y1 = Ic(0), y2 = Ic(tobs/2) and
y3 = Ic(tobs ). In red: The curve obtained by linear regression. The
relative error �K of the linear regression equals (a) �K = 0.11,
(b) �K = 0.03, (c) �K = 0.01, (d) �K = 0.15.

the epidemic. The more exponential the epidemic growth,
the more difficult the prediction of the epidemic, provided
that the epidemic approximately follows a logistic function
f (t ). In particular, the estimation error of the epidemic
parameters correlates strongly with the inverse of the growth
metric �(y1, y2, y3), which enables quantitative statements
on the prediction accuracy: Suppose that the epidemic
is predicted at two different observation time tobs and
t̃obs > tobs. Then the fraction of the respective growth metrics
�(y1, y2, y3), �̃(y1, y2, y3) approximates the change of the
prediction accuracy from time tobs to t̃obs.

Last, the SIS and SIR epidemic models from Definitions 1
and 2 can be extended to more realistic models. Particu-
lar extensions include: considering more compartments, such
as in the susceptible-exposed-infected-removed (SEIR) epi-
demic model; accounting for time-varying spreading rates
δi(t ), βi j (t ); non-Markovian epidemic models; or adaptive
networks, where the contact between two individuals depend
on the probability that the respective individuals are infected.
While extending the SIS and SIR model admittedly may re-
sult in more realistic models, the extensions complicate the
epidemic models. Hence, in view of the prediction limits for
the simpler SIS and SIR epidemic models in Definitions 1 and
2, we do not expect that considering more complex epidemic
models resolves the problem of obtaining accurate, long-term
predictions.
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FIG. 10. Assessing the inflection-point estimation accuracy via
the growth metric � for four countries: (a) Belgium, (b) Italy, (c) the
Netherlands, and (d) South Africa. In blue: The error ε(t0, t̂0 ) of
inflection-point estimate t̂0 at different times tobs vs the inverse of
the growth metric �(y1, y2, y3), where y1 = Ic(0), y2 = Ic(tobs/2)
and y3 = Ic(tobs ). In red: The curve obtained by linear regression.
The relative error �t0 of the linear regression equals (a) �t0 = 0.14,
(b) �t0 = 0.05, (c) �t0 = 0.03, (d) �t0 = 0.24.

APPENDIX A: PROOF OF PROPOSITION 7

Proposition 7 states there exists a logistic function f (t )
with f (0) = y1, f (�t ) = y2 and f (2�t ) = y3 if and only if
�(y1, y2, y3) > 0. Appendix A 1 shows the “only if” direc-
tion: if the three points y1, y2, y3 satisfy f (0) = y1, f (�t ) =
y2 and f (2�t ) = y3 for some logistic function f (t ), then
it holds that �(y1, y2, y3) > 0. In Appendix A 2 we prove
the “if” direction: for any three points y1, y2, y3 that satisfy
�(y1, y2, y3) > 0, we construct a logistic function f (t ) with
f (0) = y1, f (�t ) = y2 and f (2�t ) = y3.

1. First part

Lemma 10. For some time spacing �t > 0, consider three
points y1 = f (0), y2 = f (�t ) and y3 = f (2�t ) on a logistic
function f (t ). Then the growth metric �(y1, y2, y3) defined in
(12) equals

�(y1, y2, y3) = eKt0

1 + eKt0

(1 − e−K�t )2

1 + e−K (�t−t0 )
, (A1)

which implies that 0 < �(y1, y2, y3) < 1. �
Proof. Since y1 = f (0), y2 = f (�t ) and y3 = f (2�t ), we

obtain from the definition of the logistic function f (t ) in (5)
that

y1 = y∞
1 + eKt0

,

× ×

× ×

FIG. 11. Assessing the steady-state estimation accuracy via the
growth metric � for four countries: (a) Belgium, (b) Italy, (c) the
Netherlands, (d) and South Africa. In blue: The error ε(y∞, ŷ∞) of
steady-state estimate ŷ∞ at different times tobs vs the inverse of the
growth metric �(y1, y2, y3), where y1 = Ic(0), y2 = Ic(tobs/2) and
y3 = Ic(tobs ). In red: The curve obtained by linear regression. The
relative error �y∞ of the linear regression equals (a) �y∞ = 0.01,
(b) �y∞ = 0.08, (c) �y∞ = 2.8 × 10−4, (d) �y∞ = 0.36.

y2 = y∞
1 + e−K (�t−t0 )

,

and

y3 = y∞
1 + e−K (2�t−t0 )

. (A2)

We define the two constants α and c as

α = eKt0 (A3)

and

c = e−K�t . (A4)

Thus, we can write the three points y1, y2 and y3 more com-
pactly as

y1 = y∞
1 + α

, (A5)

y2 = y∞
1 + αc

, (A6)

and

y3 = y∞
1 + αc2

.
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From the definition of the growth metric �(y1, y2, y3) in (12),
we obtain that

�(y1, y2, y3) = 1 + αc2

1 + αc
− 1 + αc

1 + α

= (1 + αc2)(1 + α) − (1 + αc)2

(1 + αc)(1 + α)
.

Hence, it holds that

�(y1, y2, y3) = 1 + α + αc2 + α2c2 − 1 − 2αc − α2c2

(1 + αc)(1 + α)
,

which simplifies to

�(y1, y2, y3) = α

1 + α

1

1 + αc
(1 − c)2. (A7)

Since α > 0 and c > 0, we obtain that �(y1, y2, y3) > 0. Fur-
thermore, �t > 0 implies that c < 1. Thus, we obtain from
(A7) that �(y1, y2, y3) < 1. To finish the proof, we substitute
α, c in (A7) and arrive at (A1). �

2. Second part

For i = 1, 2, 3, the point yi is on the logistic function (5) if
and only if

yi + yie
−K ((i−1)�t−t0 ) − y∞ = 0.

Dividing by yi yields that

e−K ((i−1)�t−t0 ) − 1

yi
y∞ + 1 = 0.

Thus, we arrive at a set of three nonlinear equations

eKt0 e−K (i−1)�t − 1

yi
y∞ + 1 = 0, i = 1, 2, 3. (A8)

With (A3) and (A4), we can express the second exponential in
(A8) as

e−K (i−1)�t =
⎧⎨
⎩

1 if i = 1,

c if i = 2,

c2 if i = 3.

Then we obtain from (A8) a set of nonlinear equations for the
three unknowns α, c and y∞ as

α − 1

y1
y∞ + 1 = 0, (A9)

αc − 1

y2
y∞ + 1 = 0, (A10)

αc2 − 1

y3
y∞ + 1 = 0. (A11)

The first equation (A9) yields that

y∞ = y1(α + 1). (A12)

Combining (A12) with the second equation (A10) gives that

αc − y1

y2
(α + 1) + 1 = 0,

from which we obtain that

c = 1

α

(
y1

y2
(α + 1) − 1

)
.

Hence, it holds that

c = 1

α

(
y1

y2
− 1

)
+ y1

y2
. (A13)

Combining the expressions for y∞ and c in (A12) and (A13),
respectively, with the third equation (A11) yields that

α

[
1

α

(
y1

y2
− 1

)
+ y1

y2

]2

− y1

y3
(α + 1) + 1 = 0,

which is equivalent to

1

α

(
y1

y2
− 1

)2

+ 2

(
y1

y2
− 1

)
y1

y2
+ α

y2
1

y2
2

− y1

y3
(α + 1) + 1 = 0.

Multiplication with α and rearranging gives that

α2

(
y2

1

y2
2

− y1

y3

)
+ α

[
2

y1

y2

(
y1

y2
− 1

)
− y1

y3
+ 1

]
+

(
y1

y2
− 1

)2

= 0. (A14)

The quadratic equation (A14) has two solutions. The first
solution is α = −1 leads to a contradiction, since α, defined
in (A3), is positive. The second solution of (A14) is

α = −
(

1
y2

− 1
y1

)2

1
y2

2
− 1

y1y3

,

which is equivalent to

α = (y1 − y2)2

y1y2

1
y2

y3
− y1

y2

.

Thus, we obtain with the definition of the growth metric
�(y1, y2, y3) in (12) that

α = (y1 − y2)2

y1y2

1

�(y1, y2, y3)
. (A15)

Since y1 > 0 and y2 > 0, the expression (A15) for α is posi-
tive only if

�(y1, y2, y3) > 0.

Hence, if and only if (13) holds true, there is a solution for
the unknown α, and, hence, for the logistic growth rate K and
the inflection point t0. From (A15) and (A12), we obtain the
steady state y∞ as

y∞ = y1 + (y1 − y2)2

y2

1

�(y1, y2, y3)
.

From (A13) and (A15), it follows that the unknown c equals

c = y1

y2
+

(
y1

y2
− 1

)
y1y2

(y1 − y2)2 �(y1, y2, y3),

which simplifies to

c = y1

y2
+ y1

y1 − y2
�(y1, y2, y3). (A16)

The definition of c in (A4) implies that

K = − 1

�t
log (c),
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which yields with (A16) that

K = − 1

�t
log

[
y1

y2
+ y1

y1 − y2
�(y1, y2, y3)

]
.

Finally, we obtain the inflection point t0 from (A3) as

t0 = 1

K
log(α) = 1

K
log

[
(y1 − y2)2

y1y2

1

�(y1, y2, y3)

]
,

where the last equality follows from (A15).

APPENDIX B: PROOF OF PROPOSITION 8

1. Condition number of estimating the steady state

From the definition of the condition number κ1(tobs) in
(18), we obtain that

κ1(tobs) = − (y1 − y2)2

y2

1

�2(y1, y2, y3)

∂�(y1, y2, y3)

∂y3
.

The definition of the growth metric �(y1, y2, y3) in (12) yields
that

∂�(y1, y2, y3)

∂y3
= −y2

y2
3

. (B1)

Thus, the condition number κ1(tobs) follows as

κ1(tobs) = (y1 − y2)2

y2
3

1

�2(y1, y2, y3)
.

2. Condition number of estimating the logistic growth rate

With (15), we define the condition number κ2(tobs) with
respect to the growth-rate estimate K̂ (tobs) as

κ2(tobs) = ∂

∂y3

[
− 1

�t
log

(
y1

y2
+ y1

y1 − y2
�(y1, y2, y3)

)]
,

where �t = tobs/2. Hence, it holds that

κ2(tobs) = − 1

�t

1
y1

y2
+ y1

y1−y2
�(y1, y2, y3)

y1

y1 − y2

∂

∂y3

× �(y1, y2, y3).

Thus, we obtain with (B1) that

κ2(tobs) = 1

�t

1
y1

y2
− 1 + �(y1, y2, y3)

y2

y2
3

,

which simplifies to

κ2(tobs) = 1

�t

y2
2

y2
3

1

y1 − y2 + y2�(y1, y2, y3)
. (B2)

The expression (20) for the condition number κ2(tobs) follows
from �t = tobs/2.

3. Condition number of estimating the inflection point

With (16), we define the condition number κ3(tobs) with
respect to the inflection-point estimate t̂0(tobs) as

κ3(tobs) = ∂

∂y3

[
1

K
log

(
(y1 − y2)2

y1y2

1

�(y1, y2, y3)

)]
,

which becomes

κ3(tobs) = − 1

K2
log

[
(y1 − y2)2

y1y2

1

�(y1, y2, y3)

]
∂K

∂y3

− 1

K

1
(y1−y2 )2

y1y2

1
�(y1,y2,y3 )

(y1 − y2)2

y1y2

1

�2(y1, y2, y3)

∂

∂y3

× �(y1, y2, y3).

Thus, it holds that

κ3(tobs) = − 1

K2
log

[
(y1 − y2)2

y1y2

1

�(y1, y2, y3)

]
∂K

∂y3

− 1

K

1

�(y1, y2, y3)

∂

∂y3
�(y1, y2, y3).

With (16), (B1), and (B2), we obtain that

κ3(tobs) = − 1

K
t0

1

�t

y2
2

y2
3

1

y1 − y2 + y2�(y1, y2, y3)

+ 1

K

1

�(y1, y2, y3)

y2

y2
3

,

which simplifies to

κ3(tobs)

= 1

K

y2

y2
3

[
1

�(y1, y2, y3)
− t0y2

�t

1

y1 − y2 + y2�(y1, y2, y3)

]
.

The expression (21) for the condition number κ3(tobs) follows
from �t = tobs/2.

APPENDIX C: PROOF OF PROPOSITION 9

1. Auxiliary lemmas

Lemma 11. For some observation time tobs > 0, consider
three points y1 = f (0), y2 = f (tobs/2) and y3 = f (tobs) on a
logistic function f (t ). Then the difference of the points y2 and
y1 equals

y2 − y1 = y∞
1 − e− 1

2 Ktobs
�(y1, y2, y3).

Proof. From (A5) and (A6), we obtain that

y2 − y1 = y∞

(
1

1 + αc
− 1

1 + α

)
,

where α and c are defined by (A3) and (A4). We simplify and
obtain that

y2 − y1 = y∞
α

1 + α

1 − c

1 + αc
.

Comparing with (A7) yields that

y2 − y1 = y∞
1 − c

�(y1, y2, y3). �
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2. Lower bound for the condition number
of estimating the steady state

From Lemma 11, we obtain that the condition number
κ1(tobs) in (19) is equal to

κ1(tobs) = y2
∞

y2
3

1(
1 − e− 1

2 Ktobs
)2 .

From the expression for y3 in (26) and 2�t = tobs, it follows
that

κ1(tobs) =
(

1 + e−K (tobs−t0 )

1 − e− 1
2 Ktobs

)2

.

Hence, we obtain that

κ1(tobs) �
(

1

1 − e− 1
2 Ktobs

)2

+
(

e−K (tobs−t0 )

1 − e− 1
2 Ktobs

)2

� 1 +
(

e−K (tobs−t0 )

1 − e− 1
2 Ktobs

)2

. (C1)

A basic inequality [49] for the exponential function is e−x �
1 − x for all x ∈ R. Hence, the denominator in (C1) is
bounded by

1 − e− 1
2 Ktobs � 1 −

(
1 − 1

2
Ktobs

)
= 1

2
Ktobs,

which finally implies that

κ1(tobs) � 1 + 4

K2t2
obs

e−2K (tobs−t0 ).

3. Lower bound for the condition number of estimating
the logistic growth rate

We consider the denominator of the last factor in (20),
which equals

y1 − y2 + y2�(y1, y2, y3)

= −(y2 − y1)

[
1 − y2

y2 − y1
�(y1, y2, y3)

]
.

With Lemma 11 we obtain that

y1 − y2 + y2�(y1, y2, y3)

= −(y2 − y1)

[
1 − y2

y∞

(
1 − e− 1

2 Ktobs
)]

.

Since y2 > y1, y∞ > y2 and tobs > 0, it holds that

y1 − y2 + y2�(y1, y2, y3) < 0.

Thus, it follows from (20) that

|κ2(tobs)| = −κ2(tobs)

= 2

tobs

y2
2

y2
3

1

y2 − y1 − y2�(y1, y2, y3)
.

With Lemma 11

|κ2(tobs)| = 2

tobs

y2
2

y2
3

(
y∞

1 − e− 1
2 Ktobs

− y2

)−1 1

�(y1, y2, y3)

= 2

tobs

y2
2

y2
3

1 − e− 1
2 Ktobs

y∞ − y2
(
1 − e− 1

2 Ktobs
) 1

�(y1, y2, y3)
.

Since

y2
(
1 − e− 1

2 Ktobs
)

> 0,

it holds that

|κ2(tobs)| >
2

tobs

y2
2

y2
3

1

y∞

(
1 − e− 1

2 Ktobs
) 1

�(y1, y2, y3)
. (C2)

To further bound (C2), we consider the term

2

tobs

(
1 − e− 1

2 Ktobs
) = K

1 − e−ξ

ξ
, (C3)

where ξ = 1
2 Ktobs. Since ξ > −1, we obtain that

K
1 − e−ξ

ξ
> K

1

1 + ξ
.

Thus, with (C3) and the definition of ξ , we obtain that

2

tobs

(
1 − e− 1

2 Ktobs
)
� K

1

1 + 1
2 Ktobs

.

×
×

××

FIG. 12. Predicting COVID-19 with fewer observations for four
countries: (a) Belgium, (b) Italy, (c) the Netherlands, and (d) South
Africa. The blue curves show the cumulative number of the first wave
of confirmed infections with SARS-CoV-2. The red curves show
the logistic curve, which is fitted to the infections from day t = 0
until day tobs and used for predictions at times t > tobs, where the
observation time tobs equals tend/4, rounded to the next largest integer.
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Finally, (C2) yields that

|κ2(tobs)| >
y2

2

y2
3

1

y∞

K

1 + 1
2 Ktobs

1

�(y1, y2, y3)
.

4. Lower bound for the condition number of estimating
the inflection point

With (20), the expression for the condition number κ3(tobs)
in (21) is equivalent to

κ3(tobs) = 1

K

y2

y2
3

(
1

�(y1, y2, y3)
− t0y2

3

y2
κ2(tobs)

)
.

Since κ2(tobs) < 0, we obtain a lower bound as

κ3(tobs) >
1

K

y2

y2
3

1

�(y1, y2, y3)
.

APPENDIX D: VARYING THE OBSERVATION TIME

We repeat the COVID-19 predictions in Sec. IV C with
different choices for the observation time tobs. Similarly to
Fig. 8 for which tobs = tend/3, Figs. 12 and 13 correspond
to a shorter observation time of tobs = tend/4 and a longer
observation time tobs = tend/2 respectively. Figures 8, 12, and
13 show that the longer the observation time tobs, the more
accurate the prediction of the viral outbreak.

FIG. 13. Predicting COVID-19 with more observations for four
countries: (a) Belgium, (b) Italy, (c) the Netherlands, and (d) South
Africa.The blue curves show the cumulative number of the first wave
of confirmed infections with SARS-CoV-2. The red curves show
the logistic curve, which is fitted to the infections from day t = 0
until day tobs and used for predictions at times t > tobs, where the
observation time tobs equals tend/2, rounded to the next largest integer.
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