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Abstract

Purpose – This paper aims to address a location-distribution-routing problem for distributing relief
commodities during a disaster under uncertainty by creating amulti-stagemodel that can consider information
updates during the disaster. This model aims to create a relief network that chooses distribution centers with
the highest value while maximizing equity and minimizing response time.
Design/methodology/approach – A hybrid algorithm of adaptive large neighborhood search (ALNS) and
multi-dimensional local search (MDLS) is introduced to solve the problem. Its results are compared to ALNS
and an augmented epsilon constraint (AUGMECON) method.
Findings – The results show that the hybrid algorithm can obtain high-quality solutions within reasonable
computation time compared to the exact solution. However, while it yields better solutions compared to ALNS,
the solution is obtained in a little longer amount of time.
Research limitations/implications – In this paper, the uncertain nature of some key features of the relief
operations problem is not discussed. Moreover, some assumptions assumed to simplify the proposed model
should be verified in future studies.
Practical implications – In order to verify the effectiveness of the designedmodel, a case study of the Sarpol
Zahab earthquake in 2017 is illustrated and based on the results and the sensitivity analyses, somemanagerial
insights are listed to help disaster managers make better decisions during disasters.
Originality/value – A novel robust multi-stage linear programming model is designed to address the
location-distribution-routing problem during a disaster and to solve this model an efficient hybrid meta-
heuristic model is developed.

Keywords Disaster management, ALNS algorithm, ALNSxMDLS hybrid algorithm, Equity, Robust

optimization, Multi-stage optimization

Paper type Research paper

Highlights

(1) Proposing an equitable relief commodities’ distribution network for disaster response.

(2) Integrating distribution centers’ location and relief commodities allocation-routing
problems.

(3) Designing a multi-stage mathematical model that can adjust the relief plan based on
new data
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(4) Considering distribution center location’s characteristics as a maximization objective
function.

(5) Developing an efficient ALNSxMDLS Meta-heuristic to solve the model.

1. Introduction and literature review
Natural disasters such as earthquakes, floods, hurricanes and tsunamis have increased
dramatically as a result of climate change and the rapid temperature rise. Over the last few
years, there have been around 500 destructive disasters, resulting in 75,000 deaths. In 2004, a
9.1–9.3 magnitude earthquake and tsunami struck the Indian Ocean, killing more than
227,000 people in 14 countries. The earthquake in Kashmir the following year, with a
magnitude of 7.6, killed over 87,000 people, injured approximately 138,000 residents and
displaced over 3.5 million people.

Natural disasters have an impact on people’s lives, their mental and physical health, the
economy, societies and especially the environment, so they must be effectively managed.
Mitigation, preparedness, response and recovery are the four phases of disaster management.
The mitigation phase encompasses any action taken to reduce disasters’ risk factors and
consists of setting hazard mitigation policies, planning, emergency actions and post-disaster
reconstructions (Xu et al., 2019). The preparedness phase fosters managers’ ability to
simultaneously deal with multiple emergencies during and after a disaster (Das, 2018). The
response stage’s goal is to preserve lives and lessen the effect of a catastrophe by evacuating
and rescuing residents, delivering relief supplies and treating the injured promptly. Lastly, the
recovery or reconstruction stage refers to activities that assist communities in surviving and,
eventually, returning to normalcy (Xu et al., 2019). The response phase is themost significant of
these stages since the most important step is to increase the chances of returning to normal life
as soon as possible (Behl and Dutta, 2019). Without a well-thought-out crisis reaction, actions
would be rushed, cooperation rateswould be poor, resourceswould bewasted and the response
would be ineffective. As a result, the goal of this study is to develop a mathematical model that
can successfully respond to a crisis and coordinate relief efforts.

1.1 Literature review on relief distribution operations
Because several relief actions must be carried out simultaneously, the focus of studies in
disaster management during the reaction phase varies. The majority of articles focus on
location (Yilmaz and Kabak, 2016; Paul and Wang, 2019), allocation (Zahedi et al., 2020), or a
combination of them with other relief operations (Chen et al., 2017; Ghasemi et al., 2019). In a
deterministic environment, Khorsi et al. (2013) suggested a bi-objective mathematical model
to tackle routing and allocation problems while considering costs and fair distribution.
Another study byAbazari et al. (2021) used amixed-integer nonlinear programming (MINLP)
mathematical model to determine the location of distribution centers before a disaster and
then convey relief items based on the results of the first model. They also examined the
perishability of relief supplies. In an uncertain environment, Hu et al. (2016) proposed a bi-
objective mathematical model, taking into account the demand and commodity distribution
cost uncertainty and assuming that demand could not be met entirely. Haghi et al. (2017)
developed a model to address location problems of treatment centers and DCs, relief goods
allocation problems and injured routing issues. They considered demand and cost
uncertainties in their study. In their location-allocation-routing problem, Shiripour and
Mahdavi-Amiri (2019) pointed out that the quality of municipal infrastructure influences
travel times and demand in each catastrophe area, making them uncertain. Haeri et al. (2020)
investigated location-allocation and rescuing problems during predictable disasters. Despite
disasters’ predictability, their impact cannot be forecasted, and victims’ demand cannot be
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measured and is uncertain. In their study, DCs’ locations are determined before the disaster
strikes to accelerate relief operations. Then, a bi-level mathematical model is designed to
assist disaster victims. Molladavoodi et al. (2020) created amodel to route relief supplies while
considering DCs, charities, warehouses and shelters, as well as modeling uncertainty of
demands and disaster severity rates. In another study, Ghasemi and Khalili-Damghani (2021)
designed a multi-period multi-commodity uncertain location-allocation mathematical model
that took into account roads’ availability and demand uncertainty. In a three-level rescue
network of casualty clusters, temporary facilities and general hospitals, Sun et al. (2021)
suggested a bi-objective robust optimization model to locate facilities, assign emergency
resources and transport casualties simultaneously. While incorporating demand, rescue
supplies and transit time uncertainties, their model intended to minimize total expenditures
and injury severity score.

Papers on this topic that use a mathematical model can also be classified according to their
solution approach. These solution methods differ greatly. While some studies have focused on
exact approaches (Khorsi et al., 2013), many have introduced a heuristic or meta-heuristic
algorithm (Paul and Wang, 2019) to solve their designed model, particularly those involving
multi-objective models, because most developed location-routing problems are considered NP-
hard and an exact solution cannot yield an optimal solution in a reasonable amount of time. Some
of these introduced meta-heuristic approaches are greedy-search-based multi-objective GA
(Chang et al., 2014), multi-objective particle swarm optimization (Ghasemi et al., 2019), a hybrid
genetic algorithm (Shavarani, 2019) and a shuffled frog leaping algorithm (Adarang et al., 2020).

1.2 Literature review on equity
Equity is a crucial notion in disaster response. Equity means victims in different disaster areas
receive equal aid and relief products. Thus, an equal distribution of relief items considers the
victims’ feelings and executes the distribution efficiently. If demand nodes (DN) are not satisfied
according to their severity rate, it might exacerbate the situation, leading to victims stealing
supply. Even the likelihood of conflicts and wars increases (Zhang et al., 2020). Despite its
significance, just a few research studies have looked into it in this way. Balcik et al. (2008)
addressed the equitable distribution problem, claiming that equity should be prioritized when
undertaking relief activities. Huang et al. (2012) addressed the vehicle routing problem during a
disaster, and to ensure equity, they considered different service levels for DNs. According to
Noyan et al. (2016), equity can be considered in both accessibility and relief item allocation; in
accessibility, controlling the worst accessibility scores ensures equity, whereas, in relief item
allocation, theweighted unsatisfied demand determineswhether or not the allocation is equitable.
Considering equity, Noyan andKahveciŏglu (2018) introduced the last mile relief network design
problem with resource reallocation. In an uncertain environment, Ferrer et al. (2018) developed a
multi-criteria optimization model for the last-mile distribution of relief commodities. To address
equity, they evaluatedweighted unsatisfied demand. Zhang et al. (2020) published one of themost
current articles on equity. They came up with a three-objective mathematical model that
considered robust uncertainties and each DN’s severity rate to make a fair relief network.

1.3 Literature review on DC selection
Determining the location of DCs, shelters and rescue centers is another crucial idea in the
disaster response phase. The distance between these facilities and the DNs has a considerable
impact on the effectiveness and efficiency of the distribution network. However, facilities’
locations cannot be determined based on distance alone, and therefore, other factors need to be
considered to improve the value of the located facilities. Alberto (2000) introduced seven criteria
for selecting a facility location in industrial logistics: environmental factors, affordability,
quality of life, local incentives, time reliability, response flexibility and customer integration. In
another research, Ozcan et al. (2011) suggested stock holding capacity, unit price, the average
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distance to suppliers and movement flexibility as factors in warehouse selection. Roh et al.
(2013) identified 29 factors divided into five categories: location, logistics, cost, national stability
and cooperation in the humanitarian context. However, none of these studies considered the
emergency that occurs during disaster relief efforts. To resolve this matter, Trivedi and Singh
(2014) stated that when choosing a warehouse for humanitarian relief operations,
considerations such as distance from disaster-prone areas, site safety, connectivity with road
transport, road condition, building costs and telecommunication infrastructure should be
addressed. In another study, He et al. (2017) proposed a decision model for emergency
warehouse location based on a novel stochastic multiple-criteria decision analysis (MCDA)
method, and other than the factors presented by Trivedi and Singh (2014), they considered
traffic conditions, stock holding capacity and the surrounding environment as factors in
determining warehouse location.

1.4 Literature review on information update
Because many disasters are unpredictable in terms of intensity and timing, the response plan
must be implemented in an uncertain environment. Demand, severity rate, available
resources, road conditions and other disaster-related factors can all contribute to this
uncertainty. As relief operations must be carried out immediately, there is not enough time to
gather more information about the situation to decrease the uncertainties. However, as
additional information about the disaster becomes available, it will be necessary to update the
relief operations plan to reflect the current situation (Chen et al., 2017). Articles in this field
have considered this information and changed the relief operations plan in numerous ways.
Lodree and Taskin (2009) built a Bayesian model to integrate supply reverse decisions. Ge
(2012) incorporated the proportion of collapsed houses as information about the impacted
areas in their Bayesianmodel, claiming that this variable could be observed several times and
thus defined a sequence. Chen et al. (2015) used two-stage robust-stochastic programming
and determined the resource allocation amount before and after gathering data. However,
Zhu et al. (2019) claimed that algorithms generate all these update processes and data in most
research are not based on actual data. Therefore, they used seismic damage from each
affected area to update the earthquake intensity map for when earthquakes happen.

In studies like Hu et al. (2019), multi-stage stochastic programming (MSSP) has been used to
address information updating.MSSPdenotes a decisionwith potential repercussions. In another
investigation, Abdelaziz and Masri (2005) coupled MSSP with fuzzy probability distributions.
However, as Zahiri et al. (2017) remarked, bothmethodshave flaws. First,MSSPprobabilities are
based on the decision-makers’ subjective attitudes and, therefore, might not be realistic. Second,
there is a potential that the calculated arcs’ probability will be perturbed. As for the enhanced
MSSP, there is a risk of surpassing and ignoring each probability distribution from its indicated
interval, as well as providing a deterministic value for each scenario-dependent parameter. To
address these shortcomings, Zahiri et al. (2017) developed a multi-stage possibilistic stochastic
programming model (MSPSP), in which scenario-dependent parameters are random fuzzy
variables and information is updated as we progress through each stage.

Despite their accuracy and usage, MSSP and MSPSP methods are complex and time-
consuming. Therefore, in this study, information update has been considered in a much more
simplified manner. In this paper, for each stage, a separate mathematical model has been built
and executed, with the previous stage’s results and newly obtained data as input data. Thus, it
can be ensured that the proposed relief plan is efficient and practical (Xu et al., 2019). Xu et al.
(2019) used a multi-stage model to solve rescue centers’ location and rescue teams’ routing
problems in the same way; each stage was a separate mathematical model that determined
which rescue centers needed to be established. The sole difference between each stage’s model
was that the rescue centers built previously should have been taken into consideration in the
next stage’s model. In another study, Li et al. (2020) designed a two-stage nonlinear mixed-
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integer mathematical model to distribute and route relief kits to those in need following a
disaster. Distribution and routing are carried out in the first stage without enough information,
while relief operations are dealt with in the second stage using the information collected in the
first stage.

1.5 Research gap and current study’s scope
Based on the reviewed literature, despite the vast number of articles on disaster management,
there are many directions in this field that need further exploration. In the past, many
researchers used to avoid applying multi-objective models because they believed they were
harder to solve, and only in recent years have more multi-objective models been developed.
Moreover, cross-operations models are limited because they are not computationally efficient.
With the development of various novel optimization algorithms, solving larger models that
consider multiple relief operations has become less time-consuming. Another research gap is
that the main objectives of the reviewed articles are related to responsiveness and cost
efficiency because they seem to be the primary concerns. Therefore, objective functions such as
minimizing total time, distance cost and total unmet demand over time have been thoroughly
investigated. However, this gives rise to other unexplored problems, such as oversupply and
increased traffic, communication breakdowns and infrastructure damage. In recent years, a
review of the literature on relief operations has revealed that equity has not been properly
addressed; Most studies consider victims’ satisfaction to model equity by minimizing the total
unmet demand. However, in equity, DN’s severity rate should be regarded as to plan an
effective and fair distribution. Another concern is that performing disaster relief efforts only on
the basis of preliminary information leads to high levels of uncertainty and shortages.
Therefore, the relief operation will be ineffective and inconvenient. Despite this, the majority of
articles have concentrated on single- or multi-period models that do not adjust plans based on
the newly gathered information rather than multi-stage models.

Furthermore, despite their accuracy and ability to represent real-time situations, MSSP
models and their developed versions are excessively sophisticated, making them less practical.
As for uncertainties, despite the many pieces of research that have considered them, there are
some key features for which uncertainty is not well explored, such as budget and road
availability. Another research gap is regarding choosing the best location for DCs. The overall
value of DCs is rarely addressed while locating them, even though this value has a substantial
impact on the intended service network. If DCs’ safety is not considered, a DCwith a poor safety
levelmay be chosen. If a secondary disaster hits, there is a high chance thisDCwill be destroyed,
rendering it unable to respond to node needs, and resulting in a waste of money and resources.

Xu et al. (2019) noted that disaster management and decision-making in any phase is a
process that progresses by describing the problem, setting a goal, designing and selecting
plans, implementing the plan and modifying feedback. These steps can be simplified as
information collection, plan development and feedback. Figure 1 summarizes the disaster
management response phase based on these steps. In this figure, the response phase is
divided into two projects: rescue and evacuation plan and relief distribution among victims.
The rescue and evacuation plan’s results are sent for relief distribution planning. In relief
distribution, information on victims’ whereabouts and each area’s severity rate is collected.
Accordingly, the relief distribution plan is developed, determining the locations of DCs, met
and unsatisfied demand, and the relief network. When no new victims are located, and the
demand is completely satisfied, the cycle comes to an end, and decision-makers can move on
to the recovery phase. In Section 2, this study looks at how mathematical modeling can be
used to make plans for distributing relief goods.

This study presents a multi-objective, robust mixed-integer linear model to address
disaster management’s research gap. Two objective functions are considered to address
equity and DC’s overall values. The aim of equity’s objective function is to minimize the
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unsatisfied demand while considering each DN’s severity rate; the higher the severity rate,
the more needs must be satisfied. The analytic hierarchy process (AHP) technique is used to
create the DC’s value objective function. This approach is used to weight a list of the most
relevant elements of a DC that have a significant impact on its value for disaster operations,
and their weighted sum is used to create the value objective function. As it is clear, we aim to
maximize this objective. In this study, factors such as distance, capacity, safety, technological
capabilities affecting communications, satisfied demand, open roads and costs are considered
to calculate eachDC’s value. The third and last considered objective function is the total travel
time, which must be minimized while considering the other two goals. A critical aspect of the
proposed model is that the information collected at disaster sites is incorporated to decrease
uncertainties over time and boost the results’ reliability. To do this, the model is divided into
separate stages, with each stage’s inputs being the results of the previous stage plus newly
collected data. In thismodel, DCs’ location and distribution networks are chosen and designed
for the given DNs in each stage; non-emergency demands of DNs and total budget are
uncertain and part of an ellipsoidal set to consider a trade-off between worse- and best-case
scenarios. After designing the model, it is solved using AUGMECON and a proposed hybrid
algorithm of adaptive large neighborhood search (ALNS) and multi-dimensional local search
(MDLS). This model is evaluated in a Sarpol Zahab, Iran case study. The arranged model’s
validity is verified through sensitivity analysis, which includes certainmanagement insights.

Therefore, this study’s contributions are as follows:

(1) Developing a multi-objective, multi-commodity, multi-stage model to address the
DC’s location and disaster relief commodities distribution problems.

(2) Simultaneously addressing equity, DCs’ value and travel time objectives.

(3) Addressing equity by considering the disaster severity rates at each DN to distribute
relief goods according to the situation at each node.

(4) Introducing an algorithm that is a mix of ALNS andMDLS and comparing its results
with those of ALNS and AUGMECON to see if the hybrid algorithm gives better
results.

Figure 1.
Schematics of decision-

making process of
disaster

response phase
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(5) Applying the proposed model to a real-world case study of an earthquake disaster.

The remainder of this paper is organized as follows: The proposed multi-objective
mathematical model and its robust counterpart are presented in Section 2; solution
approaches are presented in Section 3; Section 4 presents numerical results and checks the
validity of the hybrid algorithm; A case study is then presented in Section 5 to demonstrate
the model’s effectiveness in practice; lastly, conclusions and future study recommendations
are summarized in Section 6.

2. Model description and formulation
In this paper, a relief network including DNs and DCs is considered. This network is defined
within the reported demand areas where rescued victims are waiting for relief supplies. The
distribution plan begins when preliminary information on the situation is acquired. These
preliminary data are inconclusive. However, as more people are rescued, the initial
information is updated, the uncertainties decrease, and a new relief plan based on these data
is required for the following stages. It takes around 7.5 h per area to update disaster
information (Zhu et al., 2019). However, in most cases, due to a paucity of cars, the same
transportation means and team must usually undertake these rescue missions for multiple
areas. Consequently, the information update could take much longer than 7.5 h. So, instead of
breaking up the first 72 h into smaller parts, this study looks at them in three 24-h stages.

Furthermore, relief products are divided into emergency and non-emergency categories,
with emergency supplies having to be fully met and non-emergency goods being distributed
fairly. Figures 2 and 3 depict the overall structure of the proposed supply chain model. The
blue circle in Figure 2 shows prospective DC locations, while the red triangle represents first-
stage DNs. The green triangle in Figure 3 represents the DNs recorded in the non-first stage,
while the yellow square represents the DCs found in previous stages. Commodities are sent
fromDCs to DNs in each stage, and vehicles are returned to DCs to prepare for the next stage.

Figure 2.
The disaster area’s
schematic diagram
(first stage)
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The model in this study consists of three 24-h stages (Xu et al., 2019), with the overall goal of
planning for the first 72 h after a disaster, which are known as the “golden hours” because
they are crucial in reducing disaster impacts. The designed model of this study attempts to
improve the efficiency, effectiveness, value and equity of the relief distribution plan.
Efficiency is modeled by minimizing the total travel time; efficacy and value are obtained
through maximizing the value of DCs; equity is addressed through minimizing the weighted
unsatisfied demand (Zhang et al., 2020) and time windows; if the condition of a DN is severe,
its time window is tighter, indicating that it should be visited first.

2.1 Assumptions
The model’s assumptions are as follows:

(1) DCs’ capacities are limited. Therefore, the allotted vehicles’ capacities and DNs’
demand must be less than or equal to this capacity.

(2) Nodes with greater crisis severity rates are prioritized for non-emergency goods
under DNs circumstances.

(3) Non-emergency relief goods’ demand and the available budget are uncertain.

(4) Emergency relief goods’ demand must be met, and each DN must be allocated to
precisely one DC.

(5) There is no need to employ all vehicles.

(6) Vehicles’ speeds are consistent across the network.

(7) All possible paths between two nodes and their travel times are considered using road
map application.

Figure 3.
The disaster area’s
schematic diagram

(Non-first stage)
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2.2 Notations
The model’s notations are listed below:

2.3 The analytic hierarchy process (AHP) method
TheAHPmethod organizes and analyzes complex decisions. This method, first developed by
Saaty (1980), consists of at least three sections (Russo and Camanho, 2015): The ultimate goal,
all viable alternatives, and the criteria used to evaluate these alternatives. AHP assists
decision-makers in weighing the pros and drawbacks of a condition and making an informed
decision. This strategy examines the importance of components and sub-factors first, then
assigns a weight to them. After defining the weights, the choices are evaluated, and the most
valuable option is chosen. A benefit function is created to compare the options, which is the
weighted sum of the factors’ values; the optionwith the highest benefit function is deemed the
best option. After that, the other alternatives are ranked in descending order. In this study, the
most critical factors of a DC’s location are weighted using AHP, and then an objective
function is built based on them to determine each DC’s worth. This objective function
guarantees that DCs with a higher overall value are chosen. The factors considered in this
paper are shown inTable 1 and are based on this field’s literature (Trivedi and Singh, 2014; He
et al., 2017; Kim et al., 2019).

Sets and indicators
DC Potential DC locations set L DNs set
G Nodes set PROD Relief commodities set
PRODNC Non-emergency commodities set PRODC Emergency commodities set
Ri;j Roads between two nodes set TV Available vehicles set
i,j Nodes indicator q Potential DCs’ location indicator
P Relief commodity indicator r Road indicator
v Vehicle indicator h DC location factors indicator

Parameters
K Maximum number of DCs Mi;j Time upper bound
Inf Upper bound of non-emergency relief

commodities that can be sent to one DN
Capqp DC q’s capacity of product type p

Cpvp Vehicle type v’s capacity of product p Djp DN j’s demand for product p
(P ∈PRODC)fDjp

DN j’s uncertain demand for product p
(P ∈PRODNC)

tri;j The time interval between nodes i
and j through road r

Ur
i;j Abinary parameter, determiningwhether road

r between two nodes i and j is available or not
C
r;v
i;j

Cost of going from node i to node j
through road r and vehicle type v

bi Upper bound of the service time window of DN
i

Startq;v Emergency operation start time
from DC q through vehicle v

ρj Disaster severity rate at DN j Disq;j Distance between DC q and DN j

safq Safety rate of DC q Techq The technological level of DC q
Roadsq Road availability of DC q wh Weight of location criteria hgBudget Total uncertain available budget fq Fixed cost of opening DC q

Decision variables
yq Binary variable to determine whether DC q is

chosen or not
Ov
q Binary variable to determine

whether vehicle v is allocated to DC q
or not

X
r;v
i;j

Binary variable to determine if the distance
between nods i and j is traveled through road r
and by vehicle v

qu
v;p
i

Number of non-emergency relief
commodity pwhich is sent toDN i by
vehicle v

Sj;v Arrival time at DN j by vehicle v Endq Return time to DC q
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A questionnaire was completed by twelve professionals in disaster and transportation
management to weigh the factors. Pair-wise comparisons were undertaken using the
questionnaires; participants were required to compare the aspects using the scale indicated in
Table 2.

In this study, the final weights were calculated through the online tool BPMSG, provided
by Goepel (2018). The questionnaires’ results were first uploaded, and their scientific validity
was verified. If a questionnaire’s validity rate was below 0.7, it was eliminated due to
invalidity. The pair-wise comparisons’ results were then utilized to compute each factor’s
final weight. Absolute weights are given in Table 3.

A benefit function was introduced after calculating weights. To form this function, first
whether the factors add value or not should be determined. The further away a DC is from
afflicted areas, the longer it takes to send goods to them, which is undesirable for decision-
makers. The capacity of a DC indicates howmuch goods it can hold. Therefore, the bigger the
capacity, the more victims the DC can assist. The satisfied demand for non-emergency
commodities follows the same rationale. In terms of safety, given the possibility of
subsequent disasters, it is preferable to choose DCswith a higher safety rating so that they do
not collapse and waste relief supplies. The quantity of roads determines a DC’s capability to
aid people when some roads are closed due to a disaster (for example, the collapsed
constructions). Technological capacity is the factor that impacts a DC’s communication with

Factor Explanation

Distance (Disq;j) Distance from the DC to each DN
Capacity ðCapqpÞ The number of commodities of each type that can be stored in the DC
Safety (safq) Safety of the DC
Satisfied demand (quv;pi ) Non-emergency demands the DC has met
Available roads (Roadsq) State of the roads to and from the DC
Technological capabilities (Techq) DC’s technological capability rate
Costs (fq) Total expenses regarding locating the DC

Intensity of importance Preferences

9 Extremely importance
7 Very strongly importance
5 Strong importance
3 Moderate importance
1 Equal importance
8,6,4,2 Intermediate values

Criteria Weight

Disq;j 0.182
Capqp 0.111
safq 0.146

qu
v;p
i

0.320

Roadsq 0.105
Techq 0.061
fq 0.075

Table 1.
DC value factors

Table 2.
Linguistic scales for

the importance

Table 3.
Factors Final weights
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other network components. So, the more developed it is, the easier it is to make contact and
receive updated disaster information. Lastly, the cost is one of the factors decision-makers
aim to reduce to save finance for the uncertain aftermaths of disasters and other relief
operations. Therefore, among the factors, distance and cost are the only two that do not add
value and, accordingly, should be deducted from the others. However, normalization is
required since each element has a different scale. Equation (2) was used to normalize the
benefit function where fi is one of the alternative’s factor i value, fmin

i and fmax
i are the

minimum and maximum amount of factor i and Wi is that factor’s weight. Hence, benefit
function (1) changes to (3).

BF ¼ −0:182
X
j

Disq;j þ 0:111Capqp þ 0:146safq þ 0:061Techq

þ 0:320
X

p∈PRODNC

X
v∈TV

X
i∈l

quv;pi þ 0:105Roadsq � 0:075fq (1)

Y ¼
XN
i¼1

 
fi � fmin

i

f max
i � fmin

i

!
Wi (2)

BF ¼
0@−
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2.4 The mathematical model
The designed model is as below:

The first objective function (4) seeks to maximize DC’s overall value. This objective
function is the sum of all the alternatives’ benefit functions. Therefore, the whole value is
multiplied by Yq, which determines whether or not the DC has been constructed.
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The second objective function (5) addresses equity byminimizing the weighted sum of unmet
non-emergency commodities’ demand, with the weights being the severity rates of each DN.
Through this objective function, the DNs in the direst situations are met first, and their
demands are satisfied.

min
X
i

X
p

ρiRD
p
i (5)

The third objective function (6) minimizes total travel time, which is an essential aspect of
any relief operations plan. It should be noted that this study requires these three objective
functions because of their inconsistent behavior and differences in nature. The impacts of
these objective functions on the relief plan are substantial separately. By considering them
as one objective (for example, by modeling equity and time as costs and viewing them in
the DC value objective function), we will not be able to identify their influence and trade-
off.

MinZ3 ¼
X
r∈Ri;j

X
i∈G

X
j∈G

tri;j

 X
v

Xr;v
i;j

!
(6)

As demonstrated by constraint (7), any vehicle that enters a node in a relief network must
leave when its mission is completed.X

i∈G

X
r∈Ri;j

X r;v
i;j ¼

X
i∈G

X
r∈Ri;j

X r;v
j;i ðj∈G; v∈TVÞ (7)

Each DN is assumed to receive service from only one DC and vehicle in this study. This
assumption is expressed in constraint (8).X

i∈l

X
r∈Ri;j

X
v∈TV

Xr;v
i;j ¼ 1 ðj∈LÞ (8)

Through constraint (9), each vehicle is assigned to at most one DC. This constraint also
demonstrates that we do not need to allocate all vehicles to DC and use them.X

i∈l

X
r∈Ri;j

X
q∈DC

Xr;v
q;j ≤ 1 ðv∈TVÞ (9)

DNs can receive goods from a vehicle when assigned to a DC chosen for relief goods
distribution. Therefore, constraints (10) and (11) are introduced into the model.X

i∈l

X
r∈Ri;j

X r;v
i;q ≤Ov

q ðq∈DC; v∈TVÞ (10)

Ov
q ≤Yq ðq∈DC; v∈TVÞ (11)

It is clear that a road can only be traversed if it is available. Therefore, to incorporate this logic
into our model, constraint (12) is introduced.X

v∈TV

Xr;v
i;j ≤Ur

i;j ði; j∈L; r∈Ri;jÞ (12)

Vehicles and DCs can meet the demand to the extent that their capacity allows. Therefore, the
demand of allocated DNs should not exceed this limitation shown through constraints (13)–(15).
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X
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X
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X
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Non-emergency commodities’ demand of a node consists of both satisfied and unsatisfied
demand, issued under constraint (16). However, at least 30% of each node’s nominal demand
must bemet as stated in constraint (17); without this constraint, in cases where non-emergency
commodity inventory is small, only the most severe nodes are served, which is unfair.X

v∈TV

quv;pi þ RDp
i ¼ fDi;p ði∈L; p∈PRODNCÞ (16)

0:3Di;p ≤
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Constraint (18) ensures that a node will not receive goods from a vehicle if it is not assigned to
it.
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Time window limits and arrival times are indicated in constraints (19)–(24). For example, in
constraints (19) and (20), if node i is served after node j by vehicle v, these two constraints
equal each other.
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Because each stage lasts no more than 24 h, constraints (25) and (26) ensure that DNs are met
before the upper bound of their time window and vehicles are returned to DCs before 24 h.

Si;v ≤ bi ði∈L; v∈TVÞ (25)

Endq;v ≤ 24 ðq∈DC; v∈ TVÞ (26)

To make sure that the number of located DCs does not exceed the limitations, constraint (27)
is issued. Also, by constraint (28), the total cost cannot exceed the available budget.X

q∈DC

Yq ≤ k (27)

X
q∈DC

fqYq þ
X
i∈l

X
j∈l

X
r∈Ri;j

X
v∈TV

Cr;v
i;j X

r;v
i;j ≤Budget (28)

Lastly, constraint (29) determines binary and positive variables.

yq;X
r;v
i;j ;O

v
q ¼ f0; 1g; quv;pi ; Sj;v;Endq;v ≥ 0 (29)

Note that the other stages are also modeled the same way, except that the number of located
DCs in the preceding stage must be 1.

2.5 Robust optimization
When a disaster strikes, we cannot predict its exact severity rate. In other words, we cannot
estimate the precise value of a disaster’s fundamental aspects (Sun et al., 2022). Stochastic
optimization (Dantzig, 1955) is a well-known way of dealing with these uncertainties. This
optimization method assumes that each uncertainty has a probabilistic description and
models uncertainties based on the parameters’ statistical distributions. However, as stated by
Sun et al. (2022), estimating the probability distribution of uncertain variables is difficult due
to the emergency nature of disasters and inadequate historical data.

Moreover, even if we do estimate the probability distributions with this limited data, it
may not be suitable for the real world (Sun et al., 2022). The robust optimization method, first
introduced by Soyster (1973), is a more recent and widely used approach that assumes the
parameters’ uncertainty is not stochastic but deterministic and set-based (Bertsimas et al.,
2011). It considers uncertain variables as interval values around a nominal value because
predicting these interval values is significantly easier than estimating point values and their
probability, owing to a lack of data (Sun et al., 2022). Therefore, in robust optimization, the
decision-maker constructs a feasible solution for each uncertainty realization in a given set
(Bertsimas et al., 2011; Ord�o~nez, 2014). Consequently, since robust optimization is flexible and
computationally tractable, and uncertainty sets are appropriate for parameters’ uncertainty,
uncertainties have been modeled using robust optimization in this study. Soyster (1973)
hypothesized that if the model is feasible when uncertain parameters are at their worst, it is
also feasible in reality and can accurately model it. However, the chance of parameters being
in their worst state simultaneously is nearly nil. Therefore, numerous researchers addressed
this issue to increase the RO model’s and reality’s conformity by investigating different
uncertainty sets. Uncertainty sets affect whether we can efficiently model a robust problem
and choosing a too large uncertainty set leads to conservative robust solutions. Consequently,
the yielded solutions and the robust optimization lose their quality and the advantage over
non-robust optimization. In other words, uncertainty sets assure tractability and give
decision-makers freedom in deciding on a trade-off between robustness and performance and
determining the corresponding level of probabilistic protection. Ben-Tal and Nemirovski
(2000) conducted one study on the subject. Their research assumed that the uncertain data
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has an ellipsoidal set formation. Ellipsoidal sets have a conservative level that is neither too
low nor too high, and consequently, the model’s robust counterpart can accurately mimic
reality. The conservative rate for the ellipsoidal set is lower because it is based on the idea that
all parameters cannot be in their worst, average, or normal state at the same time.

Consider eaij is an uncertain parameter in the range ½aij −baij; aij þ baij� where aij is the
nominal value of the parameter and baij is the perturbation vector. Consider the following
uncertainty vector, which is defined by an ellipsoidal uncertainty set:

UCE ¼ �σ��kσjk2≤Ω
� ¼

8<:σ

������
ffiffiffiffiffiffiffiffiffiffiffiffiX
j∈J

σ2j

s
≤Ω

9=; (30)

whereΩ is a safety rate controlling the uncertainty covered by the solution and is chosen by
decision-makers depending on the risk level they seek; the greater this parameter, the lower
the risk level. The uncertain parameter can then be rewritten as eaij ¼ aij þ σij baij. Now,
considering the ellipsoidal uncertainty set, the robust counterpart of constraints containing
uncertainties based on Ben-Tal and Nemirovski (2000) and applying Karush-Kuhn-Tucker
conditions is shown as follows: X

j

aijxj þ Ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j∈Ji

ba2ijx2js
≤ bi (31)

The same approach can be conducted when the right-hand side parameter is uncertain. It can
be assumed that the right-hand parameter is the coefficient of a variable that always equals 1
(ki ¼ 1Þ. Then the robust counterpart of the constraint can be written as,X

j

aijxj þ Ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j∈Ji

ba2ijx2j þ bb2i k2is
≤ biki (32)

And since ki ¼ 1 : X
j

aijxj þΩ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j∈Ji

ba2ijx2j þ bb2is
≤ bi (33)

The simplified robust counterparts of constraints (16) and (28) are as below:X
v∈TV

quv;pi þ RDp
i þ ΩcDi;p ¼ Di;p ði∈L; p∈PRODNCÞ (34)

X
q∈DC

fqYq þ
X
i∈l

X
j∈l

X
r∈Ri;j

X
v∈TV

Cr;v
i;j X

r;v
i;j þΩ dBudget≤Budget (35)

2.6 Practical considerations
Budget constraints, accessible commodities, potential uncertainties and building an
equitable, efficient and effective assistance network are all challenges in a humanitarian
relief chain. These issues should be evaluated alongside characteristics of real-world
problems (Aghajani and Torabi, 2020), such as capacity limitations, severity rate and priority
of demand areas and response time limitations. The designed multi-stage mixed-integer
mathematical model deals with these challenges and features to make it feasible for real-
world disasters. Since the proposed model tries to satisfy three objective functions
simultaneously, a set of Pareto solutions is obtained. Each considers a different level of trade-
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off between objective functions, allowing decision-makers to use the solution that best suits
their needs in real-world scenarios. However, despite the widespread use of operations
research tools, most decision-makers are not skilled in dealing with this mathematical model.
In this situation, as Aghajani and Torabi (2020) stated, the designed model can be embedded
within a software. This way, managers can link the software to the resource database, input
the needed information through the constructed user interface, and then update the input
data based on the information collected in each stage to adjust the relief plan.

3. Solution approach
Solving multi-objective models necessitates approaches that examine all objectives
simultaneously. In this paper, AUGMECON is utilized as an exact approach to solve minor
or medium-sized problems, determined based on DNs. Also, suppose the decision-makers
come across a more significant issue since the model is NP-hard and the exact approach
cannot find an effective solution in a reasonable time, a hybrid algorithm, ALNSxMDLS, is
presented. In Section 4, the validity and functionality of this approach are compared to the
exact solution and the ALNS algorithm.

3.1 Augmented Epsilon Constraint
The Epsilon constraint method was first introduced by Yv et al. (1971). In this strategy, to
optimize the model, one of the objectives is chosen to be optimized. The other objectives are
treated as constraints with an upper or lower bound of ε for minimization or maximization
objectives, respectively. Then, a set of Pareto solutions is created based on constraints.
However, these Pareto solutions are frequently ineffective, and there is no guarantee that they
are efficient. Therefore, Mavrotas (2009) proposed AUGMECON to compensate for epsilon
constraint deficiencies.

In this method, first their lexicographic optimization obtains the payoff table of other
objective functions. Then, the lower and upper bounds of objective functions are determined,
and based on them, the range (rk) of objective functions is calculated as follows,

rk ¼ fmax
k � fmin

k k ¼ 2; . . . ; Z (36)

where fmax
k and fmin

k are the maximum and minimum values of the kth objective function,
respectively. In the next step, these ranges are divided into p equal intervals. Therefore, for
the lth grid point ekl is calculated as,

ekl ¼ fmax
k � rk 3 l

p
l ¼ 0; 1; . . . ; p (37)

The multi-objective model is then changed into a single objective model as,

minf1 � ε

 X
k

Skl

rk

!
(38)

s.t.

fk þ Skl ¼ ekl (39)

Other constraints (40)

whereSkl is the surplus variable, and aweighted sum of them is added to the objective function,
fk is the value of the kth objective function, and ε is a small number between [10–6,10–3]. Lastly,
the model is solved by different ekl to yield Pareto solutions. It should also be noted that this
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method avoids too many iterations by stopping the algorithm when an infeasible solution is
found, which decreases computation time.

3.2 ALNSxMDLS algorithm
MDLS was first presented by Tricoire (2012) to solve multi-objective problems. This solution
is a generalized version of the stochastic local search (SLS) submitted by Hoos and St€utzle
(2005). MDLS generates a set of Pareto solutions, one of which is chosen in each iteration, and
a local search is carried out on one of the objective functions. If all the Pareto solutions in the
set do not defeat the answer, it is considered one of the Pareto solutions. ALNS was first
presented by Ropke and Pisinger (2006) to solve pickup and delivery vehicle routing
problems. This algorithm is a generalization of LNS, introduced by Shaw (1997). ALNS
explores the initial solution’s neighborhood with a set of destroy and repair operators
attempting to improve the solution. Therefore, each operator’s weight is assigned to reflect its
success rate in previous iterations. In each iteration, one repair (ri) and one destroy (di)
approach are chosen according to their weights, and then part of the solution is eliminated by
one destroy operator; then it is inserted again through the repair operator.

According to Eshtehadi et al. (2017), ALNSxMDLS performs like ALNS except that each
objective function has a set of destroy and repair operators, and in each iteration, one pair
from each group is selected to improve the solution randomly chosen from the Pareto set. If
the new solution each pair yields is accepted, it is then added to the Pareto set. Like in ALNS,
destroy and repair approaches’weights are modified after θ iterations to reflect their success
rate. All operators have the same initial weight of 1. Each operator’s selection probability is
affected by weight adjustment and calculated as equation (41).

PðriÞ ¼ wðhiÞP
l=kwðhiÞ

(41)

where wðhiÞ is the weight of the ith repair or destroy operator.
To adjust the weights, first the number of times h was used in iterations is computed and

displayed as uðhÞ. In each iteration, h’s success rate, sðhÞ; increases asmuch as δjwhere δj is as
follows:

(1) δ3: The new solution is a Pareto solution, dominating at least one other Pareto
solution.

(2) δ2: The new solution is a Pareto solution, is not dominated by any Pareto solution, and
does not dominate any other Pareto solution.

(3) δ1: The new solution is not a Pareto solution, dominated by all Pareto solutions.

Operator h’s weight is determined as follows:

wðhÞ ¼

8><>: ð1� ρÞwðhÞ þ ρ
sðhÞ
uðhÞ uðhÞ > 0

ð1� ρÞwðhÞ uðhÞ ¼ 0

(42)

In this equation, ρ is the reflection factor, determining the importance of the operator’s success
in current and previous iterations. Generally, a number between 0 and 1 is assigned to ρ to
consider these successes, and the closer it gets to 1, the more it depends on current successes.

In this study, DCs are situated based on their distance frommore severe nodes to generate
the initial solution.When the first DC is located, a vehicle with a lower capacity than the DC is
assigned. The distribution process then begins. In this step, first, more severe DNs are served
so as not to violate their time window constraint. The vehicle returns to the DC once its
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inventory is completely depleted. If the DC has available stock, another vehicle is assigned to
satisfy demand. If there is no available resource, a new DC is located to serve DNs. These
steps are repeated until all DNs are met. It should be emphasized that the achieved initial
solution is practical because each step considers capacity and time window restrictions.

3.2.1 Destroy operators. Objective functions’ destroy operators are as:

(1) The value objective’s destroy operator: The DC with the lowest capacity, the lowest
growth in value, or just randomly is destroyed in this algorithm. When a DC is
destroyed, all DNs assigned to it are destroyed too.

(2) The equity objective’s destroy operator: For this objective function, γ DNs are
destroyed at random or based on which ones have the most unmet demand.

(3) The travel time objective’s destroy operator: For this objective function, γ DNs are
destroyed either randomly or based on the most increase they cause in travel time,
which is the combination of the time it takes to reach those DNs and the time it takes
to reach the subsequent node.

Sincewe cannot destroy DCs located in previous stages in stages two and three, destruction is
based on new DCs situated in that stage. The current solution goes through the repair
operation without changes if no new DC is located.

3.2.2 Repair operators. Objective functions’ repair operators are as follows:
Value objective’s repair operator: Repair operators considered in this study for the value

objective are as below:

(1) DNs are randomly assigned to DCs and vehicles. If these DCs and vehicles are unable
to satisfy all DNs’ demands, a new DC should be added at random to distribute goods
to unmet DNs.

(2) DNs are first randomly inserted into the model, and then, to satisfy the demand of
unmet nodes, a DC with the highest value is located.

(3) DNs are assigned to DCs that can satisfy more non-emergency demands. If unmet
nodes remain, a new random DC is established.

(4) DNs are assigned to DCs that can satisfy more non-emergency demands. Then, if an
unmet DN remains, a DC that leads to the highest increase in value is chosen.

Equity objective’s repair operator: In this objective function, considered repair operators are
as below:

(1) Same as the first repair operator of the value objective.

(2) DNs are randomly assigned to available DCs. If an unassigned node remains, the DC
with the highest non-emergency commodity capacity is located.

(3) DNs are assigned to DCs that lead to the lowest weighted unmet demand for non-
emergency commodities. Then, if a node remains unmet, a newDC is randomly located.

(4) DNs are assigned to DCs that lead to the lowest weighted unmet demand for non-
emergency commodities. A new DC with the highest non-emergency goods capacity
is located if a node remains unmet.

Travel time objective’s repair operator: Two repair operators are introduced for this objective
function. In both operators, in the end, for γ iterations, adjacent nodes’ travel times are
compared; if changing their locationwith each other leads to a lower travel time, their location
is changed. This means that first, the second node is served and then the first one.
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(1) DNs are randomly assigned to DCs. A new random DC must be located if any node
remains unmet.

(2) DNs are inserted in locations where the increase in travel time is the lowest. If an
unmet DN remains, a new DC is located based on its distance from the remaining
nodes. The DC that has the overall lower distance value is chosen and located.

In all introduced repair operators, if a DN with a severe condition is inserted into a relief
distribution network and its non-emergency demand cannot be totally satisfied, commodities
assigned to nodes with the lowest severity that exceed the 30% demand limitation should be
taken to fulfill this node’s demand.

3.2.3 Feasibility verification. Based on the constraints of this model, the solution’s
feasibility should be verified in two aspects: capacity and time window constraints. Since the
insertion operation is repeated multiple times until no unmet DN is left, a quick verification
procedure must be designed to speed up the hybrid algorithm. Because all repair operators
consider capacity constraints when inserting a DN into the solution, feasibility should be
checked only for time window constraints. These constraints are more complicated, and if
they are violated, other violations may occur. Hence, the approach outlined by H�a et al. (2020)
is proposed in this study. The maximum delay allowed at each arc of the current solution is
pre-computed in this approach without exceeding the time window constraint. In a partial
solution, to consider all possible positions to insert an unmet DN, the maximum delay, which
is the time that can be spared after a vehicle serves DN k and before it starts serving DN l, is
calculated through a linear programming model (H�a et al., 2020). This model maximizes the
weighted maximum delay between two DNswhile meeting all DNs’ time window constraints.
The second DN is served after the first one, considering maximum delays. Each time the
model is optimized, the intended arc’sweight is set to 1 and theweight of the others to 0.When
this delay on an arc is calculated, whether an unmet DN can be inserted in that arc should be
checked. First, the arrival time at the unmet DNmust be calculated and made sure it does not
violate its timewindow constraint. Then, the feasibility of this insertion needs to be examined;
the difference between the time it takes to go from DN i to the inserted node plus the time it
takes to go from the inserted node to node j and the time it takes to go from i to jmust be less
than the maximum delay or equal to it.

3.2.4 Tuning parameters. Adjusting a solution approach’s parameters improves its
effectiveness. To tune ALNSxMDLS’s parameters, Taguchi’s method and Minitab software
were used in this study. Many researchers have described this strategy in detail (Shavarani
and Vizvari, 2018; Abazari et al., 2021). For ALNSxMDLS in this study, six parameters,
number of iterations (ξ), number of nodes destroyed in destroy operators (γ), reflective factor
(ρ) and operators’ scores δ1, δ2 and δ3 previously described, are tuned to 2000, 4, 0.5, 0.2, 0.5
and 1.5, respectively.

4. The numerical results
To test the model’s validity, seven different examples are solved by the solution approaches,
and then the results are compared to determine which algorithm works better. These
examples are divided into two groups based on the number of DNs, and the location of these
DNs is according to different cities in Iran. Medium and large groups contain three and four
examples each, where the number of DNs is between [10,50] and [60,200], respectively. It
should be noted that the number of DNs for each instance is generated at random within the
given ranges. This number is the number of DNs in the final stage, determining which group
the example belongs to. The number of nodes found in the non-last stages is between zero and
the remaining nodes. The demand of each node is randomly generated and is between
[100,1000] commodities per product type. The number of potential DCs, the upper bound of
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DCs that can be located, and the number of available vehicles are generated based on Noyan
et al. (2016). The capacities of DCs and vehicles are random numbers based on the
unanticipated demand of disaster nodes; the capacity of DCs is generated between the nodes’
lowest demand and the sum of the demands per product type. The vehicle capacity must be
lower than the highest developed capacity of DCs and more than the most insufficient
demand of nodes so that examples remain feasible. Travel time between two network nodes is
estimated depending on their distance and is in the range of [0,2] hours, as even in Iran’s
largest cities, travel times are rarely greater than two hours. Lastly, in all instances, the three
shortest paths between two nodes are considered, with each path’s availability being either 1
or 0.

4.1 The robust Solution’s reliability
Before solving the examples, the robust solution’s reliability must be weighed against the price
of robustness. For the examples in this study, a robust instance for various values of Ω is
designed. When the matters ofΩ and σij are generated, the algorithm is applied to get a robust
solution. As with Caserta and Voß’s (2019) procedure, 1,000 uncertainty vector realizations are
randomlygeneratedwhen a robust solution is obtained.Uncertain parameter values have equal
probabilities. Then, the viability of the obtained solution is assessed. The results obtained on
problem M3’s first stage are presented in Table 4. In this table, the first column is dedicated
toΩ’s value determining how conservative the robust solution is; the second column represents
the best value of objective functions; the average price of robustness is presented in the third
column, and for each objective function, it is calculated as equation (43).

Price ¼ ZiN � ZiB

ZiN
(43)

where ZiN is the value of the objective function iwhenΩ equals 0. Lastly, in the fourth and fifth

columns, infeasibility percentage and theoretical probability of failure, which equals e−Ω
2
=2, are

presented.
Based on the table, when Ω ¼ 0, where uncertain parameters equal their nominal values,

in 98% of realizations, the obtained solution is not feasible. As theΩ increases, the instance’s
feasibility rate and the price of robustness grow, and the objective function’s value falls.
WhenΩ equals 3.2, the reliability exceeds 99%, but the price of robustness is 5.5%, implying
that the obtained solution is on average 5.5% worse than the nominal solution. Further
increasingΩ increases the feasibility percentage, but the price grows too. Therefore, it is best
to fix Ω at 3.2.

4.2 Comparing solution approaches
After examining the robust solution’s reliability, these seven problems were solved by
AUGMECON using Cplex software on a PC with 16 GB of RAM, a Corei7 CPU and 2.21GHZ.

Ω Obj value Price Infeasibility Theoretical probability

0.0 (1.89,1812,3.96) 0.000 0.980 1
0.8 (1.82,1763,3.89) 0.014 0.841 0.874
1.6 (1.74,1727,3.84) 0.026 0.327 0.394
2.4 (1.68,1662,3.8) 0.038 0.092 0.102
3.2 (1.62,1627,3.79) 0.055 0.007 0.003
3.6 (1.61,1615,3.79) 0.064 0.000 0.000
4.0 (1.54,1587,3.79) 0.076 0.000 0.000

Table 4.
Empirical vs

theoretical distribution
for problem 4
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As the number of DNs increases, the computation time increases to the extent that, in some
instances with more than 70 DNs, AUGMECON cannot find the optimal solution within the
3 h limitation of Cplex. This is while a solution must be generated quickly due to the
emergency nature of disaster relief operations. Hence, meta-heuristic algorithms were used to
solve these problems to reach a resolution in less time. The results in Tables 5 and 6
demonstrated that in medium problems, both ALNS and ALNSxMDLS could obtain the
optimal solution in all examples faster than AUGMECON. This means that the hybrid local
search algorithm can yield reasonable global solutions promptly. In large instances like
problem L2, AUGMECON fails to find the optimal solution within the time limit, and in some
others, this approach fails to obtain any solution at all. In these instances, the two meta-
heuristic algorithms are compared based on their best-known solution (BKS). According to
the results, in all examples, ALNSxMDLS yields better solutions than ALNS. Therefore, the
BKS of L2 to L4 is the results obtained from ALNSxMDLS, shown in italic form in Table 6.
Hence, we can posit that ALNSxMDLS solutions are closer to the optimal solution. One
crucial point is that, in more significant instances, if the number of DNs in the first stage is
low, ALNS can either acquire the BKS or a similar result. Therefore, the second and third
stages have a smaller gap as well. In contrast, if the number of DNs in the first stage is large,
the gap widens, resulting in a larger gap in the non-first stages.

The hybrid algorithm is compared to ALNS based on its performance indicator to
determine its effectiveness and practicality. The performance indicators in this study are
medium ideal distance (MID), the number of Pareto solutions (NPS), diversitymetric (DM) and
total computation time. MID figures out how far Pareto solutions are from the ideal point at
the center of the coordinate system. NPS determines how many Pareto solutions there are.
DM calculates how many non-dominant solutions there are in the Pareto set.

According to Table 7, in all instances, ALNSxMDLS yields an answer in a longer time than
the ALNS because, in each iteration, three sets of destroy and repair operators are used to
obtain Pareto solutions. This time is, however, substantially shorter than the exact procedure.
Overall, based on MID, NPS, and DM, ALNSxMDLS performs better and is more effective.

5. Case study
On November 12th, 2017, an earthquake with a moment magnitude of 7.3 struck Iran and
Iraq’s borderline. This earthquake occurred within a 5 km distance of Ezgeleh, a city in
Kermanshah, between Ghasr-Shirin and Sarpol Zahab cities. It destroyed a large portion of
Sarpol Zahab and other Kermanshah towns, resulting in more than 700 deaths, 9,000 injuries,
and 70,000 displaced people. In this study, Sarpol Zahab is taken as the case study. This city
has an estimated population of 85,342 people and covers an area of 1,271 km2. Based on
Figure 4, which depicts this earthquake’s severity, Sarpol Zahab falls into the yellow zone,
which means the quake hit very strongly.

As seen in Figure 5, the Sarpol Zahab city map, twenty-one DNs (red dots) and seven
potential DCs (blue dots) are considered in this study. These seven potential DC locations are
chosen among schools, universities, gyms and charities. Based on its location and structure,
each area has different safety, technological capabilities and capacity estimates. The 21 DNs
are facilities where victims are located after being rescued.

The “Balad” application, containing Iran’s roadmaps, is used to estimate the travel time of
all possible routes between two points. DNs’ condition severity rate is determined by their
distance from the epicenter and the surrounding environment. The severity rate of DNs is
used to determine the upper bound of the relief operation time window. If a node’s severity
rate is high, the upper boundmust be low in order for it to be prioritized andmet before nodes
with better conditions. Total demand is estimated to be around 40,000 per item. Lastly, the
uncertainty rates for non-emergency demand are thought to be 10, 5 and 2%, respectively, in
the first, second and third stages.
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5.1 Computation results
The case study results are given in Table 8 and operations networks are as shown in Figure 6.

In the first stage, since the earthquake has just occurred and the rescue of the victims is in
progress, four DCs are chosen for relief goods distribution: DCs 1, 2, 3 and 4. At this stage,
because all possible roads between network nodes are considered, despite the unavailability
of the shortest path between DC1 and DN2, another route is taken to reach this DN. Travel
timewould have increased greatly if the second option had not been considered. Furthermore,
since the available non-emergency goods resources are limited, not all nodes’ demands are
addressed; for example, the needs of DN7 assigned to DC4, which has a lower severity rate,
are not fulfilled completely. In stage two, two new earthquakes with moment magnitudes of
4.3 and 4.7 happened, resulting in the discovery of six newDNs. Because the four DCs located
in the previous stage were unable to meet the demands of all nodes, a new DC must be used.
Thus, DC6 is open to distribute goods. In the last stage, three new DNs are found. The
previous five DCs are used in this stage because a new DC cannot be located due to the total
number of DCs limit. In stages two and three, the distribution is not 100% fair because the
non-emergency relief commodities’ demand is not fully met. However, this unmet demand is
much less in the last stage since all DNs’ demand is low.

It should be noted that an analysis of the budget and total cost of these stages revealed
that the allotted budget is much more than required. Thus, the management could use the
extra fund to further disaster relief efforts or rehabilitation efforts following the disaster. The
results also show that the majority of DCs are located outside of the metropolitan cities, near
smaller settlements. These DCs have a larger capacity and are safer, especially since fewer

Problems\Factors Time DM MID NPS

Medium Probs ALNS ALNSxMDLS ALNSxMDLS ALNSxMDLS
Large Probs ALNS ALNSxMDLS ALNSxMDLS ALNSxMDLS

Table 7.
Comparing solution

approaches based on
performance indicators

Figure 4.
USGS shakemap,

Sarpol Zahab quake
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Stage/Model Obj1 Obj2 Obj3

Stage1 1.2024 1,200 4.08
Stage2 1.423 2,230 6.64
Stage3 1.5173 460 7.13

Figure 5.
Sarpol Zahab map

Table 8.
Case study’s optimal
solution

Figure 6.
Relief distribution
network (All stages)
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buildings are around them to collapse and affect them. Therefore, this knowledge helps
managers to pay more attention to these probable DC locations in the pre-disaster phase and
build more reliable DC constructions and roads to pace the distribution operation in times of
disaster.

The results indicate that the proposed mathematical model’s results are reliable, and
managers can use them during disasters. The three objective functions can be modified
depending on the scenario, allowing decision-makers to design and implement a solution that
prioritizes their most important objective function. Furthermore, since the distribution
process is based on the latest information, rescued people are located at specific spots (like
shelters) in each area, reducing the time it takes to aid them and assisting managers in
planning a timely relief distribution operation.

5.2 Sensitivity analysis and managerial insight
Sensitivity analysis is the process of determining how sensitive the designed model is to
changing a parameter. This sensitivity analysis is done by changing this study’s uncertainty
level and satisfying the non-emergency demand percentage.

Themodel’s sensitivity to demand uncertainty levels is analyzed using the levels in Table 9.
Results in Figures 7–9 show that as the uncertainty level rises, the second objective

increases in all stages because the additional demand cannot be met even by locating a new
DC. However, until 15, 8 and 2 uncertainty levels of stages one, two and three, respectively, the
model tries to respond to demand by increasing travel times; DCs that are further from a DN
send goods there. After these levels, themodel cannot respond to demands even by increasing
travel time because the inventory is lower, or increasing travel time is not practical. The first
objective function increases until the specified uncertainty levels. This objective function
does not change after that because the amount of satisfied demand remains constant.

Managers must determine the ideal uncertainty level, especially during stage one. If the
chosen level is too high, more non-emergency commodities will be prepared. If the disaster’s
severity rate is lower than expected, the number of extra resources will rise. According to
Stauffer and Kumar (2021), these excess commodities are mainly disposed of or returned to
the central warehouse. Because returning them raises the total cost, these items are frequently
disposed of locally, either in landfills or through local distribution. Either way, they cannot be
used in subsequent operations. Contrarily, if the chosen level is lower than the actual
situation, there will be insufficient relief goods tomeet demand, resulting in victim discontent,
a decreased equity rate, and inescapable mental and physical health consequences.
Therefore, demand should be estimated at a safe level that avoids shortages or waste.

The designed model’s constraint (17) was incorporated to ensure that each DN receives at
least 30% of its nominal non-emergency demand. The equity objective function’s sensitivity
to this constraint is calculated at seven different percentage levels. When it is set to 0%, the
equity objective function is lowest because, as much as the inventory allows, severe DNs are
met first, and since their weight is greater, more weighted demand is satisfied. Non-severe
DNs, on the other hand, are not met, making the intended procedure inequitable. The equity
function is at its highest value when this percentage equals 60; more demand in lower priority
areas and less demand in higher priority areas is satisfied, which is again not equitable.

Stages Level 1 Level 2 Level 3 Level 4 Level 5

Stage 1 5 10 15 20 25
Stage 2 2 5 8 11 14
Stage 3 0 2 4 6 8

Table 9.
Uncertainty sensitivity

analysis levels
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Figure 7.
Demand uncertainty
rate’s effect on
objectives (1st stage)
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Figure 8.
Demand uncertainty

rate’s effect on
objectives (2nd stage)
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Figure 9.
Demand uncertainty
rate’s effect on
objectives (3rd stage)
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Increasing this amount further makes the model unsustainable due to inventory shortages.
Accordingly, managers should consider a trade-off between DNs and determine this
percentage based on their description of equity (see Figure 10).

One of this study’s assumptions was that DCs located in stage one are used for stages two
and three, and if more commodities are needed, more DCs are opened in non-first stages in
addition to them.When comparing the results of thismodel to amodel inwhichmanagers can
choose alternative DCs in each stage, it is clear that the proposed model’s assumption lowers
the cost but increases total trip time becauseDCs in stage onewere chosen only on the basis of
that stage’s DNs. Therefore, when the newly discovered DNs are further away, travel time
increases. However, locating DCs based on each stage’s DNs significantly increases the total
cost; because, in addition to the costs of locating new DCs, the surplus inventory of DCs
located in the previous stage must be sent to the next stage’s DCs to be distributed again,
which causes additional costs. Also, transporting commodities back and forth can cause
deterioration, resulting in the relief products being squandered. Therefore, managers should
decide whether responding sooner or expenses are the priority; if the disaster is severe and
enough budget is available, DCs should be located based on each stage’s DNs; if the crisis is
not too intense or the available funding is insufficient, DCs that were previously opened
should be used in the subsequent stages as well.

6. Conclusion
In this study, a robust mixed-integer linear programming model was designed to address the
distribution problem during a disaster to increase equity and DCs’ value while decreasing
travel times, as the number of disasters occurring each year and their impacts have grown
over the last decade. In addition, the available budget and non-emergency commodity
demand were considered uncertain under an ellipsoidal set. The proposed model can help
decision-makers plan a fair, timely and valuable relief network system by considering these
aspects and ensuring relief commodities are distributed fairly. To examine its validity, this
model was also applied to a case study, the Sarpol Zahab earthquake of 2017. The findings
indicated that this model could provide practical solutions.

Figure 10.
Effect of satisfaction
percentage on equity
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The designed model was solved using AUGMECON and ALNSxMDLS. According to the
results, in most cases where DNs are fewer than 70, the exact approach AUGMECON can
attain the optimum answer. However, as the number of DNs increases, it cannot yield this
solution within the time limitations. Therefore, the introduced meta-heuristic algorithm was
utilized to obtain answers in a shorter time. When the results and performance of this
algorithm and ALNS were compared, it was clear that ALNSxMDLS produced better results,
while ALNS obtained solutions faster.

For future studies, some avenues need to be explored; in our case study, gathering
information on each DN was done using road vehicles, and therefore, each inspection took
almost 7.5 h, which is a lot in times of emergency. In future studies, it is suggested to use
drones to collect this information to reduce its time and, subsequently, consider more stages
that last less than 24 h, allowing the emergency distribution plan to be carried out more
effectively. Moreover, our study assumed that all vehicles have the same equipment.
However, medical commodities such as medications and blood require unique settings to
minimize spoilage. Therefore, future studies should incorporate these vehicles with the risk of
perishability into the mathematical model. In this study, the travel time objective aimed to
lower the total travel time. Future studies can assume that the longest travel time must be
minimized and analyze how this objective function influences the distribution network.
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