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Nash equilibrium seeking under partial-decision information: Monotonicity,
smoothness and proximal-point algorithms

Mattia Bianchi, Sergio Grammatico

Abstract— We consider Nash equilibrium problems in a
partial-decision information scenario, where each agent can
only exchange information with some neighbors, while its cost
function possibly depends on the strategies of all agents. We
characterize the relation between several monotonicity and
smoothness assumptions postulated in the literature. Further-
more, we prove convergence of a preconditioned proximal-point
algorithm, under a restricted monotonicity property that allows
for a non-Lipschitz, non-continuous game mapping.

I. INTRODUCTION

Nash equilibrium (NE) seeking under partial-decision in-
formation has recently attracted considerable research in-
terest, due to its prospect engineering applications as well
as theoretical challenges. This scenario arises when, in the
absence of a central coordinator, the agents in a network
can only rely on the information received from some neigh-
bors, for instance in ad-hoc-networks and sensor positioning
problems [1], [2]. The technical goal is the distributed
computation of an NE; the main complication is that the cost
function of each agent may depend on the decision variables
of other non-neighboring agents. To cope with the lack of
knowledge, each agent estimates and tries to reconstruct the
strategies of all the competitors [3], [4] (or an aggregation
value [5], [6]) via peer-to-peer communication.

In fact, most existing methods resort to pseudogradient
and consensus-type dynamics [7], [8]. Some works studied
linearly convergent algorithms for games without coupling
constraints [3], [9]. Other authors focused on generalized
games, for example resorting to an operator-theoretic ap-
proach and forward-backward dual methods [6], [10]. All
these schemes mainly suffer the following three drawbacks.

The first is that gradient-based methods typically require
restrictive monotonicity assumptions for convergence. For
instance, all the cited works postulate strong monotonicity
of the game mapping. Weaker conditions are sometimes suf-
ficient if allowing for vanishing stepsizes: strict monotonicity
in the work [5], cocoercivity for generalized games in [2].
Remarkably, mere monotonicity was recently assumed in
[11], via an additional diminishing Tikhonov regularization.
Nonetheless, vanishing stepsizes are undesirable as they
negatively affect the convergence speed. Most recently, the
authors of [12] proposed a continuos-time gradient-based
method for (hypo)-monotone games under a novel inverse
Lipschitz assumption. The second drawback is that the
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agents’ cost functions must be differentiable with Lipschitz
gradient [7], [10]; in turn this ensures that the pseudogradient
mapping of the game is Lipschitz. As the game mapping is
a global operator, implementing, in a distributed setup, the
common alternatives employed in nonsmooth optimization
(linesearch or adaptive steps) seems far from trivial. The third
drawback is that, due to partial-decision information, the
stepsizes must be chosen very small, in turn increasing the
number of iterations for convergence. Importantly, this also
translates in prohibitive communication cost, as the agents
need to exchange data at each step.

A possible solution to remedy all three limitations is the
proximal-point method [13, Th. 23.41]. Although a direct
implementation in games results in double layer schemes
(where the agents have to communicate virtually infinite time
between iterations [14], [15]), in our recent work [16], [17]
we have shown that an efficient method can be obtained
via preconditioning – for the case of games with strongly
monotone and Lipschitz mapping. The result is that, at the
price of some additional local complexity, the number of
iterations and communications for convergence to a NE can
be substantially reduced.

In this paper we further leverage the properties of
proximal-point algorithms (PPAs) to deal with the other two
issues: monotonicity and smoothness. Our contributions are
summarized as follows:
• We compare a significant group of monotonicity and

smoothness assumptions employed in the partial-decision
information literature; we characterize the relations be-
tween the conditions, and exemplify their restrictiveness
(§IV);

• We prove convergence of our fully distributed NE seeking
preconditioned proximal-point (PPP) algorithm, under the
restricted monotonicity of an augmented operator. Our
condition is remarkably weaker than that recently proposed
in [18, Th. 2] (for a Douglas–Rachford algorithm). In
particular, we do not assume strong monotonicity, nor
continuity of the game mapping –which requires a different
limiting argument compared to [16, Th. 2]. Interestingly,
nonsmoothness only affects the local optimization prob-
lems of the agents (§V).

II. PRELIMINARIES

1) Notation: [A]i,j is the element on row i and column j
of a matrix A. ⊗ denotes the Kronecker product. 0n ∈ Rn

(1n ∈ Rn) is a vector with all elements equal to 0 (1);
In ∈ Rn×n is an identity matrix; we may omit the subscript
if there is no ambiguity.
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2) Euclidean spaces: Given a positive definite matrix
Rq×q ∋ P ≻ 0, HP := (Rq, ⟨·, ·⟩P ) is the Euclidean space
obtained by endowing Rq with the P -weighted inner product
⟨x, y⟩P = x⊤Py, and ∥ ·∥P is the associated norm; we omit
the subscripts if P = I . Unless otherwise stated, we always
assume to work in H = HI .

3) Operator-theoretic background [13]: A set-valued op-
erator F : Rq ⇒ Rq is characterized by its graph gra(F) :=
{(x, u) | u ∈ F(x)}. dom(F) := {x ∈ Rq|F(x) ̸=
∅}, fix (F) := {x ∈ Rq | x ∈ F(x)} and zer (F) :=
{x ∈ Rq | 0 ∈ F(x)} are the domain, set of fixed points and
set of zeros, respectively. F−1 denotes the inverse operator
of F , defined as gra(F−1) = {(u, x) | (x, u) ∈ gra(F)}.
F is (strictly, µ-strongly, ν-hypo-) monotone in HP if
⟨u−v, x−y⟩P ≥ 0 (> 0, ≥ µ∥x−y∥2P , ≥ −ν∥x−y∥2P ) for
all (x, u),(y, v) ∈ gra(F); we omit the indication “in HP ”
whenever P = I . F is maximally monotone if it is monotone
and there is no operator A such that gra(F) ⊂ gra(A).
A single valued operator F : Rq → Rq is β-cocoercive if
⟨x− y,F(x)−F(y) ≥ β∥F(x)−F(y)∥2 for all x, y ∈ Rq

(equivalently, F−1 is β-strongly monotone); is R-inverse
Lipschitz if R∥F(x)−F(y)∥ ≥ ∥x− y∥ (equivalently, F−1

is R-Lipschitz). Id is the identity operator. JF := (Id+F)−1

denotes the resolvent operator of F . For a function ψ :
Rq → R ∪ {∞}, dom(ψ) := {x ∈ Rq | ψ(x) < ∞}; its
subdifferential operator is ∂ψ : dom(ψ) ⇒ Rq : x 7→ {v ∈
Rq | ψ(z) ≥ ψ(x) + ⟨v | z − x⟩,∀z ∈ dom(ψ)}; if ψ is
differentiable and convex, ∂ψ = ∇ψ. For a set S ⊆ Rq ,
ιS : Rq → {0,∞} is the indicator function, i.e., ιS(x) = 0
if x ∈ S, ∞ otherwise; NS : S ⇒ Rq : x 7→ {v ∈ Rq |
supz∈S ⟨v | z − x⟩ ≤ 0} is the normal cone of S. If S is
closed and convex, then ∂ιS = NS and (Id+NS)

−1 = projS
is the Euclidean projection onto S.

Definition 1 (Restricted monotonicity): An operator F :
Rq ⇒ Rq is restricted (strictly, µ-strongly) monotone in HP

with respect to a set Σ ̸= ∅ if ⟨x − x⋆, u − u⋆⟩P ≥ 0
(> 0, ≥ µ∥x − x⋆∥2P ) for all (x, u) ∈ gra(F), (x⋆, u⋆) ∈
gra(F) with x⋆ ∈ Σ. We omit the characterization in “HP ”
whenever P = I .

This definition slightly generalizes that in [16, Def. 1],
which only considers the zero set; note that F is allowed to
be set-valued on x⋆ ∈ Σ.

Proximal-point algorithm: For an operator F : Rq ⇒ Rq

with zer(F) ̸= ∅, we consider the problem of finding a point
x⋆ ∈ zer(F). The following iteration is called PPA:

(∀k ∈ N) xk+1 ∈ JF (x
k) = (Id+F)−1xk. (1)

Note that at each iteration (1) involves solving for xk+1

the regularized inclusion 0 ∈ F(xk+1) + xk+1 − xk. By
definition, fix(JF ) = zer(F). If F is maximally monotone,
then JF is single valued and dom(JF ) = Rq , so (1) is
uniquely defined; also, xk converges to a point in zer(F).

III. MATHEMATICAL SETUP

A. The game

Let I := {1, . . . , N} be a set of agents, where each
agent i ∈ I chooses its strategy (i.e., decision variable)

xi from its local decision set Ωi ⊆ Rni . We denote by
x := col((xi)i∈I) ∈ Ω the stacked vector of all the agents’
strategies, with Ω := Ω1 × · · · × Ω ⊆ Rn the overall
decision space and n :=

∑
i∈I ni. Agent i ∈ I aims to

minimize an objective function fi(xi, x−i), depending both
on the local variable xi and on the strategies of the other
agents x−i := col((xj)j∈I\{i}). The game consists of N
inter-dependent optimization problems

∀i ∈ I : argmin
yi∈Ωi

fi(yi, x−i). (2)

The mathematical problem we consider is the distributed
computation of a NE, a set of strategies simultaneously
solving all the problems in (2).

Definition 2: A Nash equilibrium is a set of strategies
x⋆ = col ((x⋆i )i∈I) such that, for all i ∈ I, x⋆i ∈
argminyi∈Ωi

fi(yi, x
⋆
−i)

We restrict our attention to convex games. The following are
standard regularity conditions [5, Asm. 1], [10, Asm. 1].

Assumption 1 (Convexity): For each i ∈ I, the set Ωi is
nonempty, closed and convex; the fuction fi is continuous
and the function fi(·, x−i) is convex for any x−i.

Furthermore, we assume existence of a solution.
Assumption 2 (Existence): The game in (2) admits at least

one Nash equilibrium.
Sufficient conditions for existence of a NE (e.g., compact-

ness of Ω) can be found for instance in [19].

B. The communication network

The agents can exchange information with some neighbors
over an undirected communication network G(I, E). The
unordered pair (i, j) belongs to the set of edges E if and
only if agent i and j can mutually exchange information.
We denote: W ∈ RN×N the weight matrix of G, with
wi,j := [W ]i,j and wi,j > 0 if (i, j) ∈ E , wi,j = 0 otherwise;
Ni = {j | (i, j) ∈ E} the set of neighbors of agent i.

Assumption 3 (Connectivity): The communication graph
G(I, E) is undirected and connected. The weight matrix W
satisfies the following conditions:

(i) Symmetry: W =W⊤;
(ii) Self loops: wi,i > 0 for all i ∈ I;

(iii) Double stochasticity: W1N = 1N ,1
⊤W = 1⊤.

The requirements (ii)-(iii) in Assumption 3 are intended
to ease the notation; for instance, they can be satisfied by
assigning Metropolis weights [9, §2].

C. The partial-decision information scenario

We consider the so-called partial-decision information
model, where agent i ∈ I can only access its own feasible
set Ωi and an analytic expression of its private cost fi,
but cannot access the strategies of all the competitors x−i.
Therefore, each agent i is unable to evaluate the actual value
of fi(xi, x−i). Instead, each agent keeps an estimate of all
other agents’ actions [4], [5], [8], and aims at reconstructing
the actual values, only based information exchanged locally
with neighbors over the communication graph G. We denote
xi = col((xi,j)j∈I) ∈ Rn, where xi,i := xi and xi,j
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is agent i’s estimate of agent j’s strategy, for all j ̸= i;
xj,−i = col((xj,l)l∈I\{i}); x = col((xi)i∈I) ∈ RNn the
overall estimate vector; x−i = col((xj)j∈I\{i}). Let

Ri :=
[
0ni×n<i

Ini
0ni×n>i

]
, (3)

where n<i :=
∑

j<i,j∈I nj , n>i :=
∑

j>i,j∈I nj . In simple
terms, Ri selects the i-th ni-dimensional component from
an n-dimensional vector, i.e., Rixi = xi,i = xi. Let also
R := diag ((Ri)i∈I), so that x = Rx.

D. Game mapping, extended mapping, augmented operators

Under Assumption 1, a strategy x⋆ is a NE of the game
in (2) if and only if

0n ∈ F (x⋆) + NΩ (x⋆) , (4)

where F : Rn ⇒ Rn is the game mapping

F (x) := col ((∂xifi(xi, x−i))i∈I) (5)

(in fact, (4) are the first order optimality conditions of each
convex problems in (2)). Typically, distributed NE seeking
methods require some monotonicity assumption on F . Since
we deal with the partial-decision information scenario, it is
also useful to introduce the extended game mapping

F (x) := col ((∂xifi(xi,xi,−i))i∈I) (6)

where the subdifferentials are computed on the estimates,
and the augmented operators

Fα(x) := αR⊤F (x) + (INn −W )x (7)
Aα(x) := Fα(x) + NΩ(x), (8)

where α > 0 is a design parameter, W := W ⊗ In, Ω :=
{x ∈ RNn | Rx ∈ Ω}. The following well-known result
(e.g., [3, Prop. 1]) provides an extension of the inclusion (4)
to the estimate space.

Lemma 1: The following statements are equivalent:
i) x⋆ = 1N ⊗ x⋆, with x⋆ ∈ Ω a NE of the game (2);

ii) 0Nn ∈ Aα(x
⋆).

In particular, Assumption 2 implies that zer(Aα) ̸= ∅.

IV. TOWARDS A TAXONOMY OF ASSUMPTIONS

In recent years, distributed NE seeking under partial-
decision information has been studied under a variety of
conditions on the operators F,R⊤F ,Fα,Aα. Some of the
assumptions postulated have not been exemplified, nor it is
evident how restrictive they are –in theory and in practice.
Towards a solution of this issue, we start by considering the
following, representative, conditions.

C1: The operator R⊤F is maximally monotone.
C2: The operator R⊤F is restricted monotone with re-

spect to zer(Aα).
C3: There exists α ≥ 0 such that the operator Fα is

maximally monotone.
C4: There exists α ≥ 0 such that the operator Fα is

restricted monotone with respect to zer(Aα).
C5: The operator F is µ-restricted strongly monotone

with respect to the set of NEs and ℓ-Lipschitz, for some
µ > 0, ℓ > 0.

ref extra asm. step sizes

C1 [4], [12] Continuous time
C3 [18], [20] Fixed
C5 [3] Fixed
C6 [16], [10], [8] Fixed
C7 [12] Ω = Rn Continuous time
C8 [5] Ω compact Vanishing
C9 [2] Ω compact Vanishing

C10 [11] Ω compact Vanishing

Table I. Technical assumptions in the literature.

C1 C6

C2 C3 C5 C8 C9

C4 C7 C10

Fig. 1: Relations between technical assumptions in monotone
games under partial-decision information.

C6: The operator F is µ-strongly monotone and ℓ-
Lipschitz, for some µ > 0, ℓ > 0.

C7: The operator F is ν-hypomonotone, ℓ-Lipschitz, and
R-inverse Lipschitz, for some ν ≥ 0, ℓ > 0, R > 0, Rν < 1.

C8: The operator F is strictly monotone and ℓ-Lipschitz,
for some ℓ > 0.

C9: The operator F is 1
ℓ cocoercive for some ℓ > 0.

C10: The operator F is monotone and ℓ-Lipschitz, for
some ℓ > 0.

Although C6 is the most common technical assumption,
all these conditions have been formulated in the literature
(see Table I), except for C2 (which is a natural relaxations
of C1) and C4 (which we will use to show convergence of
our algorithm). The following result characterizes the relation
between them.

Proposition 1: The implications in Figure 1 hold true.

It can be also shown by counter examples that no other
implication exists between the conditions in C1-C10.

A. Conditions on the extended pseudogradient

We next prove, under the commonly used assumption that
F is single valued, that C1 is very restrictive.

Proposition 2 (C1 is trivial): Assume that F is single
valued and continuous. Then, condition C1 holds if and only
if ∇fi(·, x−i) is independent of x−i, for all i ∈ I.

As the actions x−i are not affecting the optimization prob-
lem of agent i (beside possibly for a separable component),
there appears to be no reason for agent i to keep estimates
(hence, for a partial-decision information setup).

Example 1: The game defined by N = 2, n = 2, Ω = Rn,
f1(x) = (x1 − 1)2(x2

2 + 1), f2(x) = x2
2(x1

2 + 1) has a
unique NE in [1 0]⊤ and satisfies C2, but not C1.
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Although ∇xi
fi depends on x−i in Example 1, the next

lemma shows that C2 is also not of particular interest.
Proposition 3 (C2 is trivial): Assume that F is single

valued and continuous. Then, condition C2 holds if and only
if ∇xi

fi(x
⋆
i , x−i) is independent of x−i, for all i ∈ I, for

any x⋆ = (x⋆i , x
⋆
−i) NE of the game (2).

In particular, Proposition 3 implies that 0 ≤
∇xi

fi(x
⋆
i , x

⋆
−i), xi − x⋆i ⟩ = ⟨∇xi

fi(x
⋆
i , x−i), xi − x⋆i ⟩

where the inequality is the first order optimality condition
(as x⋆i solves (2)). This means that x⋆i is optimal for agent i
regardless of x−i; in other terms, C2 implies that the Nash
equilibria are uniquely composed by dominant strategies
(as in Example 1). This is also a trivial case, as the agents
do not need to communicate to compute a NE. Although
the condition in Proposition 3 might be violated if F is not
continuous, this can only happen at discontinuity points,
which is quite a pathological case.

B. Conditions on the game primitives

Conditions C5 to C10 are directly postulated on the game
mapping F and are the most well-investigated (e.g., they
are easy to check if F is a linear operator [13], [21], [12]).
Conditions C5 to C8 imply uniqueness of the equilibrium;
methods with linear convergence were proposed under C5,
C6 [3], [9], but not C7, C8. Although C5 is weaker than C6
in theory, it is difficult to check without knowledge of the
solutions; we have included it because it causes very limited
complications in the convergence analysis with respect to
C6. C6 actually implies that there is α > 0 such that Fα

is Lipschitz and restricted strongly-monotone with respect
to the whole consensus subspace E := {y ∈ RNn | y =
1N ⊗ y, y ∈ Rn} ⊃ zer(Aα) [10, Lem. 3], a much more
restrictive condition that C4. C10 and C9 allow for multiple
NEs; yet – as for C8 – the related methods require not only
compact feasible sets (possibly reasonable in practice) but
also vanishing steps, which affect the convergence speed.

C. Conditions on the augmented operator

C3 and C4 are more abstract and often replaced by more
easily checked sufficient conditions. For example, restricted
monotonicity of Fα with respect to the consensus space E
can be always checked without knowledge of the solutions,
and implies C4.

Despite this complication, C3 and C4 are of great interest,
especially for nonsmooth games, as exemplified next. The
following examples also show that C3 is significantly more
restrictive than C4.

Example 2: Consider the game defined by N = 2, n = 2,
Ω = Rn, F (x) = F̄ (x)+F̂ (x), with F̄ (x) = col(x1

3, 0) and
F̂ (x) = [ 2 1

1 2 ]x+ [ 54 ]. As F̄ is monotone and F̂ is strongly
monotone, the game admits a unique NE. Conditions C5–
C10 are violated, as they require Lipschitz continuity of F ;
C2 also fails (as the best response of agent 2 is −0.5x1 − 2
and by Proposition 3). However, C4 holds: to show this,
consider the components of the extended game mapping F̄
and F̂ corresponding to F̄ and F̂ ; R⊤F̄ is monotone, while
αR⊤F̂ + (I − W ) can be made restricted monotone with

Algorithm 1 Fully-distributed PPP algorithm

x̃k
i = 1

2 (x
k
i +

∑N
j=1 wi,jx

k
j )

xk+1
i,−i = x̃k

i,−i

xk+1
i = argmin

y∈Ωi

(
fi(y, x̃

k
i,−i) +

1
α∥y − x̃k

i,i∥2
)

respect to the consensus subspace by choosing α > 0 small
enough [10, Lem. 3]. We can check numerically that C3 also
holds for some W (in particular, because αR⊤F̂ +(I−W )
can be made monotone, although there is no analytical result
available to check this a priori).

Example 3 (Non-monotone game): Consider Example 2
but with F̄ (x) = col(x1

3(x2
4 + 1), 0) and F̂ (x) = [ 2 1

1 2 ]x.
The game admits a NE x⋆ = 0. As F is restricted strongly
monotone with respect to x⋆, the equilibrium must be unique.
As for Example 2, it is easy to prove that C4 holds,
because R⊤F̄ is restricted monotone with respect to 0 (by
Proposition 3). Yet, F is not monotone: therefore C3 cannot
hold (nor can C1–C2, C5-C10).

Example 4 (Set-valued F ): Consider the game defined by
N = 2, n = 2, Ω = Rn, f1(x) = x1

2 − |x1|x2, f2(x) =
x2

2+x2x1, where |·| is the absolute value. The game admits
a unique NE in 0; moreover, F is set valued, as f1 is not
differentiable in the local variable. It can be checked that C4
holds. Yet, F is not monotone, thus C3 fails.

V. THE PPP ALGORITHM

In this section we consider the fully-distributed proximal-
point NE seeking method shown in Algorithm 1. The itera-
tion coincides with that studied in [17], although the terms
have been rearranged. The algorithm includes a consensus
phase, where the agents exchange and mix their variable
vectors. The local actions are then updated according to a
proximal-best response with stepsize α > 0 – importantly,
the cost function of each agent i evaluated in the estimates
xi,−i, and not on the real competitor’s actions x−i. Note
that the algorithm is always well (uniquely) defined, as the
update of xi is the argmin of a strongly convex function (by
convexity of fi(·, x−i) in Assumption 1).

Algorithm 1 can be formulated as a proximal-point method
applied to the operator Aα. However, the computation of
(Id+Aα)

−1 cannot be performed in a distributed way (more
precisely, it would require the collaborative solution of a
regularized game at each iteration, resulting in a scheme
with nested layers of communication, see [14]). We have
shown in [17], [16] that this complication can be tackled
by preconditioning the operator Aα with a positive definite
matrix

Φ := INn +W . (9)

Lemma 2 ([17, Lem. 2]): Algorithm 1 can be written as

xk+1 = (Id+Φ−1Aα)
−1(xk). (10)
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This operator-theoretic interpretation is very powerful, as
it seamlessly allows to study convergence of analogous
proximal-best response schemes even in the presence of
inexact updates (i.e., the argmin is only approximated at
each iteration), coupling constraint, acceleration terms [16].
It also immediately shows that the fixed points of Algo-
rithm 1 coincide with zer(Aα) = zer(Φ−1Aα) (i.e., they
are estimates at consensus at a Nash equilibrium).

The following theorem is the main result of the paper. It
extends the convergence results in [16, Th. 3], formulated
under C6, to the case of restricted monotone – possibly
nonsmoooth – games (i.e., C4).

Theorem 1: Let Assumption 1–3 hold, and assume that C4
holds for some α > 0. Then, the sequence (xk) generated
by Algorithm 1 converges to a point x⋆ = 1N ⊗ x⋆, where
x⋆ is a Nash equilibrium of the game in (2).

Remark 1: In [17] we have proven (linear) convergence of
Algorithm 1 assuming C6. Under the weaker C4, Theorem 1
leverages the general results for the proximal-point algorithm
of restricted (merely) monotone games [16]. With respect to
[16] and to the Douglas-Rachford algorithm in [18], we use
a different limiting argument in our proof, which does not
require F to be Lipschitz continuous (or even continuous).
The core idea is to show that the operator JΦ−1Aα

is con-
tinuous, even if Aα might not (nor is maximally monotone).
For instance, Theorem 1 can be applied to the games in
Examples 2 to 4, while [16, Th. 2], [12, Th. 2] cannot.
Examples 3 and 4 also show a significant gap between C4
and the stronger condition C3, employed in [18, Th. 3].

We conclude this section by sketching some technical ex-
tensions of our results. To start, our arguments in Theorem 1
can be readily adapted to the algorithms – for generalized
games – studied in [16], to show convergence under C4.
Moreover, our convergence result would hold assuming the
definition of restricted monotonicity proposed in [16, Def. 1],
slightly less restrictive than our Definition 1. We also note
that we assumed monotonicity properties of F (and similarly
for the other game operators) to hold over all Rn; however,
the conditions can be relaxed to hold only over the feasible
set, if the estimates x’s are initialized in ΩN (since the
update in Algorithm 1 guarantees invariance for this set). The
costs in (2) can be modified to include a more general (dis-
continuous) proper, convex, closed function gi(xi) (besides
the indicator function ιΩi

), without technical complications.
Much more intriguing is the case of discontinuity in the
part of the cost coupled with the other agents (i.e., violating
Assumption 1): although our convergence arguments do not
hold in this case, it would be interesting to verify whether
C3 could be satisfied to apply standard PPA results.

VI. CONCLUSION AND OUTLINE

Besides their efficiency, proximal-point algorithms have
the advantage of only requiring mild monotonicity and
smoothness conditions. We have compared and analyzed
several assumptions in NE seeking under partial-decision in-
formation, and proved the convergence of a fully distributed
PPP method under one of the weakest.

Future work should investigate linear rates in absence of
(restricted) strong monotonicity. One promising option is
to leverage inverse Lipschitz properties, which can ensure
contractivity of certain resolvents. Proving convergence in
merely monotone regime, under fixed step sizes, is also a
challenging open problem.

APPENDIX

1) Proof of Proposition 1: C1 ⇒ C2, C3 ⇒ C4, C6 ⇒
C5, C6 ⇒ C8, C8 ⇒ C10: By definition.
C1 ⇒ C3: As (I −W ) is a positive semidefinite matrix,

the operator I −W is maximally monotone. Hence, for any
α ≥ 0, Fα = αR⊤F+(I−W ) is the sum of two maximally
monotone operators; moreover, dom(I−W ) = RNn, so the
conclusion follows by [13, Cor. 25.5].
C2 ⇒ C4: Fα is the sum of a restricted monotone oper-

ator and a monotone operator, hence restricted monotone.
C5 ⇒ C6: See, for instance, [16, Lem. 3].
C6 ⇒ C7: It follows by definition and [12, Prop. 3].
C6 ⇒ C9: See, e.g., [12, Prop. 5].
C9 ⇒ C10: It follows by definition of cocoercivity and

the Cauchy–Schwartz inequality. ■
2) Proof of Proposition 2: “⇐”: For the sake of con-

tradiction, assume that, for some i ∈ I, there exist l ∈
{1, 2, . . . , ni}, xi ∈ Rni and a pair of vectors x−i and x′−i

such that [∇xifi(xi, x−i)]l < [∇xifi(xi, x
′
−i)]l. By continu-

ity, there exists ϵ > 0 such that [∇xi
fi(xi + ϵel, x−i)]l <

[∇xi
fi(xi, x

′
−i)]l, where el ∈ Rn

i is the l-th vector of the
canonical basis. The monotonicity in C1, applied to a pair
of estimate vectors (xi,x−i), (x′

i,x−i), for any x−i and
xi = (xi + ϵel, x−i), x′

i = (xi, x
′
−i), gives

0 ≤ ⟨∇xifi(xi + ϵel, x−i)−∇xifi(xi, x
′
−i), ϵel⟩

= ϵ[∇xifi(xi + ϵel, x−i)−∇xifi(xi, x
′
−i)]l < 0

which is a contradiction. Because x−i, x′−i are arbitrary, we
conclude that, for all i ∈ I, for all xi, and for all x−i, x′−i,
∇xi

fi(xi, x−i) = ∇xi
fi(xi, x

′
−i).

“⇒”: By assumption, for any i ∈ I, xi, x′i, x−i, x′−i,

⟨∇xifi(xi, x−i)−∇xifi(x
′
i, x

′
−i), xi − x′i⟩

= ⟨∇xifi(xi, x
′
−i)−∇xifi(x

′
i, x

′
−i), xi − xi⟩ ≥ 0,

where the inequality is convexity of fi in the first argument
(Assumption 1). Stacking the inequalities for i ∈ I retrieves
the monotonicity of R⊤F . ■

3) Proof of Proposition 3: “⇐”: For contradiction, as-
sume that there exist i ∈ I, l ∈ {1, 2, . . . , ni}, an NE x⋆

and x−i such that [∇xi
fi(x

⋆
i , x−i)]l < [∇xi

fi(x
⋆
i , x

⋆
−i)]l.

By continuity, there exists ϵ > 0 such that [∇xi
fi(x

⋆
i +

ϵel, x−i)]l < [∇xi
fi(x

⋆
i , x

⋆
−i)]l. Restricted monotonicity in

C2, applied to a pair of estimate vectors (xi,x−i), (x⋆,x−i),
for any x−i and xi = (x⋆i + ϵel, x−i), gives

0 ≤ ⟨∇xifi(x
⋆
i + ϵel, x−i)−∇xifi(x

⋆
i , x

⋆
−i), ϵel⟩

= ϵ[∇xifi(x
⋆
i + ϵel, x−i)−∇xifi(x

⋆
i , x

⋆
−i)]l < 0

which is a contradiction. Analogously it can be shown that
[∇xifi(x

⋆
i , x−i)]l > [∇xifi(x

⋆
i , x

⋆
−i)]l leads to a contradic-

tion. Hence ∇xi
fi(x

⋆
i , x−i) = ∇xi

fi(x
⋆
i , x

⋆
−i).
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“⇒”: For any i ∈ I, xi, x−i, NE x⋆, by assumption
and convexity, ⟨fi(xi, x−i) − ∇xifi(x

⋆
i , x

⋆
−i), xi − x⋆i ⟩ =

⟨∇xifi(xi, x−i)−∇xifi(x
⋆
i , x−i), xi − x⋆i ≥ 0. ■

4) Proof of Theorem 1: We start by an auxiliary result.
Lemma 3: Let f : Rn × Rm → R : (x, y) 7→ f(x, y) be

a continuous function, and assume that f(·, y) is µ-strongly
convex for any y ∈ Rm, µ > 0. Let X ⊆ Rn be a convex
closed set. Then the (single valued, full domain) mapping
y 7→ g(y) = argminx∈X f(x, y) is continuous.

Proof: We show that, for any given sequence (yk)k∈N
with yk → y⋆ (converging, hence bounded), xk := g(yk) →
g(y⋆) =: x⋆, which is the definition of continuity.

First, we show that (xk)k∈N is bounded. Let Y be a
compact set containing (yk)k∈N. Let x0 ∈ X and

l0 := max
y∈Y

f(x0, y), l1 := min
x∈∂B(x0,1),y∈Y

f(x, y)

where ∂B(x0, 1) = {x ∈ Rn | ∥x − x0∥ = 1} is the
boundary of the unit ball centered at x0; the min and max are
achieved because the domains are compact. Let d ∈ Rn be
any unitary vector, i.e., ∥d∥ = 1; x1 := x0 + d ∈ ∂B(x0, 1);
x2 = x0 +Md, for some scalar such that

M > 1, M > 2 l0−l1
µ + 1. (11)

Then, x1 = M−1
M x0+

1
M x2. By definition of strong convex-

ity, we have, for all y ∈ Y

l1 ≤ f(x1, y)

≤ M−1
M f(x0, y) +

1
M f(x2, y)− 1

2µ
M−1
M

1
M ∥x0 − x2∥2

= M−1
M f(x0, y) +

1
M f(x2, y)− 1

2µ(M − 1).

Assume for contradiction that there exists y ∈ Y such that
f(x2, y) ≤ f(x0, y). Then, since f(x0, y) ≤ l0, the previous
inequality implies l1− l0 ≤ − 1

2µ(M −1), which contradicts
(11). Since d is arbitrary, we conclude that, for any y ∈ Y ,
for all x such that ∥x0 − x∥ > M , f(x0, y) < f(x, y). In
turn, for all y ∈ Y , ∥g(y)∥ < ∥x0∥+M , i.e., g is uniformly
bounded over Y ; thus (xk)k∈N is bounded.

Hence (xk)k∈N admits an accumulation point, say x′. Let
K̄ = (k̄1, k̄2, . . . ) ⊆ N be a diverging subsequence such that
xk̄n → x′. Since f(xk̄n , yk̄n) ≤ f(x, yk̄n) for all x ∈ X , by
continuity of f , we have f(x′, y⋆) ≤ f(x, y⋆) for all x ∈ X .
Since the minimizer must be unique by strong convexity, we
have x′ = x⋆. In particular, this shows that x⋆ is the unique
accumulation point of xk: therefore, xk → x⋆.
The proof of Theorem 1 is based on the following result.

Lemma 4: The operator JΦ−1Aα
is continuous.

Proof: For each i ∈ I, the mapping x̃i 7→
argminy∈Ωi

(fi(y, x̃i,−i) +
1
α∥y − x̃i,i∥2) is continuous by

Lemma 3. The result follows by Lemma 2 and the explicit
form of JΦ−1Aα

in Algorithm 1.
We are now in a position to apply the results on proximal-

point algorithm for restricted monotone operators in [16].
First, note that the operator Aα is restricted monotone with
respect to zer(Aα) (because Fα is so by assumption, and by
monotonicity of the normal cone [13, Th. 20.25]), i.e., for
all (x,u), (x⋆,u⋆) ∈ gra(Aα), with x⋆ ∈ zer(Aα)

0 ≤ ⟨u− u⋆,x− x⋆⟩ = ⟨Φ−1u− Φ−1u⋆,x− x⋆⟩Φ,

which shows that Φ−1Aα is restricted monotone with respect
to zer(Aα) in HΦ. Therefore, by Lemma 2 and by applying
[16, Th. 1(i)], we infer that the sequence (xk) is bounded,
hence it admits at least one cluster point, say x̄. By [16,
Th. 1(ii)], JΦ−1Aα

(xk) − xk → 0; therefore, by continuity
in Lemma 4, it must be x̄ ∈ fix(JΦ−1Aα

) = zer(Aα). The
conclusion follows by [16, Th. 1(iii)]. ■
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