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Data-Driven Stability Verification of Homogeneous Nonlinear Systems
with Unknown Dynamics*

Abolfazl Lavaei, Peyman Mohajerin Esfahani, and Majid Zamani

Abstract— In this work, we propose a data-driven approach
for the stability analysis of discrete-time homogeneous nonlinear
systems with unknown models. The proposed framework is
based on constructing Lyapunov functions via a set of data,
collected from trajectories of unknown systems, while providing
an a-priori guaranteed confidence on the stability of the system.
In our data-driven setting, we first cast the original stability
problem as a robust optimization program (ROP). Since un-
known models appear in the constraint of the proposed ROP,
we collect a finite number of data from trajectories of unknown
systems and provide two variants of scenario optimization
program (SOP) associated to the original ROP. We discuss
that the proposed ROP, and its corresponding SOPs, are not
convex due to having a bilinearity between decision variables.
We also show that while one of the proposed SOPs is more
efficient in terms of computational complexity, the other one
provides Lyapunov functions with a much better performance
for the original ROP. We then establish a probabilistic closeness
between the optimal value of (non-convex) SOP and that of
ROP, and subsequently, formally provide the stability guarantee
for unknown systems with a guaranteed confidence level. We
illustrate the efficacy of our proposed results by applying them
to two physical case studies with unknown dynamics including
(i) a DC motor and (ii) a (homogeneous) nonlinear jet engine
compressor. We collect data from trajectories of unknown
systems and verify their global asymptotic stability (GAS) with
desirable confidence levels.

I. INTRODUCTION

Motivations. Data-driven control approaches have re-
ceived significant attentions, in the past few years, due to
their broad applications in real-life safety-critical systems
such as autonomous vehicles, biological networks, robotic
manufacturing, (air) traffic networks, etc., to name a few. In
particular, most of the existing work on the stability analysis
of dynamical systems, proposed in the relevant literature,
are model-based. On the downside, closed-form models for
many complex and heterogeneous systems are either not
available or equally complex to be of any practical use,
and accordingly, one cannot employ model-based techniques
to analyze them. Although there are some results in the
literature to solve analysis and synthesis problems by learn-
ing approximate models utilizing identification techniques
(e.g., [1], [2], [3], [4], [5]), obtaining an accurate model for
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complex systems (if not impossible) can be very challenging,
time-consuming and expensive. In addition, identification
approaches are mainly tailored to linear or some particular
classes of nonlinear systems. Hence, developing data-driven
approaches is crucial to bypass the system identification
phase and directly employ system’s measurements for per-
forming control and stability analyses.

Related Literature. There are already some results, pro-
posed in the past few years, in the setting of data-driven
optimization techniques. Scenario approach has been ini-
tially introduced in [6] to deal with semi-infinite convex
programming for robust control analysis and synthesis prob-
lems. As the main benefit of the proposed approach, the
robust control problem can be solved via random sampling
of constraints provided that a probabilistic relaxation of the
worst-case robust paradigm is established. As an extension
of [6], a random convex program scheme is proposed in [7]
in which an explicit bound on the upper tail probability of
violation is provided. In addition, the work [7] studies the
case of random convex programs with posteriori violated
constraints to improve the optimal objective value while
maintaining the violation probability under control. A novel
scheme for constructing a probabilistic relation between the
optimal value of scenario convex programs and that of
robust convex programs is initially proposed in [8] in which
the uncertainty takes values in a general, possibly infinite-
dimensional, metric space. The proposed results are then
extended to a particular class of non-convex problems by
including binary decision variables.

In the past few years, there have been also some results
on formal analysis of dynamical systems via data-driven
approaches. A data-driven stability analysis of black-box
switched linear systems via constructing common Lyapunov
functions is proposed in [9] in which a stability guarantee
is provided based on both the number of observations and
a required level of confidence. As an extension of [9], a
data-driven stability analysis of switched linear systems via
sum of squares Lyapunov functions is proposed in [10].
A parameterization scheme of linear-feedback systems only
using data-dependent linear matrix inequalities is proposed
in [11] in which the stabilization problem is extended to
the case of an output-feedback control design. A data-
enabled predictive control algorithm for unknown stochastic
linear systems is presented in [12] in which noise-corrupted
input/output data are utilized to predict future trajectories and
compute optimal control policies.

Contributions. Our main contribution is to propose a data-
driven approach for the stability verification of unknown
homogeneous nonlinear systems by constructing Lyapunov
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functions via a set of data, collected from trajectories of
unknown systems, while providing an a-priori guaranteed
confidence on the stability result. To do so, we first reformu-
late the original stability problem as a robust optimization
program (ROP) and then provide two variants of scenario
optimization program (SOP), corresponding to the original
ROP. We discuss that the proposed ROP, and its correspond-
ing SOPs, are not convex due to having a bilinearity between
decision variables. We also show that while one of the
proposed SOPs is more efficient in terms of computational
complexity, the other one provides Lyapunov functions with
a better performance for the original ROP. By establishing
a probabilistic closeness between optimal values of SOP
and ROP, we formally quantify the stability guarantee of
unknown systems based on the number of data and a required
confidence level. We verify the effectiveness of our proposed
results over two physical case studies with unknown models
including (i) a DC motor and (ii) a (homogeneous) nonlinear
jet engine compressor.

II. PROBLEM DESCRIPTION

A. Notation and Preliminaries

Sets of real, positive and non-negative real numbers are
denoted by R,R+, and R+

0 , respectively. We denote the sets
of non-negative and positive integers by N := {0, 1, 2, . . .}
and N+ = {1, 2, . . .}, respectively. Given N vectors xi ∈
Rni , x = [x1; . . . ;xN ] denotes the corresponding column
vector of dimension

∑
i ni. The maximum eigenvalue of a

symmetric matrix A is denoted by λmax(A). The absolute
value of a ∈ R is denoted by |a|. We denote the Euclidean
norm of a vector x ∈ Rn by ‖x‖. For any matrix P ∈
Rm×n, we have ‖P‖ :=

√
λmax(P>P ). Given a probability

space (D,B(D),P), we denote the N -Cartesian product set
of D by DN, and its corresponding product measure by PN .
If a system Ψ fulfills a property ϕ, it is denoted by Ψ �
ϕ. The operator � is also employed to show the feasibility
of a solution for an optimization problem. A function ρ :
R+

0 → R+
0 is said to be a class K function if it is continuous,

strictly increasing, and ρ(0) = 0. A class K function ρ(·) is
called a class K∞ if ρ(s) → ∞ as s → ∞. A function
ρ : R+

0 × R+
0 → R+

0 is said to belong to class KL if, for
each fixed s, the map ρ(r, s) belongs to class K with respect
to r and, for each fixed r, the map ρ(r, s) is decreasing with
respect to s, and ρ(r, s) → 0 as s → ∞. We denote the
factorial of a non-negative integer n by n! as the product
of all positive integers less than or equal to n, i.e., n! =
n× (n− 1)× (n− 2)× · · · × 3× 2× 1.

B. Discrete-Time Nonlinear Systems

In this work, we consider discrete-time nonlinear systems
(dt-NS) as formalized in the next definition.

Definition 2.1 (Nonlinear Systems): A discrete-time non-
linear system (dt-NS) is characterized by the tuple

Σ = (Rn, f), (1)

where:
• Rn is the state space of the system;

• f : Rn → Rn is a measurable function describing the
state evolution of the system, which is assumed to be
homogeneous of degree one, i.e., for any λ > 0 and
x ∈ Rn, f(λx) = λf(x) [13].

For a given initial state x(0) ∈ Rn, the evolution of the state
of dt-NS Σ can be characterized as

Σ: x(k + 1) = f(x(k)), k ∈ N. (2)

For any initial state x0 = x(0) ∈ Rn, the sequence xx0
:

N → Rn satisfying (2) is called the solution process of Σ
under the initial state x0.

In this work, we are interested in global asymptotic
stability of dt-NS Σ as defined below.

Definition 2.2: A dt-NS Σ in (2) is called globally asymp-
totically stable (GAS) if

‖x(k)‖ ≤ ρ(‖x(0)‖, k),

for all x(0) ∈ Rn, and some ρ ∈ KL, i.e., every trajectory
of Σ converges to zero as k goes to infinity.

The following theorem, borrowed from [13], provides the
required conditions under which a dt-NS Σ in (2) is GAS.

Theorem 2.3 (Global Stability): Consider a dt-NS Σ as
in (2). If there exist a homogeneous function V : Rn → R+

0

of degree ν ∈ N+, i.e., for any λ > 0 and x ∈ Rn, V(λx) =
λνV(x), K∞ functions α, α, and a constant γ ∈ (0, 1) such
that ∀x∈Rn, where ‖x‖=1:

α(‖x‖) ≤ V(x) ≤ α(‖x‖), (3a)
V(f(x))−γV(x) ≤ 0, (3b)

then this function is called Lyapunov function with a decay
rate γ, and the system Σ is globally asymptotically stable
(GAS).

In the setting of our work, we fix the structure of Lyapunov
functions as

V(q, x) =

r∑
j=1

qjpj(x), (4)

with unknown coefficients q = [q1; . . . ; qz] ∈ Rz and user-
defined basis functions pj(x) which are homogeneous of
degree ν. We also fix the structure of functions α, α as

α(s) =

ν∑
j=1

αjs
j , α(s) =

ν∑
j=1

αjs
j , ∀s ∈ R+

0 . (5)

In order to ensure that α, α in (5) are K∞ functions, the
derivatives of α, α with respect to s should be positive, i.e.,
strictly increasing. Then one has

ν∑
j=1

jαj > 0,

ν∑
j=1

jαj > 0, (6)

with s = ‖x‖ = 1. To enforce the required conditions in
Theorem 2.3, we cast our stability problem as the following
robust optimization program (ROP):
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ROP :



min
[Φ;µ]

µ,

Φ=[γ;α1; . . . ;αν ;α1; . . . ;αν ; q1; . . . ; qz],
µ∈R, γ ∈ (0, 1),

s.t. max
{
h1(x,Φ), h2(x,Φ, γ)

}
≤ µ,

∀x∈Rn : ‖x‖=1,
(7)

where:

h1(x,Φ)=max
{ ν∑
j=1

αj−V(q, x),V(q, x)−
ν∑
j=1

αj ,

−
ν∑
j=1

jαj ,−
ν∑
j=1

jαj

}
,

h2(x,Φ, γ)=V(q, f(x))−γV(q, x). (8)

Note that the ROP in (7) is always feasible by its definition
since for a given Φ, there always exists a µ ∈ R satisfying
ROP in (7). If µ ≤ 0, a solution to the ROP implies the
satisfaction of conditions in Theorem 2.3, and consequently,
the dt-NS Σ in (2) is GAS. We denote the optimal value of
ROP by µ∗R.

To solve the proposed ROP in (7), one faces two main
difficulties. First, the proposed ROP has infinitely many
constraints given that the state of the system lives in a
continuous set (i.e., {x ∈ Rn : ‖x‖=1}). Second and more
challenging, one needs to know the precise model f to solve
the ROP in (7). These challenges motivated us to develop
a data-driven approach, in the next section, for the stability
analysis of unknown dt-NS without directly solving the ROP
in (7).

III. DATA-DRIVEN CONSTRUCTION OF LYAPUNOV
FUNCTIONS

Here, we assume that the map f in (2) is unknown, and
we employ the term unknown model to refer to this type of
systems. In our data-driven setting, we take two consecutive
sampled data-points from trajectories of unknown systems
as the pair of (x(k), x(k + 1)) and denote it by (x̂, f(x̂)).
The main goal is to verify the stability of unknown dt-
NS in (2) via a Lyapunov function constructed from data
with some guaranteed confidence. Let (x̂i, f(x̂i))

N
i=1 be N

independent-and-identically distributed (i.i.d.) sampled data.
Instead of solving the ROP in (7), we rather solve the
following scenario optimization program (SOP):

SOP1:



min
[Φ;µ]

µ,

Φ=[γ;α1; . . . ;αν ;α1; . . . ;αν ; q1; . . . ; qz],
µ∈R, γ ∈ (0, 1),

s.t. max
{
h1(x,Φ), h2(x̂i,Φ, γ)} ≤ µ,

∀x ∈ Rn : ‖x‖ = 1, ∀x̂i ∈ Rn : ‖x̂i‖ = 1,
∀i ∈ {1, . . . ,N},

(9a)

where h1, h2 are the same functions as in (8). We denote
the optimal value of SOP1 by µ∗N1

. As it can be observed,
f(x̂i) in h2 can be substituted by measurements of unknown

dt-NS after one-step evolution starting from x̂i. Remark that
condition h1 in (9a) should be still satisfied for any x ∈ Rn :
‖x‖ = 1.

We now propose another variant of scenario optimization
program, denoted by SOP2, which is more relaxed compared
to (9a) in the sense that condition h1 should be fulfilled only
over sampled data:

SOP2:



min
[Φ;µ]

µ,

Φ=[γ;α1; . . . ;αν ;α1; . . . ;αν ; q1; . . . ; qz],
µ∈R, γ ∈ (0, 1),

s.t. max
{
h1(x̂i,Φ), h2(x̂i,Φ, γ)}≤µ,

∀x̂i ∈ Rn : ‖x̂i‖ = 1, ∀i ∈ {1, . . . ,N}.
(9b)

We denote the optimal value of SOP2 by µ∗N2
. In the

case study section, we show that solving (9b) is more
efficient than (9a) since one needs to only solve a linear
programing in (9b) rather than, for instance, a semi-definite
programing using sum-of-squares (SOS) optimization prob-
lem (i.e., equivalently a semi-infinite linear programming)
for h1 in (9a). On the other hand, the acquired Lyapunov
function via solving (9a) provides a better performance with
a smaller optimal value µ∗R for the original ROP compared
to the Lyapunov function obtained from (9b) (cf. DC motor
case study).

Remark 3.1: Note that function h2 in (9a)-(9b) is not
convex due to a bilinearity between decision variables q and
decay rate γ. To deal with this non-convexity, we assume
that γ lies within a finite set with the cardinality m, i.e., γ ∈
{γ1, . . . , γm}, and convert SOP1 and SOP2 to, respectively,
mixed-integer semi-definite and linear programming. We
then leverage the cardinality m in computing the minimum
number of data required for solving SOP1 and SOP2 (cf.
Theorem 4.3).

In the next section, we establish a probabilistic relation
between the optimal value of SOP1 (respectively SOP2)
and that of ROP, and consequently, verify the stability of
unknown dt-NS with an a-priori guaranteed confidence level.

IV. STABILITY GUARANTEE OVER UNKNOWN SYSTEMS

In this section, inspired by the fundamental results of [8],
we aim at establishing a formal relation between the optimal
value of SOP1 (respectively SOP2) and that of ROP in (7).
Accordingly, we formally provide the stability guarantee of
unknown dt-NS based on the number of data and a required
confidence level. We now state the main problem that we
aim to solve in this work.

Problem 4.1: Consider a dt-NS in (2) with an unknown
map f . Construct a Lyapunov function via solving (non-
convex) SOP1 in (9a) (respectively SOP2 in (9b)) and
provide a formal guarantee on GAS of unknown dt-NS
with an a-priori confidence level 1− β, β ∈ [0, 1), as

PN
{

Σ |= GAS
}
≥ 1− β.
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To address Problem 4.1, we first propose the following
assumption.

Assumption 4.2: Suppose h2 (respectively h1) are Lips-
chitz continuous with respect to x with Lipschitz constants
L2k

(respectively L1), for given γk where k ∈ {1, . . . ,m}.
Under Assumption 4.2, we verify the stability of unknown

dt-NS with an a-priori confidence level via the next theorem.
Theorem 4.3: Consider an unknown dt-NS as in (2)

and let Assumption 4.2 hold. Consider the SOP1 in (9a)
(respectively SOP2 in (9b)) with its associated opti-
mal value µ∗N1

(respectively µ∗N2
) and solution Φ∗ =

[α∗1; . . . ;α∗ν ;α∗1; . . . ;α∗ν ; q∗1 ; . . . ; q∗z ], with N ≥ N̄
(
ε̄, β
)
,

ε̄ := (ε̄1, . . . , ε̄m), where

N̄ (ε̄, β) :=min
{
N ∈ N

∣∣ m∑
k=1

c−1∑
i=0

(
N
i

)
ε̄ik(1−ε̄k)N−i≤β

}
,

(10)

β ∈ [0, 1), ε̄k = w( εk
Lhk

), with εk ∈ [0, 1),Lhk
:= L2k

(respectively Lhk
:= max{L1,L2k

}), and w(r) : R+
0 →

[0, 1] which depends on the sampling distribution and the
geometry of the uncertainty set X . Then the following
statement holds with a confidence of at least 1− β: if

µ∗N1
+ max

k
εk ≤ 0, (respectively µ∗N2

+ max
k

εk ≤ 0),

then the unknown dt-NS is GAS according to Theorem 2.3.
Proof: We first establish a probabilistic relation be-

tween optimal values of ROP and SOP1, and then pro-
vide stability guarantees over the unknown dt-NS via the
established relation. Based on [8, Theorems 4.1, 4.3], the
probabilistic distance between optimal values of ROP and
SOP1 can be formally lower bounded as

PN
{

0 ≤ µ∗R − µ∗N1
≤ max

k
εk

}
≥ 1− β,

provided that

N ≥ N̄
(
w(

εk
LSPLhk

), β
)
,

where w(s) : R+
0 → [0, 1] depends on the sampling

distribution and the geometry of the uncertainty set X , and
LSP is a Slater constant as defined in [8, equation (5)]. Based
on [8, Remark 3.5], since the original ROP in (7) can be
cast as a min-max optimization problem, the Slater constant
LSP can be selected as 1. We refer the interested reader
to [8, equation (5)] for more details on the formal definition
of Slater point.

One can readily conclude that µ∗N1
≤ µ∗R ≤ µ∗N1

+
maxk εk with a confidence of at least 1 − β. If µ∗N1

+
maxk εk ≤ 0 (as the main condition of the theorem),
then µ∗R ≤ 0, implying the satisfaction of conditions in
Theorem 2.3 and ensuring the global asymptotic stability of
unknown dt-NS with a confidence of at least 1−β. One can
readily utilize the same reasoning to establish a probabilistic
relation between optimal values of ROP and SOP2, and then
provide stability guarantees over unknown dt-NS via the
established relation, which completes the proof.

Remark 4.4: As discussed in [8, Proposition 3.8], the
function w in (10) satisfies the following inequity:

w(r) ≤ P
[
Br(x)

]
, ∀r ∈ R+

0 ,∀x ∈ X,

where Br(x) ⊂ X is an open ball centered at x with radius r.
In the case of collecting samples from a unit n-dimensional
sphere with a uniform distribution, i.e., X

‖X‖ where X is
distributed with a normal distribution with zero mean and
identity covariance, the function w in (10) is computed as

w(r) =
Γ(n2 )

√
π Γ(n−1

2 )

∫ θ0

0

(sin θ)n−2dθ, (11)

where θ0 = 2 arcsin r
2 , π ≈ 3.14, and Γ is the Gamma

function defined as Γ(n) = (n− 1)! for any positive integer
n and Γ(n + 1

2 ) = (n − 1
2 ) × (n − 3

2 ) × · · · × 1
2 × π

1
2 for

any non-negative integer n. In the case of collecting samples
with a uniform distribution from a unit circle, the function
w in (11) is reduced to w(r) = 2

π arcsin r
2 (cf. case studies).

We propose Algorithm 1 to describe the required proce-
dure in Theorem 4.3.

Algorithm 1 Ensuring GAS guarantee for unknown dt-NS
Require: L1,L2k

, εk, β ∈ [0, 1) as desired
1: Compute the required number of samples as N ≥
N̄
(
w( εk

Lhk

), β
)

in (10)
2: Solve SOP1 in (9a) (respectively SOP2 in (9b)) with the

acquired data and obtain µ∗N1
(respectively µ∗N2

)
3: If µ∗N1

+max
k

εk ≤ 0 (respectively µ∗N2
+max

k
εk ≤ 0),

then unknown dt-NS is GAS with a confidence of at
least 1 − β, i.e., PN

{
Σ |= GAS

}
≥ 1 − β, otherwise

inconclusive

In order to compute the required number of samples in
Theorem 4.3, one needs to first compute Lhk

which is based
on L1,L2k

. We propose in the next lemmas an explicit way
to compute L1,L2k

for both (unknown) nonlinear and linear
systems.

Lemma 4.5: For a dt-NS as in (2), let ‖f(x)‖ ≤ Mf ∈
R≥0, and ‖∂f(x)

∂x ‖ ≤ Lf ∈ R≥0 for any x ∈ X . Then
L1,L2k

for a quadratic Lyapunov function of the form
x>Px, with a positive-definite matrix P ∈ Rn×n, is quanti-
fied as L1 = 2λmax(P ),L2k

= 2λmax(P )(MfLf + γk).
The proof is straightforward and is omitted here.

Remark 4.6: Note that one needs to know an upper bound
for λmax(P ) in order to compute Lhk

and the required
number of samples in Step 1 in Algorithm 1. We compute the
required upper bound for λmax(P ) a-priori using Gershgorin
circle theorem [14] and then enforce it as an additional
condition while solving the SOP1 in (9a) (respectively SOP2

in (9b)) as mentioned in Step 2 of Algorithm 1 (cf. case
studies).

Similarly, we provide another lemma for the computation
of Lhk

but for linear dynamical systems.
Lemma 4.7: For a linear system x(k + 1) = Ax(k) with

A ∈ Rn×n, let ‖A‖ ≤ Lf ∈ R+
0 . Then L1,L2k

for
a quadratic Lyapunov function of the form x>Px, with a
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positive-definite matrix P ∈ Rn×n, is quantified as L1 =
2λmax(P ),L2k

= 2λmax(P )(L 2
f + γk).

Lemmas 4.5 and 4.7 provide a systematic approach for
computing Lhk

tailored to quadratic Lyapunov functions of
the form x>Px. Nevertheless, one can still utilize these
results for polynomial-type Lyapunov functions as in (4)
given that they can be reformulated as a quadratic function
of monomials of the form x>Px.

V. CASE STUDIES

DC Motor. We first apply our data-driven approaches to
a DC motor borrowed from [15]:

x1(k + 1) = x1(k) + τ
(−R
L
x1(k)− kdc

L
x2(k)

)
,

x2(k + 1) = x2(k) + τ
(kdc
J
x1(k)− b

J
x2(k)

)
,

where x1, x2, R = 1, L = 0.01, and J = 0.01 are the
armature current, the rotational speed of the shaft, the electric
resistance, the electric inductance, and the moment of inertia
of the rotor, respectively. In addition, τ = 0.01, b = 0.1,
and Kdc = 0.01 represent, respectively, the sampling time,
the motor torque and the back electromotive force. We
assume that the model is unknown. We construct a Lyapunov
function via data collected from trajectories of unknown
system by solving SOP1 in (9a), and accordingly, verify that
the DC motor is GAS with respect to its given equilibrium
point (0, 0).

We fix the structure of our homogeneous Lyapunov func-
tion as V(q, x) = q1x

4
1 + q2x

2
1x

2
2 + q3x

4
2 with degree ν = 4.

We now follow Algorithm 1 in order to utilize the results
of Theorem 4.3. We first fix threshold εk = 0.0028,∀k ∈
{1, . . . ,m} and the confidence β = 10−7 a-priori. Now we
need to compute Lhk

which is required in computing the
minimum number of data. We construct matrix P based on
coefficients of the nominated Lyapunov function. By enforc-
ing each coefficient of the Lyapunov between [−0.01, 0.01],
we ensure that λmax(P ) ≤ 0.02 as discussed in Remark 4.6.
We assume that γ ∈ {0.35, 0.65, 0.95} with the cardinality
m = 3. Then according to Lemma 4.7, we compute Lh1

=
0.046, Lh2

= 0.058, and Lh3
= 0.07. By collecting samples

from a unit circle with a uniform distribution, we compute
ε̄k = w( εk

Lhk

) = 2
π arcsin( εk

2Lhk

) (cf. Remark 4.4). Now
we have all the required ingredients to compute N . The
minimum number of data required for solving SOP2 in (9b)
is computed as N = 3147.

We now solve the SOP2 (9b) with the acquired N , and
the additional conditions on the coefficient of the nominated
Lyapunov function. The solution Φ∗ together with the opti-
mal objective value of SOP2 are computed as

V(q, x) = 0.01x4
1 + 0.01x2

1x
2
2 + 0.01x4

2, µ
∗
N2

= −0.0029,

α1 = 0.5, α2 = −0.4985, α3 = −0.5, α4 = 0.5,

α1 = α2 = α3 = α4 = 0.5.

Since µ∗N2
+ maxk εk = −10−4 ≤ 0, according to Theo-

rem 4.3 and via the constructed Lyapunov function from data,
one can verify that the unknown DC motor is GAS with a
confidence of at least 1−10−7. To illustrate the effectiveness

of our results, we assume that we have access to the model
of DC motor and verify our data-driven Lyapunov function
via SOSTOOLS [16].

In order to have a practical analysis on the required
number of collected data in Theorem 4.3, we plotted in Fig.
1 the required number of data in terms of the threshold
εk and the confidence parameter β based on (10) for the
DC motor. As it can be observed, the required number of
data decreases by increasing either the threshold εk or β.
However, in practice, one needs to select β as small as
possible to provide a reasonable confidence (i.e., 1−β) over
the stability of the original unknown dt-NS. Besides, in order
to ensure the stability of unknown dt-NS with some desirable
confidence, condition µ∗N1

+ maxk εk ≤ 0 (respectively
µ∗N2

+ maxk εk ≤ 0) needs to hold.

Fig. 1. Required number of data, represented by ‘colour bar’, in terms of the
threshold εk and the confidence parameter β. Plot is in the logarithmic scale.
The required number of data decreases by increasing either the threshold
εk or the confidence parameter β.

In order to have a comparison between the performance
of Lyapunov functions acquired from SOP1 and SOP2, we
also solve SOP1 in (9a). We now assume we know the
model and compute the optimal value µ∗R in ROP (7) via
Lyapunov functions obtained from SOP1 and SOP2. The
corresponding results are plotted in Fig. 2 for different data
sets. As it can be observed, optimal values µ∗R acquired
from Lyapunov functions via solving SOP1 in (9a) (i.e.,
purple curve) is always less than the optimal values µ∗R
obtained from Lyapunov functions via solving SOP2 in (9b)
(i.e., green curve). This it expected and the reason is that
Lyapunov functions obtaining from SOP1 are positive for
all range of {x ∈ Rn : ‖x‖ = 1}, and not only over
finite data points which is the case in SOP2. This implies
that the Lyapunov function via solving SOP1 in (9a) has a
better performance compared to the one acquired from SOP2

in (9b). On the other hand, solving (9b) is more efficient
than (9a) since one needs to only solve a mixed-integer
linear programming in (9b) rather than a mixed-integer semi-
definite programming using sum-of-squares (SOS) in (9a).

Jet Engine Compressor. In order to show the applicability
of our results to nonlinear systems, we apply our approaches
to the following (homogeneous) nonlinear jet engine com-
pressor [17]:

x1(k + 1) = x1(k) + τ
(
− x2(k)− 3

2
x2

1(k)− 1

2
x3

1(k)
)
,

x2(k + 1) = x2(k) + τ
(
x1(k)− u(k)

)
, (12)
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Fig. 2. Optimal values µ∗R acquired from Lyapunov functions via solving
SOP1 in (9a) (i.e., purple curve) and SOP2 in (9b) (i.e., green curve).

where x1 = Ψ − 1, x2 = Ψ̂ − Ψ̄ − 2, with Ψ, Ψ̂, and Ψ̄
being, respectively, the mass flow, the pressure rise, and a
constant, u is the control input, and τ = 0.01. As shown
in [17], the closed-loop jet engine in (12) is homogeneous
with a controller

u=3x1−(x2
1 + 1)(y + x2

1y + x1y
2), where y= 2

x2
1 + x2

x2
1 + 1

.

We assume that the model is unknown to us. The main goal
is to construct a Lyapunov function via data collected from
trajectories of unknown system to show that the system is
GAS with respect to the equilibrium point (0, 0).

We fix the structure of our Lyapunov function as V(q, x) =
q1x

2
1 + q2x1x2 + q3x

2
2 with degree ν = 2. We also fix the

threshold εk = 0.07,∀k ∈ {1, . . . ,m} and the confidence
parameter β = 10−7 a-priori. By enforcing each coefficient
of the Lyapunov function within [−0.5, 0.5], we ensure that
λmax(P ) ≤ 1 as discussed in Remark 4.6. We assume γ ∈
{0.5, 0.7, 0.9} with the cardinality m = 3. Then according
to Lemma 4.7, we compute Lh1 = 5.15, Lh2 = 5.55,
and Lh3 = 5.95. By collecting samples from a unit circle
with a uniform distribution, we compute ε̄k = w( εk

Lhk

) =
2
π arcsin( εk

2Lhk

) (cf. Remark 4.4). The minimum number
of data required for solving SOP2 in (9b) is computed as
N = 8792.

After solving SOP2 (9b) with the acquired number of data,
the solution Φ∗ together with the optimal objective value of
SOP2 are computed as

V(q, x) = 0.09x2
1 + 0.03x1x2 + 0.1x2

2, µ
∗
N2

= −0.0872,

α1 = −0.5, α2 = 0.2936, α1 = α2 = 0.5.

Since µ∗N2
+ maxk εk = −0.0172 ≤ 0, according to

Theorem 4.3 and via the constructed Lyapunov function from
data, one can verify that the unknown jet engine compressor
is GAS with a confidence of at least 1− 10−7.

VI. DISCUSSION

In this work, we proposed a data-driven approach for the
stability analysis of discrete-time homogeneous nonlinear
systems with unknown models. We first reformulated the
original stability problem as a robust optimization program

(ROP) and provided two variants of scenario optimization
program (SOP) corresponding to the original ROP by col-
lecting a finite number of data from trajectories of the un-
known system. We then established a probabilistic closeness
between optimal values of SOP and ROP, and accordingly,
formally provided the stability guarantee of unknown sys-
tems based on the number of data and a guaranteed confi-
dence level. We illustrated our data-driven results over two
physical case studies with unknown dynamics. Developing a
data-driven approach for synthesizing stabilizing controllers
for discrete-time homogeneous nonlinear systems is under
investigation as a future work.

REFERENCES

[1] L. Wang, E. A. Theodorou, and M. Egerstedt, “Safe learning of
quadrotor dynamics using barrier certificates,” in Proceedings of the
International Conference on Robotics and Automation (ICRA), 2018,
pp. 2460–2465.

[2] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end
safe reinforcement learning through barrier functions for safety-critical
continuous control tasks,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, 2019, pp. 3387–3395.

[3] S. Sadraddini and C. Belta, “Formal guarantees in data-driven model
identification and control synthesis,” in Proceedings of the 21st Inter-
national Conference on Hybrid Systems: Computation and Control,
2018, pp. 147–156.

[4] K. Hashimoto, A. Saoud, M. Kishida, T. Ushio, and D. Dimarogo-
nas, “Learning-based safe symbolic abstractions for nonlinear control
systems,” arXiv:2004.01879, 2020.

[5] L. Lindemann, H. Hu, A. Robey, H. Zhang, D. V. Dimarogonas, S. Tu,
and N. Matni, “Learning hybrid control barrier functions from data,”
arXiv:2011.04112, 2020.

[6] G. C. Calafiore and M. C. Campi, “The scenario approach to robust
control design,” IEEE Transactions on Automatic Control, vol. 51,
no. 5, pp. 742–753, 2006.

[7] G. C. Calafiore, “Random convex programs,” SIAM Journal on Opti-
mization, vol. 20, no. 6, pp. 3427–3464, 2010.

[8] P. Mohajerin Esfahani, T. Sutter, and J. Lygeros, “Performance bounds
for the scenario approach and an extension to a class of non-convex
programs,” IEEE Transactions on Automatic Control, vol. 60, no. 1,
pp. 46–58, 2014.

[9] J. Kenanian, A. Balkan, R. M. Jungers, and P. Tabuada, “Data driven
stability analysis of black-box switched linear systems,” Automatica,
vol. 109, 2019.

[10] A. Rubbens, Z. Wang, and R. M. Jungers, “Data-driven stability
analysis of switched linear systems with sum of squares guarantees,”
IFAC-PapersOnLine, vol. 54, no. 5, pp. 67–72, 2021.

[11] C. De Persis and P. Tesi, “On persistency of excitation and formulas
for data-driven control,” in Proceedings of the 58th IEEE Conference
on Decision and Control (CDC), 2019, pp. 873–878.

[12] J. Coulson, J. Lygeros, and F. Dörfler, “Regularized and distribution-
ally robust data-enabled predictive control,” in Proceedings of the 58th
Conference on Decision and Control (CDC), 2019, pp. 2696–2701.

[13] T. Sanchez, D. Efimov, A. Polyakov, J. A. Moreno, and W. Perruquetti,
“A homogeneity property of discrete-time systems: Stability and
convergence rates,” International Journal of Robust and Nonlinear
Control, vol. 29, no. 8, pp. 2406–2421, 2019.
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