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Nonlinear Robust Control and Observation for

Aeroelastic Launch Vehicles with Propellant

Slosh in a Turbulent Atmosphere

Erwin Mooij∗and Xuerui Wang†

Delft University of Technology, Faculty of Aerospace Engineering,

Kluyverweg 1, 2629 HS Delft, The Netherlands

This paper focuses on the attitude control and propellant slosh suppression of aeroelastic
launch vehicles in a turbulent atmosphere. For a five-degree pitch-angle block command,
the tracking performance of the selected Incremental Non-Linear Dynamic Inversion Sliding
Mode Controller (INDI-SMC) shows excellent tracking performance. However, turbulence
still inevitably leads to oscillatory behaviour in the swivel command. Various filter designs
have been implemented to improve the smoothness of INDI-SMC. Using either a notch or
band-pass filter in the sensor-feedback loops of pitch angle and pitch rate only marginally
reduced the swivel oscillations, but did not solve the problem for the rigid-body control. For
the flexible launcher with slosh dynamics, filtering of the sensor-feedback signals reduced
the oscillations in swivel command, and elastic and slosh motion significantly, but could not
completely remove them. The preliminary design of a rigid-body state observer has been
included, and the results show that the INDI-SMC controller remains stable in the presence
of engine dynamics, sloshing, flexible modes, input errors due to the use of rigid-body and
slosh-state observers, while flying in a turbulent wind field.

I. Introduction

Launch systems, normally with long and slender bodies, may suffer from unwanted couplings between the
rigid-body and structural modes, leading to stability and controllability issues when not properly dealt with.
The high-frequency structural vibration modes can be excited by wind (gusts) and turbulence, and propa-
gate to rigid-body degrees of freedom. Apart from these coupling effects, launchers with liquid-propellant
propulsion systems also present the sloshing phenomenon, i.e., (a part of) the fuel and oxidiser move in
their corresponding tanks and induce perturbing accelerations. The sloshing effects can create a dynamic
coupling with the rigid and/or flexible body that is not trivial to suppress. This is further complicated by
the time-varying nature of the dynamic coupling, since the tank filling grades change significantly during
the flight.

In literature, researchers have been devoted to the dynamic analyses and control design for flexible
launchers with sloshing dynamics.1–3 However, many methods assume perfect knowledge of the slosh motion
by applying an equivalent mechanical model for control design. To design a realistic and effective control
framework for launch systems, our earlier work has focused on the effect of aeroelasticity on launch-vehicle
stability, controllability, and controller performance at a single point during the ascending flight,4 as well
as the additional effect of wind gust and turbulence during the trajectory from lift-off to burnout of the
first stage, taking transient effects into account.5 Moreover, to acquire the sloshing motions in real-time,
we designed a sliding-mode observer to estimate the slosh states of the LOX and RP-1 tanks of the first
stage.6 Simulations show that the observer converges in a few seconds and is adequate for real-time sloshing
suppression.
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†Assistant Professor, Section of Aerospace Structures and Computational Mechanics & Section of Control and Simulations,

x.wang-6@tudelft.nl, AIAA Member.

1 of 19

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
25

, 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

19
99

 

 AIAA SCITECH 2023 Forum 

 23-27 January 2023, National Harbor, MD & Online 

 10.2514/6.2023-1999 

 Copyright © 2023 by Erwin Mooij. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 

 

 AIAA SciTech Forum 



One of the primary control objectives for launch systems is attitude tracking. However, due to the coupling
effects, limit-cycle oscillations in both slosh states and swivel command can be present during an attitude
tracking task, which cannot be suppressed by a simple PD controller.6 To improve the control performance
and robustness, an Incremental Non-linear Dynamic Inversion Sliding Mode Control (INDI-SMC) system
was proposed in Ref. 7. INDI-SMC is a hybrid control framework derived for generic multi-input/multi-
output non-linear uncertain systems. Its robustness against model uncertainties, sudden actuator faults,
and structural damage has been demonstrated by Lyapunov-based analyses, numerical simulations, and
real-world quadrotor flight tests.8 As compared to the conventional model-based SMC designs in literature,
the control model dependency and sliding-mode control/observer gains are simultaneously reduced in the
INDI-SMC framework.

To the best of the authors’ knowledge, Ref. 7 presents the first INDI-SMC design for under-actuated
dynamic systems. By exploiting the null space, its sliding surface ensures the robustness of the controller
against unmatched uncertainties. The closed-loop stability is also guaranteed in the Lyapunov sense. This
method is applied to a command tracking problem of an aeroelastic launch vehicle with propellant slosh,
and is compared with an Linear-quadratic Regulator (LQR) and a conventional SMC based on Feedback
Linearisation (FL). In the nominal case, it has been demonstrated that conventional INDI control (without
slosh-state feedback) is unable to suppress the slosh dynamics. On the contrary, LQR, FL-SMC, and the
proposed INDI-SMC can suppress the sloshing dynamics while tracking the attitude commands. A sensitivity
analysis also showed that INDI-SMC and FL-SMC can more effectively damp out the slosh motions than
the LQR. Moreover, INDI-SMC leads to the smallest pitch-angle tracking error.7

The robustness of the controller to parametric uncertainties and un dynamics (aeroelastic modes and
engine dynamics) have been verified by Monte-Carlo studies. It has been shown that the system using LQR
has many outliers requiring significant control efforts. Moreover, INDI-SMC has better nominal performance,
as well as smaller values for the maximum outliers than FL-SMC. The slosh energy using INDI-SMC is
lower as well. It is noteworthy that INDI-SMC also requires less model information than FL-SMC. Various
performance metrics have verified the superior robustness of INDI-SMC, including the integrated state
deviation and the slosh motions.

Despite the promising robustness of INDI-SMC against parametric uncertainties, aeroelastic modes, and
engine dynamics, its performance in a turbulent atmosphere has not been studied before. A turbulent
atmosphere imposes both low-frequency and high-frequency excitations to the launch system, which induce
motions and couplings in rigid-body, aeroelastic, sloshing, engine swivel degrees of freedom. To address this
challenging task, in this paper we will study the effect of a turbulent wind field on the controller performance
of a conventional, aeroelastic launch vehicle with sloshing. Both sensor and actuator-command filtering will
be considered, and if this does not guarantee smooth control, the development of a rigid-body state observer
will be considered.

As a reference, the two-stage PacAstro launcher for small payloads up to 225 kg has been selected for
continuity of the research and the availability of launcher dataa. The launcher is treated as a flexible beam
with lumped masses to account for the subsystems and the fuel.4–6 Modelling of the slosh motion will be
done for oxidiser and fuel separately, with one tank each per stage of the selected two-stage launcher.

The layout of this paper is as follows. Section II will discuss the simulation model. Section III presents
the incremental sliding mode controller. Next, in Sec. IV, the results of the study are shown. Section V gives
and overview of the rigid-body state observer design, and the effect it has on the controller performance.
Finally, Sec. VI concludes this paper with final remarks.

II. Flight-Dynamics Model

For stability and controllability studies of flexible launchers, it is common practise to focus on pitch-plane
motion only, and then even considering a linearised system that represents the error dynamics. Following
this approach, in previous work the state-space model for a flexible launcher with engine dynamics and
coupled slosh dynamics has been derived.4,10 In this section we will summarise this model, but refrain from
the detailed mathematical expressions; the reader is referred to the earlier mentioned references.

aPacAstro was a US transportation service company, formed in 1990, to provide low-cost transportation of small satellites
to Low Earth Orbit for approximately $5 million per launch using proven technology.9 Unfortunately, the launcher never came
to operation despite several engine tests and three launch contracts, due to the lack of development funding. The company
ceased to be in 1997.
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Figure 1. Flexible vehicle definitions Figure 2. Slosh configuration of the flexible launcher

The flexible-launcher configuration that serves as the basis for the state-space model describing the error
dynamics is shown in Fig. 1. Input to this error-dynamics model is a modal description as a function of
current mass, the normal-load and pitch-moment distribution, and, of course, the flight conditions. The
launcher is assumed to move with a steady-state velocity u0. Its rotational states are the pitch angle, θ, and
its derivative the pitch rate, q, and the angle of attack, α, that originates from the vertical velocity, and has
been added to allow for adding wind effects as a perturbation in angle of attack. The local deformation is
determined by the combination of thrust, T , gravity, mgd, aerodynamic normal force, N , and aerodynamic
pitch moment, M . The structural model is represented by a (discretised) flexible beam, and its modal shapes
have been used to include the effects of elastic-line deformation in the aerodynamic coefficients. Finally, the
engine is assumed to be 100% throttleable (albeit that in the current study the thrust is assumed constant),
and its direction is given by the swivel angle, εT . The swivel is modelled as a third-order dynamics system,
and its commanded input, εT,c, is the only control variable.

The liquid motion in the fuel and oxidiser tanks will introduce perturbing accelerations that affect the
motion of the launcher. Besides the actual slosh dynamics, sloshing will introduce coupling effects with
the rigid translational and rotational motion, as well as with the flexible-body dynamics. In Fig. 2 the
configuration of the flexible launcher is shown, with two slosh masses, ms,1 and ms,2, for the RP-1 and LOX
tanks of the first stage, and two for the second stage (ms,3 and ms,4). However, in this paper it is assumed
that the second-stage tanks are completely filled and do not experience any sloshing. The slosh model for a
cylindrical tank (partially) filled with fuel or oxidiser is based on a damped mass-spring system, developed
by Abramson in the 1960s.11,12

In its general form, the system equation of the extended state-space model that is used for the plant
(launcher) is given by

Eẋ = Ax + Bu (1)

or

ẋ = E−1Ax + E−1Bu = A′x + B′u (2)

with the state and control vector given by xT =
(
α θ q ε̈T ε̇T εT η̇1 η1 ... η̇nf ηnf żs,1 zs,1 ... żs,ns zs,ns

)T
and

u = εT,c (the commanded swivel angle), respectively. The matrices A and B are the system and control
matrix, respectively, whereas E is the (coupled) mass matrix.

Flying through a wind field will affect the angle of attack of the launcher, and will induce a perturbing
pitch moment that is to be compensated for by the controller. The launcher used in this study is unstable
for the design point under consideration (Cmα > 0), such that analysing the control-system performance
in a perturbing wind environment is a necessity. Currently, we will restrict ourselves to wind turbulence,
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Figure 3. Induced angle of attack due to wind turbulence. From the insert a principal component with a
frequency of about 2.5 Hz can be established.

which is modelled with Dryden spectral densities, as a white noise passing through a linear, rational fil-
ter.13,14 Parameters used are a scale length at medium/high altitudes of Lw = 1100 m, a gust intensity of
σw = 1.73 m/s, and a probability of exceedance of high-altitude intensity of 10−3 (moderate conditions).
The model is evaluated as a function of altitude, h, and flight velocity, u0, and will, in this case, produce
a noisy wind component in the Z-direction, ∆w. This can be converted to an equivalent angle-of-attack
perturbation of ∆αt = ∆w

u0
. This perturbation is added as a forcing function to the state-space model, by

creating a second input and extending the input matrix B with a copy of the first column of A (the one
associated with α). As such, the system will respond to ∆αt as it would to α. In Fig. 3 the induced angle
of attack due to wind turbulence is shown, for the point of maximum dynamic pressure (h = 11,546 m, V
= 508.1 m/s, yielding a Mach number of M = 1.90). The induced angle of attack varies between ±0.4◦.
Despite the noisy pattern, one of the primary frequencies in the signal is one with a frequency of about 2.5
Hz. This frequency will show up later in the response results as well.

For the non-linear controller design to be discussed in the next section, we reformulate the above state-
space system, and group some of the coupling effects and the engine dynamics. The error-dynamic model is
now written in the following form:10

θ̈ − 1

Iyy

2∑
j=1

ms,j`s,j z̈s,j = fq(t,x, u) +
T −D
mIyy

ns∑
j=1

ms,jzs,j (3)

z̈s,j + u0α̇− `s,j q̇ +

nf∑
i=1

φi(xs,j)η̈i =
T −D
m

θ − 2ζs,jωs,j żs,j − ω2
s,jzs,j (4)

α̇+
1

mu0

2∑
j=1

ms,j z̈s,j = fα(t,x, u, αdis) (5)

η̈i +

2∑
j=1

ms,jφi(xs,j)z̈s,j = fη(t,x, u) (6)

In the above equation, θ and α represent the rigid-body states of the launch vehicle. The slosh dynamics
is modelled as two mass-spring-damping systems (the primary mode for each tank in the first stage), where
ms,j represents the slosh mass, ωs,j and ζs,j are the eigenfrequency and damping ratio of the jth slosh
mode, and zs,j is the (position) state for the jth slosh mode. T and D denote the total thrust and drag,
respectively, whereas αdis in fα represents the angle of attack induced by external atmospheric disturbances
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(include discrete gusts and turbulence). Finally, ηi is the generalised coordinate of the ith flexible mode, and
the coupling between flexible and slosh modes is enforced through the modal shape function, φi, at the axial
slosh location xs,j . For now, only two flexible modes with ωf,1 = 37.1 rad/s and ωf,2 = 119.8 rad/s will be
considered.

III. Control Design

This paper aims at simultaneously achieving different control objectives using a single control input u.
First of all, the controller should guarantee the stability of the closed-loop system. Then, the controller aims
at driving θ towards its reference θc. The slosh dynamics should also be damped. Finally, the controller
should be able to reject external disturbances and be robust to model uncertainties.

To begin with, fq(t,x, u) in Eqs. (3)-(6) is explicitly written as

fq(t,x, u) =
Cmq q̄Srefdref

Iyy
q +

Cmα q̄Srefdref

Iyy
α+

nf∑
i=1

aq,η̇j η̇j +

nf∑
i=1

aq,ηjηj +
LeT

Iyy
u (7)

with q̄ being the dynamic pressure, and u = εT,c the commanded swivel angle, the only control input to the
system.

Denote the acceleration along the elastic axis as ax = T−D
m , using Eqs. (3) through (7), the dynamics of

the launch vehicle are expressed as


1 −ms,1`s,1Iyy

. . . −ms,ns`s,nsIyy

−`s,1 1 +
ms,1
m . . .

ms,ns
m

...
. . .

−`s,ns
ms,1
m . . . 1 +

ms,ns
m




θ̈

z̈s,1
...

z̈s,ns

 =


Cmq q̄Srefdref

Iyy
0 . . . 0

0 −2ζs,1ωs,1 . . . 0
...

. . .

0 0 . . . −2ζs,nsωs,ns




θ̇

żs,1
...

żs,ns



+


0

axms,1
Iyy

. . .
axms,ns
Iyy

ax −ω2
s,1 . . . 0

...
. . .

ax 0 . . . −ω2
s,ns




θ

zs,1
...

zs,ns

+


LeT
Iyy

0
...

0

u+


Cmα q̄Srefdref

Iyy
α+

∑nf
i=1 aq,η̇j η̇j +

∑nf
i=1 aq,ηjηj

−u0fα −
∑nf
i=1 φi(xs,j)η̈i
...

−u0fα −
∑nf
i=1 φi(xs,j)η̈i

 (8)

Equation (8) can be written in a condensed form as

Msẍ = −Csẋ−Ksx + Bsu+ ds (9)

The state vector is defined as x = [θ, zs,1, zs,2, . . . , zs,ns ]
T. Since 0 < ms,j < m for all j, the mass matrix

Ms in Eq. (9) is always invertible. The non-zero off-diagonal elements of Ms reflect the inertial couplings
between the pitch and slosh dynamics. From Eq. (9), the launch-vehicle pitch dynamics is written as

θ̈ = fθ(θ̇, θ, żs,j , zs,j) +Gu+ dθ (10)

in which fθ represents the first row of Ms
−1(−Csẋ−Ksx), while dθ represents the first row of Ms

−1ds in
Eq. (9). The control effectiveness G equals the first row of Ms

−1Bs.

Assumption 1 G is non-singular for all t.

A. Partial Feedback Linearisation

The dynamic system given in Eq. (8) contains coupled rigid-body pitch and slosh dynamics. However, there
is only one single control input to the system. Therefore, the control problem of simultaneously stabilising θ
and slosh states becomes an under-actuated problem. Since rigid-body motion control has higher priority, the
controlled output variable is selected as y = θ. The sensor-based Incremental Non-linear Dynamic Inversion
(INDI) was proposed in Ref. 7. Recently, INDI was generalised to generic multi-input/multi-output non-
linear systems.15 The partial input-output feedback linearisation can also be achieved by INDI. Denote the
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sampling interval as ∆t. Taking the first-order Taylor series expansion of Eq. (10) around the condition at
t−∆t (denoted by the subscript 0) results in

θ̈ = fθ(θ̇, θ, żs,j , zs,j) +Gu+ dθ

= θ̈0 +
∂fθ

∂θ̇

∣∣∣∣
0

∆θ̇ +
∂fθ
∂θ

∣∣∣∣
0

∆θ +

ns∑
j=1

∂fθ
∂żs,j

∣∣∣∣
0

∆żs,j +

ns∑
j=1

∂fθ
∂zs,j

∣∣∣∣
0

∆zs,j +G0∆u+ ∆dθ +R1 (11)

where ∆(·) represents the variations of (·) in one sampling interval ∆t. R1 in Eq. (11) is the expansion
remainder. The incremental control is designed as

∆u = (ν − θ̈0)/Ĝ0 (12)

The actual actuator control command equals u = u0 + ∆u, where u0 is the control input at t − ∆t.
Substituting Eq. (12) into Eq. (11) leads to

θ̈ = ν + (G0 − Ĝ0)∆u+ ∆dθ +

∂fθ
∂θ̇

∣∣∣∣
0

∆θ̇ +
∂fθ
∂θ

∣∣∣∣
0

∆θ +

ns∑
j=1

∂fθ
∂żs,j

∣∣∣∣
0

∆żs,j +

ns∑
j=1

∂fθ
∂zs,j

∣∣∣∣
0

∆zs,j +R1


, ν + (G0 − Ĝ0)∆u+ ∆dθ + δ(x, ẋ, t) , ν + εindi (13)

In Eq. (13), δ(x, ẋ, t) represents the closed-loop value of the state variations and expansion remainders.
εindi is the lumped uncertainty term under INDI control.

Assumption 2 The lumped variation term δ(x, ẋ, t) in Eq. (13) satisfies |δ(x, ẋ, t)| ≤ δ̄.

In view of Eq. (8), x is twice continuously differentiable. Therefore, lim∆t→0 ‖∆x‖2 = 0 and lim∆t→0 ‖∆ẋ‖2
= 0. If the first-order and second-order partial derivatives of fθ with respect to x and ẋ are bounded, then
it can be seen from Eq. (13) that the absolute value of δ(x, ẋ, t) approaches zero as ∆t decreases. Therefore,
this assumption can be met by the selection of a sufficiently small sampling interval.

Proposition 1 (Ref. 7) Under Assumptions 1 and 2, if |1 − G/Ĝ| ≤ b̄ < 1 for all t, then for sufficiently
small sampling interval ∆t, the residual error εindi in Eq. (13) is ultimately bounded.

B. Virtual Control Design

To simultaneously achieve rigid-body state tracking and slosh suppression, the incremental sliding mode
control (INDI-SMC) will be used. Define the new state vector as X = [θ̇, θ, żs,1, zs,1, . . . , żs,ns , zs,ns ]

T,

and define its reference vector as Xref = [θ̇ref, θref, 0, 0, . . . , 0, 0]T, then the dynamics of the tracking error
e = X−Xref are written as7

ė = AX + Bν + d− Ẋref = ÂX + B̂ν + (A− Â)X + (B− B̂)ν + d− Ẋref (14)

where only the estimated Â and B̂ are available for control-system design. The model uncertainties and
external disturbances can be classified into matched and unmatched uncertainties. Because εndi/indi enters
the state equation at the same point as the virtual control input ν, it is a matched uncertainty term. Although
sliding mode control has inherent robustness to matched uncertainties, the sliding surface should be carefully
designed to ensure the robustness to unmatched uncertainties, which in this case, are the uncertain system
elements ai,j , i = 1, ..., ns, j = 1, ..., 2ns + 2, b1, ..., bns , and d1, ..., dns .

Design the sliding surface as s = CTe = 0, where C ∈ R(2ns+2)×1. This vector C is designed such that
the unmatched uncertainties belong to the null space of CT, while CTB̂ should still be invertible. In this
paper, C is designed as

C = [1, cθ, 0, c1, . . . , 0, cns ]
T (15)

The following equations can be verified

CT(A− Â) = 0, CT(B− B̂) = 0, CTB̂ = 1, CTd = εndi/indi (16)
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Lemma 1 (Ref. 17) If a Lyapunov function V satisfies V̇ + αV + βV γ ≤ 0, α, β > 0, 0 < γ < 1, then

V = 0 will be reached in finite time T ≤ 1
α(1−γ) ln αV 1−γ(t0)+β

β .

Theorem 1 (Ref. 7) For the system modelled by Eq. (14) with sliding surface s = CTe = 0, where C is

given by Eq. (15), design ν = −k1s− k2|s|ρsign(s)−CTÂX + CTẊref, k1 > 0, k2 > η > 0, 0 < ρ < 1, then

1. In the absence of the perturbation term εndi/indi, s = 0 is reached in finite time.

2. If the perturbation term εndi/indi is bounded, then the system trajectories will converge to the neigh-

bourhood of s = 0 as s ≤ s̄ndi/indi = (|εndi/indi|/(k2 − η))
1
ρ in finite time.

It is noteworthy that the sliding surface designed in this paper guarantees that all the unmatched uncer-
tainties belong to the null space of CT, and the resulting dynamics is only perturbed by εndi/indi, which lies
in the input channel of ν.

On the sliding surface, the equivalent virtual control is νeq = −CTÂX + CTẊref, which is calculated by
substituting s = 0 into the ν given in Theorem 1. Therefore, the equivalent closed-loop dynamics is

ė = AX + Bν + d− Ẋref = AX + B(−CTÂX + CTẊref) + d− Ẋref (17)

Since CT(A− Â) = 0 (Eq. (16)), then

ė = (I−BCT)AX− (I−BCT)Ẋref + d (18)

Consider θref as a piecewise linear signal such that θ̈ref = 0. Because Xref = [θ̇ref, θref, 0, 0, . . . , 0, 0]T. It
can be seen that Ẋref = AXref. Substituting this equation into Eq. (18) yields

ė = (I−BCT)Ae + d , Aee + d (19)

Although Ae ∈ R(2ns+2)×(2ns+2), it can be examined that the rank of Ae equals 2ns+1. This shows that
on the sliding surface, the closed-loop system behaves as its reduced dynamics. To analyse the stability of
the reduced-order dynamics, select er = Te, where T ∈ R(2ns+1)×(2ns+2), and ensure the rank of T equals
2ns + 1. Without loss of generality, select er = [eθ, żs,1, zs,1, . . . , żs,ns , zs,ns ], then Eq. (19) is rewritten as(

ėθ̇
ėr

)
=

[
A11 A12

A21 A22

](
eθ̇
er

)
+

(
εndi/indi

dr

)
(20)

On the sliding surface, s = CTe = [1, cθ, 0, c1, . . . , 0, cns ]e = 0. Therefore, ėθ̇ = −[cθ, 0, c1, . . . , 0, cns ]er.
Substituting this relationship into Eq. (20), the reduced-order dynamics is

ėr = A22er −A21[cθ, 0, c1, . . . , 0, cns ]er + dr , Arrer + dr (21)

Recall Eq. (8), dr contains the aerodynamic force fα and the elastic perturbations. A part of these
perturbations vanishes at the origin (α = q = zs,j = ηi = 0), while the remaining terms caused by the
disturbing angle of attack αdis are non-vanishing perturbations, thus the following assumption is made:

Assumption 3 In Eq. (21) ‖dr‖2 ≤ γd‖er‖2 + εd.

Theorem 2 (Ref. 7) Under Assumption 3, if C in Eq. (15) is designed such that Arr in Eq. (21) is Hurwitz,
and if γd <

1
2‖P‖2 , where P = PT > 0 is the solution of the Lyapunov function PArr + AT

rrP = −I, then on

the sliding surface s = CTe = 0, the tracking error vector e in Eq. (14) is ultimately bounded.

A block diagram for INDI-SMC is shown in Fig. 4.
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+
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= plant related

  = control related
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Figure 4. Block diagram for INDI-SMC.

IV. Results and Discussions

The analysis of controller performance will be done in several steps, using previously designed controllers
first to establish a benchmark6,7 for the rigid-body configuration flying through a turbulent wind field. The
first controller is a state-feedback controller with feedback signals on pitch angle, pitch rate and the slosh
states on position and velocity (one mode per tank),6 effectively making this a PD controllerb. The second
controller is the earlier discussed INDI-SMC controller.7

For the actual study, the configuration of the plant is that of a flexible-body representation of the
launcher, with a LOX and RP-1 tank in the first stage that can exhibit sloshing. The point of interest is that
of maximum dynamic pressure, i.e., at t = 63.5 s into the launch. Information about the launch trajectory,
and the details about the state variables can be found in Ref. 4.

For both controllers, initially perfect state knowledge on both the rigid body and the two slosh modes
is assumed. The slosh observer developed in Ref. 6 has shown to be working well to provide slosh-state
knowledge. In Sec. V also a (rigid-)state observer will be included, i.e., one that works well in the presence
of turbulence and other uncertainties, and its interaction with the slosh observer. It is stressed that the
angle of attack is not fed back to the controller. Any turbulence-induced angle of attack is therefore treated
as a perturbation that will excite the rigid-body motion through the (unstable) aerodynamics acting on the
system.

To minimise slosh excitation due to discrete command changes, a first-order pre-filter that smoothens
the command is included in the pitch-angle channel. The transfer function of this command shaper is given
by

Hc(s) =
1

τs+ 1
(22)

with time constant τ = 1.25 s.
From earlier results, we had found that some form of actuator-dynamics estimation is required to avoid

excitation of this dynamics by abrupt changes in actuator commands.7 The simple solution applied consists
of including a low-pass filter in the feedback loops of εT,0, i.e., the engine state at the previous sample, and
q̇, the angular acceleration. Even when no actuator dynamics is simulated, these low-pass filters help to
smoothen the transient response. The first-order low-pass filter (with a bandwidth equal to ωa = 30 rad/s)
is given by

Ha(s) =
ωa

s+ ωa
(23)

The manoeuvre that will be executed is a step command in pitch angle, i.e., θc = 5◦. In succession,
we will discuss the rigid-body results in Sec. IV.A, starting with the benchmark and then trying to find

bThe controller is a Linear Quadratic Regulator, designed for a relatively smooth response with a maximum state deviation
of ∆θ = 1◦, ∆q = 5◦/s, ∆żs = 30 m/s and ∆zs = 40 m. The latter two large deviations have been selected to avoid a
strong controller response due to more violent slosh motion. With a maximum swivel angle of ∆εT = 6◦, this gives the gains

Klqr =
(

6.07 1.37 −0.0045 −0.0154 −0.0027 −0.0148
)

, associated with states θ, q, żs,1, zs,1, żs,2 and zs,2.
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Figure 5. Benchmark performance for rigid launcher: θc = 5◦, turbulent wind field.

Table 1. Sensor-filter constants and parameters

c2 c1 c0 ζco ωco

Low-pass filter 0.0 0.0 1.0 1.00 to be selected

Notch filter 1.0 0.0 1.0 0.60 to be selected

Band-pass filter 0.0 2 ζco 0.0 0.16 to be selected

solutions to reduce the influence of turbulence. Then, in Sec. IV.B flexibility and sloshing are included in
the model. Finally, in Sec. IV.C a third-order model representing the engine dynamics is added, such that
the effect of a more realistic actuator model can be studied as well.

A. Rigid-Body Configuration

The first result for the rigid-body simulation is that of a commanded step in pitch angle of θc = 5◦ at t
= 10 s. After ∆t = 15 s, the command is released and the system should go back to equilibrium. In Fig.
5 the result is shown for both the PD controller and the INDI-SMC. Both controllers seem to be handling
the turbulence quite well, although the swivel command is not smooth, and exhibits the random pattern
induced by the perturbing angle of attack.

From inspecting the results, it is clear that the PD-controller performance is not optimal, showing an
overshoot of about 0.5◦ (= 10%). On the other hand, the random oscillation in the swivel command is less
than that of the INDI-SMC. Both controllers operate with the same frequency (fcontrol = 100 Hz), but the
gains in each controller are different. The INDI-SMC has larger gains, which results on one hand in a much
tighter command tracking, but on the other hand in a stronger noise amplification. Without loosing out on
command tracking, the task at hand will be to find a solution to remove the noise. As the INDI-SMC has
proven to be an otherwise very robust controller,7 this will be the focus of the remaining research.

As a first step we will restrict ourselves to the category of filters, which we used in previous research to
filter out vibrations in the sensor feedback due to the flexible motion:18 a low-pass filter, a notch filter, and
a band-pass filter. The generalised transfer function of the (second-order) filter is

Hb(s) =
c2s

2 + c1ωcos+ c0ω
2
co

s2 + 2ζcoωcos+ ω2
co

(24)

where c0, c1, and c2 are constants, and ζco and ωco are the damping and cut-off frequency, respectively.
Different values for the constants and parameters will determine the type of filter. In Table 1 the relevant
data are listed. The selection of cut-off frequency will be analysed through a Monte-Carlo analysis.
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Figure 6. Transient response for flexible launcher with sloshing: θc = 5◦, turbulent wind field. Top to bottom:
low-pass, notch and band-pass filter in both feedback loops.

For the analysis, we will evaluate the performance indices defined and explained in Appendix A: the
integrated state deviation,

∑
θerr

, integrated control effort,
∑
εT

, and the corresponding oscillation indices, Fθ

and FεT . For both feedback of θ and q (representing “sensor measurements”) one of the available filters will
be inserted, where the cut-off frequency is varied between 20 and 100 rad/s. The following five configurations
are analysed:

1. Low-pass filter for both θ and q,

2. Low-pass filter for θ and a notch filter for q,

3. Notch filter for θ and a low-pass filter for q,

4. Notch filter for both θ and q, and

5. A band-pass filter for both θ and q.

A total of N= 100 simulations will be run, while varying ω2
co,θ and ω2

co,q. This number of simulations was
chosen due to the non-linear relationship between the filter parameters and the performance indices.

In Fig. 6, a subset of the results has been plotted, i.e., the low-pass, notch and band-pass filter in both
feedback loops, whereas the runs with a large oscillation (> 50◦ s) have been removed for ease of visualisation.
The low pass filter does not reduce the oscillations at all, and of the other two the notch filter is performing
slightly better, both in terms of integrated pitch-angle error and swivel-angle oscillation.

Of course, a simultaneous reduction in both indices is required for a good performance, so to check that
the results for the notch and band-pass filter are plotted in a scatter plot as well (Fig. 7). It confirms
that the combined performance of the notch filter is marginally better, although the band-pass filter has the
smaller oscillation values, albeit with minimum difference. But, as far as performance improvement goes,
neither filter is able to remove the oscillations due to turbulence.

A similar analysis was done with either a low-pass, notch or band-pass filter in the swivel-command loop.
However, any cut-off frequency selected between 20 and 100 rad/s made the performance worse, with the
the higher frequency approaching the situation without filter. This led to believe that filtering the signal
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Figure 7. Swivel-angle oscillation versus integrated pitch-angle error, for the notch filter (top) and band-pass
filter (bottom).

with at least these three filters would not solve the problem. Also the combination with the earlier discussed
sensor filters would not yield the same performance as those without the actuator filter.

B. Flexible Launcher with Sloshing

The effect of turbulence on the flexible launcher with sloshing effects included is a lot more severe compared
to the rigid-launcher response. Figure 8(a) shows the response to the same step function as before. The
initially diverging oscillations of the swivel seem to have reached an oscillation with constant amplitude of
±1.7◦. This is, of course, not good for the hardware involved. Also, even though the pitch angle is only
marginally “vibrating”, inspecting the flexible modes and the slosh motion, shows significant activity.

By including band-pass filtersc in the sensor feedback loops for both θ and q, and after limited variation
selecting ωco,θ = ωco,q shows a significant improvement (Fig. 8(b)), not only significantly reducing the
amplitude, but also suppressing the divergent behaviour. It goes without saying that the smaller swivel
oscillation will have a positive effect on the elastic vibrations and slosh motion.

The remaining oscillations in swivel angle has the already mentioned frequency of about 2.5 Hz, see the
insert in the figure. We could see a similar frequency in the induced angle of attack due to the turbulent
wind field (Fig. 3). Why this frequency remains so visibly present in the response remains to be studied.

To try and reduce the swivel oscillation even more, we will search for more optimal values for ωco,θ and
ωco,q. Doing this with a limited Monte Carlo analysis and selecting the filter-frequency combination that
gives the lowest swivel oscillation index, yields ωco,θ = 94.7 rad/s and ωco,q = 30.4 rad/s. The resulting
response plots are given in Figs. 9 and 10.

The rigid-body response in Fig. 9(a) shows that only a small oscillation is left in the swivel angle, slightly
larger than the one for the actual rigid launcher (Fig. 5). The minor amplification is due to the coupling
with the flexible mode and the slosh dynamics. Despite being more irregular, the 2.5 Hz frequency can still
be found in the signal. It is even clearer by looking at the flexible mode (Fig. 9(b)), where a very distinct
2.5 Hz signal can be seen.

It is also obvious that with stronger control actions, i.e., when the step commands are executed, both
the flexible mode and the slosh dynamics are excited to large values. This, in turn, will have a cross coupling
with the swivel command, seen as some “spiky” oscillations. The slosh masses clash with the tank wall, as
seen in the constrained positions in Fig. 10.

cBand-pass filters have been selected over notch filters, as the phase lag induced by band-pass filters was found to be smaller
in a previous study.18 As the filtering performance of either filter is almost the same, the band-pass filter would be the preferred
choice.
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Figure 8. Transient response for flexible launcher with sloshing: θc = 5◦, turbulent wind field.

0 10 20 30 40 50 60 70
time (sec)

0

2

4

6

pi
tc

h 
an

gl
e 

(d
eg

) command
INDI-SMC response

0 10 20 30 40 50 60 70
time (sec)

-2

-1

0

1

2

sw
iv

el
 a

ng
le

 (
de

g)

(a) Rigid body

0 10 20 30 40 50 60 70
time (sec)

-0.5

0

0.5
E

la
st

ic
-m

od
e 

''v
el

oc
ity

'' 
(-

)

0 10 20 30 40 50 60 70
time (sec)

-0.15

-0.1

-0.05

0

0.05

0.1

E
la

st
ic

-m
od

e 
''p

os
iti

on
'' 

(-
)

no turbulence

(b) Filtered

Figure 9. Transient response for flexible launcher with sloshing and optimal feedback-signal filtering: θc = 5◦,
turbulent wind field.

Despite these strong dynamics effects, the INDI-SMC handles itself well. But once more, the conclusion
is clear that the (simple) sensor filtering applied here is not sufficient to counter the perturbing effect of
wind turbulence. In Sec. V, a rigid-body state estimator/observer will be developed that will smoothen the
sensor feedback.

C. Flexible Launcher with Sloshing and Engine Dynamics

The simulations so far were restricted to the flexible launcher with ideal actuator dynamics, albeit that
a filter was included in the feedback-control loop of the INDI-SMC to avoid discrete changes in actuator
commands, see Eq. (23). However, in earlier research the engine was assumed to be an electro-hydraulic
servo system, approximated by a third-order system:4(

s3 + 2ζeωes
2 + ω2

es+Keω
2
e

)
εT = Keω

2
eεT,c (25)
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Figure 10. Transient response for flexible launcher with sloshing and optimal feedback-signal filtering: θc =
5◦, turbulent wind field.

with the amplification factor Ke = 15, the natural frequency ωe = 50 rad/s, and the damping ζe = 0.7.
Input to the model is the commanded swivel angle, εT,c, whereas the output is the actual angle, together
with the swivel acceleration and velocity. Including this model, however, shows that the response becomes
highly oscillatory even without the turbulent wind field, yet remains stable.

For the continuation of the research, this is an issue to be solved. Two aspects appeared to be important.
In the first place, the actuator filter Eq. (23) interfered with the engine dynamics, and was therefore removed.
This also applied to the sensor filter, studied in the previous section. In the second place, the step command
with command-shaping function Eq. (22) had to be adjusted. Despite the fact that this shaping function
smoothens the command when reaching the setpoint, it still has a discrete change in gradient when the
command is given. The engine dynamics is excited in a sort of bang-bang mode because of this, resulting in
strong variations in angular pitch rate and acceleration. These large-amplitude oscillations are very hard to
handle by any controller.

The smooth step function that is implemented is given by the sigmoid function, chosen because of its
differentiable property up to any order:

fr(t) =
1

1 + e−at
(26)

The difference with the command-shaping filter is shown in Fig. 11.
The last change that was studied for this most complete (and dynamic) model, is whether the current

controller parameters are still the best choice. Variation of the design parameters as indicated in Fig. 4,
i.e., C, k1, k2, ρ (according to theory, limited to values betwee 0 and 1), and the control effectiveness Ĝ in a
simple Monte-Carlo variation, led to a change of parameters, as shown in Table 2. Here, sG is a scaling factor
with which Ĝ is multiplied; a value smaller than one implies a larger effect and hence more of an oscillation
suppression. Note that only a limited study on the variation of the parameters has been performed. A more
detailed analysis will be carried out in the final version of the paper.

The resulting response for the flexible launcher with engine dynamics and slosh is shown in Figs. 12
and 13. It is clear from the comparison with Figs. 8 and 9 that the response has improved a lot, and most
oscillations have been removed from the swivel command. Also the slosh motion is slower, although a small
oscillation in the slosh states remains, due to a lack of damping. This could possibly reduced by further
optimising the controller design. The first flexible mode is coupled to the slosh modes, as a similar oscillation
can be observed in the flexible “position”. However, also a small-amplitude vibration in the “velocity” is
observed for the case with turbulence, which will hopefully be reduced once a proper navigation filter is
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Figure 11. Difference between normal block function, block with command shaper, and a smooth block
function. Differences have been exaggerated.

Table 2. INDI-SMC design-parameter update.

Parameter Old value7 New value

C
[
1 8 0 −0.06 0 −0.03

] [
1 9.95 0 −0.075 0 −0.037

]
ρ 0.80 0.99

k1 5.00 2.53

k2 5.00 4.18

sG 1.00 0.81
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Figure 12. Full-model response with relaxed step command and updated controller: pitch response and swivel
angle.

designed.
A final response test is done by changing the step input. In the previous test, the sigmoid function,

Eq. (26), was applied with a = 2. Reducing this to a = 1 gives the results shown in Fig. 14. The slosh
states behave very well now, and the undamped oscillation from before is gone (note that the case without
turbulence is shown). When gust/turbulence is encountered, then naturally the rigid-body motion and
the sloshing motions are both excited in the open-loop case. By contrast, with the closed-loop controller
presented in this paper, the rigid-body and sloshing dynamics are damped and smoothened, by virtue of
the active anti-disturbance actions of the control input. This phenomenon has also been seen in previous
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Figure 13. Full-model response with relaxed step command and updated controller: first flexible mode.
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Figure 14. Full-model response with relaxed step command.

disturbance rejection research of nonlinear incremental control.16 This result also shows the need to reflect
on the manner how the guidance commands are issued. In case no mechanical means are present to damp
the slosh motion, this may a good solution to avoid potential control problems.

V. Rigid-State Observer Design

The slosh observer as applied above6 works very well, provided that there is sufficiently accurate knowl-
edge about the rigid-body states, most notably the pitch angle and pitch rate. These two parameters are
also fed back to the INDI-SMC, thus the development of a rigid-state observer seems to be the next logical
step. This development is briefly discussed here, and is part of on-going research. Note that the addressed
changes discussed earlier (smooth step input, feedback filters) have been included where appropriate.

The rigid-body part of the complete system is by nature a linearised version of the system dynamics.
Therefore, to explore filtering techniques it makes sense to begin with a very basic state estimator, i.e., the
linear Kalman filter. In terms of sensor measurements, it is currently assumed that the rigid-body state is
available through noisy measurements. No sensors have yet been modelled, and even though we are aware
of this limitation, the current exercise will show first stability of the controlled system, including engine
dynamics, sloshing, flexible modes, and input errors due to the use of rigid-body and slosh-state observers.
The applied noise is normally distributed white noise with 1σ = 0.18◦ for α and θ and 0.018◦/s for q.
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Figure 15. Filtering of rigid-body states with a linear Kalman filter: pitch angle, swivel angle and slosh states.

0 10 20 30 40 50 60 70
time (sec)

-1

-0.5

0

0.5

1

E
la

st
ic

-m
od

e 
''v

el
oc

ity
'' 

(-
)

mode #1
mode #2

0 10 20 30 40 50 60 70
time (sec)

-0.2

-0.1

0

0.1

0.2

E
la

st
ic

-m
od

e 
''p

os
iti

on
'' 

(-
)

mode #1
mode #2

Figure 16. Filtering of rigid-body states with a linear Kalman filter: elastic-body states.

Using the Kalman-filter output as input to the controller, including a pitch acceleration differentiated
from the estimated (noisy) pitch rate, the results as shown in Figs. 15 and 16 are obtained. These are
obviously not the ideal results, but they serve as indication that the loop can indeed be closed for a very
complex model with many different dynamics effects, as well as two state observers and a vehicle embedded
in a turbulent wind field. The pitch response shows that the pitch angle is actually accurately captured.
However, the swivle angle exhibits a very noisy behaviour, due to the effect of noisy measurements and
the turbulent wind field. The slosh states, though, do not shown any wildly oscillating behaviour, and do
not seem to destabilise the overal motion. The same can be said of the elastic-body states, although the
vibrational effect is quite a bit stronger compared to the response shown in Fig. 13. Finally, in Fig. 17 the
“estimation error”, i.e., the difference between the propagated rigid-body state and their estimated values,
is shown. This is typically the error that is fed back to the controller.

All mentioned aspects have to be addressed in a more formal way, of course, but this only makes sense
when the modelling is taken to the next level: modelling the dynamics as a fully non-linear system, including
sensor dynamics with realistic error models, and a filter that will fuse the data from different sensors. This
will indeed be the focus of the next steps in the research.
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Figure 17. Filtering of rigid-body states with a linear Kalman filter: state error (= real - estimated state).

VI. Conclusions and Recommendations

This paper focuses on the attitude-tracking problem of a launch vehicle with propellant slosh in a tur-
bulent atmosphere. Two controllers are designed and compared for this objective: a PD controller and an
Incremental Non-Linear Dynamic Inversion Sliding Mode Controller (INDI-SMC). First, their performance
is compared in a rigid-body tracking problem in the presence of atmospheric turbulence. When a five-degree
pitch angle step command is given, the PD controller presents around 10% of overshoot, while the INDI-SMC
shows much smaller tracking errors. However, its capability to remove turbulence induced oscillations from
the swivel commands appeared to be limited. Therefore, various filter designs have been implemented to
improve the smoothness of INDI-SMC control. Using either a notch or band-pass filter in the sensor-feedback
loops of pitch angle and pitch rate only marginally reduced the swivel oscillations, but did not solve the
problem.

Since the INDI-SMC design has shown superior performance on the rigid-body command tracking task,
its effectiveness on an aeroelastic launcher with propellant slosh was tested next. Simulation results show that
in this circumstance, INDI-SMC itself experiences diverging oscillatory behaviour, which can be successfully
suppressed by including band-pass filters in the sensor feedback loops for the pitch angle and rate. The (sub-
optimal) cut-off frequency of the band-pass filters was selected from Monte-Carlo simulations. Moreover, due
to the coupling effects between rigid body, engine, sloshing, and aeroelastic dynamics, step commands in the
pitch angle result in spikes in slosh states and swivel angles. Despite these strong couplings, the INDI-SMC
method can execute the tracking command while rejecting disturbances.

When more realistic engine dynamics are simulated, a change of values of the controller design parameters
is required. However, once done, a robust response is obtained. Changing the step input to a sigmoid
function also helps to reduce the oscillations of the slosh states. A preliminary rigid-body state estimator
(linear Kalman filter) has been included in the feedback loop to the controller, assuming noisy measurements
of the rigid-body states. Running the complete system, including engine dynamics, sloshing, flexible modes,
and input errors due to the use of rigid-body and slosh-state observers, shows that the controller remains
stable at all times, even though the swivel input has become very noisy. All observed limitations have to be
addressed in future work, but only when the modelling of dynamics and sensors is taken to the next level of
complexity (and realism).

Although the control method presented in this paper is nonlinear, the simulation model of the aeroelastic
launch vehicle with propellant slosh adopted in this paper is still linear. Future work will focus on modelling
the fully-coupled nonlinear dynamics and further validate the performance and robustness of the nonlinear
controller on the developed nonlinear platform. Then, also all design changes will be brought together and
the controller design will be reoptimised.
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Appendix A. Controller Performance Indices

To compare the controller responses and the effect of sloshing, several performance metrics will be defined.
The first one is the minimum attitude deviation of the launcher with respect to the guidance commands,
whereas the second one is the swivel effort that is required to achieve this. These two objectives can be
expressed as the integrated pitch-angle deviation and the integrated swivel angle (equivalent to, for instance,
the total hydraulic power required), given by:

∑
θerr

=

T∫
0

|θc(t)− θp(t)|dt
∑
εT

=

T∫
0

|εT (t)|dt (27)

A graphic representation of the above metrics is shown in Fig. A1(a), represented by the grey areas, for
a 2◦ step command in θ, starting at ∆t = 1 s with a duration of 14 s. For optimal controller performance,
both individual areas should be as small as possible, which means that their numerical equivalent can be
used to evaluate different controller designs. In the given example,

∑
θerr

= 6.55◦s and
∑
εT

= 17.21◦s.

Another metric can be the oscillatory behaviour of either state or control variable. Oscillations in the
control may not only be energy expensive and a burden on the hardware, it could also lead to instabilities.
Equivalently, oscillations in the slosh states gives an indication of the severity of the motion and potential
hazardous situations. To detect oscillations or otherwise discrete changes in the controls, the cumulative
moving standard deviation can be used. For a subset j of ns out of a total of N samples of an arbitrary

control signal u, the moving mean is defined as ȳj = 1
ns

j+ns−1∑
i=j

ui. Here, j will run from j = 1+ns/2 to

N -ns/2, so each subsequent subset will shift by only one sample. Let the squared deviation from this mean
be defined as su,j = (uj+ns/2− ȳj)2, which represents the value at the midpoint of subset j. The cumulative
standard deviation, Fu, for subset j is then

Fuj =

√√√√ 1

N − ns − 1

j∑
k=1

sk (28)

As an example, in Fig. A1(b) the oscillation pattern of the slosh velocity is shown, due to a poorly designed
control system. The cumulative standard deviation increases more rapidly when a discrete jump occurs, or
when there is an interval with persistent oscillations. As a metric, the grey area under the curve can be
used, which, while minimised, would lead to a smoother behaviour. In this particular example, the numerical
value is Fzs = 35.6 m/s.
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Figure A1. Controller performance indices.
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